
An efficient and secure scheme of verifiable
computation for Intel SGX

Wenxiu Ding∗, Wei Sun∗, Zheng Yan∗†, and Robert H. Deng‡
∗School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China

†Department of Communications and Networking, Aalto University, Espoo, Finland
‡School of Information System, Singapore Management University, Singapore

Emails: wxding@xidian.edu.cn, zhgsunwei12188@126.com, zheng.yan@aalto.fi, robertdeng@smu.edu.sg

Abstract—Cloud computing offers resource-constrained users
big-volume data storage and energy-consuming complicated com-
putation. However, owing to the lack of full trust in the cloud, the
cloud users prefer privacy-preserving outsourced data computa-
tion with correctness verification. However, cryptography-based
schemes introduce high computational costs to both the cloud and
its users for verifiable computation with privacy preservation,
which makes it difficult to support complicated computations in
practice.

Intel Software Guard Extensions (SGX) as a trusted execution
environment is widely researched in various fields (such as
secure data analytics and computation), and is regarded as a
promising way to achieve efficient outsourced data computation
with privacy preservation over the cloud. But we find two types of
threats towards the computation with SGX: Disarranging Data-
Related Code threat and Output Tampering and Misrouting
threat. In this paper, we depict these threats using formal
methods and successfully conduct the two threats on the enclave
program constructed by Rust SGX SDK to demonstrate their
impacts on the correctness of computations over SGX enclaves.
In order to provide countermeasures, we propose an efficient
and secure scheme to resist the threats and realize verifiable
computation for Intel SGX. We prove the security and show
the efficiency and correctness of our proposed scheme through
theoretic analysis and extensive experiments. Furthermore, we
compare the performance of our scheme with that of some
cryptography-based schemes to show its high efficiency.

Index Terms—Verifiable Computation, Intel SGX, Privacy
Preservation

I. INTRODUCTION

Public cloud computing service has become the first choice
of more and more enterprises and users to deal with big data
processing. However, security and privacy issues raise when
the data are outsourced and handled over semi-trusted cloud.
One crucial problem is that the processed results provided by
the cloud platform may be incorrect. Verifiable computation is
an essential way to address this concern, which studies how
a prover in a semi-trusted cloud service provider (CSP) can
convince a verifier that its computation is correct and not tam-
pered [1]. But most existing schemes are constructed based on
cryptography, which incur serious new issues: some schemes
only support specific functions and cannot be used in general
[2]; some generic schemes incur extremely high computation
and communication costs, which are not applicable in practice
for resource-constrained entities [3].

Another approach to guarantee the correctness of privacy-
preserving computation is to use trusted execution environ-
ment (TEE) [4] provided by trusted computing platform (TCP)

[5]. Recent advance in TCP such as Intel Software Guard
Extensions (SGX) offers a TEE, called Enclave, which isolates
code and data from untrusted regions within a device. An
SGX-enabled processor protects the integrity and confiden-
tiality of the computation inside an enclave by isolating the
enclave’s code and data from privileged software and hardware
in an outside environment, including the underlying operating
system and hypervisor. With the security properties of the
enclave signature and memory access control mechanism
provided by the Intel SGX, all the codes in the enclave are
considered untamed, not only the static code block before
enclave initialization, but also the actual execution process.

Compared with other TCP technology, Intel SGX provides a
smaller Trust Computing Base (TCB), which makes its attack
surface smaller than others. Hence, it becomes very popular in
various institutes and industrial fields (such as Alibaba Cloud
[6] and Microsoft Research [7]). However, we find out two
categories of threats towards SGX programs, i.e., Disarranging
Data-Related Code (DDRC) threat, Output Tampering and
Misrouting (OTM) threat. DDRC threat disarranges data-
related code in order to make final computing results wrong.
OTM threat tampers or misroutes the output of an enclave to
a wrong next enclave in order to make the final computing
result incorrect. Both the threats are owing to the fact that
Intel SGX itself cannot guarantee the invocation order of the
enclave functions that is determined outside the enclave not
to be untamed. Moreover, if the output of an Enclave ECall
function is returned to an untrusted domain, the output can be
tampered by the attacker and then input to a next Enclave,
which finally leads to a wrong result. To the best of our
knowledge, there exist no solutions to defend these two threats
to ensure accurate computation over Intel SGX.

In this paper, we propose a scheme based on hash chain to
record the topology of the Enclave ECall function execution
order. Therefore, it can distinguish different execution orders
of an execution plan. Hence our scheme can detect the DDRC
threat. Furthermore, we combine the output result of an
enclave to the hash chain to resist the OTM threat. If the output
result coming into the next enclave is not the corresponding
result, the hash chain will be changed and lead to the detection
of the OTM threat.

Generally speaking, our scheme offers an efficient verifi-
able computation mechanism for Intel SGX based privacy-
preserving data computation by guaranteeing the invocation

ar
X

iv
:2

10
6.

14
25

3v
1

 [
cs

.C
R

]
 2

7
Ju

n
20

21

order of enclave functions. Our scheme can guarantee the basic
requirement of data privacy in the scenario of computation-
weak users delegating computation work to the computation-
powerful cloud, and provides the user with an efficient way to
verify the correctness of outsourced computation. Moreover,
our scheme can support any types of data processing, opera-
tions and computations and greatly outperforms many conven-
tional verifiable computation schemes based on cryptography.
It can be commonly applied into many cloud computing ser-
vices, such as batch computing services (Hadoop [8]), stream
computing services (Storm, Spark, Flink [9]), data processing
and computation services and Database services (MySQL,
Oracle) by implementing the services with a number of enclave
functions, possibly run by multiple enclaves. Specifically, our
contributions can be summarized as follows:
• We find two valid threats (DDRC threat and OTM threat)

on the data computation over Intel SGX, which can affect the
correctness of outsourced computation provided by the cloud
equipped with SGX.
•We conduct experiments to attack the program constructed

by Rust SGX SDK, and show the validity of the two threats
on the current SGX-supported computation systems.
• We propose an efficient and secure scheme to perform

verifiable computation for Intel SGX, which allow users to
publically verify the computation results and thus successfully
resist both DDRC threat and OTM threat.
• We compare our verifiable computation scheme with

traditional cryptography-based verifiable computation schemes
through experiments to further show its high efficiency.

