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Abstract—Neural networks are increasingly used for intrusion
detection on industrial control systems (ICS). With neural net-
works being vulnerable to adversarial examples, attackers who
wish to cause damage to an ICS can attempt to hide their attacks
from detection by using adversarial example techniques. In this
work we address the domain specific challenges of constructing
such attacks against autoregressive based intrusion detection
systems (IDS) in an ICS setting.

We model an attacker that can compromise a subset of sensors
in a ICS which has a LSTM based IDS. The attacker manipulates
the data sent to the IDS, and seeks to hide the presence of real
cyber-physical attacks occurring in the ICS.

We evaluate our adversarial attack methodology on the Secure
Water Treatment system when examining solely continuous data,
and on data containing a mixture of discrete and continuous
variables. In the continuous data domain our attack successfully
hides the cyber-physical attacks requiring 2.87 out of 12 moni-
tored sensors to be compromised on average. With both discrete
and continuous data our attack required, on average, 3.74 out
of 26 monitored sensors to be compromised.

I. INTRODUCTION

| Deep learning systems are known to be vulnerable to
adversarial attacks. By applying small changes to an input, an
attacker can cause a machine learning system to misclassify
with a high degree of success. There has been much work on
both developing more powerful attacks [1] as well as defences
[2]. However, the majority of adversarial machine learning
research is focused on the image domain, with consideration
of the challenges that arise within other fields needed [3]], [4].

The phenomenon of adversarial examples becomes par-
ticularly pertinent when aiming to defend machine learning
systems operating as security solutions. Machine learning
systems frequently outperform other methods in detecting
cyber attacks [5]-[8]]. Despite this advantage, vulnerability to
adversarial examples means that adaptive attackers can pose
an immediate risk.

We consider the problem of adversarial examples targeting
intrusion detection for industrial control systems (ICS), as it is
a domain in which machine learning systems are being both re-
searched [3]], [9] and offered by vendors as security solutions.
In particular, we explore ICS adversarial vulnerabilities under
L constraints. This involves the examination of an attacker
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which can compromise sensors and actuators in an ICS and

substitute their readings, which are processed by an intrusion

detection system (IDS), with attacker controlled data. It can

be trivial to compromise an IDS if the attacker can control a

large portion of the data. The challenge is to achieve evasion

with a minimal number of compromised sensors and actuators.
The contributions of this paper are as follows:

o« We demonstrate the vulnerability of time-series based
intrusion detection operating on a ICS to adversarial
examples, and demonstrate how to hide a range of real
cyber-physical attacks.

« We examine challenges in attacking an autoregressive
IDS due to attacker perturbations propagating to the
optimisation target. We analyse this via loss landscape
visualisations of adversarial examples.

II. BACKGROUND
A. Adversarial Examples

[ An adversarial example is data that has been manipulated
to cross the decision boundaries of a machine learning model
in order to be mis-classified or, for regression tasks, control
the model predictions. The concept of the action space [10] of
the attacker determines the allowable perturbations. For images
this is typically taken as adding imperceptible perturbations to
the image (however in patch based attacks the perturbation is
often visible [[11]], [[12]). Outside the image domain different
action spaces are more appropriate, as human perception and
semantic meaning have less relevance. In particular are action
spaces with content constraints. These are constraints that arise
from the data, for example in hiding malware the original
attack code must still function [13]]. In the ICS domain we
find ourselves closer to the content constrained attack model
compared to the indistinguishable perturbation model used
for images. Our adversarial perturbations added for ICS are
visible, and we can only add the perturbations to particu-
lar features as dictated by our attacker model (for example
compromising the data leaving a sensor). Furthermore, the
underlying data has less obvious semantic meaning to a
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human. While the content of a picture is immediately obvious,
the semantic meaning of ICS data is harder to determine as
it will depend on the overall status of the system which is
composed of many sensors and actuators.

When conducting an evasion attack, an attacker adds a
perturbation to a datapoint x such that a neural network will
output different classes for x and the perturbed datapoint Z.
There are a range of attack algorithms to craft the adversarial
perturbation operating under different bounds. For example,
patch attacks, representing a Ly bound, can be used to create
adversarial stickers [11] and street signs [14]. In terms of
Lo, bounds the Fast Gradient Sign Method (FGSM) [[15],
can quickly generate adversarial samples by perturbing each
pixel in an image. On the other end of the spectrum, in terms
of attacker strength, the Carlini Wagner attack [1] optimises
for data misclassification and simultaneously keeping the
perturbation as small as possible.

Defences for adversarial examples are an active research
area using ideas from robust training [2], uncertainty [16], in-
termediate layer activations [17]], [18]], or removing adversarial
perturbations [19]]. However, there is still no silver bullet to
defending against all adversarial examples.

B. Related Work for Intrusion Detection

Machine learning can be used to detect anomalies in in-
dustrial control systems. Such detection systems are often
autoregressive. Based on data at time steps xp,...,x; a
prediction y; is made for x4 ;. This prediction is compared to
what is actually observed and the difference forms a residual,
ri+1. A detection function Fj is then employed to determine
if an attack is occurring. F; represents any operations which
are computed on the residuals to generate an alert; examples
include averaging, smoothing, and thresholding. The exact
machine learning model and detection function vary across
different works.

