
   

 

   

 

 

Abstract—Privacy protection in electronic healthcare 

applications is an important consideration due to the sensitive 

nature of personal health data. Internet of Health Things (IoHT) 

networks have privacy requirements within a healthcare setting. 

However, these networks have unique challenges and security 

requirements (integrity, authentication, privacy and availability) 

must also be balanced with the need to maintain efficiency in order 

to conserve battery power, which can be a significant limitation in 

IoHT devices and networks. Data are usually transferred without 

undergoing filtering or optimization, and this traffic can overload 

sensors and cause rapid battery consumption when interacting 

with IoHT networks. This consequently poses restrictions on the 

practical implementation of these devices. As a solution to address 

the issues, this paper proposes a privacy-preserving two-tier data 

inference framework – this can conserve battery consumption by 

reducing the data size required to transmit through inferring the 

sensed data and can also protect the sensitive data from leakage to 

adversaries. Results from experimental evaluations on privacy 

show the validity of the proposed scheme as well as significant data 

savings without compromising the accuracy of the data 

transmission, which contributes to energy efficiency of IoHT 

sensor devices. 

Index Terms— Privacy-Preserving, Body Sensors, Wireless 

Body Area Network (WBAN), Internet of Health Things (IoHT), 

mHealth, IoT, Cloud, Healthcare Big Data, Inference System 

I. INTRODUCTION 

he introduction of tracking apps in response to the COVID-

19 pandemic have highlighted discussions on the 

vulnerabilities and potential privacy threats that can be 

associated with these applications. Private information is 

vulnerable to being compromised using communication 

protocols with weak security, such as Bluetooth which has been 

used by some health agencies [1]. Smart home environments 

emerged with health applications are being prevalent as more 

homes are being connected to the Internet of Things (IoT) and 

IoHT networks along with wearable devices. The growing 

demand for these services will add additional transactions and 

increase the workload of wireless body area networks (WBAN), 

which consist of sensors and smartphones. These devices, such 

as physiological sensors and monitoring devices will be 
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affected by an increased demand in performance and battery 

power. Sensors in their current capacity do not interact 

significantly with IoT networks, nor do they have the 

intelligence to be able to provide data to health networks 

securely. Instead, these devices are simply passive and only 

provide data at a regular interval or on-demand due to their 

hardware size and battery limitations. The use of smartphones 

to interact with sensors and wearables allows the possibility of 

these limitations to be overcome by taking advantage of more 

powerful resources from smartphones. Privacy is a requirement 

in dealing with health information. Given that this is a new and 

emerging field, i.e. sensors interacting with IoHT devices, 

which will use health data, there has been little research to 

address the privacy concern of sensitive patient data within such 

a context. It is expected that the volume of traffic and 

transactions of data requests to sensors in IoT networks will 

increase as IoT increase in connectivity [2].  

In summation, the two critical challenges of a smart home 

system will be energy efficiency and privacy preservation. To 

alleviate these problems, we propose a two-tier data inference 

framework for a smart house care system in which less sensitive 

information is transferred and encrypted and at the same time 

energy consumption can be reduced at the wearable devices 

level (the first tier). Privacy preservation is achieved at the edge 

servers deployed in each home (the second tier). The first tier 

infers data processing of sensors to reduce transactions from 

sensors to smartphones and IoHT networks. Processed 

encrypted data from wearable devices will be passed to the 

second tier. To protect the privacy of each resident, the second 

tier protects data by Laplace noise enabled differential privacy. 

The two-tier approach is created specifically for IoHT 

applications where privacy in the underlying sensor data is 

protected by a privacy-preserving workflow. In these 

applications, the sensor data is first reduced, and the encrypted 

sensor data is then transmitted to the edge servers. At the edge 

servers, differential privacy is used to protect privacy further. 

