
Northumbria Research Link

Citation: Pye, Jack, Issac, Biju, Aslam, Nauman and Rafiq, Husnain (2020) Android
Malware Classification Using Machine Learning and Bio-Inspired Optimisation Algorithms.
In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing
and Communications: TrustCom 2020. IEEE, Piscataway, pp. 1777-1882. ISBN
9781665403924

Published by: IEEE

URL: https://doi.org/10.1109/TrustCom50675.2020.00244
<https://doi.org/10.1109/TrustCom50675.2020.00244>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/44730/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Android Malware Classification Using Machine
Learning and Bio-Inspired Optimisation Algorithms

Jack Pye, Biju Issac, Husnain Rafiq, Nauman Aslam
Computer and Information Sciences

Northmbria University
Newcastle upon Tyne, UK

{jack.pye, biju.issac, husnain.rafiq, nauman.aslam}@northumbria.ac.uk

Abstract—In recent years the number and sophistication of
Android malware have increased dramatically. A prototype
framework which uses static analysis methods for classification
is proposed which employs two feature sets to classify Android
malware, permissions declared in the AndroidManifest.xml and
Android classes used from the Classes.dex file. The extracted
features were then used to train a variety of machine learning
algorithms including Random Forest, SGD, SVM and Neural
networks. Each machine learning algorithm was subsequently
optimised using optimisation algorithms, including the use of
bio-inspired optimisation algorithms such as Particle Swarm
Optimisation, Artificial Bee Colony optimisation (ABC), Firefly
optimisation and Genetic algorithm. The prototype framework
was tested and evaluated using three datasets. It achieved a good
accuracy of 95.7 percent by using SVM and ABC optimisation
for the CICAndMal2019 dataset, 94.9 percent accuracy (with f1-
score of 96.7 percent) using Neural network for the KuafuDet
dataset and 99.6 percent accuracy using an SGD classifier for the
Andro-Dump dataset. The accuracy could be further improved
through better feature selection.

Index Terms—Android Malware Detection; Machine Learning;
Optimisation; Bio-inspired optimisation;

I. INTRODUCTION

The Android operating system remains one the most popular
operating systems for malware. This is due to many factors;
the Android operating system has the highest market share
as compared to any other mobile operating system with a
total market share of 65.7 percent as of September 2019
[1]. Moreover, unlike any other mobile operating systems
such as iOS, Android also allows users to install unverified
applications from third-party app stores and websites. Conse-
quently, Android devices become more vulnerable to malicious
attacks as permission-based security architecture employed by
Android platform has already been proven to be ineffective
for the security of the average user [2]. While Third-party
app stores remain a source of malware, it has been observed
that Google app store is also vulnerable to malware being
by passed. In many cases malware applications have evaded
Bouncer, an application verification tool for the Google Play
Market[3]. Due to these contributing factors, the quantity and
sophistication of malware has prevailed in recent years with a
two-fold increase in malicious samples in last two years [4].

In this paper, a machine learning-based anti-malware so-
lution is proposed using permissions and classes as features.

This work will contribute towards ongoing research into the
effectiveness of machine learning-based anti-malware software
for Android operating system through the use of bio-inspired
optimisation algorithms.

In summary, the main contributions of this work are: We
propose a novel Android malware detection technique which
employs permissions and android API based features. The
proposed technique is lightweight and detects malware with
high accuracy. We use multiple bio-inspired algorithms to
optimise the hyper-parameters of various ML based classifiers
to archive optimal classification results. We also perform
comparison of different optimisation algorithms and select
the best possible choice to built our framework. We use use
multiple Android malware datasets to evaluate our framework.
We also compare our classification results with existing state
of the art solutions towards Android malware detection.

The rest of the paper is organised as follows: Related work
is discussed in Section 2. Datasets and feature extraction
process is explained in Section 3. The design of the malware
classification framework is presented in Section 4. In section 5,
we present the evaluation results and comparison with related
techniques. Finally, we conclude the paper in Section 6.