Long short-term memory (LSTM) networks were investi-
gated in [9]], [20], [21] for detecting cyber-physical attacks
in the Secure Water Treatment (SWaT) system with the best
LSTM achieving a F; score of 0.802. A different approach
was taken in [22] which investigated the Gas Pipeline dataset
[23] and combined a filtering step followed by an LSTM
prediction stage. Many other models have been analysed.
Convolution neural networks [20] have reached high F} scores
and autoencoders have been investigated in [24]], [25] as well
as neural architecture search in [26]. Alternatively, ensembles
of random trees are used in [27], or a range of classification
methods including SVMs, neural networks, and tree based
methods are compared in [28]].

Recent work in [29] generated adversarial attacks for ICS
when attacking an autoencoder IDS. Their attacker substitutes
the original data for readings within normal sensor range.
The perturbation applied in this way could be extremely
large, as every sensor reading could be replaced from an
arbitrary initial value, to a value that is within normal sensor
range. Alternatively, generative methods can be used to create
adversarial attacks such as in [30] where generative adversarial

networks (GANs) were used to create adversarial data. Addi-
tional work in [24] investigated adversarial attacks targeting
an autoencoder IDS. Unlike [29], the work in [24] modelled
their attacker as not having control of the communications to
the IDS independently of the programmable logic controller
(PLC). Therefore, the adversarial data had to fool the IDS and
fulfill the original cyber-physical attack. With this objective,
even with white box knowledge of the IDS and perfect
knowledge of future system states, an effective adversarial
attack was not found.

III. ATTACKER MODEL

We first introduce our adaptive adversarial attacker model
in terms of the goals the attacker wishes to achieve, their
capabilities in manipulating the system, and finally the overall
knowledge of the system they possess.

A. Attacker Goals

The attacker in our situation wishes to conduct a cyber-
physical attack on an ICS. However, IDS solutions can quickly
detect these attacks, and prevent damage. Our attacker aims
to conduct the cyber-physical attacks while remaining hidden
from an IDS for the attack’s entire duration.

B. Attacker Capabilities

To achieve their aim we assume the attacker is able to
control the data flow between & sensors or actuators to an IDS.
By sending tampered data to an IDS the attacker aims to hide
the cyber-physical attacks. Effectively, the attacker is operating
over a restricted L constraint. An L constraint specifies how
many features a attacker can modify. Normally the attacker
can modify any set of features they choose, as long as it is
smaller than the specified Ly bound. However, in addition to
this L( constraint our attacker is further restricted as they can
only modify features on a sensor by sensor basis. In other
words, the attacker cannot split their L, perturbation budget
across multiple sensors and actuators without also requiring
that those sensors/actuators become fully compromised.

An example in practice for the ICS we will later examine
involves an attack in which water level as measured by a sensor
rapidly changes value. If the attacker can now control the data
leaving that sensor to an IDS, how can the data be altered
in order to hide their attack? Simply reporting a constant
fixed water level of the original measurement still triggers
an alarm as the senor values are not consistent with the rest
of the system dynamics. It becomes even less intuitive if the
adversary cannot send false sensor data on certain features. As
an example, if the attacker turns on a pump to cause a cyber-
physical attack, and this pump state cannot be manipulated
further, which of the sensors that triggers alerts should the
attacker compromise, and what is the perturbation that should
be added?

Finally, in a typical ICS, sensors and actuators communicate
via a series of PLCs to the IDS. We examine the direct
compromise of individual sensor readings, instead of a whole
PLC, as this offers finer granularity to assess the sensitivity



of adversarial attacks. For example, we show that a cyber-
physical attack can be hidden by adversarial optimisation
of a single flow sensor. On a PLC basis this would mean
compromising the whole of a particular PLC, which controls
many different sensors and actuators, missing the information
that flow sensor is the weakest link.

C. Attacker Knowledge

We model the attacker as having white box knowledge of
an IDS and the physical system dynamics. Knowledge of the
physical system dynamics has a large influence on the attacker
strength. If the attacker does not know how the system evolves
in time, then all the attacker would be able to do is greedily
optimise data as it arrives to minimise the current residual.
After the attacker has sent the manipulated data to an IDS
they will be unable to retroactively make changes to aid them
in keeping future attack data hidden.

If the attacker has a model of the system then they can
predict how it will evolve over the course of an attack. With
this capability the attacker optimizes the data with the aim of
stealth across all time steps. We represent this capability by
assuming the attacker’s model of the physical system yields
its ground truth, but cannot generate the appropriate noise that
will occur when a sensor takes a measurement.

