
A Deep Learning-based Penetration Testing Framework for Vulnerability
Identification in Internet of Things Environments

Nickolaos Koroniotis ∗†, Nour Moustafa∗†, Benjamin Turnbull∗†, Francesco Schiliro∗‡,
Praveen Gauravaram ∗§, Helge Janicke∗

∗Cyber Security Cooperative Research Centre (CSCRC), Perth, WA 6027, Australia
†School of Engineering and Information Technology, University of New South Wales at ADFA,

Canberra, ACT 2612, Australia
‡Australian Federal Police (AFP), Canberra, ACT 2600, Australia

§Tata Consultancy Services (TCS) Ltd., Brisbane, QLD 4000, Australia

Abstract—The Internet of Things (IoT) paradigm has displayed
tremendous growth in recent years, resulting in innovations
like Industry 4.0 and smart environments that provide im-
provements to efficiency, management of assets and facilitate
intelligent decision making. However, these benefits are offset by
considerable cybersecurity concerns that arise due to inherent
vulnerabilities, which hinder IoT-based systems’ Confidential-
ity, Integrity, and Availability. Security vulnerabilities can be
detected through the application of penetration testing, and
specifically, a subset of the information-gathering stage, known
as vulnerability identification. Yet, existing penetration testing
solutions can not discover zero-day vulnerabilities from IoT
environments, due to the diversity of generated data, hardware
constraints, and environmental complexity. Thus, it is imperative
to develop effective penetration testing solutions for the detection
of vulnerabilities in smart IoT environments. In this paper, we
propose a deep learning-based penetration testing framework,
namely Long Short-Term Memory Recurrent Neural Network-
Enabled Vulnerability Identification (LSTM-EVI). We utilize this
framework through a novel cybersecurity-oriented testbed, which
is a smart airport-based testbed comprised of both physical and
virtual elements. The framework was evaluated using this testbed
and on real-time data sources. Our results revealed that the
proposed framework achieves about 99% detection accuracy for
scanning attacks, outperforming other four peer techniques.

Index Terms—Penetration testing, vulnerability identification,
deep learning, internet of things (IoT), smart airports.

I. INTRODUCTION

The development of the Internet of Things (IoT) has resulted
in a plethora of benefits, such as improving business pro-
cesses, enhancing efficiency in resource management, and the
introduction of the smart environment framework and Industry
4.0 [1], [2]. By combining the functionality of individual
IoT devices, new multi-level services can be defined and
orchestrated, leading to innovative applications and intelligent
decision-making systems [3]. However, the many advantages
that the IoT offers are offset by significant cybersecurity
concerns that arise from vulnerabilities inherently found in
the sensors and actuators, impacting the confidentiality, in-
tegrity, and availability of the data and assets in the smart
environments. With the number of deployed IoT devices
rapidly rising, and zero-day vulnerabilities being increasingly
exploited by attackers, it is crucial to address the challenge of
securing the IoT [4].

Contemporary research and real-world attacks indicate that
vulnerabilities render the IoT susceptible to a range of cyber-
attacks, due to firmware, hardware, protocol, authentication,
or credential weaknesses [5], [6]. These vulnerabilities can
be exploited by hackers for multiple purposes. Their end
goals include modifying a device’s functionality by altering its
internal state or the data it records, to steal information that is
temporarily stored on an IoT device before it is forwarded to
the gateway and the cloud backend, to cause malfunctions, and
halt production lines, take control of the device and utilize it in
large cyberattack campaigns, perform power depletion attacks
by forcing a device to reply to repeated requests or utilize it as
a springboard for lateral movement [7]. Recent attacks, such as
botnets and ransomware, have proven the destructive potential
of IoT-powered cyberattacks, when routers, IP cameras, and
other IoT devices were compromised, and orchestrated into
launching immense volumetric DDoS attacks that were capa-
ble of disabling DNS servers and portions of the Internet [8].
It is, therefore, imperative to develop vulnerability detection
methods that can be effectively applied to IoT infrastructure.

