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Speech and Crosstalk Detection
in Multichannel Audio

Stuart N. Wrigley, Member, IEEE, Guy J. Brown, Vincent Wan, and Steve Renals, Member, IEEE

Abstract—The analysis of scenarios in which a number of mi-
crophones record the activity of speakers, such as in a round-table
meeting, presents a number of computational challenges. For ex-
ample, if each participant wears a microphone, speech from both
the microphone’s wearer (local speech) and from other partici-
pants (crosstalk) is received. The recorded audio can be broadly
classified in four ways: local speech, crosstalk plus local speech,
crosstalk alone and silence. We describe two experiments related
to the automatic classification of audio into these four classes. The
first experiment attempted to optimize a set of acoustic features for
use with a Gaussian mixture model (GMM) classifier. A large set
of potential acoustic features were considered, some of which have
been employed in previous studies. The best-performing features
were found to be kurtosis, “fundamentalness,” and cross-correla-
tion metrics. The second experiment used these features to train
an ergodic hidden Markov model classifier. Tests performed on a
large corpus of recorded meetings show classification accuracies of
up to 96%, and automatic speech recognition performance close to
that obtained using ground truth segmentation.

Index Terms—Crosstalk, Cochannel interference, meetings, fea-
ture extraction, hidden Markov models (HMM), speech recogni-
tion.

I. INTRODUCTION

M
ORGAN et al. [1] have referred to processing spoken

language in meetings as a nearly “automatic speech

recognition-complete” problem. Most problems in spoken lan-

guage processing can be investigated in the context of meetings.

Meetings are characterized by multiple interacting participants,

whose speech is conversational and overlapping. A number of

laboratories have explored the recognition and understanding

of meetings using audio and audio-visual recordings, in partic-

ular the International Computer Science Institute (ICSI; e.g.,

[2]) and Carnegie Mellon University’s Interactive Systems

Laboratories (e.g., [3]). Such recordings are typically made in

an instrumented meeting room, equipped with sensors such as

microphones (close-talking and distant), video cameras, and

video projector capture. For instance, the meetings recorded at

ICSI took place in a conference room with up to 12 participants

seated around a long narrow table. Audio was acquired from

head-mounted microphones (one per participant), desktop om-
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nidirectional microphones, and two inexpensive microphones

as might be found on a palmtop computer [2].

To automatically transcribe what was said in a meeting is a

difficult task, since speech in meetings is typically informal and

spontaneous, with phenomena such as backchannels, overlap

and incomplete sentences being frequently observed. Shriberg

et al. [4] have demonstrated that speakers overlap frequently

in multiparty conversations such as meetings. In an analysis of

the ICSI meetings corpus, they reported that 6–14% of words

spoken were overlapped by another speaker (not including

backchannels, such as “uh-huh”). In automatic speech recog-

nition (ASR) experiments, they showed that the word error

rate (WER) of overlapped segments was 9% absolute higher

than for nonoverlapped segments in the case of headset micro-

phones (with a WER increase of over 30% absolute for lapel

microphones). Further, they were able to demonstrate that this

increase in WER mainly occurred because crosstalk (nonlocal

speech received by a local microphone) was recognized as

local speech. The accurate identification of speaker activity

and overlap is a useful feature in itself. For instance patterns of

speaker interaction can provide valuable information about the

structure of the meeting [5].

Since each participant in a meeting is recorded on a sepa-

rate microphone, speech activity detection could be carried out

using a simple energy threshold (e.g., [6]). However, this is im-

practical for a number of reasons. First, it is common for speech

from a microphone’s owner to be contaminated by speech from

another participant sitting close by. Such crosstalk is a major

problem when lapel microphones are used but it is still a signif-

icant problem with head-mounted microphones. Secondly, the

participants in such meetings are usually untrained in the use

of microphones and breath and contact noise are frequently ob-

served. Finally, it is common for a channel to exhibit a signifi-

cant drop in energy during a single speaker turn if that partici-

pant moves their head to address a neighbor, thus, altering the

mouth-microphone coupling.

In this paper, we are concerned with developing a method for

detecting speech and crosstalk in multiparty meetings. Specifi-

cally, we describe a classifier which labels segments of a signal

as being either local or nonlocal speech, and will also determine

whether the local speech has been contaminated by crosstalk.