To simulate the correct level of attacker knowledge when
only having access to datasets with existing sensor noise a
degree of approximation is required. We therefore take the
values in a ICS dataset as the ground truth of the physical
system as given by the attacker’s model. This dataset, D,, is
the knowledge the attacker has of how the system evolves.
Then, we create a copy of the dataset and add the appropriate
level of Gaussian sensor noise to it. This set of data, Dy, is
what the defender will see. Thus D, and D, differ by the
level of Gaussian noise that the attacker cannot predict.

Having an accurate model of the physical system is a signif-
icant requirement, however it is an accepted assumption in this
area. Related work provided the attacker with knowledge of
all of the data, free of any noise [24]], or considered defences
which evaluate datapoints independently, and enable attackers
to compromise a target without knowledge of the physical
system [29]]. In comparison our model is more challenging for
the attacker.

IV. ATTACK ALGORITHMS

We introduce two algorithms that can be used to evade
an autoregressive based IDS. The first is an optimisation
based strategy which perturbs the attacker controlled features
with the aim of stealth across all time steps, and is not
limited to autoregressive systems. The second is specific to
autoregressive based systems but has the strong advantage of
requiring little system knowledge aside from the IDS model
itself.

A. Ly Optimisation Attack

In the optimisation attack, the attacker sends adversarial data
on the compromised features to an IDS to hide cyber-physical

attacks across all monitored features. The IDS generates resid-
uals 71 ... ry which are passed though a detection function Fy
which outputs zero if no attack is detected or 7, the magnitude
by which an alert is generated. The attacker’s goal is thus to
minimise the detection loss Lp:

LD:Fd(Tl-“rN)- (1)

Although the attacker can alter the data on the compromised
features they do not have complete freedom as the com-
promised features are themselves monitored. The adversarial
datapoint 2, will cause a autoregressive IDS to make a
prediction y; which must be close to the adversarial datapoint
Z:41. However, 2,41 is changing every iteration step as it is
itself being updated. To express this more precisely, a sequence

on the optimisation step %,
to..tn )

X =i

will be optimised to reduce the loss between IDS predictions
Yz,..t, and the target data sequence

T =&}, ., 3)

On the next iteration step the adversarial datapoint is

updated with the adversarial perturbations, 5%0__'t N O
)Ac* = :f;;[]...t]\] + 5;0...t1\7 (4)
while the optimisation target is
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T = Tyt T 5t14..tN+1' )

So, although we take an optimisation step towards minimis-
ing the loss with respect to T, our new loss is computed on
T* and the steps 0’ may not be the correct ones to take with
respect to these new targets. This creates a situation that is
not usually present in static data like images, as in our case
the optimisation target for the attacker changes from iteration
step to iteration step.

This presents a challenging optimisation problem. To ex-
plore its effects, and develop a strategy for solving it we can
look at loss surfaces for our adversarial examples. Examining
the behaviour of the loss around high dimensional objects such
as adversarial examples involves a projection onto lower di-
mensions. The simplest way to achieve this is via interpolation
of the loss L between the adversarial example & and & + ¢
where € is a direction vector. We can explore 2D surface plots
by introducing a second vector v and weighting parameters «
and ( and plot:

fla,B) = L(& + ae + Bv). (6)

When dealing with the loss landscape around adversarial
examples we select directions based on the perturbation direc-
tion that the attacker will add, i.e the sign of the gradient with
respect to the loss. Thus, we can set € and v to be vectors
given by the sign of the gradient of the compromised sensors
with respect to the loss.
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Fig. 1. Graphs illustrating the effects of the change in optimisation target between T and T*. The horizontal axes show the magnitude of perturbation applied
on a specific sensor. On the leftmost plot we have the loss surface when applying a range of gradient based perturbations on two different sensors FIT401
and FIT504, which are both flow level sensors. The loss is evaluated on the original target vector, T, that the gradient is computed on. Even in the largest
perturbation applied the loss decreases by the maximum amount. Then, in (b), we generate the new target vector T™* and compute the loss with X* as the
input. Rather than the loss decreasing, the loss increases except for the smallest gradient update steps. On the rightmost pair of plots we see a “worst case”
scenario when changing between T and T*. With (c) we have the losses when applying perturbations with o between -0.1 to 0.1 on the flow level sensor
FIT601. By applying perturbations up to v ~ 0.05 the loss decreases. However, if we apply the perturbation and re-compute the loss with respect to T* as
shown in (d) the perturbations as given by the gradient with positive o on ’i: always gives a higher loss. The best choice is to go in the opposite direction to
what is expected from the gradient in order to reduce the loss when using T™*.

We plot the loss landscapes in Figure [I] for cyber-physical
attacks in the SWaT dataset that we later examin In Figure
[Th we see that if we conduct gradient descent the loss when
evaluated on the original targets T, even for large « and f,
decreases. When the target is updated to T*, shown in Figure
[Ib, the targets have changed enough such that our loss is
higher than when we started for a large range of values of
« and 5. We see that the optimal action with respect to T
places us in a higher state of loss compared to our starting
location (v = 0 and 8 = 0) when updating the target to T*.
It is important to note that it is not a simple case of the learning
rate being too high. The loss with respect to the original target,
T, consistently reduces even when using large updates. Rather,
the change between T and T* alters the objective such that
we can easily end up in a poor location with respect to the
new targets.