Roadmap. The rest of this paper is organized as fol-
lows. Section II briefly reviews related work, followed by
preliminaries in Section III. The proposed verifiable compu-
tation scheme for Intel SGX based privacy-preserving data
computation is presented in Section IV. Section V analyzes
the security properties and computational complexity of our
scheme. In Section VI, we conduct threats towards the enclave
program constructed by Rust SGX SDK, and evaluate the
effectiveness of our scheme through extensive experiments and
comprehensive comparison. Finally, the last section concludes
the whole paper.

II. RELATED WORK

In order to achieve the verifiability on the correctness
of outsourced computation [10], researchers strive to break
through in two directions. One is verifiable computation based
on cryptography, which often relies on mathematical and
cryptographic techniques. The other is TEE-based scheme
which relies on trusted execution environment and the security
properties provided by TCP.

A. Verifiable Computation Based on Cryptography
The verifiable computation based on cryptography incurs

high computational cost, which may influence the flexibility of
functionality. Hence, two kinds of schemes were proposed and
designed to balance between efficiency and functionality. The
conventional verifiable computation cannot simultaneously sat-
isfy both efficiency and flexibility.

1) : Some solutions (i.e., [1], [11], [12]) aim to achieve
generality by depending on Probabilistically Checkable Proofs
(PCPs) or Fully Homomorphic Encryption (FHE). PCP is
theoretically perfect, but it is difficult to be applied in practice
for its high computation and memory overhead. Although there
are many improved PCP-based schemes [13], [14], they still
have some drawbacks (e.g., high prover’s workload and heavy
network overhead) with regard to performance. By combining
the cryptography method and FHE, researchers have created
many optimized verification schemes. Gennaro et al. [15] first
formalized the notion of verifiable computation and presented
non-interactive verifiable computing by integrating Yao’s Gar-
bled Circuits with a FHE scheme. Yan et al. [11] proposed
a context-aware verifiable computing scheme that combines
FHE and an auditing protocol to verify the computation result.
Yu et al. [1] proposed a scheme which combined FHE and a
polynomial factorization algorithm to allow public verification
and provide privacy preservation on outsourced computation.
However, these works suffer from high computation and
memory overhead due to the low efficiency of FHE.

2) : Some solutions are comparatively efficient but
function-specific [2]. Kate et al. [16] and Benabbas et al. [17]
proposed efficient constructions, but both only permit limited
functions, i.e., polynomials and set operations, which are far
away from the practical and flexible needs of the real-world
scenarios. Hence, there are many non-interactive schemes [18],
[19] that focus on supporting general functions, but there is
still a long way to go.

B. TEE-Based Solutions

The other research branch on verifiable computation is
TEE-based solutions that depend on the security properties
provided by the TEE. Duarte et al. [20] presented SafeChecker,
which is a mobile-oriented computation verification system
and combines verifiable computation and ARM TrustZone
together. SafeChecker uses ARM TrustZone as a secure stor-
age container to store a private intermediate value during
the execution of a verification system. Verification still uses
SNARKs [21] to generate an execution proof, which is the
main reason of performance reduction. Flicker [22] allows
verifiable execution, but there exist some obstacles when
being deployed with specific TEEs. Schuster et al. [23] first
proposed a verifiable computation scheme based on Intel SGX
for MapReduce jobs in the semi-trusted cloud. But this VC3
scheme focuses on the data security and the integrity of the
data transmission between mapper-nodes and reducer-nodes
equipped with SGX-enabled processors, while ours concen-
trates on the integrity and security of the program executed in
an SGX-enabled processor, especially the invocation order of
the ECall functions and the data transmitted between enclaves.
VC3 ignores the DDRC and OTM threats, which could affect
the correctness of outsourced computation. Ryoan [24], as a
distributed sandbox, allows users to process security data with
untrusted software, but it does not solve DDRC and OTM
threats systematically.

2

III. PRELIMINARIES

In this section, we first introduce the basic concepts of
Intel SGX. Then, we describe the system model of our work,
potential threats of using SGX for complicated computation
at the cloud and our design goals.

A. Basic Concepts

Here we only illustrate necessary information related to our
scheme and give several basic concepts used in the following
scheme description.

Local Attestation: It occurs when two enclaves located
in the same platform authenticate with each other. When an
enclave needs to prove its identity to a target enclave, it uses
EREPORT instruction to generate a REPORT structure accord-
ing to its measurement-based and certificate-based identity
(MRENCLAVE, MRSIGNER, ISVPRODID and ISVSVN),
together with the message that it wants to deliver. Then the
current enclave uses a symmetric key, which can only be
obtained by the enclave, to compute the MAC tag of the
REPORT structure. The target enclave will verify the MAC
tag using the report key returned by EGETKEY instruction.
Hence, the enclave proves its identity to the target enclave.

Remote Attestation: It occurs when an enclave gains
the trust of a remote provider. With Remote Attestation, a
combination of Intel SGX software and platform hardware is
used to generate a quote that is sent to a third-party server to
establish trust. The software includes the application’s enclave,
a Quoting Enclave (QE) and a Provisioning Enclave (PvE).
Both of QE and PvE are provided by Intel. A digest of
the software information is combined with a platform-unique
asymmetric key from the hardware to generate a quote, which
is sent to a remote server over an authenticated channel.
If the remote server determines that the enclave is properly
instantiated and is running on a genuine Intel SGX-capable
processor, it can now trust the enclave and provision secrets
over the authenticated channel.

Enclave Signature and Measurement: Intel Software
Guard Extensions provides a signature mechanism, which
takes place during the enclave building process. After the
enclave is built, the enclave will have a signature, which is
used to verify the integrity of the enclave itself before the
actual enclave is executed, and the verification process is
automatically executed by Intel SGX. If the verification fails,
the initialization of the enclave will fail, which will cause the
enclave program to fail to execute properly. This mechanism
ensures that all enclaves that can be executed are not tampered.
The security of this mechanism depends on the confidentiality
of the signature key.

B. System Model

The system is composed of two types of entities as shown
in Fig. 1:

User: The user submits a computation request to the cloud
and also owns the ability to generate an execution plan based
on a computation request and to verify the correctness of the
result provided by the cloud.

