
 
 

Delft University of Technology

Graph Encryption for Shortest Path Queries with k Unsorted Nodes

Li, Meng; Gao, Jianbo; Zhang, Zijian; Fu, Chaoping; Lal, Chhagan; Conti, Mauro

DOI
10.1109/TrustCom56396.2022.00023
Publication date
2022
Document Version
Final published version
Published in
Proceedings - 2022 IEEE 21st International Conference on Trust, Security and Privacy in Computing and
Communications, TrustCom 2022

Citation (APA)
Li, M., Gao, J., Zhang, Z., Fu, C., Lal, C., & Conti, M. (2022). Graph Encryption for Shortest Path Queries
with k Unsorted Nodes. In Proceedings - 2022 IEEE 21st International Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom 2022 (pp. 89-96). (Proceedings - 2022 IEEE 21st
International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom
2022). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/TrustCom56396.2022.00023
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TrustCom56396.2022.00023
https://doi.org/10.1109/TrustCom56396.2022.00023


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Graph Encryption for Shortest Path Queries
with k Unsorted Nodes

Meng Li
Hefei University of Technology

Hefei, China

mengli@hfut.edu.cn

Chaoping Fu
Huaqiao University
Xiamen, China

fuchp@hqu.edu.cn

Jianbo Gao
Hefei University of Technology

Hefei, China

jianbogao@mail.hfut.edu.cn

Chhagan Lal
TU Delft

Delft, Netherland

c.lal@tudelft.nl

Zijian Zhang∗
Beijing Institute of Technology

Beijing, China

zhangzijian@bit.edu.cn

Mauro Conti
University of Padua

Padua, Italy

conti@math.unipd.it

Abstract—Shortest distance queries over large-scale graphs
bring great benefits to various applications, i.e., save planning
time and travelling expenses. To protect the sensitive nodes
and edges in the graph, a user outsources an encrypted
graph to an untrusted server without losing the query ability.
However, no prior work has considered the user requirement
of the shortest path with k unsorted nodes. In particular, we
are concerned with how to securely find the shortest path
by passing k nodes that do not have a fixed traverse order.
To solve the problems, we propose Gespun (stands for Graph
encryption for shortest path queries with k unordered nodes).
It includes an oracle encryption scheme that is provably secure
against the semi-honest server. Specifically, we compute the
shortest paths and distances for all nodes locally to obtain
path-distance oracles. We transform the shortest paths to a
sequence of secure codes by using a pseudo-random permuta-
tion to protect the structure privacy. We encrypt the shortest
distance by using additively homomorphic encryption. Second,
we pack the oracles in link-list nodes and store them in
an array-based dictionary after another permutation. Next,
we construct a search graph to compute the shortest path
while guaranteeing that the path passes the required k nodes.
We formally prove that Gespun is adaptively semantically-
secure in the random oracle. We implement a prototype of
Gespun and evaluate its performance. Experiments results
demonstrate that Gespun is efficient, e.g., a query over 6301
nodes, 20777 edges, and 5 unsorted nodes only needs 483 ms
to get queried results. We believe that our research problem
span new research that soon promotes a new line of graph
encryption schemes.

Index Terms—Graph encryption, Shortest distance query,
Unsorted nodes, Security

I. INTRODUCTION

A. Background

Graphs databases are utilized in various applications,

including world-wide web, online social networks, and

communication networks. For instance, LinkedIn has a

social graph consisting of more than 8.1 million users [1].

These applications facilitate querying and analyzing large-

scale graphs in an efficient way.

Zijian Zhang is the corresponding author.

With the ubiquity of cloud computing [2], [3], users,

including companies and individuals, are encouraged to

outsource their graph databases to a remote cloud server. By

doing so, their local management costs are reduced [4]–[6].

However, outsourcing graph databases containing sensitive

information (e.g., how users are connected in a social

network and which roads users visit) to the untrusted

cloud server will not only lead to users’ loss of data

control, but also raise their security concerns [7]–[11]. The

concerns promote new methods to safeguard security. Data

encryption is a straightforward method, but complicate data

analysis.

B. Related Work

To solve the problem above, Chase and Kamara proposed

the idea of structured encryption [12]. Generally speaking,

a graph encryption scheme encrypts a data structure while

allowing users to query it privately. Graph encryption

is a special case of structured encryption and there are

several prominent works. Meng et al. [13] proposed a graph

encryption scheme GRECS to answer shortest distance

queries approximately by computing encrypted distance

oracles and using somewhat homomorphic encryption [14],

Pseudo-Random Permutation (PRP), and Pseudo-Random

Function (PRF). Wu et al. [15] presented a multi-round

navigation protocol on city streets to enable shortest path

queries. They compressed the next-hop matrices for road

networks to realize fully private shortest-path computation

in road networks and combined garbled circuits [16] to

obtain a fully-private navigation protocol. Wang et al. [17]

designed SecGDB to answer shortest distance queries

over an encrypted graph database by leveraging additively

homomorphic encryption [18], PRP, and PRF. SecGDB

executes the Dijkstra’s algorithm [19] with a Fibonacci

heap to compute the shortest path. Ghosh et al. [20]

proposed the first graph encryption scheme for single-pair

shortest path queries based on SP-matrix M [21]. Given

two nodes vi and vj , they used a recursive algorithm to

89

2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/22/$31.00 ©2022 IEEE
DOI 10.1109/TrustCom56396.2022.00023

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 T

ru
st

, S
ec

ur
ity

 a
nd

 P
riv

ac
y 

in
 C

om
pu

tin
g 

an
d 

C
om

m
un

ic
at

io
ns

 (T
ru

st
C

om
) |

 9
78

-1
-6

65
4-

94
25

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
Tr

us
tC

om
56

39
6.