This can have a very detrimental effect on optimiser perfor-
mance. In the case of Figures [t and[Td applying perturbations
based on the correct gradient direction results in the loss rising
when new predictions are compared to T*. In fact, to reduce
the loss in that case, the best action is to follow the gradient
in its opposite direction to make the loss with respect to T+
lower than the loss we began with on T.

The BFGS optimiser proved the most robust and quick-
est amongst the optimisers we evaluated. Figure [T] offers
insights as to why. The BFGS method, after obtaining a
search direction, performs a line search to find the most
appropriate step-size thus avoiding potential situations like
that in Figure [I| For this domain therefore, an optimisation
strategy must incorporate an adaptive search for the step size,
in contrast to many other domains with adversarial examples

The nomenclature of SWaT components is reported in Appendix

for which simpler optimisation strategies are effective.

B. Lg Prediction Attack

This attack exploits the autoregressive nature of an IDS and
functions by feeding the IDS’s predictions back to itself as
though it is real sensor data. Concretely, if the attacker has
the neural network model, then at time ¢ they can compute
the IDS’s predictions for the next time step y;. Then, at t 41,
on the features the attacker controls, rather than sending the
real data, x,1, they send ¥, to the IDS- i.e at every time step
they perfectly match the data they send to the IDS with its
own prediction for the system state.

This attack method does not make active attempts to reduce
detection on additional monitored features, and so hiding
attacks which have been detected on more features than
the attacker has compromised is not guaranteed to succeed.
However, this method does have advantages for the attacker
as the knowledge they need of the target system is lower. The
detection function, F,;, and a model of the physical system
dynamics are not needed to run the attack.

This method can be combined with the Ly optimization
attack by first running the prediction attack which provides an
initialisation closer to the final goal. This often led to better
results in comparison to starting the optimisation attack from
the original data.

V. ADVERSARIAL ATTACK IMPLEMENTATION
A. Attack Strategy

To generate adversarial examples for cyber-physical attacks
we begin optimising 7' time-steps before the cyber-physical
attack begins to aid in hiding the initial portion of the attack.
The value of T will be context dependent on the particular ICS
being examined, in fast moving systems 7' could be a short



time frame while in slow processes 7' may need to represent
a long time period. We examine the SWaT system [31]], and
select T' to be 400, 100 or 25 seconds prior to an attack
starting. The largest window is chosen which did not begin
during a previous attack.

We examine our attacks in two cases, the first when an
IDS only monitors continuous data, and the second where
an IDS monitors all features, both continuous and discrete.
The motivation for this distinction is that both scenarios
could be realistically encountered by an attacker. Some ICS
or sensor networks can be composed of purely continuous
data streams, whilst other setups would have both continuous
sensor measurements and discrete actuator states.

When an IDS monitors only continuous sensors we explore
three strategies for each cyber-physical attack. These can be
ranked from the most preferable to least:

1) Apply Ly Prediction attack: This attack requires only
the IDS model to function without requiring a physical
system model or the detection function employed.

2) Apply Lo Prediction followed by L, Optimisation:
Knowledge of the system model and the detection
function is needed in addition to the IDS model, but
is frequently faster than purely Ly Optimisation.

3) Apply Lo Optimisation attack: Requires a high level of
knowledge and is frequently the most computationally
expensive.

The attack strategy which requires the smallest level of
system compromise is then selected. If two or more strategies
require equal level of compromise the one with the better
ranking as defined above is used.

When both continuous and discrete data-types are monitored
we always initialise compromised features with the Ly Pre-
diction attack which functions on both data-types effectively.
Then, we fix the discrete data values and apply the L Opti-
misation attack on only the continuous compromised features.
We experimented with different strategies for simultaneously
optimising the continuous and discrete features, for example
passing the discrete features through a sigmoid function to
give gradients for optimisation, however they did not provide
benefits over our final strategy.

For the L constrained attacker we need to determine which
features the attacker should compromise. We select the first
feature to optimise based on which one had the highest
detection loss computed on the dataset D, which the attacker
controls. Note, from Section the dataset D,, differs from
the dataset which the defender will see D  due to the addition
of extra sensor noise.

We then run our selected attack strategy and if the resulting
detection loss is greater than zero we increase the level of
compromise by including the feature with the highest level
of detection loss post-optimisation. This continues iteratively
until, based on the attacker dataset D,, the attacker has zero
detection loss.

Once zero detection loss is achieved on D, we check for
pruning of the compromised features. As the compromised
feature k; is selected conditioned on the compromised features

ko, ..., k;—1 the effect of more recent compromised features
ki1, ..., kiyn, may make the compromise of feature Fk;
unneeded. Thus, we iterate backwards removing compromised
features beginning at k;,,,_1 and checking that zero detection
loss is still achieved. If it is achieved we remove k; from the
features needing compromise.