II. RELATED WORK AND TECHNOLOGY

A significant number of studies [5–11] have used the mani-
fest.xml from Andord apps to extract meaningful features and
further train ML-based algorthms on these features to classify
between malicious and benign apps. Android manifest.xml
contains the information about permissions requested by an
app, hardware components and intents. We use permission
based features from manifest.xml file and features from dis-
assembled source code from an app to train our framework.
Android uses a permission-based model for its security [2]
and most of the naive users are unaware about the potential
harm that can be caused by an app that requests irrelevant
permissions [2]. [8] and [9] proposed a techniques to rank
potentially harmful permissions requested by an app. DREBIN
[7] also uses permission in addition to other features from
manifest.xml to detect Android malware. Moreover, DroidMat
[6] uses features from manifest.xml and achieve an accuracy
of 97.87. MAMA [5] used permissions and hardware based
features and achieved 94.83 percent. An Android application

can be reverse engineered to obtain Java source code [10].
The extracted source code can be further utilized to obtain
meaningful features for classification. RiskRanker [12] used
control-flow graphs and semantic features extracted from dis-
assembled Java code and successfully detected 312 zero-day
malware.

Static analysis is a process by which the program is analysed
without executing any code. An Android app is stored as an
APK file which a zip file with different components in it. The
Applicationmanifest.xml contains information on the what the
application does, how it does it, what hardware it uses and
what permissions the app needs. Android uses a permission-
based model for its security. When an application requires
permission to perform a task, Android will allow the user to
grant or deny ‘dangerous’ permissions during run time. An
Intent allows an application component to interact with an-
other application component in a different application, or two
components within the same application using ‘actions’. For
a hardware feature of the phone to be used by an application,
it needs to be declared in advance by the application in the
AndroidManifest.xml file. Android applications are run using
the Dalvik Virtual Machine which accepts Java class file and
converters them into one large classes.dex.

III. DATASETS AND FEATURE EXTRACTION

In this section we provide the information of datasets
being used, information about extracted features, features pre-
processing and feature reduction techniques carried out in this
research.

1) Datasets: In this study we use following three datasets
as benchmark:

• CICInvesAndMal2019 [13]
• KuafuDet [14]
• Andro-Dumpsys [15]

Table I presents an overview of malicious and benign samples
composed in each dataset. All the datasets listed in Table
I have samples in form of executable Android applications
(APKs). We use process of reverse engineering to extract
manifest.xml and Java source code from the APK by using
Androguard tool. Androguard is an open source python library
that is capable of extracting different kinds information out of
the individual components of an APK file. We use Androguard
to extract permission based features from manifest.xml file
and APIs from disassembled Java souce code. The process
of feature extraction using static analysis is explained with
the help of pseudo-code in Algorithm. 1.

2) Feature selection: Choosing the right features is the
foundation of getting good results when training machine
learning based algorithms. In this study we extract following
feature classes from Android applications

• Permissions declared in the application manifest file.
• The Android classes used from the classes.dex file.

The total number of feature extracted from each application is
4830, 324 permissions and 4,506 classes, respectively. One set
of features is from the application manifest file, and the other

TABLE I
TOTAL MALWARE AND BENIGN SAMPLES IN EACH DATASET

Dataset Malware Benign Total
CICInvesAndMal 425 1168 1593

KuafuDet 1260 360 1620
Andro-Dumpsys 907 1776 2683

is taken from the classes.dex file. This feature-set ensures that
features are taken from different components of an application,

3) Permissions: Declared permissions from the mani-
fest.xml file have been extensively studied and used as features
in the field of Android malware because they are highly
influential in classification and can be used to produce high
detection rate while keeping static analysis time to a minimum.
Both classes and permissions are intrinsically linked through
the permission system that the Android employs to restrict the
use of dangerous Android APIs, for example, the Android per-
mission Android.permission.Write_SMS’ is needed
for an application to use the API ‘sendTextMessage()
from the Android class, SMS_Manager. In many applica-
tions, permissions are declared that are not even needed for
the actual functionality of the application. These permission
are declared in manifest.xml file but are not used in actual
execution of the application. [16] analysed 795 applications
and found that 32.7 percent of the applications were over-
privileged by at least one permission. In this study, we consider
declared permissions as a feature to classify malware.