This study provides three major contributions: (1) Leveraging 

model driven prediction, encryption, and data points with edge 
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computing to propose a two-tier privacy-preserving IoHT 

framework. (2) Evaluation of the proposed system in terms of 

efficiency and privacy preservation with up to 51.3% of savings 

rate with a good accuracy rate, and (3) Presenting potential 

application scenarios to benefit from the solution. 

II. RELATED WORK 

An IoHT network is defined as an IoT network that includes 

a personal health device (PHD), which itself is defined in 

further detail by the IEEE P11073 PHD Work Group. IoHT 

could include any health devices attached on or within a user’s 

body, and is battery driven with the ability to sense certain 

health or physiological data. It should also be able to store 

memory and have capability to communicate wirelessly. To 

assess the proposed solution with PHD devices and networks, 

related areas are reviewed including inference systems and 

privacy-preservation techniques. 

A. Health Inference and Prediction Analytics 

Overhead requirements can be reduced by inferring health 

data on sensor devices, overcoming the need to have a 

managing device such as a smartphone or other smart device to 

act as a gateway to connect to the public network.  

Engel et al. [3] considered a context aware inference model 

to process a huge amount of data generated by wireless sensor 

networks used in logistics operations. Multi-sensor data 

combined with a context aware inference model delivers 

relevant information to the user for fast processing and support 

of large amounts of data, which allows for real-time monitoring 

of temperature-controlled supply chains. The hybrid context 

aware model retrieves sensor data and infers this data to 

produce relevant information. Whilst this may be useful in 

processing large amounts of data using a context aware 

inference system, it does not consider inferencing within a 

situation that requires controlling the volume of data against 

traffic and information requested from an external party such as 

IoHT. Zhu et al. [4] put forth a dynamic Bayesian model for 

averaging in their proposal to develop a high-accuracy 

prediction analytic method suitable for a large scale IoT 

application. This method, however, cannot be applied to 

mHealth data due to the difference in size and type of data 

between mHealth and IoT networks.  

B. Privacy-Preservation 

Privacy-Preservation is critical in many networks such as the 

cloud, wireless sensor networks and especially in the eHealth 

environment. There are security and privacy aspects to be 

considered when transmitting health data to any network. The 

following is a brief of two types of existing privacy-preserving 

technologies that are relevant to this study.  

Cryptography based schemes: Encryption can be defined as 

an ordered quintet (P, C, K, E, D), where P is the plaintexts, C 

is the crypto texts, K is the keys, E is the encryption functions, 

D is the decryption function. Pasupuleti et al. [5] proposed a 

secure privacy-preserving scheme based on probabilistic public 

key encryption algorithm for securing outsourced data of 

resource-limited mobile devices. To reduce the computation 

and communication overhead, the proposed system uses a 

ranked keyword search which first returns the most relevant 

files instead of all the files back. Wang et al. proposed a 

hierarchy attribute-based encryption scheme to secure the 

shared data using ciphertext-policy attribute-based encryption. 

An integrated access structure together with some attributes are 

involved in the encryption. The proposed scheme is proved to 

be conspicuous efficient with the increasement of the number 

of files [6].  Wasters [7] proposed an attribute-based encryption. 

In his solutions, it allows for the data sender to determine the 

access control policies. A user can decrypt the ciphertext only 

when the access tree associated with that ciphertext is satisfied 

by the attribute set which is associated with the private key. 

Differential privacy based schemes: A major problem with 

sharing information about a dataset is privacy preservation. 

Differential privacy is a technique for modifying data in a way 

that prevents inferring much about private information.  

Yin et al. [8] proposed a location privacy-preserving scheme 

based on the differential privacy strategy for IoT networks. A 

location information tree model is constructed to express the 

position dataset. The authors claimed the proposed scheme can 

achieve higher processing efficiency compared to traditional 

location privacy protection algorithms. Xu et al. [9] proposed a 

framework for IoT data analysis called local differential privacy 

obfuscation, which can ensure that the users’ sensitive data will 

not be exposed when they are aggregated and distilled at the IoT 

devices. Liu et al. [10] proposed a framework to direct traffic 

flow from one smart home to anther home gateway prior to 

sending to the internet, which achieves strong differential 

privacy and the attacker is unable to link the traffic flow to a 

specific smart home network. 