B. Replay Attack

We use a replay attack as a simple baseline comparison. In
a replay attack the attacker has access to all prior data. The
attacker substitutes data on any features they control with data
they have recorded. As ICS are frequently periodic the attacker
substitutes in data gathered at the same time n days prior. A
similar attack strategy is adopted in [29]. n is the smallest
integer for which the substituted data contains no anomalies.
The features to compromise are selected in the same manner
as our machine learning based attacks.

C. Effects of Sensor Noise

Once a sequence of adversarial data is computed on the
compromised features it replaces the appropriate features in
the defender’s dataset D, and ran through the IDS. If the
attack achieves zero detection loss then the attack is successful.
However, due to unknown sensor noise in uncompromised
features the attack may fail. This occurs when the attacker
achieves zero detection loss on their dataset D, but when
applying the perturbations onto the defender data D, detection
loss is still present. To account for unknown noise the attacker
optimises to a fraction 7 of the detection threshold values.
The principle behind this is that if an attack can be optimised
to lie below 7 of the detection threshold, then even if there
is additional noise, it will not drive the cumulative residuals
above the full detection threshold.

There is a trade-off between making the resulting adversarial
sample robust to unknown noise and not needlessly requir-
ing additional compromise. We set 7 to 0.9 when attacking
purely continuous features and 0.95 when attacking mixed
data types as the latter is a more challenging task. We did
not run an exhaustive hyperparameter selection of 7 due to
the computational time requirements of generating complete
sets of adversarial attack sequences. Optimal selection of such
hyperparameters is left as future work.

VI. DEFENDER MODEL: SWAT CASE STUDY

To analyze the vulnerability of a time-series based IDS
to the described attack algorithms, we use the SWaT dataset
which is gathered on a water treatment ICS. Full details on the
dataset can be found [31] and [32]. There have been several
detection systems proposed for the SWaT dataset [20], [21]],
[26], [33]. In this work, we train a LSTM [34] as the IDS,
as it achieves high detection performance, and so represents a
useful baseline.

At a high level the SWaT system is a 6 stage scaled down
water treatment system. It has numerous sensors measuring
physical properties, such as water flow rate in pipes and
water level height in tanks. Additionally, chemical monitoring



sensors measure a range of characteristics such as water
conductivity and pH. Finally, there are numerous actuators
which control the water flow rate and chemical dosing.

The dataset was gathered over a period of 11 days. Over that
time, 7 days were run under normal system operation and over
the course of 4 days a total of 36 different attacks were run on
the SWaT testbed. These attacks differed in duration and ob-
jective, with some attacks seeking to create underflow/overflow
situations in water treatment tanks, while others aimed to burst
pipes and halt filtration processes. The data itself is comprised
of the sensor and actuator measurements extracted from the
raw network traffic conducted over industrial EtherNet/IP and
Common Industrial Protocol (CIP) stack.

A. IDS Model

For the LSTM IDS we divide the data into sliding windows
of 100 time steps. At each time step, ¢, the LSTM makes a
prediction, y;, for the next system state, x,11, based on the
past datapoints x1, ... ,T;.

We use an LSTM with four layers, each with 512 hidden
units and a dropout rate of 0.5 between layers. A set of dense
layers takes the LSTM’s output at every time step and produces
predictions for every feature.

At test time we take the difference between the predicted
and observed values to form a series of residuals, r1, ... , 7y,
for every predicted feature. We assume that the errors are nor-
mally distributed and so we compute means, p, and standard
deviations, o, of residuals on the validation data. The positive,
RY, and negative, R}, residuals are then computed based on

RY = max (0,7, — p— o) (7
R} = min(0,7: — p + o). (8)

Finally, we perform two cumulative sums over a sliding
window containing 10 timesteps for both R} , and R} ,. If
the cumulative sum exceeds a threshold on any of the predicted
features an anomaly is declared.

B. Data Processing

We noticed several features in the attack dataset experienced
significant drift in behaviour with respect to the data collected
to represent normal system operation. One such example for
the sensor AIT201, measuring water conductivity, is shown
in Figure 2| We can see that the test data remains in the
range spanned by the training and validation data for a short
period. In Figure 2] we removed any data that is associated
with a cyber-physical attack, as one may expect attacks to
have different statistical properties with respect to normal
system operation. Hence, all of the data shown represents
normal behaviour. As the test data representing normal system
operation has a distribution fundamentally different from the
training data it can be flagged as anomalous, despite it not
belonging to a cyber-physical attack. It is worth emphasising
that this test time data is indeed anomalous with respect to the
training data, which is all we have access to a priori.
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Fig. 2. Left: Training data for the AIT201 sensor. Right: Test time data, the
green area indicates the range spanned by the training data.

Some works use test time statistics to normalise the test data
and so sidestep the problem of drift between the two portions
of the dataset [9], [33] however that introduces data snooping
and is not considered best-practice. To address this issue we
only used features that relate to physical system properties in
our IDS, i.e. flow and water level sensors as well as mechanical
pumps and valves. These features did not experience such
large deviations compared to many of the sensors relating to
chemical measurements.