This task is more challenging than classical speech detection

since it is necessary to determine whether one or more speakers

are active concurrently in addition to detecting each incidence

of speech activity.

Previous approaches to the detection of crosstalk in audio

recordings have included the application of higher-order sta-

tistics, signal processing techniques, and statistical pattern

1063-6676/$20.00 © 2005 IEEE
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recognition. LeBlanc and de Leon [7] addressed the problem of

discriminating overlapped speech from nonoverlapped speech

using the signal kurtosis. They demonstrated that the kurtosis

of overlapped speech is generally less than the kurtosis of

isolated utterances, since—in accordance with the central

limit theorem—mixtures of speech signals will tend toward a

Gaussian distribution. This statistical property has also been

used to identify reliable frames for speaker identification in the

presence of an interfering talker [8].

A variety of approaches based on the periodicity of speech

have been proposed for the detection of crosstalk and the

separation of multiple speakers (e.g., [9]). Morgan et al. [10]

proposed a harmonic enhancement and suppression system for

separating two speakers. The pitch estimate of the “stronger

talker” is derived from the overlapping speech signal and the

stronger talker’s speech is recovered by enhancing its harmonic

frequencies and formants. The weaker talker’s speech is then

obtained from the residual signal created when the harmonics

and formants of the stronger talker are suppressed. However,

this system fails when three or more speakers are active: it is

only able to extract the stronger talker’s speech.

Changes to the harmonic structure of a signal can also be

used to detect crosstalk. Krishnamachari et al. [11] proposed

that such changes be quantified by the ratio of peaks to valleys

within the autocorrelation of the signal spectrum—the so-called

spectral autocorrelation peak valley ratio (SAPVR). For single

speaker speech, a strongly periodic autocorrelation function is

produced due to the harmonic structure of the spectrum. How-

ever, when more than one speaker is active simultaneously, the

autocorrelation function becomes flatter due to the overlapping

harmonic series.

In statistical pattern recognition approaches, examples of

clean and overlapping speech are used to train a classifier. For

example, Zissman et al. [12] trained a Gaussian classifier using

mel-frequency cepstral coefficients (MFCCs) to label a signal

as being target-only, jammer-only, or two-speaker (target plus

jammer). Although 80% correct detection was recorded, their

system never encountered silence or more than two simulta-

neous speakers.

These approaches attempt to identify or separate regions of

speech in which only two speakers are active simultaneously but

are insufficient for meeting scenarios where a large number of

participants are each recorded on an individual channel which,

due to the microphone characteristics, can contain significant

crosstalk. To deal with speech detection in this multichannel

environment, Pfau et al. [13] proposed a speech/nonspeech

detector using an ergodic hidden Markov model (eHMM). The

eHMM consisted of two states—speech and nonspeech—and a

number of intermediate states which enforced time constraints

on transitions. Each state was trained using features such

as critical band loudness values, energy, and zero-crossing

rate. To process a meeting, the eHMM created a preliminary

speech/nonspeech hypothesis for each channel. For regions in

which more than one channel was hypothesised as active, the

short-time cross-correlation was computed between all active

channel pairs to assess their similarity. For each pair which

exhibited high similarity (i.e., the same speaker was active in

both channels), the channel with the lower energy was assumed

TABLE I
FOUR BROAD CATEGORISATIONS OF AUDIO USED IN THE PRESENT STUDY

to be crosstalk. Any remaining regions for which two or more

channels were labeled as speech were presumed to correspond

to overlapping speakers.

In contrast to previous approaches which exhibit channel-,

speaker- , or environment-dependencies, we present a method

that achieves a reliable classification regardless of the room in

which the meeting is recorded, the identities of the individual

speakers and the overall number of participants. This approach

is based on the principles used by [13] but contains novel en-

hancements. The number of classification categories for each

channel is increased from two (speech/nonspeech) to the four

shown in Table I. These additional classes increase the flexi-

bility of the system and more closely guide future analysis (such

as enhancement of crosstalk-contaminated speech). Addition-

ally, we have investigated a range of possible acoustic features

for the eHMM (including cross-correlation) to determine which

combination provides the optimum classification performance

for each channel classification. We have evaluated our approach

on the same data set. We also report ASR results using our mul-

tichannel speech activity detector as a preprocessing stage.