20
22

.0
00

23

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



look up the first node on the shortest path vo = M [i, j]
and recurses on the pair (vo, vj). Shortest path queries are

one fundamental function of many graph algorithms [15],

[17], [20], [22] and they are quite practical in daily lives.

Example applications among location-based services [23],

[24] include smart parking [25], navigation [26], and user

matching in ride-hailing [27]. Some commercial systems

include OrientDB [28], Neo4j [29], and Titan [30]. In

this work, we focus on the shortest path that has a more

practical use.

C. Motivation

Our motivation arises from designing a graph encryption

scheme that supports an important graph operation: finding
the shortest path between two nodes while passing k
unsorted nodes. Such an operation echoes a common user

requirement in real-world applications. For example, as

illustrated in Fig. 1, a user Alice opens the Google Maps

app on her smartphone to (1) find the shortest path from

a source (green node) to a destination (red node), and

(2) this path has to pass through three other locations

(blue nodes), i.e., her workplace, a specific gym, and a

specific pizza shop. Meanwhile, Alice does not require the

order of visiting the three locations. We call them unsorted

nodes. Besides the three unsorted nodes, there are also

normal nodes (black nodes) along the shortest path, e.g.,

crossroads.

Alice

Destination Normal nodeUnsorted node

Alice

Source

Fig. 1. Motivation: Find the Shortest Path with 3 Unsorted Nodes.

D. Technical Challenges and Proposed Solutions

To contribute to the graph encryption and break through

the limitations of existing work, we propose Gespun: Graph

encryption for shortest path queries with k unordered

nodes. Specifically, our construction addresses three tech-

nical challenges. First, how to design an appropriate oracle

that lays the foundation of our shortest path queries un-

der restricted conditions. Existing work either neglect the

shortest path [13] or only consider the neighboring infor-

mation [17]. Intuitively, a path-distance oracle is preferable.

Second, how to protect structure privacy when designing

the abovementioned oracle? On one hand, we need to

prepare the novel oracle to compute the shortest path.

On the other hand, providing too much path information

will result in violation on the graph structure, i.e., how

nodes are connected to each other. Third, how to answer

the shortest path queries with k unsorted nodes? Unlike

the classic Travelling Salesman Problem (TSP) [31], [32],

which is NP-hard, or the Könisberg bridge problem [33],

our requirement is a general case of TSP (which has the

same source and destination) and it should be solved in a

secure manner.

To tackle the challenges, first we compute the shortest

paths and distances for all nodes locally by using the Floyd-

Warshall algorithm [34] on the original graph to obtain

path-distance oracles. We encrypt the shortest distance

by using additively homomorphic encryption. Second, we

transform the shortest paths to a sequence of secure codes

by using a Pseudo-Random Permutation (PRP) and n
secrets to protect the structure privacy. Third, for each

node, we store their oracles in linked-list nodes, which are

permutated in an array. The first nodes of all arrays are then

permuted by using the PRP and a different secret key in a

dictionary as separate entries. We construct a search graph

based on a source, a destination, and k unsorted nodes

to find the shortest path over the encrypted graph while

guaranteeing that the path passes the k nodes. Briefly, our

main contributions are summarized as follows.

• To the best of our knowledge, this is the first work

to address the shortest path queries with k unsorted

nodes for graph encryption and we propose a novel

graph encryption scheme named Gespun.

• We achieve the new requirement under the graph

encryption framework by designing a path-distance

oracle, leveraging homomorphic encryption and per-

mutation, and constructing a search graph.

• We formally define security of Gespun and prove

that it is adaptively semantically-secure in the random

oracle. We develop a prototype of Gespun and conduct

extensive experiments to demonstrate its efficiency and

practicability.

E. Paper Organization

The remainder of this paper is organized as follows.

Section 2 gives the problem formulation including system

model, threat model, and design goals. Section 3 revisits

some preliminaries. In section 4, we present the details of

Gespun. In section 5, we formally prove the security of

Gespun. Section 6 conducts the performance evaluation.

Finally, we conclude this paper in Section 7.

II. PROBLEM FORMULATION

In this work, we consider the problem of designing a

graph encryption scheme that supports the shortest path

queries with k unsorted nodes over an encrypted graph

stored on a remote cloud server. Before we dive into the

technical details, we elaborate on the system model and

security model in this section.

A. System Model

At a high level, as shown in Fig. 2, our system contains

two entities, namely the user U and the cloud server CS.

90

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



User Cloud Server

Encrypted graph
Queries

Encrypted results

Fig. 2. System Model of Gespun.

In the Setup stage, the user U processes the original graph

G to obtain path-distance oracles of nodes and an encrypted

graph EG. U outsources the EG to the cloud server CS.

Next, holding a shortest path query q with k unsorted nodes

over the EG, U generates a query token tq based on q and

sends it to the CS. The CS searches EG by using tq and

returns an encrypted shortest path sp along with the shortest

distance sd to the U . We list key notations of Gespun in

Table I.