Fig. 1: System Model
Cloud: The cloud is an SGX-enabled platform, which is

responsible for processing the computation request issued by
the user. But it could be a malicious entity, which means that
it may be curious to obtain the private information of users,
change intermediate results of the computation execution plan,
and even interfere with or disarrange the normal invocation of
Enclave ECall functions, e.g., for saving resources or exposing
computation results.

To make a balance between the big volume of data and the
limited size of enclave memory, multi-enclave setting is always
employed. In our system, we assume that all the user compu-
tation request Request can be resolved into basic functions
(i.e., the generation process of an execution plan), and all the
basic functions are implemented by Enclave ECall functions.
There exist many ad-hoc tools to generate an execution plan
for a specific request (e.g., a SQL parser [25]), the details of
which will not be illustrated in this paper. In our system, we
assume that the ECalls belong to different enclaves to achieve
high flexibility. Herein, we denote difference enclaves in a
cloud service scenario as a set {e1, e2, e3, · · · }, and ei repre-
sents a specific enclave in this scenario. The set {e1i , e2i , · · · }
represents different ECalls in enclave ei such that e1i means
the 1st ECall function of the ist enclave with semantics [[e1i]].
For a computation request Request, it can be resolved into a
sequence of ECall functions ρ = 〈ei′i , · · · , e

j′

j , · · · 〉, which we
call execution plan in this paper. Hence, the semantic of ρ is
[[ρ]] = 〈[[ei′i]], · · · , [[e

j′

j]], · · · 〉.
For a better understanding, we give a brief execution

procedure between two enclaves. Fig. 1 shows a normal
execution example of one request about data processing and
computation at the cloud. First, the user submits its data to
the cloud. Then, the data is transmitted to the cloud through a
secure channel established by the Remote Attestation (RA)
mechanism provided by the Intel SGX. The cloud creates
Enclaves needed for fulfilling the computation requested by the
user, i.e., the generation process of execution plan. The details
of the process at the cloud are depicted in the figure. After
the execution, the processing result is transmitted to the user
through the secure channel established by RA mechanism. The
user verifies the correctness of the result and decides whether
to accept the result according to verification.

3

Fig. 2: An example of DDRC threat

C. Potential Threats

1) DDRC threat: We show a DDRC threat towards Intel
SGX programs. Fig. 2 depicts an example of a DDRC threat.
In the figure, the left part is origin code and the right part
is attacked code. In this paper, we use f(x) and g(x) to
represent Enclave ECall functions, which means that the
execution of f(x) and g(x) is in enclave, the trusted part.
Formally, f(x) and g(x) are denoted as e11 and e12 respectively,
which is consistent with Fig. 1. Hence, the execution plan
is ρ = 〈e11, e12〉 with [[ρ]] = 〈[[e11]], [[e12]]〉. As we can see
from Fig. 2, the attacker disarranges the invocation order of
f(x) → y and g(y) → z into g(x) → y′ and f(y′) → z′.
The actual execution plan is changed into ρ′ = 〈e12, e11〉 with
[[ρ′]] = 〈[[e12]], [[e11]]〉. Obviously, ρ 6= ρ′ and [[ρ]] 6= [[ρ′]]. Due to
Intel SGX does not verify the integrity of the untrusted code,
whereas only verifies the enclave code, the enclave signature
mechanism of Intel SGX cannot find the disarrangement of the
code. That is to say, SGX signature mechanism only verify the
integrity e1 and e2, not the integrity of execution plan ρ. All
in all, the execution is attacked. We illustrate the practicability
of DDRC threat in Section VI-A-a.

2) OTM threat: Output Tampering and Misrouting (OTM)
Threat is the threat targeting on MapReduce platforms like
Hadoop [26]. We found that it can also be conducted on Intel
SGX programs towards the output of an enclave, which can
influence the correctness of computations. We illustrate the
practicability of OTM threat in Section VI-A-b.

Output Tampering: When the output result of an Enclave
function is transmitted to the untrusted area, an attacker may
duplicate, eliminate and tamper with the output result. As can
be seen in Fig. 1, a malicious cloud app calls Enclave 2 and
inputs wrong data output by Enclave 1. It is easy for the
malicious cloud app to do this by just tampering with the
output of Enclave 1.

Output Misrouting: Also take Fig. 1 as an illustration, a
malicious cloud app can input the output of other Enclave
that is not Enclave 1 into Enclave 2.

D. Design Goal

To defend the security threats mentioned in Section III-C,
we design a scheme that can check both the invocation order

Fig. 3: Proposed Verification Scheme

of an execution plan and data routing between enclaves. Side
channel attack is out of the scope of this paper. In case the
cloud implements replay attacks, we formulate our design goal
as bellow:

1) The invocation order of an execution plan and data
routing information should be checked to guarantee that the
cloud executes the computation correctly;

2) Besides the invocation order, the scheme should also be
able to guarantee the correct input data of enclaves in multiple
enclave cooperation. It needs to distinguish the different inputs
and requests. That is to say, the same request with different
data and the same data with different requests should result in
different evidence, e.g., hash chains;

3) The user can verify the correctness of hash chain from the
cloud to perform cloud computation auditing. Specifically, the
user can compute the hash without executing the operations
that are executed in the cloud.

IV. VERIFIABLE COMPUTATION VIA SGX
In order to resist the aforementioned threats in Section

III-C, we propose a secure verification scheme and discuss its
executions in the scenarios of one and multiple enclaves. In
this section, we first give an overview of our proposed scheme
in Section IV-A. Then, we specifically describe our designed
algorithms in Section IV-B.

A. Proposed Scheme

Fig. 3 gives a schematic overview of our verification
scheme. Corresponding to the procedure in Fig. 1, herein
we present the details of our scheme to defend the threats
mentioned in Section III-C as follows:

1) System setup @All entities (Phase 1): This phase corre-
sponds to step 1 in Fig. 3. The tags of Enclave ECall functions
are public and initiated in system setup phase. the user issues
a Remote Attestation with the cloud, which is supported by
Remote Attestation mechanism of Intel SGX. After Remote
Attestation, the user and the cloud share a master secret, which
can be used to derive a session key ksession, and a signature
key pair skCloud and vkUser.

4

TABLE I: Notation Description

Symbols Description
⊕ The xor operation;
H The m-dimensional vector listing the hash

code of each predecessor node;
Hi The hash code of i-th predecessor node;
res The m-dimensional vector listing the re-

sult of each predecessor node;
resi The result of i-th predecessor node;
rescurrent The result of the current function;
Hcurrent The hash code of the current function.