II. ACOUSTIC FEATURES

Some features were drawn from previous speech activity and
crosstalk detection work. Additionally, we identified a number
of other features which are suited to analyzing the differences
between isolated and overlapping speech. Each feature was cal-
culated over a 16 ms Hamming window with a frame-shift of
10 ms, unless otherwise stated.

A. MFCC, Energy, and Zero Crossing Rate

Similar to [13], MFCC features for 20 critical bands up to
8 kHz were extracted. MFCC vectors are used since they encode
the spectral shape of the signal (a property which should change
significantly between the four channel classifications in Table I).
The short-time log energy and zero crossing rate (ZCR) were
also computed.

B. Kurtosis

Kurtosis is the fourth-order moment of a signal divided by the
square of its second-order moment. It has been shown that the
kurtosis of overlapping speech is generally less than the kurtosis
of isolated speech utterances [7]. Here, a 160 ms window, cen-
terd on the same points as the 16 ms window, was used to allow
a more accurate estimate of the short-time signal kurtosis. The
frequency-domain kurtosis (i.e., the kurtosis of the magnitude
spectrum) was also computed using a 16 ms window.
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(a) (b)

Fig. 1. Schematic illustration of the fundamentalness metric. (a) For single speaker speech, the analysing filter can isolate the fundamental component. The lack
of modulation in the filter output gives rise to a high fundamentalness value. (b) For dual-speaker speech, harmonics from both speakers fall within the response
area of the analysing filter. The resulting output of the filter is modulated, giving rise to a lower fundamentalness measure. After [14], Fig. 11 with permission from
Elsevier.

C. Fundamentalness

Kawahara et al. [14] describe an approach to estimating the
“fundamentalness” of an harmonic. Their technique is based on
amplitude modulation (AM) and frequency modulation (FM)
extracted from the output of a bandpass filter analysis.

When centered at different frequencies, the analysing filter
will encompass a different number of harmonic components.
Fundamentalness is defined as having maximum value when the
FM and AM modulation magnitudes are minimum, which cor-
responds to the situation when the minimum number of compo-
nents are present in the response area of the filter [usually just
the fundamental component; see Fig. 1(a)]. Although this tech-
nique was developed to analyze isolated speech [see [14], p. 196,
(13)–(19)], the concept that a single fundamental produces high
fundamentalness is useful here. If more than one fundamental is
present [see Fig. 1(b)], interference of the two components in-
troduces modulation, thus decreasing the fundamentalness mea-
sure. Such an effect will arise when two or more speakers are ac-
tive simultaneously, giving rise to overlapping harmonic series.
Here, we compute the maximum value of the fundamentalness
measure for center frequencies between 50 and 500 Hz.

D. Spectral Autocorrelation Peak-Valley Ratio

Spectral autocorrelation peak-valley ratio (SAPVR) [11]
is computed from the autocorrelation of the signal spectrum
obtained from a short-time Fourier transform. The measure is
the ratio of peaks to valleys within the spectral autocorrelation.
Specifically, the metric used here is based on SAPVR-5 [15].

E. Pitch Prediction Feature

The pitch prediction feature (PPF) was developed for the
task of discriminating between single speaker speech and two
speaker speech [16]. The first stage computes 12th-order linear
prediction filter coefficients (LPCs) which are then used to cal-
culate the LP residual (error signal). The residual is smoothed
using a Gaussian-shaped filter after which an autocorrelation
analysis identifies periodicities between 50 and 500 Hz. Po-
tential pitch peaks are extracted by applying a threshold to
this function. The final PPF measure is defined as the standard
deviation of the distance between successive peaks. If a frame
contains a single speaker, a regular sequence of peaks will
occur in the LP residual which correspond to glottal closures.
Therefore, the standard deviation of the interpeak differences
will be small. Conversely, if the frame contains two speakers
of different fundamental frequency, glottal closures of both
speakers will be evident in the residual and the standard de-

viation of the interpeak differences will be higher. In order to
allow direct comparison between our approach and that of [16],
a 30 ms window was used.