Formally, the core functionalities of our scheme are listed

as below.

Definition 1 (Oracle Encryption): An oracle encryption

scheme Π = (Setup, PathQuery,Dec) supporting the

shortest path query with k unsorted nodes consists of the

following three probabilistic polynomial-time algorithms:

• Setup(1λ,G)→ (sk, EG): is a probabilistic key gener-

ation algorithm executed by the user. It takes a security

parameter λ and a graph G as input, and outputs a

secret key sk and an encrypted graph EG.

• PathQuery(sk, q; EG) → R: is a two-party protocol

between the user and the cloud server. The user takes a

secret key sk and a shortest path query q as input. The

cloud server takes a query token tq and an encrypted

graph EG as input. During the protocol, the user

computes a query token tq based on q and sends it to

the cloud server. After the protocol, the user receives

outputs a result set R.

• Dec(sk,R) → (sp, sd): is a deterministic algorithm

executed by the user. It takes a secret key sk and an

encrypted result set R, and outputs the shortest path

sp as well as its shortest distance sd.

B. Security Model

At a high level, the security protection we expect from

an oracle encryption scheme is that: (1) given an encrypted

oracle, no adversary can acquire any useful information

about the underlying oracle; and (2) given the PathQuery
execution of a polynomial number of adaptively chosen

shortest path queries Q = (q1, q2, · · ·, qo), no adversary

can acquire any useful information about G or Q. We adapt

the notion of adaptive semantic security [4], [12], [17], [20],

[35] to our distance oracle encryption.

Definition 2 (Adaptive Semantic Security): Let Π =
(Setup, PathQuery,Dec) be an oracle encryption scheme

and consider the following two probabilistic experiments

with a semi-honest adversary A, a challenger C, a simulator

S , and two (stateful) leakage functions L1, and L2:

RealA(1λ):

• A outputs an orcale G.

• C calculates (sk, EG) ← Setup(1λ,G) and sends EG
to A.

• A generates a polynomial number of adaptively cho-

sen shortest path queries Q = (q1, q2, · · ·, qo). For

each query qi (1 ≤ i ≤ o), A and C execute

PathQuery(sk, qi; EG). C acts as a user and A acts

as a cloud server.

• A computes a bit b that is output by the experiment.

IDealA,S(1λ):
• A outputs an oracle G.

• Given L1, S sends an encrypted graph EG to A.

• A generates a polynomial number of adaptively cho-

sen shortest path queries Q = (q1, q2, · · ·, qo). For

each qi (1 ≤ i ≤ o), S is given L2. A and S execute

a simulation of PathQuery. S acts as a user and A
acts as a cloud server.

• A computes a bit b that is output by the experiment.

We say that Π is adaptively (L1,L2)- semantically

secure if for all Probabilistic Polynomial-Time (PPT) ad-

versaries A, there exists a PPT simulator S such that

|Pr[RealA(1λ) = 1]− Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

III. PRELIMINARIES

In this section, we revisit some preliminaries that lay the

foundation for the proposed Gespun, namely homomorphic

encryption, pseudo-random function, and pseudo-random

permutation.

A. Homomorphic Encryption
A public-key encryption scheme Ω = (Gen,Enc,Dec)

is homomorphic if it has an evaluation algorithm Eval
that takes a function E and a set of ciphertexts (c1, c2, · ·
·, cn) where ci = Encpk(mi) as input, and output-

s a ciphertext c such that Decsk(c) = E(m1,m2, · ·
·,mn). If E supports addition: Encpk(m1 + m2) =
Eval(+,Encpk(m1),Encpk(m2)), Ω is called additive ho-

momorphic encryption. Concrete instantiations of homo-

morphic encryption schemes include BGN [14] and Paillier

cryptosystem [18].

B. Pseudo-Random Function and Pseudo-Random Permu-
tation

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a PRF, which

is a polynomial-time computable function. The output of a

PRF cannot be distinguished from the output of a random

function by any PPT distinguisher, i.e., |Pr[DFk(·)(1n) =
1]−Pr[Df(·)(1n) = 1]| ≤ negl(λ), where a key k is chosen

uniformly from {0, 1}n. In other words, D is given access

to an oracle O which is either F or f . D can query O
at any point i to receive O(i). For every D that receives a

description of F outputs 1 with almost the same probability

as when it receives a description of a random function [36].

A PRF is assumed to be a PRP when it is bijective. We

refer the interested readers to [36] for detailed information.

91

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
KEY NOTATIONS OF GESPUN

Notation Definition Notation Definition
U User V Node set
CS Cloud server E Edge set
G Graph v Node
EG Encrypted graph w Edge weight
s Source n Number of nodes
d Destination PD Path-distance oracle
q Query π Permutation
qt Query token Arr Array
sp Shortest path DX Dictionary
sd Shortest distance Esp Encrypted shortest path
k Number of unsorted nodes Esd Encrypted shortest distance
v Node pq Permuted query
K, sk Secret key L1,L2 Leakage function
R Encrypted result set QP , OP Query/oracle pattern

IV. PROPOSED SCHEME

In this section, we present our proposed graph encryption

scheme Gespun that supports the private shortest path query

with k unsorted nodes.