Algorithm 1 Feature Extraction
Input: Android Applications Data-set D
Output: A CSV file containing binary encoded feature vectors

for each App in the data-set
for (all f ∈ D) do

APKFile ← Open(f)
manifestFile , javaFiles ← APK Tool(APKFile)
permissions(list) ←

Get Distinct Permission(manifestFile)
Classes(list) ← Get Distinct Classes(javaFiles)

for (all f ∈ D) do
APKFile ← Open(f)
manifestFile , javaFiles ← APK Tool(APKFile)
permissions← Get Permission(manifestFile)
Classes← Get Classes(javaFiles)
for (each permission ∈ permissions) do

if (permission ∈ Permission(list)) then
V ector(Permission) ← 1

else
V ector(Permission) ← 0

for (each class ∈ Classes) do
if (class ∈ Classes(list)) then

V ector(Class) ← 1
else

V ector(Class) ← 0

CSV(file) ← Append(CSV(file), Concat(V ector(Class),
V ector(Permission)))

return CSV(file)

4) Android Classes: In addition to permission based fea-
tures, we use features from classes.dex file which is

obtained after reverse engineering an APK. We extract the
information about the APIs calls within the Java classes and
use them as features for each APK file. APIs are set of rules
that are followed while performing specific tasks e.g. sending
a text message or accessing users location. Previous research
has shown that malicious apps follow a specific pattern of API
calls to perform a particular task and hence can be used as a
strong feature to detect malware.

5) Vector space mapping: To classify Android malware,
relationships between the features need to be extracted and
formulated to result in a Boolean expression. However, in-
ferring Boolean expressions from real-world applications is a
hard problem, and is difficult to solve efficiently [11]. By using
machine learning principles, this problem can be remedied
by converting these features into a numeric vector space for
machine learning algorithms to learn from. To convert the
feature dependencies to vector space, binary expressions are
used to indicate whether a feature was present in an applica-
tion. A vector V is constructed by mapping each feature, ai
from application A to a dimension vi ∈ V . Vector V can be
represented as follows:

V = {v1, v2, v3, ..., vn} (1)

vi =

{
1ifai ∈ Ai

0ifai /∈ Ai

(2)

Vector V in real terms will be represented as so, V =
{1, 0, 0, 0, 1, 0...} each 1 or 0 represents if a feature is present
or not. A downside of this is that each vector is sparse of
features due to only a small amount of total feature being
present in each application vs the total amount of features
analysed. To compensate for this [11] transform each vector
again so that each dimension of the vector only represents
present features, i.e. V = {0, 1, 0, 1, 1, 0...} would be trans-
formed into, V = {2, 4, 5, ...} This saves a great amount of
memory due to missing features not having to be represented
in the vector. Due to the number of features that have been
collected in this paper, this has not needed to be performed.
Vector space reduction could be a consideration for future
work that would potentially involve collecting a great number
of features.

6) Feature reduction: Feature reduction is essential in clas-
sification because it can drastically reduce the time taken to run
a classifier and produce a more general classifier by removing
unwanted features. Three reduction algorithms were tested,
Mutual Information, Chi2, Variance Threshold with feature
Variance Threshold providing to best results. In Variance
Threshold, a value from 0 to 1 is specified, 0 being deleting
a feature that is the same in all samples to 1.0 deleting a
feature that is different in all samples. A value to 0.1 proved
to perform the best so all models were trained and optimised
with with a Variance Threshold value of 0.1.