III. THE SOLUTION 

To reduce the power consumption of IoHT devices and 

protect sensitive health data generated by IoHT networks, we 

propose a privacy-preserving two-tier data inference 

framework. The first tier in this framework involves a data 

inference algorithm that can reduce the number of redundant or 

low-value transactions so as to save the power consumption; the 

second tier protects the sensitive data by using encryption and 

differential privacy techniques. 

A. The first tier: data reduction using a data inference 

algorithm 

It is unnecessary to consume bandwidth and power resources 

by sending all available data if there could be a more effective 

method of reducing the number of original data sent. Therefore, 

in the first tier, we propose the use of a data inference algorithm 

which decides only to transmit data if it is significantly different 

from the previously captured DPs, thus reducing the number of 

redundant or low-value data transfers [11]. Using this solution, 

there is a risk that it could not represent the original data and 

does not properly represent data in certain situations, such as in 

the case of short interval sampling. To reduce these instances, 

it is proposed to analyze the differences between the original 

and inferred data, and apply regular beacons (DPs that are 

transmitted regardless) into the inferred results such that they 

act as a framework to reflect the original data as much as 

possible. Three aspects are considered to assess the results [12] 

including (1) Efficiency Ratio (ER) of saved (reduced) data 



   

 

   

 

volume and actual transmitted data, (2) Savings Ratio (SR) of 

reduced data and sensed data (%), and (3) Accuracy Ratio (AR) 

of total value of transmitted data and original data (%). 

Variance rate (VR) is used for inferring the selection and 

subsequent transmission of data. It compares the DP with those 

directly before and afterwards to screen out DPs which are too 

similar and do not have to be transmitted, i.e. do not provide 

new significant information from previous DPs. Different 

levels of granularity can be applied for VRs, e.g. 1% VR is finer 

than 10% VR. It can be applied using the formula below. 

If |𝑉𝑐 − 𝑉𝑐1|𝑂𝑅|𝑉𝑐0 − 𝑉𝑐|)> 𝑉𝑐 × 𝑉𝑟, 

then 𝑉𝑥 = 𝑉𝑐 

Else then 𝑉𝑥 = 𝑁𝑖𝑙, where 𝑉𝑐 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒, 𝑉𝑐0 =

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑣𝑎𝑙𝑢𝑒, 𝑉𝑐1 = 𝑛𝑒𝑥𝑡 𝑣𝑎𝑙𝑢𝑒 𝑎𝑛𝑑 𝑉𝑥 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑛𝑑 𝑉𝑟 =

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 

When a VR is applied to data, a difference between the graph 

of inferred data versus the graph of original data will inevitably 

arise, as depicted in Fig. 1. In this figure, S (Upper) represents 

the area of this difference or the distorted portion by the inferred 

values that are less than the original, whilst S (Lower) 

represents areas of inferred values that are higher than the 

original. A larger total area of the gap refers to greater data 

distortion and therefore reducing this gap would be better for 

accuracy. The formula below depicts the area of upper and 

lower sides of the inferred graph against the original. 

𝑆𝑢 = ∑ (𝑛
𝑘

)𝑆𝑛

𝑛

𝑘=0
where 𝑆𝑛= G(S1, S2 ..., Sn), 

 
 

(1) 

similarly 

𝑆𝑙 = ∑ (𝑛
𝑘

)𝑆𝑛

𝑛

𝑘=0
 where 𝑆𝑛= Y(S1, S2 ..., Sn), 

 
 

(2) 

Total area of the gaps would be presented as below. A larger 

value means a ‘coarser’ and higher VR inference has been used 

relative to a smaller total area which means that a ‘finer’ and 

lower VR value has been applied. 