2) Request submitting phase @User (Phase 2): In the
process of an operation request, the user first generates a
random number r. Then it encrypts data D, Request and r
with session key ksession into ciphertext Crequest. Then the
user submits cipher Crequest to the cloud. This phase contains
steps 2 and 3 in Fig. 3.

3) Request process and result return phase @Cloud (Phase
3): At the cloud end, this phase contains steps from 4 to 8. Af-
ter receiving Crequest from the user, the cloud loads Crequest

into the enclave (i.e., AttestEnclave), and decrypts it with
the session key ksession. Then it generates the corresponding
execution plan to specify the selected enclaves according to
Request. Data D is transmitted from AttestEnclave to the
selected enclaves through Local Attestation. Next, the cloud
executes two works in the enclaves: it processes the data D
according to the execution plan; and then it computes the hash
of the execution plan according to the algorithm illustrated in
Section IV-B1. After the whole execution, it obtains Result
and hashcloud and then delivers them to the AttestEnclave
through the secure channel established by Local Attesta-
tion. AttestEnclave first signs Result and hashcloud using
skCloud, and then encrypts them into Cresponse with session
key ksession. At last, AttestEnclave sends the signed cipher-
text Cresponse to the user.

4) Verification phase @User (Phase 4): This phase con-
tains steps 5’ and 6’ and steps from 9 to 11 in Fig. 3. In steps
5’ and 6’, the user generates the corresponding execution plan
of the current request, and computes the hash of the execution
plan according to the algorithm illustrated in Section IV-B2
to obtain hashUser. In step 9, The user decrypts Cresponse

transmitted from the cloud with session key ksession and
obtains Result, hashCloud, Sig. In step 10, the user verifies
the validity of Sig using vkUser. It compares hashuser and
hashCloud in step 11 to verify the correctness of the hash of
execution plan. If they are equal, result is correct, otherwise,
result is wrong.

B. Two Algorithms of Hash Computation

1) How to compute the hash of the execution plan at the
cloud: Before going into detailed description, we first list
the notations used in this section in Table I. In this part, we
introduce the algorithm used at the cloud in step 6 in Fig.
3. This algorithm is used to compute the hash code of each
Enclave ECall implementation function within an execution

a): Initialization b): In one enclave

c): Across enclaves d): Hybrid model

Fig. 4: Hash input of current ECall function: a) Initialization;
b) In one enclave; c) Across enclaves; d) A hybrid model

a): Ending

c): Across enclaves

b): In one enclave

Fig. 5: Hash input of current ECall function: a) Ending; b) In
one enclave; c) Across enclaves

plan. Specifically, when executed to the last function of the
execution plan, the corresponding hash code can be used to
identify the whole execution plan. Herein, we first introduce
how an ECall function to calculate its hash in different cases,
and then we present the algorithm in details.
(a) Hash computation in different cases

Besides the computing services under the expectation of the
user, ECall function should use its function tag to record the
invocation order, which lays the basis for verifiable computa-
tion. It first needs to combine its tag with the hash code from
the previous function to record the topology of the Enclave
ECall function execution order and generate its hash input hi;
and then it calculates its own hash code and forwards it to the
next ECall function.

Herein, we first discuss how the current ECall function to
record the execution order and generate hash input. We classify
them into four cases according to the relationship between the
current ECall function and its predecessor as shown in Fig. 4.
We use Hi to indicate the hash code of ECall function fi,
which is introduced in the following part:

Case a): If the current ECall function is the first invoked
function as shown in Fig. 4a), only random number is input
to initialize the computation, hence, ECall function can simply
concatenate the random number and its function identifier to
get its hash input h1 = r||tag1.

5

Case b): If the current ECall function fi and its predecessor
fj exist in the same enclave as shown in Fig. 4b), its hash input
also results in hi = Hj ||tagi.

Case c): If its predecessor exists in another enclave as shown
in Fig. 4c), the current ECall function fi needs to execute the
xor operation with the hash code of the computation result
from previous function fj . Therefore, its hash input becomes
hi = Hj ⊕ hash(resj)||tagi.

Case d): As is shown in Fig. 4d), the current ECall function
receives output results from multiple functions. In this case, it
needs to combine all results to get one hash input. Similar to
the computation in the three cases above, the ECall function fi
can get its hash input as hi = [Hj ⊕ hash(resj) +Hk]||tagi.

Next, we elaborate on how to get the hash result of ECall
function fi denoted by Hi. Different from the four cases
above, the hash code computations only have three different
cases as shown in Fig. 5. After getting the hash input of each
ECall function, how to gain the hash code of each function
depends on its relationship with its following ECall function:

Case a): If the current ECall function is the last one for
an execution plan, it simply calculates its hash result with the
hash input hi and obtains Hi = hash(hi).

Case b): If the ECall function is the last one and its
following ECall function is in the same enclave, then it does
not need to do hash computation but sets hash code as its hash
input Hi = hi.

Case c): If its following ECall function is in another enclave,
its hash code involves in the hash code of output result and
results in Hi = hash(hi)⊕ hash(resi).

Specifically, when executed to the last function of the exe-
cution plan, the corresponding output can be used to identify
the whole execution plan.

(b) Algorithm 1: The hash computation executed at the cloud
We present Algorithm 1 for an Enclave ECall function to

compute its hash code at the cloud in Fig. 6. Each Enclave
ECall function executes this algorithm to obtain the corre-
sponding hash code for each function in the entire execution
plan.

Next, we present a hash code computation example in Fig. 7.
The seven functions in hybrid example satisfy different cases
in Figs. 4 and 5, which is corresponding to several different
situations in Algorithm 1. According to its corresponding
situation, the hash code of each function is shown in Fig. 7.
For this hybrid example, the cloud obtains the overall hash:

hashcloud = hash(((hash(((r||tag1||tag2) + ((hash(r||tag3)

⊕ hash(resf3))⊕ hash(res
′
f3)) + (r||tag4))||

tag5)⊕ hash(resf5)⊕ hash(res
′
f5))||tag6)||tag7)

2) How to compute the hash of the execution plan at the
user: In Fig. 8, we present Algorithm 2 to compute the hash
code for each Enclave ECall function at the user.