A. Overview

The user has an original graph G = {V, E}. During

the setup phase, the user computes a path-distance oracle

for each node in V . The path-distance oracle of a node v
contains the shortest path from v to other nodes as well

as its shortest distance. The shortest path is a sequence of

nodes starting from a source s and leading to a destina-

tion d. We order the shortest path via PRP and adopt a

public-key homomorphic encryption scheme to encrypt the

shortest distance of each shortest path. All the path-distance

oracles are further permuted and stored in an array for the

cloud server to search. In the shortest path query phase, we

build a search graph to look through all possible shortest

pathes from the source to the destination while passing the

k unsorted nodes.

B. Setup

Our scheme Π = (Setup,PathQuery,Dec) makes use

of a public-key homomorphic encryption scheme Ω =
(Gen,Enc,Dec), a PRP P , a PRF F , a random oracle H ,

and a collision-resistant hash function h. We use the Paillier

cryptosystem as Ω and generate a key pair (sku, pku) ←
{0, 1}λ. P is defined as {0, 1}λ×{0, 1}∗ → {0, 1}∗ and F
is defined as {0, 1}λ × {0, 1}∗ → {0, 1}λ. H is defined as

H : {0, 1}∗ → {0, 1}∗. A collision-resistant hash function

h is modeled as a random function [13]. An original graph

is defined as G = {V, E}, where V = {v1, v2, · · ·, vn} is the

node set and E is a set of triads. For example, (vi, vj , wij)
indicates that there is an edge from node vi to vj and the

edge weight is wij . Each edge (vi, vj , wij) ∈ E linking a

node vi ∈ V to a node vj ∈ V is associated with a non-

negative weight w(vi, vj) The user U executes the Setup
algorithm that works as follows.

• U generates two secret keys K1,K2, and a key pair

(sku, pku). U sets sk = (K1,K2, sku, pku).

• U computes the shortest paths and distances for all

nodes by using the Floyd-Warshall algorithm [34] on G
to obtain path-distance oracles {PDvi}. For example, as

portrayed in Fig. 3, there is a shortest path spvi,vj
from

node vi to node vj and the shortest distance is sdvi,vj
.

PDvj
vi

= (vi, vj , sdvivj , v
1
ij , v

2
ij , · · ·, v(ij)ij ) and (v1ij , v

2
ij , · ·

·, v(ij)ij ) is the sequence of nodes that spvi,vj traverses by

from vi to vj . Then, PDvi
= {PDvj

vi
}(vj∈V,vj �=vi).

• U samples a random permutation π over [
∑

vi
|PDi|],

i.e., the total number of path-distance oracles, creates a

counter num = 1 for π, and initializes an array Arr of

size
∑

vi∈V |PDvi
|.

• U encrypts the path-distance oracle for each PDvi as

follows.

• U chooses two random secrets Kvi ,K
∗
vi

for PDvi
(1 ≤ i ≤ n). For each node

vj (j �= i), U creates a linked-list node

No = h(vj)||Encpkvi
(sdvi,vj )||PK∗

vi
(v1ij)

||PK∗
vi
(v2ij)|| · · · ||PK∗

vi
(v

(ij)
ij )||π(num+1) chooses a

random number ro, and stores (No ⊕H(Kvi ||ro), ro)
at location Arr[π(num)]. For the last pair, U sets

the add part as NULL and increments num. We

denote PK∗
vi
(v1ij)||PK∗

vi
(v2ij)|| · · · ||PK∗

vi
(v

(ij)
ij ) by

Espvi,vj
. The reason that we use n secrets {Kvi

}vi∈V
and a different key K1 is because we deliberately

permute each path sequence Esp for each node to

look different from the permutation in the dictionary

explained later. By doing so, we can protect the

structure privacy.

• U creates a dictionary DX to store the pairs

(PK2(vi), add
1
vi
||Kvi ⊕ FK1) for all vi ∈ V , where

add1vi
is the location in Arr of the head of vi’s linked-

list.

• U sends the encrypted graph EG = (DX,Arr) to the

CS.

92

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. An Example of Encrypting and Storing PDvi .

C. Shortest Path Query

There are two types of queries that we should consider.

The first one is the normal query where a user does not

need to have a specific requirement on the nodes between

the source s and the destination d. The second type is the

special query where the user has k unsorted nodes to pass

through between s and d.

1) Query with no unsorted nodes.: Given s and d, U
generates a query token q as follows.

• U computes q1 = PK2
(s), q2 = FK1

(s), and q3 =
h(d).
• U sends the query token q = (q1, q2, q3) to the CS.

Given q, CS finds the shortest path and distance for U
as follows.

• CS uses retrieves α = DX[q1] and computes β =
α⊕ q2 = (γ1||Ks).
• CS recovers the lists pointed to by add1s. Specifically,

starting with i = 1 it parses Arr[γ1] as (xs, ys). CS
decrypts xs by computing (hi||sdi||spi||addi+1) = xs ⊕
H(Ks||rs).
• If hi �= q3, CS continues to retrieve the value

in the next location by using addi+1 until a match is

found. Finally, CS returns the query result set R =
(Encpku

(sds,d), Esps,d) to U . If add is NULL, then there

is no path between s and d, CS returns NULL.

Upon receiving R, U decrypts Encpku
(sds,d) by using

sku to obtain the shortest distance sds,d and checks the

local record to recover the shortest path sps,d by using

Esp.

2) Query with k unsorted nodes.: Given s, d, and k
unsorted nodes (V1, V2, · · ·, Vk), U generates a query token

q as follows.