Penetration testing mechanisms can be generally classified
into post-exploitation (passive), where the focus is on recovery
and detection of ongoing attacks, and pre-exploitation (active),
where tools take a proactive approach and periodically assess a
network for vulnerabilities [9]. Penetration testing is an active
method for assessing cybersecurity readiness and resilience
when faced with a prepared attacker that persistently pursues
the detection and exploitation of vulnerabilities. The process
of penetration testing involves a team of experts that are
actively attempting to breach the security of their target, using
both software and hardware-specific tools for the detection
and exploitation of weaknesses and vulnerabilities [10]. The
first crucial step during a penetration test or a cyberattack,
and necessary action for vulnerability assessment, is the re-
connaissance phase also known as information gathering. In
the reconnaissance phase, scanning attacks are launched by
specialized software that targets a remote host’s ports, seeking
to identify the services that are associated with them and to
detect any exploitable vulnerabilities [11].

Research Motivation– Contemporary security tools, for
example, malware detection, intrusion detection and penetra-
tion testing, are designed to employ databases of pre-defined

ar
X

iv
:2

10
9.

09
25

9v
1

 [
cs

.C
R

]
 2

0
Se

p
20

21

rules, signatures, and imposing policies for the detection
of vulnerabilities. Although these tools are very accurate
at detecting known vulnerabilities, they suffer from certain
limitations [5], [12]. Firstly, signature and rule-based detection
tools can be circumvented by altering the behavior of an
attack. Furthermore, they are incapable of detecting zero-day
vulnerabilities [9], [7]. Consequently, there is a need to de-
velop penetration testing tools and techniques for IoT settings,
that can effectively detect vulnerabilities in live environments
and overcome the limitations posed by conventional signature-
based solutions [3], [13].

Research Contribution– In this study, we present a novel
deep learning-enabled penetration testing framework, named
Long Short-Term Memory Recurrent Neural Network-Enabled
Vulnerability Identification (LSTM-EVI). This framework fo-
cuses on the information gathering stage of penetration testing,
and particularly on vulnerability detection. To develop and
evaluate this framework, we use a novel cybersecurity-oriented
testbed, which is a smart airport-based testbed that combines
physical IoT devices and virtual elements. Through the smart
airport testbed, both benign and malicious/scanning data were
collected, transformed, and employed for the evaluation of the
proposed framework. The main contributions of this paper are
as follows:

• We propose a new penetration testing framework that
focuses on gathering information of vulnerabilities and
learning scanning attacks.

• We designed and leveraged a smart airport-based testbed
for the training and evaluation of the proposed frame-
work.

The rest of this paper is organized as follows. Section II pro-
vides related work by discussing the current state of research
on penetration testing in IoT settings. Section III focuses on
the methodology for designing and constructing the proposed
penetration testing framework. Section IV discussed the results
obtained from experimenting with the proposed framework on
the smart airport testbed that we developed. Finally, Section
V provides the concluding remarks.

II. RELATED WORK

Due to the growth of smart IoT environments, and the
widespread adoption of these paradigms by organizations
around the globe that incorporate them into their existing
infrastructure, the security and integrity of these systems has
become a popular topic of study [14], [15], [16], [17]. In this
section, we provide research related to the development and
utilization of penetration testing techniques in IoT settings,
focusing on vulnerability detection. For instance, Allakany
et al. [14] presented a plan for an end-to-end penetration
testing framework for the IoT. The proposed framework was
comprised of four modules, named planning, discovery, attack
and reporting that were tasked with information gathering, vul-
nerability detection, vulnerability exploitation and reporting.
The researchers provided an abstract overview of the proposed
framework, and thus the vulnerability scanning methods were

not discussed. Furthermore, the planning and discovery stages
have overlapping functionality.

Abdalla et al. [15] presented a penetration testing showcase
for the IP camera “Onvif YY HD”. The proposed penetration
testing process included 3 steps, starting with defining the
area of investigation, implementation of process and outcome
report presentation. The researchers employed several software
tools found in Kali Linux machines, for network device
discovery, network packet capture/analysis and cyber-attack
implementation, that resulted in the identification of several
vulnerabilities. Although this research delivered empirical
data through penetration testing, they focused on a specific
IP camera model, and thus generalisability is not ensured.
Furthermore, the process was not automated and required the
intervention of an investigator to be completed.