F. Features Derived From Genetic Programming

A genetic programming (GP) approach (see [17] for a re-
view) was also used to identify frame-based features that could
be useful for signal classification. The GP engine’s function set
included standard MATLAB functions such as fft, min, max,
abs, kurtosis, and additional functions such as autocorr
(time-domain autocorrelation) and normalize (which scaled
a vector to have zero mean and unit variance). A population of
1000 individuals was used, with a mutation rate of 0.5% and
crossover rate of 90%.

Individuals were evaluated by training and testing a Gaussian
classifier on the features derived from each expression tree,
using a subset of the data described in section IV. Successive
generations were obtained using fitness-proportional selection.
The GP engine identified several successful features, of which
three were included in the following feature selection process:

GP1:
GP2:
GP3:

where diff calculates differences between adjacent ele-
ments of x and zerocross returns 1 at the points at which
the input either changes sign or is zero and returns 0 otherwise.
Interestingly, GP discovered several features based on spectral
autocorrelation (see Section II-D) but these were never ranked
highly.

G. Cross-Channel Correlation

Other features were extracted using cross-channel correla-
tion. For each channel , the maximum of the cross-channel
correlation at time between channel and each other
channel was computed

(1)

where is the correlation lag, is the signal from channel
is the signal from channel is the window size and

is a Hamming window. From this set of correlation values for
channel , the unnormalized and normalized minimum, max-
imum and mean values were extracted and used as individual
features.
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Fig. 2. Schematic of the classification process. For each channel of the meeting, the features identified in Section IV are extracted and input to that channel’s
ergodic HMM. Each channel is classified in parallel to allow dynamic transition constraints to be applied. The output of this process is a sequence of classification
labels for each channel.

Two forms of normalization were used. In the first, the feature
set for channel was divided by the frame energy of channel .
The second was based on spherical normalization, in which the
cross correlation is divided by the square-root of the auto-
correlations for channels and plus some nonzero constant to
prevent information loss. Spherical normalization converts the
cross-channel correlation to a cosine metric based solely
on the angle between the vectors and

. On this scale the value of the
normalized cross correlation of two identical signals would be
one, while different signals would yield a value less than one. A
full derivation may be found in [18].

III. STATISTICAL FRAMEWORK

The crosstalk classifier consists of a four state eHMM in
which each state corresponds to one of the four categories given
in Table I.

The probability density function of each state is modeled
by a Gaussian mixture model (GMM)

(2)

where is the multidimensional feature vector and is the
number of Gaussian densities , each of which has a mean
vector , covariance matrix and mixing coefficient . For
simplicity, we assume a diagonal covariance matrix. For each
state labeled S, C, SC and SIL the value of was 20, 5, 20, and
4, respectively, determined by tests on a development set. Each
GMM was trained using the expectation-maximization (EM) al-
gorithm (e.g., [19]).

The likelihood of each state having generated the data
at time frame is combined with transition probabilities to de-
termine the mostly likely state

(3)

The transition probabilities were computed directly from la-
bels in the training set.

During classification of multichannel meeting data, each
channel is classified by a different eHMM in parallel (see
Fig. 2). This allows a set of transition constraints to be dynam-
ically applied, such that only legal combinations of channel
classifications are possible. For example, it is illegal for more
than one channel to be classified as S (speaker alone): if more
than one speaker is active the correct classification would be
SC (speaker plus crosstalk) for channels containing active
speakers. Such constraints are applied in two stages. The first

stage determines the likelihood of each cross-channel classifica-
tion combination from the legal combinations. In other words,
we define an eHMM state space in which the observations
correspond to the per-channel eHMM states. When considering

observations (audio channels), the state space contains all
permutations of:

• ;
• ;
• .

where and . For example, a legal
combination for a four channel meeting could be “S C C C.”

The second stage reduces the size of the state space. If at least
one channel is classified as nonsilence by the initial GMM clas-
sifier, it is assumed that none of the other channels can be silent
because crosstalk will occur. Furthermore, it was observed em-
pirically on a validation set that speaker-alone GMM classifi-
cation had a significantly higher accuracy than the other three
categories. Hence, if any GMM-based frame classification was
speaker-alone, the eHMM state space was limited to those states
including a speaker-alone label.