• U computes q1 = (PK2
(s), PK2

(V1), PK2
(V2), · ·

·, PK2(Vk)), q2 = (FK1(s), FK1(V1), FK1(V2), · ·
·, FK1(Vk)), q3 = (h(V1), h(V2), · · ·, h(Vk), h(d)).
• U sends the query token q = (q1, q2, q3) to the CS.

Given q, CS finds the shortest path and distance for U
as follows.

• CS initiates a shortest path SP and a shortest distance

SD = {Rsd1, Rds2, · · ·, Rsdk!} = {1, 1, · · ·, 1}.
• Given q, CS computes the k! permuted queries

(pq1, pq2, · · ·, pqk!) according to the full permutation of

the k unsorted nodes.

• For each pqi = (pq1i , pq
2
i , pq

3
i ), 1 ≤ i ≤ k!, CS com-

putes the encrypted shortest path Espi and the encrypted

shortest distance Esdi, and updated SP and SD.

• We take the initial query pq1, which is also one

of the permuted queries, as an example. CS initializes

Esp1 = {}, Esd1 = 1, and obtains Esp and Esd
by invoking the search process of the normal query on

(PK2(s), FK1(s), h(V1)). Next, CS appends PK2(V1) to

Rsp1 and computes Rsd1 = Rsd1 ∗ Esd. CS continues

the search until the last sub-path Vk − d is processed. Till

here, the first path s−V1−V2−···−Vk−d is complete, CS
inserts Rsp1 to SP and inserts Esd1 to SD. CS continues

to process the remaining paths to update SP and SD.

• CS returns R = {SP,SD} to U .

Upon receiving R, U decrypts each Esdi to obtain

the shortest distance sds,d and checks the local record to

recover the shortest path sps,d by using Esp.

V. SECURITY ANALYSIS

The graph encryption scheme leaks information to the

cloud server, which we allow to trade for efficiency. Next,

we provide a formal description of the two leakage func-

tions L1 and L2 as below.

• L1(G): Given a graph G, L1(G) =
(n, SDmax, SPmax, PDsum), where SPmax = maxvi∈V
{max

(vi,vj ,sdvivj
,v1

ij ,v
2
ij ,···,v(ij)

ij )∈PDvi

|spvivj
|}, SDmax =

maxvi∈V{max
(vi,vj ,sdvivj

,v1
ij ,v

2
ij ,···,v(ij)

ij )∈PDvi

sdvivj
},

and PDsum =
∑

v∈V |PDv|. • L2(EG, q): Given

an encrypted graph EG and a shortest path query q,

93

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



L2(G, q) = (QP (EG, q), QP (EG, q)), where QP (EG, q)
is the query pattern and OP (EG, q) is the oracle pattern

(similar to sketch pattern [13]).
Definition 3 (Query Pattern): The query pattern reveals

whether the nodes in the query have appeared before. For

two queries q0, q1, define sim(q0, q1) = (s0 = s1, d0 =
d1, V01 = V11, V02 = V12, · · ·, V0k = V1k), i.e., whether

each of the nodes q = (s0, d0, V01, V02, · · ·, V0k) matches

each of the nodes of q = (s1, d1, V11, V12, · · ·, V1k). Let

q = (q1, q2, · · ·, qz) be a non-empty sequence of queries.

L1(q) outputs a z × z matrix Z with Zij = sim(qi, qj).
Definition 4 (Oracle Pattern): For an encrypted graph EG

and a shortest path query q, the oracle pattern is defined

as L2(EG, q) = {id(R)}, where id(R) is the identifiers of

nodes in the encrypted result set R.
Theorem 1: If P and F are pseudo-random, and

Ω is CPA-secure, Gespun is adaptively (L1,L2)-
semantically secure in the random oracle model, where

L1(G) = (n, SPmax, SDmax, PDsum) and L2(EG, g) =
(QP (EG, q), OP (EG, q)).

Now we construct a simulator S as below.
• Given L1(G) = (n, SPmax, SDmax, PDsum),

for all 1 ≤ i ≤ PDsum, S samples

δi
$← {0, 1}|h|+|Enc|+rand|P |+logPDsum+λ. Here |h|,

|Enc|, rand|P |, logPDsum, and λ correspond to the bit

length of the random function, ciphertext, nodes on the

shortest path (excluding s and d), number of all oracles,

and security parameter, respectively. rand is chosen from

[0, SPmax] randomly, where 0 refers to a direct and

shortest path from s to d. The shortest distance is chosen

from (0, SDmax]. S stores {δi} in an array Arr∗ of size

PDsum. For 1 ≤ i ≤ n, S samples dxi
$← {0, 1}logn and

sets DX∗[dxi]
$← {0, 1}logPDsum+λ. Finally, S outputs

EG∗ = (DX∗, Arr∗).
• Given L2(EG, g) = (QP (EG, q), QP (EG, q)), S

checks whether q has been queries before. If so, S returns

the previously token; otherwise, S samples an non-negative

integer k in PPT.