There are two main steps in Algorithm 2 as we can see in
lines 1 and 13 separately. In the algorithm, the predecessor
node function is the one executed before the current function,
and the condition in lines 14 and 15 means that after the
execution of the current function, either the current function

Fig. 6: The algorithm of an Enclave ECall function to compute
its hash code executed at the cloud

Fig. 7: A hybrid example

is the last function of this execution plan, or the next function
to be invoked is not in the current enclave.

Next, we still take Fig. 7 as an example. The hash code
of each function is as follow: H1 = r||tag1, H2 = H1||tag2,
H3 = hash(r||tag3), H4 = r||tag4, H5 = hash((H2 +H3 +
H4)||tag5), H6 = H5||tag6, H7 = hash(H6||tag7). For this
hybrid example, the user obtains the overall hash:

hashuser = hash(((hash(((r||tag1||tag2) + (hash(r||tag3))
+ (r||tag4))||tag5))||tag6)||tag7)

6

Fig. 8: The algorithm of an Enclave ECall function to compute
its hash executed at the user

Here, we illustrate the equivalence of hashuser and
hashcloud. The xor operation has a special property. Formally,
let a, b be two numbers in Z, a ⊕ b ⊕ b = a. In the hybrid
example of Fig. 7, if resfi is equal to res′fi for each fi, then
hashuser = hashcloud.

V. SECURITY ANALYSIS AND COMPUTATIONAL
COMPLEXITY

In this section, we analyze the security of our design and
show the computational complexity of Algorithms 1 and 2.

A. Security Analysis

In this subsection, we mainly focus on theoretic analysis
to show the advantages of our design, which can resist some
popular attacks in existing systems.

Resist replay attack. As discussed above, the computation
inside the enclave can be guaranteed, while others outside
the enclave may be tampered. The semi-trusted cloud may
also execute a replay attack when it needs to complete the
same computation task. But in our design, we choose different
random numbers to initialize the computation of the hash
chain. Only when the random numbers held by the user and
the cloud keep consistent, will the verifiability check pass. The
inserted random number can help resist the replay attack.

Correctness. In our system, we believe that the essence of
verifiable computation is to authenticate a certain execution
plan, i.e., identify a Directed Acyclic Graph. As we mentioned
in Figs. 4 and 5, we give all possible cases which the
predecessors and successors of an Enclave ECall function
belong to and conduct the corresponding calculations in two
algorithms. We consider all possible topological cases of the
DAG in both two algorithms. In each case of Algorithm 1 at
the cloud, we can find the corresponding case and computation
part in Algorithm 2. We take all the required parameters of

Algorithm 2 into consideration and transmit them from the
cloud to the user. Therefore, our scheme can obtain the same
hash of the specific execution plan at both the cloud and the
user if the computation at the cloud follows the execution
plan of the user. Hence, our system is correct. In Section
VI-B, we conducted a corresponding experiment to verify the
correctness of our scheme.

B. Computational Complexity

TABLE II: Computation Symbol Description

Symbols Description
Hash The hash operation
Xor The xor operation
Add The addition operation
Con The concatenation operation
Encsgx The encryption operation at the cloud
Decsgx The decryption operation at the cloud
Sigsgx The signature operation
V ersgx The verification operation
LAsgx The Local Attestation operation
RAsgx The Remote Attestation operation
Enc The encryption operation at the user
Dec The decryption operation at the user

We consider the operations listed in Table II to analyze the
computational complexity of our scheme shown in Fig. 3.
(a) Complexity of Algorithm 1

We consider an execution plan with n Enclave ECall
functions. For the situations that each function has more
than one predecessors, we make the following assumption.
Every function has at most m predecessors, and there are at
most p predecessors not in the same enclave as the current
function. Hence, the range of values for the two variables is
2 <= m <= n, 0 < p < m. Every function has at most
q successors, and there are at most q′ successors not in the
same enclave as the current function. For Algorithm 1, we
can obtain that lines 11, 15 and 22 can be represented by
(m− 1) ∗Add+m′ ∗ (Xor+Hash)+1 ∗Con, and note that
the range becomes 2 <= m <= n, 0 <= m′ <= m.

For Algorithm 1, the computational complexity in line 5,
line 7 and line 26 is shown in Table III. We can see that
in step 1 of Algorithm 1, there are four possible categories of
cases, which are lines 5, 7, 11/15/22, and 26. Suppose that the
probability of each function node’s category falling into four
cases is Pr1, Pr2, Pr3, Pr4, and Pr1+Pr2+Pr3+Pr4 =

TABLE III: Computational Complexity of Algorithm 1

Line Computational Complexity Probability
5 1 ∗ Con Pr1
7 1 ∗ (Xor +Hash+ Con) Pr2
11/15/22 (m − 1) ∗ Add +m′ ∗ (Xor +

Hash) + 1 ∗ Con
Pr3

26 1 ∗ Con Pr4
32 2 ∗Hash+ 1 ∗Xor (n− 1)/n
35 1 ∗Hash 1/n

7

1 holds. For one function, the whole computation overhead
OAlg1

step1 in step 1 of Algorithm 1 is: Con + Pr3 ∗ (m − 1) ∗
Add+ (Pr2 + Pr3 ∗m′) ∗ (Xor +Hash).

We assume that only one node could be the last node. Its
computational costs in step 2 of Algorithm 1 is OAlg1

step2′ =
1 ∗ Hash. For n − 1 functions with successors, every suc-
cessor not in the current enclaves needs a Local Attestation
operation LAsgx. Hence, for one function with successors, its
computational complexity OAlg1

step2 in step 2 of Algorithm 1 is:
q′ ∗ (2 ∗ Hash + 1 ∗ Xor + LAsgx). For n nodes, the whole
computational cost OAlg1

exe of the execution plan is :

OAlg1
exe = n ∗ Con+ n ∗ Pr3 ∗ (m− 1) ∗Add

+ (n ∗ (Pr2 + Pr3 ∗m′) + (n− 1) ∗ q′) ∗Xor

+ (n ∗ (Pr2 + Pr3 ∗m′) + 1 + 2 ∗ (n− 1) ∗ q′) ∗Hash

+ (n− 1) ∗ q′ ∗ LAsgx

The computation overhead at the cloud is OCloud = OAlg1
exe +

1 ∗ (Encsgx +Decsgx + Sigsgx +RAsgx).