Yadev et al. [16] introduced IoT-PEN, a client-server-based
penetration testing framework for IoT environments. The re-
searchers designed IoT-PEN to be automated and scalable,
using target-graphs for defining potential attack plans and
CVE IDs for accessing vulnerability information. The NVD
database was utilized to detect vulnerabilities found in particu-
lar versions of software and devices. The state of IoT nodes is
sent to the server in XML format, using the MQTT protocol,
from where the NVD database was used to detect known vul-
nerabilities and provide recommendations. The provided work
was evaluated on several network topologies, however, the
researchers did not provide information about the IoT devices
that were included in their testing environment. Furthermore,
their implementation makes use of the NVD database for vul-
nerability detection, via utilizing the state of IoT nodes, thus
missing zero-day vulnerabilities. Additionally, it is unclear if
their proposed solution can be applied to IoT sensors/actuators
in addition to gateways/aggregators, as the IoT-PEN requires
to be installed and IoT sensors are constrained in resources,
including their storage and processing capacity.

Mikulskis et al. [17] developed Snout, a software tool for
identifying, scanning, attacking and assessing IoT devices
using non-IP communication protocols. The proposed tool
can perform penetration testing techniques and cyber attacks
against IoT devices to assess their security. Snout’s penetration
testing capabilities were evaluated using ZigBee and are capa-
ble of supporting multiple protocols that are commonly found
in the IoT, such as BLE, Z-Wave, and LoRa. Its penetration
testing capabilities include the evaluation of ZigBee-specific
attacks and fuzzing. Although promising, this work does
not specify what type of fuzzing the Snout tool utilizes.
Furthermore, Snout’s capabilities were not showcased in a
real or simulated scenario, thus its effectiveness in penetration
testing and vulnerability detection has not been proven.

Although the presented studies [14], [15], [16], [17] pro-
vided either a functional implementation or an extendable
abstract design for a penetration testing tool tailor-made for
IoT settings, the construction of a versatile and efficient deep
learning-based penetration testing tool for smart airports that
focuses on vulnerability detection, is still an unexplored topic.
Additionally, some of the presented work either lacked any

specific details of their testing environment or neglected to
evaluate their solution through experimentation. Moreover, the
penetration testing methods that were incorporated into the
presented tools were, in some cases either not clarified, or
reliant on existing tools that employ rule-based reasoning. This
work seeks to address these shortcomings via developing a
deep learning-based penetration testing framework, with its
functionality focused primarily on vulnerability detection.

III. MATHEMATICAL FORMULATION OF PENETRATION
TESTING

To implement an automated deep learning-based penetration
testing process, attacking and legitimate scenarios need to
be executed. More importantly, for a system/network that is
undergoing penetration testing, we define an initial condition
(I), an attack activity set (A), the end state (E) and the
attack probability set (P) [9]. The initial condition refers to
the starting state of the system before the application of any
attacks or penetration testing activities. The attack activity
(a ∈ A) corresponds to an action seeking to move from a
previous state to a state closer to E, where E denotes the
exploitation of a vulnerability.

The attack probability (p ∈ P) corresponds to a
probability function that is given by the equation
f(p) = Prob(a/I,G), and gives the probability of an action
leading from the initial condition to the end state. Essentially,
automating the penetration testing process involves the
identification of the states S = [I, s1, s2, . . . , sn, G], where
the automated tool can transition using attack actions
A = [aI1, aI2, . . . , ann, anG], where n is the number of
potential states that the system may assume. The automated
penetration testing tool is tasked with identifying viable paths
that will allow the transition from state I to G, with the
greatest probability of success p. If we define a transition
function Ft(InitialCondition,EndState,AttackAction),
then the process can be viewed as: Ft0(I,G, 0) =
aI1, Ft1(s1, G, aI1) = a12, . . . , Ftn(sn, G, a(n−1)n) = anG

IV. PROPOSED DEEP LEARNING-BASED VULNERABILITY
IDENTIFICATION FRAMEWORK

In this section, we discuss the proposed deep learning-
based penetration testing framework designed to launch
reconnaissance-based scanning attacks and collect network
traces. From the collected packet capture (pcap) files, network
flows were extracted, pre-processed, enhanced through feature
generation and labeled. The generated data was then employed
for the training and testing of a deep learning model, that is
designed to process network flows and detect vulnerabilities.

In this work, a vulnerability identification framework is
presented to incorporate the data collection, processing and
application for the detection of Reconnaissance scanning at-
tacks. As shown in Figure 1, there are five main components
of this framework. Each of which is distinct in its functionality
and provides services to the next components, as explained in
the following items.