When considering the discrimination results of a classifier
over two classes, it is unlikely that a perfect separation between
the two groups will occur, hence a decision boundary is nec-
essary. A receiver operating characteristic (ROC) curve shows
the discriminatory power of a classifier for a range of deci-
sion boundary values. Each point on the ROC represents a dif-
ferent decision boundary value. We base our feature selection
approach on the area under the ROC curve (AUROC) for a par-
ticular classifier. Rather than consider all possible feature sub-
sets, we use the sequential forward selection (SFS) algorithm
(e.g., [20]). This approach computes the AUROC for GMM
classifiers trained on each individual feature. The feature with
the highest AUROC is retained and GMMs are retrained using
all two-feature sets which include the winning feature. Again,
the feature set resulting in the highest AUROC is selected. This
process continues until the gain in the AUROC is less than a
threshold value (1% in our case) at which point the algorithm
terminates and the current feature set is selected. In our experi-
ments, the SFS algorithm always terminated with fewer than six
features for all crosstalk categories.

IV. CORPUS

Experiments were conducted using data from the ICSI
meeting corpus [2]. The training data consisted of one mil-
lion frames per crosstalk category of conversational speech
extracted at random from four ICSI meetings (bro012, bmr006,
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TABLE II
INDIVIDUAL FEATURE PERFORMANCE FOR EACH CLASSIFICATION CATEGORY.

VALUES INDICATE THE PERCENTAGE OF TRUE POSITIVES AT EQUAL

ERROR RATES, WITH THE BEST PERFORMING FEATURE FOR EACH

CLASSIFICATION CATEGORY HIGHLIGHTED. GPn DENOTES THE THREE

GENETIC PROGRAMMING FEATURES DESCRIBED IN SECTION II.F. XC
DENOTES CROSS-CORRELATION AND S-NORM REFERS TO SPHERICAL

NORMALISATION AS DESCRIBED IN SECTION II-G

bed008, bed010). For each channel, a label file specifying the
four different crosstalk categories (see Table I) was automati-
cally created from the existing ASR word-level transcriptions.
For the feature selection experiments, the test data consisted of
15 000 frames per crosstalk category extracted at random from
one ICSI meeting (bmr001).

Note that frames were labeled as crosstalk (C) or speaker plus
crosstalk (SC) on the basis of comparisons between word-level
alignments generated by ASR for each channel. In practice, the
audibility of the crosstalk was sometimes so low that, upon lis-
tening, the frames appeared to be silent.

V. FEATURE SELECTION EXPERIMENTS

Before describing the selected feature sets, it is insightful
to examine the performance of the individual features on each
crosstalk classification category. Table II shows the true positive
rate for each GMM feature-category classifier. These perfor-
mance values are taken from the ROC operating point at which
the false negative rate (1-true positive rate) and false positive
rate are equal.

It is interesting to note that although some features have a
high accuracy for one or more classification categories (e.g.,
maximum normalized cross-correlation), some features per-
form relatively poorly on all categories (e.g., SAPVR). The
poor performance of the zero crossing rate (ZCR) feature is
most likely explained by the varying degree of background
noise in each channel. Also, a number of meeting participants
were inexperienced in the use of head-mounted microphones

and frequently generated breath noise. Such breath noise causes
high ZCR values irrespective of whether the microphone wearer
is speaking or not.

Surprisingly, two features previously described in the liter-
ature and expected to perform well—PPF and SAPVR—both
gave mediocre results. However, we note that Lewis and Ra-
machandran [16] only evaluated the PPF on synthetic mixtures
of utterances drawn from the TIMIT database. Our results sug-
gest that the PPF is not robust for real acoustic mixtures which
contain a substantial noise floor, such as the recordings used
here. Similarly, Krishnamachari et al. report good performance
for the SAPVR when evaluated on mixtures of TIMIT sentences
in which no background noise was present [11] but its perfor-
mance on our noisy data is poor. Note, though, that the SAPVR
was developed as a measure for determining which portions of
a target utterance, when mixed with corrupting speech, remain
usable for tasks such as speaker identification. In other words,
this measure determines when a target speaker is dominating a
segment of speaker plus crosstalk (SC). This is a different task
to the one presented here, in which the goal is to distinguish be-
tween single speaker speech and multiple speaker speech.