– If k = 0, S sets q∗1 = dxi, samples an unused

add ∈ PDsum and a key Ks
$← {0, 1}λ, sets q∗2 =

DX[dxi] ⊕ add||Ks, and generates a random value

from {0, 1}|h| as q∗3 . S records (dxi, add,Ks). To

simulate H , S checks whether (1) K has been queried

in H and (2) if any location in Arr stores (N ′, r)
where N ′ is a |h| + |Enc| + rand|P | + logPDsum-

bit string. If K is new, S initiates num = 0. If

there is an appropriate entry (N ′, r) in Arr, S outputs

N ′ ⊕ (e,Encpku(0), add), where e is the numth ele-

ment of π(PDsum) and add is a random and unused

address in Arr or NULL if num = |PD|, where |PD|
is the path-distance oracle size associated with K.

– If k > 0, S simulates the query token q∗ similar to the

case of k = 0 where q = (q1, q2, q3). In specific, there

are k+1 items in qi (1 ≤ i ≤ 3) and S processes each

triad (q1j , q2j , q3j) (1 ≤ j ≤ k+1), separately. Given

(q1j , q2j , q3j), S considers it as a individual normal

query that asks a shortest path from s under q1j to d
under q3j . By following the operations in the above

step, the S acquires a simulated query (q∗1j , q
∗
2j , q

∗
3j).

After processing all qi(1 ≤ i ≤ k + 1), S has the

complete simulated query token q∗ = (q∗1 , q
∗
2 , q

∗
3) =

((q∗11, q
∗
12, · · ·, q∗1k+1), (q

∗
21, q

∗
22, · · ·, q∗2k+1), (q

∗
31, q

∗
32, · ·

·, q∗3k+1)).

The simulated view and the real view are indistin-

guishable by A such that Gespun is adaptively (L1,L2)-
semantically secure in the random oracle model against

an adaptive adversary, i.e., we deduce the correctness of

Theorem 1 from the pseudo-randomness of P and F and

the CPA-security of Ω. We complete the proof. �
Regarding the structure privacy, we use n different

secrets in the path permutations for n nodes and a different

secret key K1 in the dictionary permutation. By doing so,

the cloud server cannot differentiate (1) the nodes on the

shortest path for a node from the nodes on the shortest path

of any other nodes and (2) the nodes in DX from the nodes

in the Arr. Therefore, the structure privacy is preserved.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the

Gespun in terms of computational costs and communication

overhead.

A. Experimental Settings

Datasets. We use three real-world graph

datasets available from the Stanford SNAP

(https://snap.stanford.edu/data): email-Eu-core, an E-

mail network, soc-sign-bitcoin-alpha, a Bitcoin Alpha web

of trust network, and p2p-Gnutella08, a Gnutella peer to

peer network, where the numbers of their total nodes are

1005, 3783, and 6301.

We list the key features of the three datasets in Table II.

We upload all source codes and an instruction file to

https://github.com/UbiPLab/Gespun.

Parameters. We choose the SHA256 and the SHA512
to construct h and H , respectively. The length of secret

key K and random number r is 1024 bits. The number of

unsorted nodes k is drawn from 0 to 5. We list the detailed

parameters in Table III.

Metrics. We measure the time of graph encryption,

token generation, and result search, and evaluate the

communication overhead of encrypted graph, token, and

result set. We conduct each set of experiment twenty

times.Communication overhead is computed by measuring

the size of the transmitted messages.

Setup. We use JPBC library [37] to implement the basic

cryptographic primitives. We use the Paillier cryptosys-

tem as the public-key encryption scheme. We implement

Gespun in Java and conducted experiments on a PC server

running on Windows 10 Professional with a 3.5GHz-11th

Gen Intel(R) Core(TM) i9-11900K x64 processor and 64

GB RAM.

94

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
EXPERIMENTAL PARAMETERS

Dataset Node Edge Size (GB)1
email-Eu-core 1,005 25,571 0.0475
soc-sign-bitcoin-alpha 3,783 24,186 0.7242
p2p-Gnutella08 6,301 20,777 1.2512
1: Size after preprocessing the original dataset
with the Floyd-Warshall algorithm.

TABLE III
EXPERIMENTAL PARAMETERS

Parameter Value
n {1005, 3783, 6301}
k [0, 5]
E {25571, 24186, 20777}
sku, pku 406, 929
|K|, |r| 1024
h; H SHA256; SHA512
|P |, |F | 32

B. Computational Costs and Communication Overhead

We first calculate the shortest paths and distances for

all nodes at the user side by using the Floyd-Warshall

algorithm [34] on the original graph to obtain path-distance

oracles. For example, the time cost is only 4.89 seconds

when n = 1005 and it is 16.85 minutes when n = 6301.

This step is a one-time cost and does not impact the overall

efficiency greatly. Next, we text the cost of the shortest path

queries for the cases where k = 0 and k > 0. We conduct

each set of experiments ten times to draw the average values

in Fig. 4, Fig. 5, and Fig. 6.

Graph encryption. After acquiring the distance-path

oracle, we begin to encrypt the processed graph. As shown

in Fig. 4, it is obvious that the computational cost and

communication overhead increase with n. When n = 6301,

the encryption time is 29.9 hours and the encrypted graph

is 23 GB. Again, this step is also an one-time cost.

0

5

10

15

20

25

30

G
ra
ph

E
nc
ry
pt
io
n
T
im
e
(h
)

Dataset 1
Dataset 2
Dataset 3

(a) Computational Cost

0

5

10

15

20

25

S
iz
e
of
E
nc
ry
pt
ed

G
ra
ph

(G
B
)

Dataset 1
Dataset 2
Dataset 3

(b) Communication Overhead

Fig. 4. Performance of Graph Encryption.