• Penetration Testing - In this component, the penetration
testing process is initiated through the use of tools, such
as Nessus, Scapy and Zeek. They employ fuzzing and
rule-based techniques that scan the network for vulnera-
bilities.

• Data Collection - In this component, network traffic and
telemetry data obtained from the testbed’s network and
sensors respectively, are collected.

• Flow Extraction - In this component, the collected data
is processed and network flows are extracted to form a
prime dataset that will be used for training and evaluation
of a DL model.

• Feature Generation - In this component, the prime
dataset is further analyzed and enhanced, by generating
new descriptive features that will enhance the perfor-
mance of the DL model. The generated dataset is de-
signed.

• Model Training and Utilisation - In this component, the
generated dataset is utilized for the training and validation
of a DL LSTM-based model that is used for vulnerability
identification.

A. Testbed configuration for penetration testing purposes

A testbed was designed to represent a realistic smart airport
environment and evaluate the fidelity of deep learning-based
penetration testing systems. The testbed incorporates physical
IoT devices, gateways, switches, computers, and virtual ma-
chines configured to interact in several attacking and legitimate
scenarios. The design of such a testbed, which includes
both physical IoT devices as well as virtual machines has
certain advantages. To begin with, the physical off-the-shelf
IoT devices can be found in real-world smart environments
and thus ensure correct representation. Furthermore, unlike
virtualized IoT devices, their physical counterparts allow the
exploitation of firmware and hardware vulnerabilities, which
need to be represented in the collected data, as it is crucial for
the development of deep learning-based vulnerability analysis
tools.

The inclusion of VMs renders our testbed versatile, portable,
and configurable, as VMs can be easily replaced, moved
between computers and their resources adjusted according to
circumstances. Additionally, a data management system was
developed along with the testbed, consisting of a telemetry-
based module that is tasked with the collection of telemetry
data that the sensors produce, and a network traffic analysis
module that handles the collection of packets, the extraction
of network flows, the generation of new features and correct
labelling of both network and telemetry data.

The testbed consists of three zones; each of which repre-
sents a unique space in a smart airport is assigned a single
gateway with USB NICs for the four wireless communication
protocols, Bluetooth, ZigBee, Z-Wave and Lora of the included
sensors, and several sensors that are indicative of the location
represented by the zone. The gateways are connected to an
access point that facilitates local communications, through
WiFi, between the VMs and the rest of the testbed. The

Data Collection
From Network and
telemetry sensors

Flow Extraction
From data

Feature Generation
And data pre-processing

IoT
 Networks

Model Training and Utilisaiton

Penetration Testing
Fuzzing, existing tools

σ σ

x
+

x

tanh

σ

Ct-1

ht-1

xt

x

tanh

ht

Ct

Fig. 1: Proposed framework of vulnerability identification, which is a case study of implementation in smart environments,
such as smart airports

telemetry data that the sensors produce is published to an
MQTT broker, through open-source software, from which it
can be retrieved and analyzed. The testbed includes 20 VMs 10
of which (benign VMs) interact with each other and the zones
and perform data collection, processing, management and
visualization. The rest are tasked with targeting the sensors,
gateways and the benign VMs with cyber-attacks (attacking
VMs), to represent the attacking scenarios when the testbed is
employed for the construction of datasets.

Various physical IoT devices were attached to the testbed,
and they included environmental sensors (humidity, temper-
ature, air pressure), contact sensors, motion sensors, con-
trol devices such as switches, condensation sensors and IP
cameras. This testbed was designed to collect and refine
data, produce representative cybersecurity-based IoT datasets,
and develop/validate efficient cyber-defence IoT-compatible
solutions, such as vulnerability analysis tools. The proposed
smart airport testbed’s architecture is presented in Figure 2.

To maximize the probability of success in their activities,
cyber attackers and penetration testers alike often choose to
employ established methods and strategies, when planning
their attacks. The cyber kill chain model, developed by Lock-
heed Martin [18], analyses the necessary steps that Advanced
Persistent Threats (APTs) which can be an attacker or a
penetration tester, need to consider when attempting to attack
and compromise a target in a network. The framework includes
seven stages; each of which provides some information to the
next, facilitating the successful infiltration of a computer and
its resources. The stages of cyber kill chain consist of Recon-
naissance, Weaponisation, Delivery, Exploitation, Installation,
Command and Control, Actions on Objectives.