IV. DESIGN OF MALWARE CLASSIFICATION FRAMEWORK

In this section, we explain the main methodology employed
to design our malware classification model and information

about Bio-inspired optimisation algorithms used to tune the
hyper-parameters of ML-based classifiers. During the Weka
testing phase developed at the University of Waikato, 16
different machine learning algorithms were tested with the
permissions + classes feature set. The dataset used for this
initial test was the CICInvesAndMal2019 that has been made
publicly available by the University of New Brunswick. The
top five algorithms are: Logistic Model Trees, Simple Logistic,
SGD, SMO and Random Forest.

A. Architecture of the Malware Classification Framework

We propose a prototype framework to detect Android mal-
ware. The framework is composed of four main modules as
shown in Figure 1. The first step is to reverse engineer an
APK and extract permissions from manifest.xml file and APIs
from Java classes. After feature extraction, the second step is
to embed the extracted feature vectors in to a feature vector
space. After applying step 2, each APK in the dataset is
represented as a binary feature vector where 0 means presence
of a specific feature and 1 means absence of a particular feature
in an application. Each app is then assigned a label which
identifies it as a malware or benign sample. In third step, we
apply ML algorithms based on supervised learning to train
the model based on large datasets of malicious and benign
applications. Finally, we apply bio-inspired optimisation algo-
rithms to tune hyper-parameters of the machine learning-based
models to increase classification accuracy.

B. Optimisation algorithms

Machine learning algorithms have hyperparameters. Hyper-
parameters are parameters that are set before training process
is carried out that configure different aspects of the machine
learning algorithm being used. Hyperparameters help to tune
the level of complexity of the model if the model is too
complex the model will be over-fitted and will perform very
well on data that it has seen before but will perform poorly on
new data. If the model’s complexity is low, it fail to capture
all relevant information in the data and eventually will be
under-fitted. Hyperparameters serve to control the trade-off
between these two aspects. Instead of using brute-force to
optimise the hyperparameters, which would be a very time
consuming or next to impossible task, optimisation algorithms
are employed to tune hyperparameters automatically to obtain
optimal results. Machine learning libraries such as Scikit-learn
have default settings for hyperparameters for each instance
if not provided by custom settings. However, these default
hyperparameters may not be the best case for the given
classification task. Random search and grid search are the
easiest to be implemented. First random search is used to
optimise the hyperparameters. Random search does not test
all combinations of hyperparameters. Though it is not as
computationally expensive it will not yield good optimal
results. The hyperparameter values chosen by random search
are iterated upon again using grid search. Using a smaller
more refined search space around the values chosen by random
search for the grid search helps to cut down the computational

Fig. 1. Android Malware classification Framework

complexity needed to perform grid search. If grid search was
used without using random search first, grid search would
be too computationally expensive with a large search space,
as with each value added to the search space the number
of searches goes up exponentially. On each test of different
hyperparameters the classifier is cross validated using a k-fold
of 10 for statistical significance.

In this study, multiple optimisation algorithms are tested
to find optimal settings. Bio-inspired algorithms have become
quite popular for hyperparameters optimisation and in this
study, we use four bio-inspired algorithms: Particle Swarm
Optimization, Firefly Optimisation, Artificial Bee Colony and
Genetic Algorithm. Further in this study, we perform exper-
iments to compare the results obtained by using these opti-
misation algorithms against standard hyperparameter settings
of ML-based algorithms. In case of Neural networks, several
different optimisation techniques, Hyberband, random search
and Bayesian search are used. Each optimisation algorithm
tried to find the optimal value for number of layers, neurons
on each layer, dropout value between each layer, learning
algorithm and its respective learning rate. The baseline for
evaluating the performance of the optimisation algorithms was
a 4-layer ANN with 250 nodes in each hidden layer. ANNs

have been chosen to be tested due to new prevalence of these
types of machine learning methods being used for malware
classification problems in the scientific community that boast
a high classification accuracy.