Note that the equal error rates presented in Table II cannot be
used to estimate the performance of various feature combina-
tions directly due to the nature of the selection process. As de-
scribed in Section III, a feature is added to the currently selected
feature set only if it increases the AUROC by more than 1%.
Therefore, this measure relies on the shape of the ROC curve
(i.e., the performance at all operating points) rather than the per-
formance at the equal error rate point.

A. Feature Selection Using Full Feature Set

The feature sets derived by the SFS algorithm were as fol-
lows:

• local channel speaker alone (S): kurtosis, and maximum
normalized cross-channel correlation;

• local channel speaker concurrent with one or more
speakers (SC): energy, kurtosis, maximum normalized
cross-channel correlation, and mean spherically normal-
ized cross-channel correlation;

• one or more nonlocal speakers (C): energy, kurtosis,
mean cross-channel correlation, mean normalized
cross-channel correlation, maximum spherically nor-
malized cross-channel correlation;

• silence (SIL): energy and mean cross-channel correlation.
It is interesting to note that some features used in previous

studies (such as MFCCs, SAPVR, and PPF) did not perform
well enough to be included in any of the optimal feature sets.

The GMM classification performance for each feature set is
shown in Fig. 3. For equal false positive and false negative rates,
the performance of each classifier is approximately 80%.

B. Feature Selection Excluding Energy Feature

In the second set of experiments, we assumed that the channel
energy is unreliable (as it may be for corpora using lapel micro-
phones) and removed it from the set of potential features avail-
able to the feature selection process. Using this reduced set, the
features derived by the SFS algorithm were the following:

• local channel speaker alone (S): kurtosis and maximum
normalized cross-channel correlation;
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Fig. 3. ROC performance curves for each crosstalk category’s optimum
feature set. Diagonal lines indicate equal error rates. Dashed curves indicate
performance when log energy is excluded from the set of potential features.

• local channel speaker concurrent with one or more
speakers (SC): kurtosis, fundamentalness, maximum nor-
malized cross-channel correlation and mean spherically
normalized cross-channel correlation;

• one or more nonlocal speakers (C): mean cross-channel
correlation and mean spherically normalized cross-
channel correlation;

• silence (SIL): kurtosis, mean cross-channel correlation
and mean spherically normalized cross-channel correla-
tion.

The GMM classification performance for each feature set is
shown in Fig. 3. The removal of log energy has little effect
on the ROC curves, and overall classification performance of
the system remains at approximately 80%. This is most likely
due to the high performance of the cross-correlation features
which dominate the ROC curves. It is also interesting to note
that the fundamentalness feature, which was developed for a dif-
ferent task but was expected to discriminate well between single
speaker and multiple speaker speech, also contributes to the fea-
ture set for speaker plus crosstalk.

VI. MULTISTREAM eHMM CLASSIFICATION EXPERIMENTS

The previous section identified the subset of features which
were best suited to classifying isolated frames of audio data.
Here, we investigate whether the eHMM framework shown in
Fig. 2 can improve performance by exploiting contextual con-
straints. Each channel classification is represented by a state
within the eHMM which, in turn, is modeled by a GMM of
the form used in the feature selection experiments. Contextual
constraints are embodied in the transition probabilities between
states, which were estimated from the training data.

To ensure that likelihoods generated by each state of the
eHMM were in the same range, each state employed the union
of the four winning feature sets described in Section V-A. The
test data consisted of all the transcribed channels from 27 ICSI

Fig. 4. True positive rate (upper-line) and false positive rate (lower-line) per
meeting for each channel classification.

meetings.1 The eHMM classification performances are shown
in Fig. 4.

These results show that the speaker alone and crosstalk alone
channel classifications exhibit a high true positive rate across all
meetings. A number of meetings exceed the 90% true positive
rate, with mean true positive rate for speaker alone being 76.5%,
and 94.1% for crosstalk alone. Furthermore, the average false
positive rate for the speaker alone class is only 7% but 50.2% for
crosstalk alone. The true positive rate for the remaining classes
(speaker plus crosstalk and silence) are significantly lower but
do exhibit a consistently small false positive rate. Upon exam-
ining the confusion matrix (a grid showing which and how many
classes have been misclassified), it was discovered that many of
the silence frames were misclassified as crosstalk alone, thus ex-
plaining the low true positive rate for silence and relatively high
false positive rate for crosstalk alone.