The authors of [24] also noticed the discrepancy between the
test and training datasets for non-anomalous data. In their work
they propose the use of a modified Kolmogorov-Smirnov (KS)
test to filter out such features. However, in order to remove
the features that exhibited large variation between the training
and testing datasets it also filters out several physical features
which our LSTM is able to effectively model, suggesting that
the KS test results in a excessive pruning of features.

C. IDS Evaluation

We train our LSTM and evaluate it on the test set. We feed
the data in sequential windows comprised of 1" seconds to the
IDS. If in the most recent window an anomaly is detected we
reset the LSTM’s internal state, otherwise we use the LSTM
in a stateful manner. This allows for fewer cold starts to be
experienced by the LSTM over the normal operation of the
SWaT system while preventing anomalies from affecting the
LSTM’s internal state after the attack has ended. We carry out
a small grid search of T' = {25,50,100,150} and 100 gave
the best result.

We tune our detection thresholds by running a grid search
over the thresholds for the monitored features. We use I score
as a performance metric defined as

2TP 9

~ 2TP+FP+FN 2

where the true and false positive counts are TP and F'P and
the number of false negatives are F'N.

The resulting F; scores are in Table [[] and our method

achieves an F} score of 0.856, making it one of the strongest

literature baselines. To enable accurate comparison to previous

works we use the original SWaT dataset, rather than D, which
is produced as described in section |lII-C

Iy




TABLE I
RESULTS FOR DIFFERENT BENCHMARKS. FOR [20]] WE REPORT THE
PERFORMANCE OF NON ENSEMBLE METHODS FROM THE RESULTS TABLE

Method F score

MLP [26] 0.812
SVM [9] 0.796
DNN [9] 0.802
MADGAN [33] 0.77

Various [20] 0.609 - 0.775
Autoencoders [24] 0.873
Ours 0.856

D. Stronger Defender Model

Within the SWaT dataset several cyber-physical attacks have
long term effects on the system which can require significant
time to re-stabilize. This data, although anomalous, is not
labelled as an attack and so would contribute to the false
positive rate. Hence, this results in detection thresholds being
artificially raised. We wish to devise an IDS which is free from
such negative effects as it presents a target for the attacker
which is weakened due to these artefacts which will not be
present in all IDS instantiations.

To that end we use the training portion of Dy to train a new
IDS model. We now alter our detection thresholds to make the
defender stronger against an adversarial attacker.

We extract from the SWaT attack set data that is “clean”
of secondary effects and does not contain any attacks, from
which we establish detection thresholds and false positive
rates. Clean data sequences are defined byP}

1) Beginning 600 seconds after an attack is labelled as
finishing.

2) Ending 100 seconds before an attack is labelled as
starting, as some attack effects begin a few seconds
before an attack is labelled as starting.

3) The data sequence is at least 1500 seconds long.

To determine our attack detection capability we then extract
sequences of data which contain the cyber-physical attacks.
These sequences of data begin 400 seconds prior to when
an attack begins. For attacks with windows smaller than 400
seconds between each other we use the largest of either a 100
or 25 second window. We include the attack-free data at the
start of the sequence to ensure that the LSTM internal state
has stabilised from its initial values.

During the definition of clean data sequences we tried
different values of the time parameters just mentioned, and
observed little to no change in the results.

We run these sequences of data through our model and tune
the thresholds using the same procedure as in section
We generate two different sets of thresholds for the attacker
to overcome. The first is for the case where the attacker
targets only continuous data, and the IDS monitors only the

2 An exception to the stated conditions is the data between attacks 23 and
24. The system takes almost all of the duration between those two attacks to
return to normal operation and that fragment of data is not used.
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Fig. 3. Number of features which caused alerts against the level of compro-
mise needed to hide the attack for continuous-only and mixed data.

continuous sensors. The second is for the more challenging
case where the attacker targets a mixture of continuous and
discrete data, and the IDS monitors everything.

In terms of recall, which is a good measure of how difficult
a target the IDS will be for an attacker, we obtain a score
of 0.821 when solely monitoring the continuous data. When
monitoring both types of features we achieve a recall of
0.834. This places us in the same region as the strongest
literature results for dedicated defence papers (0.821/0.834
(ours) vs 0.827 [24]). In terms of Fj scores, monitoring
only the continuous sensors achieves an F} of 0.872 while
monitoring both continuous and discrete data obtains an F}
of 0.886. We should emphasise that these F; scores are not
comparable to the results in Table [, as we are computing
the scores by removing sections of data in the procedure as
described earlier. What they do show (particularly in terms
of recall) is that the defender IDS is now a more significant
hurdle for the attacker.

VII. ADVERSARIAL RESULTS

The full set of results is presented in Appendix Table [[I| in
which we show the minimum compromise needed to hide ev-
ery cyber-physical attack. Although there are 36 total attacks in
the SWaT dataset, two separate pairs occur back to back. Here
we consider them forming single longer attacks as it would be
unrealistic for an attacker to begin optimising from scratch in
the middle of a detected attack. In the continuous data regime
24 out of 34 cyber-physical attacks are successfully detected
by the IDS. From the detected 24 cyber-physical attacks we
successfully hide 23 of them with our adversarial attack. For
the mixed data regimes, 29 out of 34 attacks are detected by
the IDS and of those our adversarial attacks hide 27.