The larger the difference (𝑆𝑑 = |𝑆𝑢 − 𝑆𝑙|), the farther the 

result is from the average and less representative of the original 

trend. However, it is important to note that a smaller difference 

does not necessarily mean that it represents the original data 

graph properly – it could however be an indicator of how 

accurate the inference is to the original along with the gaps 

instead. For example, a small S value as well as a small 

𝑆𝑑  suggests it is likely to be closer to the original. These figures 

in conjunction (i.e. S and 𝑆𝑑) can be used to determine how 

accurate each inference is, whilst the savings or the reduction 

of DP indicate the efficiency.  

A S = 0 would suggest that the inference represents the 

original data perfectly with no distortion, whilst a 𝑆𝑑  = 0 

suggests that the inference represents the mean value of the 

graph despite not representing the original perfectly. Fig. 1 

depicts the upper and lower gaps after inference has been 

applied. 

S (Upper)

S (Lower)

Fig. 1. Differences between the original and inferred value, which shows the 

areas to be used for accuracy calculation [12] 

A consequence of sampling in statistical inference systems is 

the reduction of DPs, which leads to data size reduction. 

Increasing VR results in increased savings, however there 

should be a threshold to ensure accuracy of the result. Privacy 

preservation is increasingly recognized as a serious concern for 

IoHT networks where healthcare data is shared, processed and 

transferred. The degree of privacy preservation in inference 

systems would be described in what extent that inferred data are 

different from original data.  The sampled data will then be 

encrypted using symmetric key encryption (SKE), or attribute-

based encryption (ABE). As an explanation, ABE is a public 

key encryption (PKE) technique [13]. The encrypted data are 

then passed to the second tier.  

B. The second tier: data protection with differential privacy 

The second tier concerns the protection of sensitive health 

data created by the IoHT network in the first tier. To protect the 

privacy of sensitive data in the dataset, removing identifying 

and personal information such as the user’s name, ID, and 

phone number is insufficient because the remaining data reveals 

identities in the dataset. Differential privacy is a technique that 

ensures protection against attackers to infer private information 

[14]. In the differential privacy algorithms, a randomized 

function adds a random noise to the true answer to produce a 

response to a query [15].  

Definition of differential privacy: 

Let D and D' be two neighboring datasets and M a 

randomized function. M provides ϵ-differential privacy for all 

sets of O ⊆ Range (M), if it satisfies the following:  
Pr[ 𝑀(𝐷)  ∈ O ]

Pr[ 𝑀(𝐷′ )  ∈ O]
≤ exp (𝜖) 

(3) 

It is said that algorithm M provides 𝜖-differential privacy 

protection. It can be seen from the definition of differential 

privacy that the 𝜖 is used to control the probability ratio of the 

algorithm M to obtain the same output on two adjacent data sets. 

It reflects the level of privacy protection that M can provide. In 

practical applications, 𝜖  usually takes a small value, such as 

0.01, 0.1, or 1n 2, 1n 3. The value of 𝜖 should be combined with 

specific requirements to achieve a balance of safety and the 

availability of output results. Differential privacy protection can 

be achieved by adding an appropriate amount of interference 

noise to the return value of the query function. Adding too much 

noise will affect the usability of the result, while too little cannot 

provide sufficient security. Sensitivity is a key parameter that 

determines the amount of noise added. It refers to the largest 

change to the query result caused by adding or deleting any 

record in the data set.  

For 𝑓: 𝐷 → 𝑅𝑑, the L1-sensitivity of 𝑓 is 



   

 

   

 

𝛥𝑓 = max
𝐷1,𝐷2

||𝑓(𝐷1) − 𝑓(𝐷2)|| 1 (4) 

 

for all 𝐷1, 𝐷2 differing in one element at most. 

The sensitivity of a function is determined by the function 

itself, and different functions will have different sensitivities. 