In the Reconnaissance stage, the attackers gather as much
information as possible about their target, seeking to identify
a weakness they can use to their advantage. For example, a
penetration tester, may launch scanning and probing attacks
during the reconnaissance stage, to identify Internet-facing
machines, their open ports and the services they provide. By
doing so, they can potentially detect vulnerable services, with
known exploitation. In the Weaponisation stage, the attackers
use the vulnerabilities detected in the Reconnaissance stage
to design their attack exploit, by combining the exploit code
with a backdoor in a payload.

In the Delivery and Exploitation stages, the crafted payload
is sent to the target in the selected form (e-mail, USB stick,
packet sequence, etc.) and the exploit is executed. In the
Installation and Command and Control (C&C) stages, the
exploit that was executed previously facilitates the installation
of malware that, once correctly installed, causing the back-
door code to run and establish a reverse channel with the
attacker, initiating a C&C channel. In the final stage, after
the attackers have established a secure and reliable channel
of communication with the compromised machine, they can
proceed with their goal, for instance, to exfiltrate data, perform
lateral movement and more. In this paper, we focus primarily
on the Reconnaissance stage, as it is during that stage that
vulnerabilities in IoT devices and other networked entities can
be detected.

Before any vulnerabilities can be detected, the first action
that needs to be performed in the Reconnaissance stage is
the detection of live hosts in the targeted network. For that
purpose, we utilised the Nmap tool to perform a ping-based
scan and an initial service detection, which resulted in a list

Edge Network Cloud

Fig. 2: Proposed Smart Airport Testbed Architecture

of available hosts that would be later targeted with more
sophisticated scanning-based attacks. The command that we
employed for host detection was:

nmap− sV −−script = banner Target IP Address

with the −sV specifying that nmap should attempt to identify
the version of services that it detects, and the − − script =
banner enables the banner grabbing functionality, that cap-
tures the banners that services advertise, with banners being
the initial text that the services generate upon receiving a
request through their respective ports.

Regarding the underlying mechanics that are employed for
the detection of vulnerabilities in the networks and their con-
nected devices, two primary categories exist, rules/signature-
based and machine or deep learning-based [19], [20]. Many
commercial and open-source tools such as Nessus, Zeek
and Scapy, rely on rules and signatures crafted through
expert knowledge that results in the creation of static pro-
files/signatures of vulnerabilities, which are detected if the
response of carefully crafted network probe matches the
signature or the rule.

B. Proposed Long Short-Term Memory Recurrent Neural
Network-Enabled Vulnerability Identification Model

Deep Learning (DL)-based penetration testing tools would
scan the network and process collected data, to detect patterns
that indicate the existence of a vulnerability, based on the
output of the DL model that has been trained on curated and
representative data, allowing them to generalize well and be
more versatile. To test for vulnerabilities, one technique that
has been employed in the past in multiple scenarios is fuzzing
[21]. Fuzzing vulnerability testing relies on the generation of

pseudo-random data that is forwarded to a target machine,
and if that elicits a legitimate response from the system, then
a vulnerability has been detected.

We employed Nessus, Zeek and Scapy to perform fuzzing
scanning attacks against the network-enabled components of
the testbed, which resulted in the generation of network traffic
that was collected, processed, and labelled. The generated
data was utilized to train a deep learning model, namely a
Long Short-Term Memory Recurrent Neural Network (LSTM-
RNN), on 1-timestep intervals, that would output a class
feature as either being “0” indicating normal traffic or “1”
indicating a scanning attack.

Deep Learning is a subclass of neural networks, designed
to have multiple layers and hundreds of units [22], resulting
in models that perform well when processing large volumes
of data. The LSTM that is employed in the LSTM-EVI
framework, is a version of the RNN that overcomes the latter’s
limitations when tasked with learning long sequences of data,
by employing certain mathematical constructs, known as gates,
that control the model’s memory.

An LSTM model that processes data with multiple
timesteps, receives the first input data, processes it through
the LSTM cell by applying weights and activation gates such
as sigmoid and tanh, and forwards the hidden state to higher
layers of the network, passing the computed cell and hidden
states to the next timestep. There are 3 gates in an LSTM that
manage the cell state and, in turn, affect the hidden state.