The adversarial attacks which are unsuccessful, one in the
continuous data regime and two cases when considering mixed
data, fail due to unknown sensor noise present in the defender
data D, as described in section

Regarding the amount of compromise required, on average
2.87 compromised features are required to hide a cyber-
physical attack out of 12 monitored features when dealing



with purely continuous data. In the mixed continuous/discrete
regime we require 3.74 features to be compromised out of 26
monitored features. In general, the more features over which
an attack is detected, the more features need compromising:
for the continuous data scenario scenario, on average attacks
which are detected on 6 or more features require 5.63 features
to be compromised, while attacks which are detected on less
than 6 require 1.4 compromised features. From Figure [3| we
see the number of features an attack is detected on against the
number of features requiring compromise.

To gain a better understanding of how the attack modifies
the data we show a portion of attack number 6 which aims
to cause an underflow in a tank. The raw data is shown in
in Figures [a| - and here we assume that the attacker
can control a single sensor (LIT301). Figures [da] and (b
show how the readings for sensors LIT301 (the compromised
sensor) and FIT201 (one of the 4 sensors that triggered an
anomaly) differ from the predicted values generating residuals
in Figures [Aclfdd] The attacker compromises the LIT301 sensor
and optimises to keep the residuals hidden across all of the
sensors which triggered an anomaly (LIT301, LIT101, FIT201,
FIT504). In Figure we see how the adversarial data on
the LIT301 sensor needs be perturbed to achieve this. Then,
in Figure fif] we see the effect this has had on the predicted
values for FIT201 and the residuals in Figures @glfdh] have
been reduced to as to not trigger an alert.

The most similar work to ours is [29]] which also constructs
adversarial examples for SWaT, however direct comparison
between results is challenging as 1) their attacker model
operates on different perturbation constraints 2) the intrusion
detection system is non-autoregressive which is a key focus of
this paper and 3) the attacker objective also differed, we seek to
reduce detectability to O while in [29] the detection magnitude
is reduced as much as possible (but not to 0) within their
attacker budget dependent on their perturbation constraints.

A. Replay Attack Comparison

The replay attack baseline performs significantly worse than
our approach. The average level of compromise needed when
considering mixed datatypes is 10.26 sensors (compared to
3.74 sensors for our attack strategy) and fails to hide 6 attacks
due to unknown sensor noise, while our algorithm fails on
2 attacks. When only being able to compromise continuous
data a replay attack strategy is ineffective functioning only on
2 of the examined attacks. This is because without a degree
of optimisation which considers the discrete features, which
remain fixed, the IDS detects the discrepancies between the
discrete and continuous features even if the continuous features
come from attack free data.

B. Transferability of Adversarial Examples

With the adversarial examples showing sensitivity to sensor
noise, we examine what would occur if the attacker had black
box knowledge of the IDS. Specifically, the attacker knows
the training/validation data, the model architecture, and the
algorithm used to generate the thresholds. To examine this we

train a new detection model and evaluate the attacks that have
been generated for the original IDS on the new model.

When examining only continuous data 18 of the 23 suc-
cessful attacks transferred. There is a correlation between the
attacks that used the L, Prediction attack strategy and its
transferability. Only 2 attacks which utilised the Ly Prediction
attack strategy in some form failed to transfer. This can be
explained as by purely using our Ly Optimisation attack, the
goal is only to remain under a fraction 7 of the detection
threshold. This places the residuals only slightly under de-
tectability. However, initialising the optimisation via the L
Prediction strategy and then, if necessary, optimising further
places the results a larger margin under the detection threshold.
An example of this combined strategy on the residuals is
shown in Figures [e] - 4h]

When both discrete and continuous data is considered 15
out of the 27 successful adversarial attacks transferred. This
is a deterioration in performance compared to the purely
continuous data regime, and reflects the more challenging
underlying optimisation task that is required.

VIII. CONCLUSION

We have presented a method for generating adversarial
attacks on time-series IDS. Although they can be fooled a
higher degree of perturbation is required along with stronger
optimisation strategies in comparison to the image domain.

A key difficulty with generating the adversarial attacks is
due to the attacker perturbations influencing the optimisation
target at every iteration step requiring a search for the best
step size to be conducted. This problem becomes more pro-
nounced when several features are being optimised as they add
additional shifts to the optimisation target.
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APPENDIX

Occasionally a specific sensor or actuator is referred to in
this work. To assist in understanding what type of senor or
actuator is being referred to their roles are as follows:

LIT: Water Level Indicator Transmitter.

FIT: Water Flow Indicator Transmitter.

MV: Mechanical Valve actuator.

P: Pump actuator.

AIT: Analyser Indicator Transmitter. Measures one of
conductivity, pH, or oxidation reduction potential.