(b) Complexity of Algorithm 2
The symbol set is the same as part (a). We list the compu-

tational complexity of Algorithm 2 in Table IV.

TABLE IV: Computational Complexity of Algorithm 2

Line Computational Complexity Probability
4 1 ∗ Con Pr1 + Pr2
7 (m− 1) ∗Add+ 1 ∗ Con Pr3
10 1 ∗ Con Pr4
16 1 ∗Hash (n− 1)/n
19 1 ∗Hash 1/n

The computational cost in steps 1 and 2 of Algorithm 2 and
the whole computational cost of the execution plan OAlg2

exe are
listed as below:

OAlg2
step1 = 1 ∗ Con+ Pr3 ∗ (m− 1) ∗Add

OAlg2
step2 = q′ ∗ 1 ∗Hash OAlg2

step2′ = 1 ∗Hash

OAlg2
exe = n ∗ Con+ n ∗ Pr3 ∗ (m− 1) ∗Add

+ (1 + (n− 1) ∗ q′) ∗Hash

The computation overhead at the user is: OUser = OAlg2
exe +

1 ∗ (V ersgx +RAsgx + Enc+Dec).

VI. ATTACK SIMULATION AND PERFORMANCE
EVALUATION

In this section, we prove the existence of the threats in
Section III-C through extensive experiments, and then show
the correctness and capability of the our scheme. Moreover, we
compare our scheme with a traditional verifiable computation
scheme based on homomorphic encryption to show its high
efficiency.

The experiments were performed on a 64-bit, Intel 6-Core
I5-8500 CPU clocking at 3.00GHZ with 8 GB RAM and
running Ubuntu-16.04 and Docker-17.05.0-ce. For the SGX
environment, we used Rust SGX SDK v1.0.8 in a docker
image named sgx-rust provided by BaiduXLab [27].

A. Attack Simulation

In this part, we present DDRC and OTM threat simulation
on a SGX-based program constructed by Rust SGX SDK [27].
We identified that the application constructed by Rust SGX
SDK is still vulnerable in face of DDRC and OTM threat.
(a) DDRC Threat Simulation

We used the hello-rust project provided by the Rust SGX
SDK as the attack target. In order to maintain the original
security properties of the project and show the effect of
the attack more clearly, we made the following three minor
changes on the original project:

1) : For the Enclave.edl file, we added an ECall
function named say_something_b(). and renamed
say_something() to say_something_a(). The argu-
ments of say_something_b() are consistent with those
of say_something_a().

2) : For the lib.rs file, we renamed say_something()
to say_something_a() and added the implementa-
tion of say_something_b(), whose function body was
copied from that of say_something_a(). The func-
tion arguments are consistent with say_something_a().
We added the corresponding flag in the output part of
say_something_b() to indicate that it is executing.

3) : For the main.rs file, we renamed say_something()
to say_something_a() and copied the invocation part of
the say_something_a() in the main function and pasted
it after the invocation part of say_something_a(). Then
we renamed the pasted copy to say_something_b(), as
the invocation to say_something_b().

Up to now, all the modification to the source code has been
done. We name it as the modified project in the following
content. After compiling, Rust SGX SDK constructed a binary
file called app. The output of app was the successive out-
put of say_something_a() and say_something_b().
We then conducted the binary analysis on app by using
two Unix disassembly tools, objdump and readelf, to
analyze app in the shell. The tool readelf can output
information about the specified ELF file (executable and
linkable format, the executable file format under the Linux
platform). We used the following shell command, readelf
-a app > elf.txt, to generate the elf information for
the app and observed the elf.txt, which showed that app
contained 256 entries, located in symbol table ′.dynsym′. We
can find say_something_a in symbol table ′.dynsym′,
and then located the entry address of the function name
say_something_a, which was 0x00af90. Similarly, we
can get the entry address of say_something_b(), which
was 0x00aff0. Next, we can find the offset value corre-
sponding to the entry address 0x00af90 and 0x00aff0 in
relocation section ′.rela.dyn′ of the elf.txt file. The entry
address 0x00af90 and 0x00aff0 corresponded to the
offset value 0x23edd8 and 0x23eee8 respectively. Based
on these two addresses, we can locate the binary code corre-
sponding to the location of the two ECall function invocations
in the app. Then we used the following shell command,

8

objdump -d app > dump.txt, to disassemble the bi-
nary app and observed the dump.txt file, which contained
five sections, i.e., .init .plt .plt.got .text .fini. The binary
codes corresponding to 0x23edd8 and 0x23eee8 can be
observed in section .text respectively: 9952: ff 15 80
54 23 00, 9958: 89 84 24 90 00 00 00, 9aac:
ff 15 36 54 23 00, 9ab2: 89 44 24 40.

In the file dump.txt, 9952 and 9aac are the value of a kind
of Special Function Registers named %rip in AT&T assembly
grammar. Hence, the value of %rip of the next assembly
instructions are 9958 and 9ab2 respectively. ff15 is the
corresponding binary code of assembly instruction jump. The
rest is the offset address. Due to Linux little endian mode,
the following hexadecimal addition is true: 9958 + 235480
= 23edd8, 9ab2 + 235436 = 23eee8. Note that this
hexadecimal addition skips the overflow. The tampering of the
ECall function invocation sequence can be implemented by
modifying the offset after ff15 to an appropriate value. In this
example, we used vim to modify the content of the binary file
app. To be specific, we modified the corresponding offset val-
ues respectively from ff1580542300 to ff1590552300,
and from ff1536542300 to ff1526532300. Here we
denote the modified binary file as app′. After the modification,
we used objdump to analyze app′ and we can find that
the corresponding two lines has changed: 9952: ff 15 90
55 23 00, 9aac: ff 15 26 53 23 00.

Up to now, app was attacked. Before attacked, the program
app first outputs the result of say_something_a(),
and then outputs the result of say_something_b().
After attacked, the invocation order of function
say_something_a() and say_something_b()
has been exchanged.

In the actual operation, the attacked program app′ exe-
cutes normally without error. But the order of execution has
changed. We can distinguish it by the different output rules
of different ECall functions we have set before. At this point,
the DDRC threat was completed.