The forget gate, given in Equation 1, determines what
portion of the previous cell state is going to be forgotten,
by diminishing those values to 0. The input gate, given in
Equation 2, determines what parts of the cell state will be
modified, and specifically what information will be added.

Equation 4 provides the new cell state that is calculated
by combining the previous cell state, the information gate
(Equation 2) and the new information (Equation 3).

The new hidden state, which is the output of an LSTM
cell, is forwarded to the next cell when working with multiple
timesteps, is determined by the output gate, as formulated in
Equation 5. During training, we selected binary cross-entropy
loss, as it performs well when tasked with training binary
classifiers. The cost in a mini-batch during training is given
in Equation 6.

ft = σ(wf ∗ [ht−1, xt] + bf , ft ∈ [0, 1] (1)

it = σ(wi ∗ [ht−1, xt] + bi, it ∈ [0, 1] (2)

C ′t = tanh(wc ∗ [ht−1, xt] + bc, C
′
t ∈ [−1, 1] (3)

Ct = ft ∗ Ct−1 + it ∗ C ′t (4)

ht = σ(wo ∗ [ht−1, xt] + bo) ∗ tanh(Ct) (5)

C = − 1

n

n∑
1

[yilog(y
′
i) + (1− yi)log(1− y′i)] (6)

∀y, y′ ∈ [0, 1], i ∈ [1, n]

V. EXPERIMENTAL RESULTS

In this section, the proposed penetration testing framework
is evaluated and compared with five machine learning models
on data acquired from the smart airport testbed for detecting
scanning attacks. The models that were evaluated are LSTM,
Multi-layered Perceptron (MLP), Support Vector Machine
(SVM), Naive Bayes (NB), and K-Nearest Neighbour (KNN).

A. Environment Setup

The process of setting up the smart airport testbed in-
volved connecting IoT sensors that utilise different wireless
communication protocols (e.g., BLE, Z-Wave, ZigBee, Lora,
and WiFI), with coordinator devices (Raspberry Pi) and the
rest of the testbed (VMs, Switches, Routers, Wireless Access
Points). Data was collected by the Tap machine (Ubuntu 18.04)
and the scanning attacks were launched by the Kali VMs
that can be seen in Figure 2. After the dataset was finalised,
two DL models were trained in an Ubuntu VM with Intel
Core i7-10510U @ 1.8 GHz processor and 3 GB RAM. The
programming environment that was used was Python 3.8,
with the Keras and Tensorflow packages selected for defining,
training and evaluating the DL models.

B. Dataset collected from the testbed

From the initial pcap files that were collected from the
testbed, data features were extracted to train and test machine
learning for classifying scanning attacks. Network flow fea-
tures were then converted to a numerical form, using label
encoding, with the process displayed in Algorithm 1. Next,
to improve the performance of the DL models, a min-max
normalisation function was applied to all features (excluding
the class feature), transforming their values to be within the
range [0, 1]. This range would allow deep learning models to
effectively learn legitimate and scanning observations without
bias towards a particular class.

The generated dataset was split into training (70%) and
testing (30%) subsets, a common training/texting split that
has been shown to improve results, and for the LSTM model,
the subsets were modified to include a single timestep. The
structure and hyperparameters of the two DL models can be
seen in Table I. The structure of each model includes the
number of features as the first layer(16), and for the LSTM-
RNN, we defined the first two hidden layers (64 and 128 units)
as LSTM, stacking five dense layers to perform classification.
To enable reproducibility, we explicitly set the random seeds
for TensorFlow and Numpy to be 22.

Algorithm 1: Encoding of categorical values to nu-
merical

dataset=Load Dataset();
for column in dataset.columns() do

if not column.is numeraical() then
i=0;
for value in column.unique values() do

column.exchange(value,i);
i+=1;

end
dataset.update(column);

end
return dataset;

C. Results and Discussions

Each deep learning model was trained for 10 epochs, using
the Adam optimiser on the same batch size. The ML/DL
models were trained to perform binary classification, returning
either 0 for normal flows or 1 for attack instances. The
decision threshold, which determines if the predicted class
feature is either 0 or 1 for both models was set at 0.5.
The confusion matrix of the LSTM model can be seen in
Table II and its Receiver Operating Characteristics (ROC)
curves in Figures 3. Additional metrics that were calculated
to compare the performance of the aforementioned models,
including Accuracy, Precision, Recall, Specificity and F-score
are provided in Table III.