The optimisation of Neural networks is done through the
Python library Keras Tuner. Keras Tuner implements three
optimisation algorithms, Random Search, HyperBand, and
Bayesian Search. Optimisation of ANN’s is looked at as a
whole instead of individually optimising both 3-layer ANN’s
and 3-layer+ ANN’s. The search space for the neural network
is set up so that each optimisation algorithm can find an
optimal model from a 3-9 layer search space if a deep learning
approach (4+ layers) yields better results, then the optimisation
algorithm can choose the optimal model appropriately. Each
layer within neural network apart from the output layer has
a range of nodes that can be search as well from 32 to a
maximum of 1024 in each layer. In addition dropout has also
been considered, each optimisation algorithm can choose to
include a dropout rate between each hidden node if it yields
better results.

V. EVALUATION

In this section we evaluate our model using multiple ML-
based algorithms with optimized hyperparameter tuning. We
also perform a comparison of our model with related state of
the art.

A. Metrics used

In this study we use following five metrics to evaluate our
results:

1) Accuracy: Accuracy is the number of correct predictions
divided by the number of total predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

2) Recall: Recall measures the rate of correct classification
of positive examples

Recall =
TP

TP + FN
(4)

3) Precision: Precision measures the rate of obtained re-
sults which are actually relevant.

Precision =
TP

TP + FP
(5)

4) F1-Score: The F1-Score or F-Measure is a calculation
of balance between precision and the recall.

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
(6)

5) AUROC: The Area Under the Receiver Operating Char-
acteristic (AUROC) or AUC measure each classifier regardless
of threshold boundaries in classification models by summaris-
ing model performance overall threshold values, a higher score
indicates that the classifier is a better model even if predictive
accuracy is similar. AUROC is the primary metric when using
machine learning in the medical field.

Fig. 2. Optimisation testing methodology

B. Testing validation

Each classifier without optimisation was tested using a k-
fold of ten. In 10-fold cross-validation the dataset is split up
into ten sections with 9 of the sections used for training and the
remaining section to be used for testing. This is repeated ten
times each time a new section is used for testing. Each result
is then averaged to produce a final estimation, by using ten
k-fold it reduces the variance of the result. This method was
repeated using a variety of different feature selection methods
at various thresholds.

For each classifier with optimisation, each dataset was split
into a training-set and test-set. The training-set used a k-fold of
10 to tune hyperparameters, then the test-set was used to test
the optimal model found by the optimisation algorithm. This
was done so that each optimised model could be tested on the
same test set of unseen samples for direct comparison. Fig. 2
details the testing method used for optimising each machine
learning algorithm but with a k-fold of 5 for visual simplicity.

C. Detection Performance

In this section, we evaluate the performance of proposed
framework. Table II shows the results of all optimisation
algorithms for each machine learning algorithm on three
datasets. Random search, Grid search and Bayesian search
provide consistent accuracy with some increase or decrease
close to the initial base metric performance. The results using
Genetic optimisation, ABC, FA and PSO vary far greater
than the others either resulting in improvement or decrease
in performance. Our results suggest that for Andro-Dumpsys
dataset, classifiers with default setting of hyperparameters per-
formed better than the classifiers with tuned hyperparameters.
The potential reason for this decrease in performance is due
to a higher number of iterations needed for an optimisation
algorithm to find a better model. The number of iterations
that each optimisation algorithm underwent was 500. For
the CICAndMal2019 dataset, the Bio-inspired algorithm ABC
improved accuracy by 3.3 percent in comparison to default
settings whereas 1.3 percent increase in detection was recorded
in comparison to other optimisation algorithms. Our results
demonstrate the potential of bio-inspired algorithms to im-
prove the accuracy of classification problems.

D. Comparison to other frameworks

In this section, we compare our results to other relevant
works. Our results suggest that the proposed technique perform
as good as other state of the art appraoches such as DREBIN
[7] and MAMA [5]. Moreover, our technique out performs
DREBIN whilst also cutting down on features analysed for by
88.6 percent displaying that classes and permissions can give
a good indication of whether an application is malware whilst
keeping static analysis time to a minimum. Our best perform-
ing model trained on the Andro-dumpsys dataset achieved a
remarkable accuracy of 99.6 percent. Our models trained on
the CICAndMal2019 and KuafuDet dataset also achieved a
high accuracy of 95.7 percent and 96.25 percent respectively.
Furthermore, in this section, we compare our detection results
with techniques which employ the same datasets as used in
this study.