(b) OTM Threat Simulation
In this threat, we used the settings similar to those in

the DDRC threat. We took the local-attestation project in
sample code as the target. In this project, we can find the
secret_data in the untrusted area for exchanging informa-
tion in the binary file by using the objdump and readelf
tools. We added an xor operation to secret_data with
itself in the binary, which makes the secret_data always
0. At this point, the Output Tampering threat is completed.
For the Output Misrouting threat, after obtaining the location
of secret_data. We can redirect the variable to other
functions by modifying the register corresponding to the value
of the function arguments pushed into the stack. The Output
Misrouting threat is completed.

B. Correctness and Performance Evaluation
In this subsection, we present some experiments to fur-

ther analyze the correctness, efficiency and capability of our
scheme to verify the aforementioned theoretical analysis in

Section V. To ensure better accuracy, we performed each test
1000 times and recorded the average values of all the results.
The max stack size and max heap size of each enclave program
were set to 0x40000 and 0x100000.

1) Experiment Initialization: Due to the limited size of
Enclave Page Cache (EPC), assigning too many tasks to a
single enclave leads to frequent memory page swapping and
hence lower execution efficiency. For a specific computation
task, the more enclaves are involved, the fewer tasks each
single enclave gets. Hence, it can reduce the execution time
and improve efficiency. But the increasing number of enclaves
complicates the process of enclave creation and Local At-
testation during the execution of a computation task, which
leads to an increase to the whole execution time. Therefore,
when deploying an SGX program, how to choose the proper
number of enclaves to obtain the most efficient performance
based on a specific computation task is a very challenging
problem. In order to select a suitable number of enclaves for
performance analysis of our verification scheme, we carried
out the following experiments.

In order to make the experiment more clear and specific,
we set each Enclave ECall implementation function to
execute the following loop to simulate the real computation:
for(i=0;i<1000;i++){for(j=0;j<1000;j++){k=
j+i;}}

Considering that Local Attestation may wait for each other
and cause unnecessary trouble to the later analysis, we care-
fully designed the attestation order between the enclaves,
eliminating the mutual waiting between two enclaves.

We refer to the hybrid example in Fig. 7 to set the number
of ECall functions to 7, 14, 21, 28, 35, and set the total number
of enclaves from 1 to 7. In each test, we uniformly deployed
ECall functions in the enclaves. That is to say, each enclave
has 3 ECall functions when there are 21 functions and 7
enclaves. We conducted comparative experiments to facilitate
the analysis of the performance of our scheme. Therefore, a
total of 35 sets of comparative experiments were conducted
at the cloud. Measurements of the cloud experiments include
decryption time, computation time, encryption time, Local
Attestation time, and total time cost. The number of the ECall
functions counted at the user is consistent with the cloud. The
measurements of the experiments at the user include the time
that the random number generation process spends, the time
that the user spends to compute the hash code and performs
verification, encryption, decryption, and total time cost.

2) Correctness: In order to verify the correctness of our
scheme, we compared the final hash codes obtained at the
user and the cloud. Our experiments showed that the same
hash code is obtained in all the test cases described in VI-B1.

3) Performance Evaluation: Our experimental results are
shown in Figs. 9 and 10. For each experiment in the figures,
encryption, Local Attestation, computation, and decryption
cost are shown in a stack column graph, i.e., each part is above
the adjacent part. For the total time cost, we can compare it
with the graph of the former four parts. We set the starting
position of the total time cost to 0, that is, it is not a stack

9

Fig. 9: Time cost of all the scheme-equipped experiments with different numbers of ECall functions

Fig. 10: Time cost of all the bare-metal experiments with different numbers of ECall functions

column graph with the former four parts. In order to facilitate
the analysis of the time cost in each comparative experiment,
we set the ordinates of different scale values for the number
of different ECall functions. We present the annotations for
each in Figs. 9 and 10, respectively.

From Figs. 9 and 10, we can see that with the same number
of ECall functions, as the number of enclaves increases, the
time required is roughly incremental. But for Fig. 9, we find
that regardless of the number of ECall functions, when the
number of enclaves is 2, both the computation and the total
time are the least. Next, although the number of enclaves
is not the least when the number of enclaves is 2 in Fig.
10, in the average sense, the time cost of 2 enclaves is only
1.26% more than that of a single enclave. Therefore, for our
execution plan, the enclave program performs best when it is
2 enclaves. Therefore, we chose the comparative experiments
with 2 enclaves to evaluate the performance of our scheme.

The computational costs of the cloud and the user are shown
in Fig. 11. The left part shows the total time cost of the
experiments with 2 enclaves as the number of ECall functions
increases. The right part shows the total time cost at the user.
As we can see, the computational cost at the user is less than
0.1 ms, which is suitable for the user device with limited
resources.

The total time cost difference between scheme-equipped
experiment and bare-metal experiment with 2 enclaves is
shown in Fig. 12. As the number of ECalls increases, there
is a comparison of the total time cost between bare-metal and
scheme-equipped experiments in the left part of the figure. In
order to show the time difference more clearly, we show the
corresponding time difference in the right part. We can see
that all the time differences are less than 1ms, which indicates
that our scheme has a very low computational overload to
the SGX bare-metal computation. At the same time, we also
show the percentage of the time difference in the form of a

Fig. 11: Time cost comparison between cloud and user: a)
Total time cost of all the scheme-equipped experiments with 2
enclaves at the cloud; b) Total time cost of all the experiments
at the user

Fig. 12: Time cost difference between scheme-equipped exper-
iment and bare-metal experiment at the cloud: a) Total time
cost with 2 enclaves; b) Total time difference with 2 enclaves

line chart on the right part. The computation formula of the
percentage of the time difference is (time with scheme −
time without scheme)/time without time ∗ 100%. The
right axis of the right graph is its corresponding coordinate
axis, and the range is 2%. So we can easily see from Fig.
12 that the overhead of the solution is extremely low, which
indicates that our scheme can be well accepted by the cloud
service providers.

10

TABLE V: Comparison with cryptography-based scheme [1]

Phase Entity Time(ms)

Scheme in [1]
Computation phase

DP? 183.118
CSP∗ 243.541
RP◦ 10.179
TA† 298.675

Verification phase DP? 364.394
PAP‡ 10.980

Our work Computation phase Cloud 4.142
User 0.007

Verification phase User 0.021
?DP: Data Provider. ∗CSP: Cloud Service Provider.
◦RP: Requesting Party. †TA: Trusted Authenticator.
‡PAP: Public Auditor Proxy.