Token generation. The cost of token generation increas-

es with k. Recall that the query q with a k > 0 is in

the form of a triad (q1, q2, q3). A larger k will lead to

more computations on (q1, q2, q3) as well as their size. The

results are shown in Fig. 5. When n = 6301 and k = 5,

the token generation time is only 0.175 ms. The token size

of the three datasets at the same k are almost the same

because the token stays unchanged.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
Dataset 1
Dataset 2
Dataset 3

T
ok
en

G
en
er
at
io
n
T
im
e
(m
s)

k

(a) Computational Cost

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
Dataset 1
Dataset 2
Dataset 3

T
ok
en

S
iz
e
(K
B
)

k

(b) Communication Overhead

Fig. 5. Performance of Token Generation By Varying k.

Shortest path query. As shown in Fig. 6, the cloud

server spends little time in computing the shortest path

when k = 0 due to our special design of the distance-

path oracle. Given a source, a destination, and 0 unsorted

node, the cloud server can immediately find the shortest

path. When k increases, the search time increases because

the cloud server has to check each possible path according

to the k! permutations. The search time varies for the three

datasets at the same k because their distance-path oracles

are different. The reason that the size of the returned results

does not strictly follow the k-fold relationship is because

the length of the obtained shortest paths does not follow the

relationship when k is incremented by 1 every time. After

receiving the query results, the user recovers the shortest

paths locally by first decrypting the distance ciphertext and

recovering the path of the smallest distance. The time costs

are 134 ms, 149 ms, and 188 ms for the three datasets when

k = 5. The time cost for the three datasets are different

because different k unsorted nodes lead to different lookup

time for the cloud server. The result size for the three

datasets are different because different k unsorted nodes

end up with different shortest paths.

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800
Dataset 1
Dataset 2
Dataset 3

S
ea
rc
h
T
im
e
(m
s)

k

(a) Computational Cost

0 1 2 3 4 5
0

5

10

15

20

25

30
Dateset 1
Dateset 2
Dateset 3

R
es
ul
tS
iz
e
(K
B
)

k

(b) Communication Overhead

Fig. 6. Performance of the Shortest Path Query By Varying k.

VII. CONCLUSIONS

In this work, we first put forth the problem of finding

the shortest path in a graph while passing k nodes with no

specific order requirements. To protect security in solving

the problem, we propose a novel graph encryption scheme

Gespun to support the shortest path queries with k unsorted

nodes. In our scheme, we design a new distance-path oracle

95

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 



and encrypt the original graph by using homomorphic

encryption, hash function, PRP, and PRF. On top of this

structure, we realize the shortest distance queries with k
unsorted nodes. We formally prove that Gespun is adap-

tively semantically-secure in the random oracle model. We

implement Gespun and evaluate its efficiency on three real-

world datasets, showing that our design is efficient and

practical for large-scale graph datasets.

ACKNOWLEDGEMENTS

The work is supported by National Natural Science

Foundation of China (NSFC) under the grant No. 62002094

and Anhui Provincial Natural Science Foundation under

the grant No. 2008085MF196. It is partially supported by

EU LOCARD Project under Grant H2020-SU-SEC-2018-

832735.

REFERENCES

[1] “LinkedIn Usage and Revenue Statistics (2022).” Available: http-
s://www.business
ofapps.com/data/linkedin-statistics. [Accessed on Feb. 15, 2022]

[2] C. Alcaraz, ”Cloud-assisted dynamic resilience for cyber-physical
control systems,” IEEE Wireless Communications, 2018, 25 (1): 76-
82.

[3] L. Zhao and L. Chen, “On the privacy of matrix masking-based
verifiable (outsourced) computation,” IEEE Trans. Cloud Computing
(TCC), 2020, 8 (4): 1296-1298.

[4] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” Proc. 19rd ACM Conference on Comput-
er and Communications Security (CCS), October 2012: 965-976,
Raleigh, USA.

[5] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic search-
able encryption with small leakage,” Proc. Network and Distributed
System Security (NDSS) Symposium, February 2014: 1-15, San
Diego, USA.

[6] X. Lei, A. X. Liu, R. Li, and G.-H. Tu, “SecEQP: A secure and
efficient scheme for SkNN query problem over encrypted geodata
on cloud,” Proc. 35th IEEE International Conference on Data
Engineering (ICDE), April 2019: 662-673, Macao, China.

[7] K. Mouratidis and M. L. Yiu, “Shortest path computation with no
information leakage,” Proc. VLDB Endowment, August 2012: 692-
703, Istanbul, Turkey.

[8] M. Li, L. Zhu, Z. Zhang, C. Lal, M. Conti, and M. Alazab,
“User-defined privacy-preserving traffic monitoring against n-by-1
jamming attack,” IEEE/ACM Trans. Networking (ToN), 2022, PP
(99): 1-1. DOI: 10.1109/TNET.2022.3157654.