Of all the tested models, the LSTM outperformed the rest,
achieving 0.9991 classification accuracy. MLP, SVM and KNN
displayed similar performance, with the Naive Bayes model

TABLE I: Deep Learning Models’ Hyperparameters

Model Structure Optimiser Learning Rate Batch Size Epochs
MLP [16,32,128,512,32,1] Adam 0.001 560 10
LSTM-RNN [16,64,128,256,512,64,64,32,1] Adam 0.001 560 10

Fig. 3: ROC Curve for LSTM model.

having the worst classification accuracy at just over 0.5. As
can be seen, by the calculated metrics, both models achieved
high accuracy and low error rates. The reason for the LSTM’s
performance is slightly better than is that LSTM is training
more weights due to the added forget and state gates. In our
work, we transformed our data to have only 1 timestep, thus
the hidden states and cell states that help the LSTM to maintain
the memory of long sequences of data was not used effectively.
Nevertheless, these results indicate that the LSTM can be used
effectively to detect scanning attacks, the first step in the cyber
kill chain, and an indication that an APT has started to target
a system.

TABLE II: Confusion Matrix for LSTM-RNN

Prediction/Actual Positive Negative
Positive 605 1
Negative 0 594

TABLE III: Performance Metrics for the two Deep Learning
Models.

Metric Naive Bayes KNN SVM MLP LSTM
Accuracy 0.5241 0.9983 0.9983 0.9983 0.9991
Precision 0.5144 0.9967 0.9967 0.9967 0.9983

Recall 0.9981 1.0 1.0 1.0 1.0
Specificity 0.042 0.9966 0.9966 0.9966 0.99831

F-score 0.679 0.9983 0.9983 0.9983 0.9991
AUC 0.5201 0.9983 0.9983 0.9983 0.9991

VI. CONCLUSION

This study has presented a deep learning-enabled penetra-
tion testing framework for identifying vulnerabilities in IoT
networks, such as smart airports. Specifically, an LSTM-RNN

model was developed for detecting scanning attacks in an
IoT network-based smart airport testbed. Scanning attacks
are part of Reconnaissance, the first stage of the cyber kill
chain model. To collect data and construct a dataset for this
work, we utilised developed a smart airport hybrid testbed that
incorporated both physical IoT devices and virtual machines.
For the scanning attacks, we focused on vulnerability detection
through fuzzing and penetration testing tools, such as Nmap,
Zeek, Nessus and Scapy. A network dataset was extracted
from the testbed for evaluating the performances of DL mod-
els. Our experiments indicated that the proposed framework
can achieve high performance in detecting scanning attacks
compared with other compelling techniques. In the future, we
intend to generate a large-scale dataset that will incorporate
a greater range of scanning attacks. Furthermore, we intend
to investigate the applicability of reinforcement learning in
detecting vulnerabilities in IoT settings.

ACKNOWLEDGMENT

The work was supported in part by the Cyber Security
Research Centre Ltd., funded by the Australian Govern-
ment’s Cooperative Research Centres Programme under Grant
RG201120.

REFERENCES

[1] G. Ruggeri, V. Loscrı́, M. Amadeo, and C. T. Calafate, “The internet of
things for smart environments,” Future Internet, vol. 12, no. 3, 2020.

[2] N. Moustafa, “A new distributed architecture for evaluating ai-based
security systems at the edge: Network TON IoT datasets,” Sustainable
Cities and Society, p. 102994, 2021.

[3] N. Koroniotis, N. Moustafa, F. Schiliro, P. Gauravaram, and H. Janicke,
“A holistic review of cybersecurity and reliability perspectives in smart
airports,” IEEE Access, vol. 8, pp. 209802–209834, 2020.

[4] N. Moustafa, M. Keshk, E. Debie, and H. Janicke, “Federated TON IoT
windows datasets for evaluating ai-based security applications,” in 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 848–855, 2020.

[5] A. Srivastava, S. Gupta, M. Quamara, P. Chaudhary, and V. J. Aski, “Fu-
ture IoT-enabled threats and vulnerabilities: State of the art, challenges,
and future prospects,” International Journal of Communication Systems,
vol. 33, no. 12, p. e4443, 2020. e4443 IJCS-19-0930.R3.