DPIT: Differential Pressure Indicator Transmitter.

Additionally a numerical suffix is usually appended to iden-
tify which of the many different pumps, valves, or transmitters
is being referred to. The first digit identifies in which sub-
process the component is located and the second two digits
are its numerical indicator. Thus, LIT301 is a sensor measuring
the water level in sub-process 3 and is the first numerically
listed.
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Fig. 4. Results for the LIT301 (left plots) and FIT201 sensors (right plots) for attack number 6. Red vertical lines indicate when the attacker began and
ended their optimisation and the shaded area indicates when the cyber-physical attack is in progress. Horizontal red lines show detection thresholds.



We state for every cyber-physical attack in the SWaT testbed 1) The number of features that detect an anomaly. 2) The number of features that
require compromise to hide the cyber-physical attack completely. Finally, 3) which of the attack strategies is used in the case of purely continuous
(Cont.) data being examined (the mixed data domain always uses the same strategy). Attack pairs 8 / 9 and 22 / 23 occur back to back in the
attack dataset and we consider the them together forming as a single longer attack. For the mixed continuous and discrete data regime we always
use the same attack method as described in E “F” in the “Compromised Features to Hide Attack” column indicated the attack failed due to sensor
noise. In total there are 12 monitored sensors when considering purely continuous data and 26 monitored sensors when using both continuous and discrete data.

TABLE I
COMPLETE TABLE OF RESULTS.

. Features with Compromised Features Adversarial Method
Attack Attack Description Detection to Hide Attack Used for Cont.
Cont. Mixed Cont. Mixed
! Open MVI01 to 2 2 1 2 Lo Prediction
overflow tank
2 Turn on P102 to 1 3 1 3 Lo Prediction
bust pipes
Increase LIT101 to e
3 underflow tank 1 1 1 1 Lo Prediction
4 Open MVSQ4 to halt 0 0 NA NA NA
reverse osmosis shutdown
5 Tamper AIT202 tlo 0 1 NA 1 NA
reduce water quality
6 Increase LIT301 to 4 6 | 5 Lo Prediction
underflow tank and Lo Optimisation
Increase value of DPIT to Lo Prediction
7 . 9 11 9 9 RS
stop system operation and Lo Optimisation
849 Reduce value of FIT401 to 1 2 3 3 Lo Prediction

disrupt system operation

10 Close MV304 to 0 0 NA NA NA
halt stage 3

Do not open MV303 to
halt stage 3

12 Decrease LIT301 to 2 2 2 2 Lo Prediction
overflow tank

Do not open MV303 to
halt stage 3

Increase AIT504 to

14 . 0 1 NA 1 NA
cause drain

and Lo Optimisation

11 0 0 NA NA NA

13 3 7 2 8 Lo Optimisation

s Increase AITS04 to 0 0 NA NA NA
cause drain

Keep MV101 on. Decrease

16 LIT101 to overflow tank ! ! ! 1 Lo Prediction
Multi-point attack to L Prediction
17 . 11 13 5 6 AT
damage reverse 0smosis and Lo Optimisation
13 Multi-point attack to 0 10 NA 3 NA

freeze system

19 Turn off P203 and P.205 0 1 NA 1 NA
change water quality

Increase LIT401 and keep

20 P402 on to underflow tank

3 1 1 1 L Prediction



TABLE III
CONTINUATION OF RESULTS TABLE.

Features with

Compromised Features

Adversarial Method

Attack Attack Description Detection to Hide Attack Used for Cont.
Cont. Mixed Cont. Mixed
21 Multi-point attack to 4 7 2 F Lo Prediction
damage two tanks
22: Tank overflow Lq Prediction
2+23 23: Stop tank inflow 12 16 10 16 and Lo Optimisation
Turn on P201, P203, and
24 P205 to waste chemicals 0 0 NA NA NA
Turn on P101 and MV101 s
% to underflow/overflow two tanks 3 7 2 3 Lo Prediction
26 Reduce LIT401 5 3 F 1 NA
to overflow tank
Increase LIT301 S
27 to underflow tank 4 6 1 2 Lo Optimisation
3 Increase LIT101 3 7 2 5 Lo Prediction
to underflow tank and Lo Optimisation
29 Turn off P101 0 | NA | NA
to stop outflow
30 Turn off P101 and P102 1 5 1 4 Lo Prediction
to stop outflow
Reduce LIT101 s
31 to overflow tank 5 8 2 1 Lo Optimisation
B Close P501 and vary FIT502 12 19 5 6 Lo Prediction
to reduce output and Lo Optimisation
Manipulate AIT502 N
3 to send water to drain 2 2 ! 2 Lo Optimisation
34 FIT401 and AIT502 manipulation 10 3 2 F Lo Prediction
to disrupt UV and reverse osmosis and Lo Optimisation
35 Decrease FIT401 to disrupt 9 14 5 5 Lo Prediction
UV and reverse osmosis and Lo Optimisation
36 Decrease LIT301 to 7 10 1 1 Lo Prediction

overflow tank
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