[9] M. Li, Y. Chen, Chhagan Lal, M. Conti, F. Martinelli, and M.
Alazab, “Nereus: Anonymous and secure ride-hailing service based
on private smart contracts,” IEEE Transactions on Dependable and
Secure Computing (TDSC), 2022, PP (99): 1-1. DOI: 10.1109/TD-
SC.2022.3192367

[10] M. Li, Y. Chen, C. Lal, and M. Conti, M. Alazab, and D. Hu, “Eu-
nomia: Anonymous and secure vehicular digital forensics based on
blockchain,” IEEE Transactions on Dependable and Secure Comput-
ing (TDSC), 2021, PP (99): 1-1. DOI: 10.1109/TDSC.2021.3130583

[11] L. Zhu, M. Li, Z. Zhang, and Z. Qin, “ASAP: An anonymous
smart-parking and payment scheme in vehicular networks,” IEEE
Transactions on Dependable and Secure Computing (TDSC), 2020,
17 (4): 703-715. DOI: 10.1109/TDSC.2018.2850780.

[12] M. Chase and S. Kamara, “Structured encryption and controlled
disclosure,” Proc. 16th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT),
December 2010: 577-594, Singapore, Singapore.

[13] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “GRECS: Graph
encryption for approximate shortest distance queries,” Proc. 22nd
ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS), October 2015: 504-517, Denver, USA.

[14] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas
on ciphertexts,” Proc. Theory of Cryptography Conference (TCC),
February 2005: 325-342, Cambridge, USA.

[15] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell, “Privacy-
preserving shortest path computation,” Proc. The Network and
Distributed System Security Symposium (NDSS), February 2016: 1-
15, San Diego, USA.

[16] A. C. Yao, “How to generate and exchange secrets (extended ab-
stract),” Proc. 23rd Symposium on Foundations of Computer Science
(FOCS), November 1986: 162-167, Chicago, USA.

[17] Q. Wang, K. Ren, M. Du, Q. Li, and A. Mohaisen, “SecGDB: Graph
encryption for exact shortest distance queries with efficient updates,”
Proc. 21st International Conference on Financial Cryptography and
Data Security (FC), 2017: 79-97, Sliema, Malta.

[18] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” Proc. 16th International Conference on the The-
ory and Application of Cryptographic Techniques (EUROCRYPT),
May 1999: 223-238, Prague, Czech Republic.

[19] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, 1959, 1 (1): 269-271.

[20] E. Ghosh, S. Kamara, and R. Tamassia, “Efficient graph encryption
scheme for shortest path queries,” Proc. ACM Asia Conference on
Computer and Communications Security (AsiaCCS), 2021: 516-525,
Hong Kong, China.

[21] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, “Intro-
duction to Algorithms (2nd edition).” The MIT Press, 2001.

[22] K. C. K. Lee, W.-C. Lee, H. V. Leong, and B. Zheng, “Navigational
path privacy protection,” Proc. 18th ACM conference on Information
and knowledge management (CIKM), November 2009: 691-700,
Hong Kong, China.

[23] Y. Chen, M. Li, S. Zheng, D. Hu, C. Lai, and M Conti, “One-
time, oblivious, and unlinkable query processing over encrypted data
on cloud” Proc. 22nd International Conference on Information and
Communications Security (ICICS), August 2020: 350-365, Copen-
hagen, Denmark.

[24] A. H. and E. Ayday, “Profile matching across online social network-
s,” Proc. 22nd International Conference on Information and Com-
munications Security (ICICS), August 2020: 54-70, Copenhagen,
Denmark.

[25] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. Shen, “Privacy-preserving
smart parking navigation supportingeEfficient driving guidance re-
trieval,” IEEE Trans. Vehicular Technology (TVT), 2018, 67 (7):
6504-6517.

[26] M. Li, Y. Chen, S. Zheng, D. Hu, C. Lal, and M. Conti, “Privacy-
preserving navigation supporting similar queries in vehicular net-
works,” IEEE Trans. Dependable and Secure Computing (TDSC),
2020, PP (99): 1-1. DOI: 10.1109/TDSC.2020.3017534.

[27] H. Yu, X. Jia, H. Zhang, and J. Shu, “Efficient and privacy-
preserving ride matching using exact road distance in online ride
hailing services,” IEEE Trans. Services Computing (TSC), 2020, PP
(99): 1-1.

[28] “GraphDB.” Available: https://graphdb.ontotext.com.
[29] “Neo4j Graph Data Platform-The Fastest Path to Graph.” Available:

https://neo4j.com.
[30] “Titan-Distributed Graph Database.” Available:

http:titan.thinkaurelius.com.
[31] M. M. Flood, “The Ttraveling-salesman problem,” Operations re-

search, 1956, 4 (1): 1-75.
[32] G. Laporte and S. Martello, “The selective travelling salesman

problem,” Discrete Applied Mathematics, 1990, 26 (2-3): 193-207.
[33] “The seven bridges of Königsberg,” The world of mathematics, 1956:

1-8.
[34] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the

ACM, 5 (6): 345.
[35] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption: Improved definitions and efficient construc-
tions,” Proc. 13th ACM Conference on Computer and Communica-
tions Security (CCS), October/November 2006: 79-88, Alexandria,
USA.

[36] J. Katz and Y. Lindell, “Introduction to Modern Cryptography-Third
Edition.” Chapman & Hall/CRC Press, 2021.

[37] “The Java Pairing Based Cryptography Library (JPBC).” Available:
http://gas.dia.unisa.it/projects/jpbc.

96

Authorized licensed use limited to: TU Delft Library. Downloaded on April 19,2023 at 12:15:41 UTC from IEEE Xplore.  Restrictions apply. 