[6] Y. Al-Hadhrami and F. K. Hussain, “DDoS attacks in IoT networks: a
comprehensive systematic literature review,” World Wide Web, pp. 1–31,
2021.

[7] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, “Machine
learning in IoT security: Current solutions and future challenges,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1686–1721,
2020.

[8] A. G. Eustis, “The Mirai Botnet and the importance of IoT device
security,” in 16th International Conference on Information Technology-
New Generations (ITNG 2019) (S. Latifi, ed.), (Cham), pp. 85–89,
Springer International Publishing, 2019.

[9] N. Moustafa, B. Turnbull, and K.-K. R. Choo, “Towards automation of
vulnerability and exploitation identification in IIoT networks,” in 2018
IEEE International Conference on Industrial Internet (ICII), pp. 139–
145, IEEE, 2018.

[10] H. M. Z. Al Shebli and B. D. Beheshti, “A study on penetration testing
process and tools,” in 2018 IEEE Long Island Systems, Applications and
Technology Conference (LISAT), pp. 1–7, IEEE, 2018.

[11] R. Kumar and K. Tlhagadikgora, “Internal network penetration test-
ing using free/open source tools: Network and system administration
approach,” in Advanced Informatics for Computing Research (A. K.
Luhach, D. Singh, P.-A. Hsiung, K. B. G. Hawari, P. Lingras, and P. K.
Singh, eds.), (Singapore), pp. 257–269, Springer Singapore, 2019.

[12] N. Moustaf and J. Slay, “Creating novel features to anomaly network
detection using darpa-2009 data set,” in Proceedings of the 14th Euro-
pean Conference on Cyber Warfare and Security. Academic Conferences
Limited, pp. 204–212, 2015.

[13] W. Haider, N. Moustafa, M. Keshk, A. Fernandez, K.-K. R. Choo,
and A. Wahab, “Fgmc-hads: Fuzzy gaussian mixture-based correntropy
models for detecting zero-day attacks from linux systems,” Computers
& Security, vol. 96, p. 101906, 2020.

[14] A. Allakany, G. Yadav, V. Kumar, K. Paul, K. Okamura, and C. Center,
“An automated end-to-end penetration testing for IoT,” The National
Conference of the Information Processing Society, vol. 5, p. 05, 2019.

[15] P. A. Abdalla and C. Varol, “Testing IoT security: The case study of an
ip camera,” in 2020 8th International Symposium on Digital Forensics
and Security (ISDFS), pp. 1–5, IEEE, 2020.

[16] G. Yadav, K. Paul, A. Allakany, and K. Okamura, “IoT-PEN: An
E2E Penetration Testing Framework for IoT,” Journal of Information
Processing, vol. 28, pp. 633–642, 2020.

[17] J. Mikulskis, J. K. Becker, S. Gvozdenovic, and D. Starobinski, “Snout:
An Extensible IoT Pen-Testing Tool,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pp. 2529–2531, 2019.

[18] T. Dargahi, A. Dehghantanha, P. N. Bahrami, M. Conti, G. Bianchi, and
L. Benedetto, “A cyber-kill-chain based taxonomy of crypto-ransomware
features,” Journal of Computer Virology and Hacking Techniques,
vol. 15, no. 4, pp. 277–305, 2019.

[19] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, “A comparative
study of deep learning-based vulnerability detection system,” IEEE
Access, vol. 7, pp. 103184–103197, 2019.

[20] I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, “Intrudtree:
a machine learning based cyber security intrusion detection model,”
Symmetry, vol. 12, no. 5, p. 754, 2020.

[21] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic review
of fuzzing based on machine learning techniques,” PloS one, vol. 15,
no. 8, p. e0237749, 2020.

[22] G. Zaccone, M. Karim, and A. Menshawy, Deep Learning with Tensor-
Flow. Packt Publishing, 2017.

	I Introduction
	II Related Work
	III Mathematical Formulation of Penetration Testing
	IV Proposed Deep learning-based Vulnerability Identification Framework
	IV-A Testbed configuration for penetration testing purposes
	IV-B Proposed Long Short-Term Memory Recurrent Neural Network-Enabled Vulnerability Identification Model

	V Experimental Results
	V-A Environment Setup
	V-B Dataset collected from the testbed
	V-C Results and Discussions

	VI Conclusion
	References