4) Comparison with Cryptography-Based Scheme: We fur-
ther compared our SGX-based verifiable computation scheme
with a cryptography-based verifiable computation one [1]. In
this experiment, we set that FHE public key and secret key
are 440 bytes and 464 bytes, respectively.

The time costs of all the entities involved in the two schemes
are listed in Table V. We can see that in both the computation
and verification phase, the scheme [1] is more time-consuming
than ours. Especially, the low computation overhead of our
scheme at the user side shows much superiority over that
of the scheme [1] at DP and RP, which makes it extremely
suitable for users with limited resources. Our scheme also
greatly reduces the computation overhead at the cloud and
gets rid of the dependence on any trusted third-party servers.
In general, our proposed scheme has a simple system structure
and high computation efficiency, which is very suitable for
being applied to various real-world scenarios.

VII. CONCLUSION

In this paper, we proposed an efficient and secure verifiable
computation scheme for Intel SGX, which can resist two types
of threats (DDRC threat and OTM threat) and overcome the
shortcomings of cryptography-based verifiable computation
schemes. We demonstrated the validity of the two new threats
towards the program constructed by Rust SGX SDK. More-
over, we analyzed the security and computational complexity
of our proposed scheme, and carried out comprehensive exper-
iments to show its correctness and high efficiency for resisting
the aforementioned threats.

REFERENCES

[1] X. Yu, Z. Yan, and R. Zhang, “Verifiable outsourced computation over
encrypted data,” Information Sciences, vol. 479, pp. 372–385, 2019.

[2] H. Ma, R. Zhang, Z. Wan, Y. Lu, and S. Lin, “Verifiable and excul-
pable outsourced attribute-based encryption for access control in cloud
computing,” IEEE transactions on dependable and secure computing,
vol. 14, no. 6, pp. 679–692, 2015.

[3] D. Catalano and D. Fiore, “Practical homomorphic MACs for arithmetic
circuits,” in Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer, 2013, pp. 336–352.

[4] J.-E. Ekberg, K. Kostiainen, and N. Asokan, “Trusted execution envi-
ronments on mobile devices,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security. ACM, 2013,
pp. 1497–1498.

[5] S. W. Smith, Trusted computing platforms: design and applications.
Springer, 2013.

[6] “Fortanix and Alibaba Cloud to Launch SDKMS Runtime Encryption
Key Management,” http://bwcio.businessworld.in.

[7] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in 25th {USENIX} Security Symposium ({USENIX}
Security 16), 2016, pp. 619–636.

[8] K. Shvachko, H. Kuang, S. Radia, R. Chansler et al., “The hadoop
distributed file system.” in MSST, vol. 10, 2010, pp. 1–10.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[10] X. Yu, Z. Yan, and A. V. Vasilakos, “A survey of verifiable computation,”
Mobile Networks and Applications, vol. 22, no. 3, pp. 438–453, 2017.

[11] Z. Yan, X. Yu, and W. Ding, “Context-aware verifiable cloud comput-
ing,” IEEE Access, vol. 5, pp. 2211–2227, 2017.

[12] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. IEEE, 2013, pp. 238–252.

[13] G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-
putation with streaming interactive proofs,” in Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ACM, 2012,
pp. 90–112.

[14] S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes).” in
NDSS, vol. 1, no. 9, 2012, p. 17.

[15] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465–482.

[16] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2010, pp. 177–194.

[17] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in Annual Cryptology Conference.
Springer, 2011, pp. 111–131.

[18] R. Gennaro and D. Wichs, “Fully homomorphic message authenticators,”
in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2013, pp. 301–320.

[19] D. Boneh and D. M. Freeman, “Homomorphic signatures for polynomial
functions,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2011, pp. 149–
168.

[20] N. O. Duarte, S. D. Yalew, N. Santos, and M. Correia, “Leveraging
ARM TrustZone and Verifiable Computing to Provide Auditable Mobile
Functions,” in Proceedings of the 15th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services.
ACM, 2018, pp. 302–311.

[21] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: Verifying program executions succinctly and in zero
knowledge,” in Annual Cryptology Conference. Springer, 2013, pp.
90–108.

[22] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for TCB minimization,” in ACM
SIGOPS Operating Systems Review, vol. 42, no. 4. ACM, 2008, pp.
315–328.

[23] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy data analytics in the cloud
using SGX,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 38–54.

[24] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data,” in 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
16), 2016, pp. 533–549.

[25] “JSqlParser,” https://github.com/JSQLParser.
[26] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang,

“M2R: Enabling stronger privacy in MapReduce computation,” in 24th
{USENIX} Security Symposium ({USENIX} Security 15), 2015, pp.
447–462.

[27] “Rust SGX SDK,” https://github.com/baidu/rust-sgx-sdk.

11

http://bwcio.businessworld.in
https://github.com/JSQLParser
https://github.com/baidu/rust-sgx-sdk

	I Introduction
	II Related Work
	II-A Verifiable Computation Based on Cryptography
	II-A1
	II-A2

	II-B TEE-Based Solutions

	III Preliminaries
	III-A Basic Concepts
	III-B System Model
	III-C Potential Threats
	III-C1 DDRC threat
	III-C2 OTM threat

	III-D Design Goal

	IV Verifiable Computation via SGX
	IV-A Proposed Scheme
	IV-A1 System setup @All entities (Phase 1)
	IV-A2 Request submitting phase @User (Phase 2)
	IV-A3 Request process and result return phase @Cloud (Phase 3)
	IV-A4 Verification phase @User (Phase 4)

	IV-B Two Algorithms of Hash Computation
	IV-B1 How to compute the hash of the execution plan at the cloud
	IV-B2 How to compute the hash of the execution plan at the user

	V Security Analysis and Computational Complexity
	V-A Security Analysis
	V-B Computational Complexity

	VI Attack Simulation and Performance Evaluation
	VI-A Attack Simulation
	VI-A1
	VI-A2
	VI-A3

	VI-B Correctness and Performance Evaluation
	VI-B1 Experiment Initialization
	VI-B2 Correctness
	VI-B3 Performance Evaluation
	VI-B4 Comparison with Cryptography-Based Scheme

	VII Conclusion
	References