For functions with lower sensitivity, sufficient privacy 

protection can be achieved with the addition of only a small 

amount of noise. However, for some sensitive functions (such 

as the median function), it is required to add a lot of noise to 

achieve the same level of protection. 

The most common implementation mechanisms are Laplace 

Mechanism and Exponential Mechanism. Probability Density 

Function (PDF) for a random variable with Laplace distribution 

is defined as follow: 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑥| µ, 𝑏) =
1

2𝑏
exp( −

|𝑥 − µ|

𝑏
) 

 

 

(5) 

 Let b =
Δ𝑓

𝜖
 where f is the query function. Then, we have 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝑥| µ, 𝜖, 𝛥𝑓) =
𝜖

2𝛥𝑓
exp( − 𝜖

|𝑥 − µ|

𝛥𝑓
) 

 

 

(6) 

IV. RESULTS ANALYSIS 

A. Efficiency and accuracy evaluation 

The approach used for evaluation has two considerations 

body temperature (BT) and heart rate (HR). It measured time 

intervals (minutes) of sensing frequency to analyze the 

differences of inferencing results. Fine and coarse inference 

algorithms are applied to show the differences and efficiency of 

each of these cases. Dataset [12] was used for HR and BT with 

Matlab R2019b for the inference algorithm. 

Evaluation results have been displayed in Fig. 2 and depict 

body temperature (BT) and heart rate (HR) sensed on a minute 

basis. In applying a 1% and 2.5% inference rate to BT and HR 

data respectively, the volume of data to be transferred was 

reduced by 76% for BT and 73% for HR.  
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Fig. 2. Inferred HR and BT of sleep monitoring data (minutes) – inferred BT 
data represents the original well whilst inferred HR data shows relatively more 

gaps (this could be improved by using beacon data sampling) 

BT inference shows better results representing almost 

identical data as opposed to HR. In other words, whilst the data 

savings rates are similar for both BT and HR, the accuracy of 

inference in both types of data were very different and could be 

reflective of the inherent differences in what these data are 

measuring. Distortion of the original data can occur when an 

inference system disregards data to transmit if it does not vary 

sufficiently from previous or adjacent DPs i.e. does not meet a 

stated VR threshold and is therefore determined to be of little 

significance and considered unnecessary to be transmitted. This 

distortion is especially so for data that are measured at shorter 

intervals, as the data could be trending over a longer term but 

simply due to the shorter frequency of data measurements, do 

not have time to vary significantly between each subsequent 

data measurement. This limitation has also been discussed in 

greater detail earlier in Section III along with a potential 

solution, which is to add DPs which function as beacons. These 

beacons transmit data at set intervals regardless of whether they 

meet the VR threshold criteria, and therefore helps to maintain 

the accuracy of the overall inference data without 

compromising heavily on data savings. In these experiments, 

beacon DPs were set to minute intervals. A finer inference VR 

threshold can provide greater accuracy; however, it results in 

lesser transmission savings and decreases the overall efficiency 

rate from the perspective of data transmission. Certain 

situations may simply require a general idea of the trend rather 

than valuing exact or accurate figures – in these cases, a coarser 

inference VR method could be used instead which places 

greater priority on data saving. The exact interval of beacon 

DPs would depend upon the context and solution or application 

requirements for which this inference is being implemented.  

B. Privacy-preserving evaluation 

This part of the paper aims to study the efficiency of the 

proposed scheme from privacy preservation perspective.  

Research on privacy-preserving approaches in eHealth clouds 

have commonly tended to focus on cryptographic methods such 

as symmetric key encryption (SKE) and attribute-based 

encryption (ABE) [13]. In order to prove the efficiency of the 

proposed data inference framework for IoHT, the correlation 

between plaintext size and crypto texts size can be tested in two 

main categories: SKE and ABE. For SKE evaluation, the 

simulation is conducted in OnlineDomainTools [16] for three 

main symmetric encryption techniques: advanced encryption 

standard (AES), data encryption standard (DES), and blowfish.  