1) CICAndMal2019: As compared to our work, [13] have
achieved a precision of 95.3 percent whereas in our work as in
table III, SVM with ABC optimisation provides the best results
with an accuracy of 95.7 percent. The features that this paper
uses are similar to [13] which uses Permissions and Intents.
This project has used Permissions and Classes. However, [13]
get all their features from the ApplicationManifest.xml file
while the features used in this project are from both the
Classes.dex and the ApplicationManifest.xml.

2) KuafuDet: The technique in [14] employs Random
Forest to produces the best accuracy rate at 96.25 percent,
which is 1.35 percent higher than our work with the best
classification accuracy of 94.9 percent (but with F1 score of
96.7 percent) through a Neural network approach. KuafuDet
does, however, collect many more features than our approach.
KuafuDet framework collects both syntax features and seman-
tic features. The syntax features collected are: Permissions,
Intents, Hardware, and API call. These additional features,
compared to those extracted in this work could help to explain
the accuracy gap however, increased analysis, more processing
power required and higher memory consumption is required
in KuafuDet’s case .

3) Andro-Dumpsys: The technique in [15] claims to have an
accuracy of over 99 percent. As compared to our results, said
accuracy is almost the same as of ours. Our results suggest that
all of the machine learning algorithms scored over 99 percent
on the data with SGD with base hyperparameters scoring the
best with 99.6 percent accuracy and 99.5 percent F1-Score as
shown in table III.

VI. CONCLUSION AND FUTURE WORK

In this study, we extract permissions and classes based
features from Android application and apply ML-based al-
gorithms to classify between malicious and benign Android
applications. Moreover, we use bio-inspired optimisation al-
gorithms to tune hyperparameter of ML-algorithms to extract
optimal classification results. We evaluate our framework
using three recent Android malware datasets and proved
the effectiveness of our approach by conducting experiments
by using multiple ML-based algorithms. We achieved 94.9

TABLE II
OPTIMISED MACHINE LEARNING ALGORITHMS ACCURACY FOR EACH DATASET

Dataset Algorithm Base Random Grid Bayesian-1 Bayesian-2 GA PSO ABC FA Hyper
Search Search -Band

CICAndMal2019 Random Forest 93.7 93.7 92.1 92.2 92.9 86.8 89.4 89.8 90.9 N/A
SVM 92.4 94.4 92.5 94.4 91.1 94.4 94.4 95.7 95.7 N/A
SGD 93.7 94.2 94.2 93.5 94.8 94.6 95.2 94.4 94.2 N/A
Neural Network 94.2 95.5 N/A 95.5 N/A N/A N/A N/A N/A 94.6

KuafuDet Random Forest 93.1 92.9 89.3 92.0 92.9 90.8 76.8 92.2 91.5 N/A
SVM 92.6 94.0 91.6 93.3 92.4 93.5 94.0 92.0 94.0 N/A
SGD 92.4 93.5 93.1 92.6 93.5 81.6 83.9 86.5 85.8 N/A
Neural Network 94.9 93.8 N/A 93.1 N/A N/A N/A N/A N/A 94.2

Android-Dumpsys Random Forest 99.2 99.3 99.5 99.1 99.1 98.3 97.4 97.9 96.6 N/A
SVM 99.3 99.5 99.4 99.5 98.8 99.3 99.1 99.1 99.1 N/A
SGD 99.6 98.7 98.8 98.8 99.1 98.8 98.8 92.4 87.5 N/A
Neural Network 99.5 99.2 N/A 99.3 N/A N/A N/A N/A N/A 99.3