 
TABLE I: DATA SAVINGS FOR DIFFERENT VARIANCE RATES 

 (24 HOUR SAMPLES)   

VR 0% 2.5% 5% 10% 20% 

DP 1420 691 306 146 17 

Saving (%) N/A 51.3 78.5 89.7 98.8 

Accuracy result N/A Very Good Useable Poor Unusable 

 

Over a course of 24 hours in an experiment, a total of 1420 

heart rate DPs were sensed and processed at various inference 

rates ranging from 2.5%, 5%, 10% and 20% VRs. After 

inferencing algorithms are applied to the data, the number of 

DPs to be transferred were reduced significantly as shown in 

TABLE I. VRs ranged from 0%, 2.5%, 5%, 10% and 20% 

which resulted in savings ranging from 0%, 51.3%, 78.5%, 

89.7% and 98.8% respectively. Plaintext size for 0% savings 

can be considered as 1024B (1MB). Plaintext size for other 

degree of savings can be obtained by: 

𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑠𝑖𝑧𝑒 (𝐵) =
(100 − 𝑠𝑎𝑣𝑖𝑛𝑔) ∗ 1024

100
 

 

(7) 



   

 

   

 

The impact of varying the plain text size is shown in Fig. 3. 

The mode is set to ECB (electronic code book) while 

maintaining the key at 128 and evaluating varying plain text 

sizes from 1024, 498, 220, 105, and 12 with AES, DES, and 

blowfish encryption functions. The results show that as the size 

of the plain text size decreases, the size of crypto text also 

decreases accordingly. Comparing TABLE I and Fig. 3, when 

VR is equal to 2.5% and the accuracy result is very good, the 

crypto text size for 1024 bytes of data is equal to 496 bytes. 

However, there is no clear evidence on whether one encryption 

technique was better than another.  

Fig. 3: Evaluation of varying plain text size and its effect on crypto text size 

 

We have also evaluated the effectiveness of our solution by 

utilizing differential privacy. The dataset used in the experiment 

contains information about body temperature, gender, and heart 

rate for 130 people.  

In the proposed model in this paper, data will eventually be 

used for statistical queries. For example, the average heart rate 

of someone in a day will be queried. The difference between 

one more record and one less record on the statistical results is 

defined as the sensitivity of the query algorithm, denoted as Δf.  

In order to provide 𝜖-differential privacy protection for our 

data, the output result will be:  

𝑂𝑢𝑡_𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑅𝑒𝑎𝑙_𝑅𝑒𝑠𝑢𝑙𝑡 + Laplace(
Δf
𝜖

) 

 

 

(8) 

The Laplace (Δf/ 𝜖) is the Laplace noise which was added to 

protect the real data. According to Eq. (8), the sensitivity of our 

query algorithm is first required to be analyzed, from which, an 

appropriate 𝜖 to obtain the required Laplace noise is selected. 

By definition of sensitivity, it is logical to infer that the greater 

the sensitivity, the greater the noise, and the smaller the 

sensitivity, the smaller the noise. An assumption is made that 

Δf = 1 (that is, the addition of each new record will cause the 

result to change by 1, which is very large). Therefore, the 

following experiments are conducted with a sensitivity of 1 (Δf 

= 1), and the distribution of Laplace noise added to the data is 

equal to Laplace (1/ 𝜖). Noise is added to satisfy the Laplace 

(1/ 𝜖) distribution to each heart rate data in the original data set. 

Six experiments were performed where 𝜖 was set equal to 0.01, 

0.05, 0.1, 0.2, 0.5, 1.0 and the results compared to observe how 

differential privacy protects the original data. Following this, 

the average values of the original data were identified and 

compared with the original data statistics to compare the 

performance of differential privacy.  

Fig. 4 shows the experimental results under six 𝜖. The x-axis 

of each sub-figure in Fig. 4 represents the index of the DP in the 

data set. The y-axis represents the heart rate value of this DP. 

The blue line in the figure represents the heart rate value in the 

original data set, and the red point represents the value after the 

addition of Laplace noise to each DP in the original data. The 

distribution of Laplace noise added are Lap (1/0.01), Lap 

(1/0.05), Lap (1/0.1), Lap (1/0.2), Lap (1/0.5), and Lap (1/1). 

 

TABLE II: QUERY RESULTS UNDER DIFFERENT 𝜖 

The value of  𝜖 0.01 0.05 0.1 0.2 0.5 1.0 

Average value of raw data 73.76 73.76 73.76 73.76 73.76 73.76 

Average value of 

 privacy-preserved data 

 

73.84 
 

73.18 
 

73.14 
 

73.89 
 

73.76 
 

73.76 

Based on the trend in changes of the sub-figures, it can be 

observed that with the increase of 𝜖, the added noise begins to 

decrease i.e. the degree of deviation of red points from the blue 

line begins to decrease. When 𝜖  = 1, the noised data almost 

coincides with the original data. According to the trend of Fig. 

4, it can be observed that when 𝜖 is smaller (as in the sub-figure 

with 𝜖 = 0.01), the degree of privacy protection provided by 

random algorithms is greater. Conversely, when 𝜖 is larger (as 

in the sub-figure with 𝜖 = 1), the degree of privacy protection 

provided by random algorithms is lower.  

Each DP after adding Laplace noise will deviate from the 

original data to a certain extent. However, this is not necessarily 

important as users in practice may not query a specific value 

such as their heart rate at a specific point, but may be more 

concerned about the average value over a certain period of time. 

The average value of both the original data set and the noised 

data set in all six experiments were calculated and the results 

summarized in TABLE II.  It can be seen from TABLE II that 

the size of the noise added to the original data set is different in 

each experiment. The statistical results (the statistical results 

after adding noise) deviate from the true statistical results (the 

raw data statistical results) to different degrees. The smaller the 

deviation, the higher the availability of data. When 𝜖 = 0.01, 𝜖 

= 0.05, 𝜖  = 0.1, 𝜖  = 0.2, there is a relatively large deviation 

level, and the availability of data is low. When 𝜖  = 0.5, the 

degree of deviation is very small (almost close to 0) and the data 

availability is high. The purpose of adding Laplace Noise is to 

ensure the availability of data while protecting user privacy. 

The experimental results from Fig. 4 and TABLE II show that 

there is a compromise in privacy protection and data availability 

– obtaining greater results in one requires compromising the 

other. In comparing Fig. 4 and TABLE II under these 

considerations, data protection capability and data availability 

were the best when 𝜖 = 0.5.  
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Fig. 4. Evaluation of differential privacy with six different values of 𝜖  

V. CONCLUSION 

Energy efficiency and privacy preservation of sensitive 

health data are essential in IoHT networks, which consist 

largely of smart devices limited by battery constraints. In this 

paper, a two-tier data inference framework has been proposed 

to conserve energy consumption by reducing unnecessary data 

transmission within the IoHT network while still maintaining 

high accuracy. The results suggest that applying 1% to 2.5% 

variance rate by the inference system achieved the best 

accuracy. It was also shown that this amount of VR decreases 

nearly half of the crypto text size using main symmetric 

encryption techniques. Another major finding was that applying 

differential privacy with a 𝜖 = 0.5 satisfies data protection and 

data availability requirements. The experimental results show 

that the proposed system is beneficial for saving energy of IoT 

devices and security analysis suggests that the differential 

privacy technique can protect against sensitive health data from 

being obtained maliciously. In our future work, we will look 

into how to incorporate highly efficient blockchain and 

federated learning techniques [17,18] into our solution to 

improve privacy preservation while maintaining high accuracy 

in data inference. 
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