TABLE III
OUR RESULTS COMPARED TO OTHER PAPERS

Paper Dataset ML algorithm Accuracy F1-Score AUROC Recall Precision
Taheri et al. [13] CICAndMal2019 Random Forest N/A N/A N/A 95.3 95.3
Chen et al. [14] KuafuDet Random Forest 96.35 N/A N/A N/A N/A
Jang et al. [15] Andro-Dumpsys Levenshtein distanance ‘over 99’ N/A N/A N/A N/A
DREBIN [7] DREBIN SVM 93 N/A N/A N/A N/A
MAMA [5] Sanz et al. Random Forest 94.83 N/A 0.98 N/A N/A
Our work CICAndMal2019 SVM + ABC Optimisation 95.7 92.0 94.5 92.0 92.0
Our work KuafuDet Neural Network + No Optimisation 94.9 96.7 90.3 98.8 94.7
Our work Andro-Dumpsys SGD + No Optimisation 99.6 99.4 99.5 99.2 99.6

percent accuracy (with F1-score of 96.7 percent) for the
KuafuDet dataset by using Neural networks, 95.7 percent
using SVM and ABC Optimisation for the CICAndMal2019
dataset and 99.6 percent using SGD for the Andro-Dumpsys
dataset. Finally, we compared our classification results with
other papers which use the same datasets. Our future plan is
to scale our work by employing more feature classes and to
built a adversarial evasion attacks resilient framework. We plan
to incorporate Generative Adversarial Networks (GANs) with
optimised hyperparameters to built a more stronger framework.

REFERENCES

[1] Kantar, “Quarterly market share held by the leading smartphone
operating systems in great britain from 2013 to 2019,” Statista,
2019.

[2] K. Benton, L. J. Camp, and V. Garg, “Studying the effec-
tiveness of android application permissions requests,” in 2013
IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops).

[3] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vi-
gna, “Execute this! analyzing unsafe and malicious dynamic
code loading in android applications,” in 21st Annual Network
and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, February 23-26, 2014. The Internet
Society, 2014.

[4] AV-TEST. (2018) Security report 2017/2018. [Online]. Avail-
able: https://www.avtest.org/fileadmin/pdf/security report/AV-
TEST Security Report 2017-2018.pdf

[5] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves,
P. G. Bringas, and G. Álvarez Marañón, “Mama: Manifest
analysis for malware detection in android,” vol. 44, no. 6–7,
2013.

[6] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,
“Droidmat: Android malware detection through manifest and
api calls tracing.” USA: IEEE Computer Society, 2012.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck, “Drebin: Effective and explainable detection of an-
droid malware in your pocket,” in NDSS, 2014.

[8] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android
malware detection,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 7, pp. 3216–3225, 2018.

[9] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang,
“Exploring permission-induced risk in android applications for
malicious application detection,” vol. 9, no. 11, 2014.

[10] “Machine learning aided android malware classification,” Com-
puters & Electrical Engineering, vol. 61, pp. 266 – 274, 2017.

[11] G. Wang, D. Zhang, X. Su, and W. Li, “Mlifdect: Android
malware detection based on parallel machine learning and
information fusion,” Security and Communication Networks,
vol. 2017, pp. 1–14, 08 2017.

[12] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“Riskranker: Scalable and accurate zero-day android malware
detection.” New York, NY, USA: Association for Computing
Machinery, 2012.

[13] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensi-
ble android malware detection and family classification using
network-flows and api-calls,” in 2019 International Carnahan
Conference on Security Technology (ICCST), 2019, pp. 1–8.

[14] “Automated poisoning attacks and defenses in malware de-
tection systems: An adversarial machine learning approach,”
Computers & Security, vol. 73, pp. 326 – 344, 2018.

[15] J.-w. Jang, H. Kang, J. Woo, A. Mohaisen, and H. K. Kim,
“Andro-dumpsys,” vol. 58, no. C, 2016.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified.” New York, NY, USA: Association
for Computing Machinery, 2011.