Fluctuations in classifier performance can also be seen in
Fig. 4. Transcription notes from the ICSI corpus indicate that
some channels of the meetings on which we achieved lower per-
formance suffer from poor recording. For example, test meeting
bmr014 (meeting number 13 in Fig. 4) suffered from “spikes”
and low gains on some channels which we believe caused single
speaker true positives to fall to 60% (significantly lower than the
average of 76.5%). Meeting 21 (bro008) exhibits poor classifi-
cation performance for all four channel classifications due to
unusually low channel gains during recording. Other recording
issues ranged from fluctuating channel gains to corrupted audio
buffers which also affected subsequent channel synchroniza-
tion.

As stated in the introduction, two applications for such a
classification system are speech recognition preprocessing and
speaker turn analysis. Both of these rely on accurate detection of
local speaker activity, which is largely equivalent to the speaker
alone (S) channel classification since class SC occurs relatively
infrequently (accounting for 2.4% of the ICSI data). As de-
scribed above, speaker alone classification at the frame level can

1The 27 test meetings were 1. bed004, 2. bed006, 3. bed009, 4. bed011, 5.
bmr001, 6. bmr002, 7. bmr005, 8. bmr007, 9. bmr008, 10. bmr009, 11. bmr012,
12. bmr013, 13. bmr014, 14. bmr018, 15. bmr024, 16. bmr026, 17. bro003, 18.
bro004, 19. bro005, 20. bro007, 21. bro008, 22. bro011, 23. bro013, 24. bro015,
25. bro017, 26. bro018, 27. bro026.
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Fig. 5. Speaker alone segment recognition rate per meeting.

be as high as 96%. However, these applications require the accu-
rate classification of contiguous segments of audio, rather than
individual frames. To this end, we have also assessed the ability
of the classifier to detect segments of speaker-alone activity.

We define a segment to be a contiguous region in which
all frames have the same channel classification. A segment is
deemed to have been correctly identified if a certain proportion
of classified frames within the segment boundaries agree with
the manual transcription. Segment-based classification for the
speaker alone class is shown in Fig. 5.

Here it was assumed that a segment was correctly classified
if more than 50% of the constituent frames were correctly clas-
sified. The segment-level performance is similar to that of the
frame-level approach, with a mean recognition rate of 74% and
recognition rates approaching 94% for some meetings.

VII. EVALUATION USING ASR

An evaluation of ASR performance using the segments

described above was conducted on a number of ICSI meetings

(bmr001, bro018, and bmr018) totalling 2.5 hours of multi-

channel speech. On these meetings, the eHMM classifier has

a segment recognition accuracy of between 83% and 92%

for single speaker detection. The ASR system is the publicly

available version of HTK [21] trained on 40 hours of the ICSI

meetings data. On unseen test data, this recognizer has a word

accuracy of approximately 50% without speaker adaptation. To

evaluate the eHMM classifier we compare results of ASR on

the ground truth segments versus ASR on the eHMM segments.

It is also interesting to compare ASR performance using the

eHMM segments against those produced by a classical voice ac-

tivity detector (VAD) such as [6]. For the purposes of this eval-

uation, we do not wish to make the distinction between voiced

and unvoiced speech so only the first stage of the VAD algo-

rithm is used, which distinguishes between silence and nonsi-

lence. The average energy is measured (from the training set

described above) for each of the two voice activity classes and

is used to determine the appropriate classification for each test

frame based on a normalized Euclidean distance.

Table III shows the ASR results on the various segment types.

The word accuracy achieved using eHMM segments is close to

that obtained using the ground truth segments. In bmr001 and

bro018 there is only a small drop in eHMM ASR word accu-

racies compared to the ground truth word accuracies (relative

factors of 98.50% and 99.29%, respectively) despite lower seg-

ment accuracies of 92% and 89%. Bmr018 has a relative factor

that is close to the segment accuracy. The results indicate that

TABLE III
SEGMENT AND ASR ACCURACIES (%) ON WHOLE MEETINGS.

RESULTS IN BRACKETS ARE AS A PERCENTAGE OF THE BASELINE

GROUND TRUTH SEGMENTS

Fig. 6. ASR performance for meetings bmr001, bro018, and bmr018. Note that
the VAD classifier failed on a number of channels and hence, some data points
(channels 0 and 8 from bmr001 and channel 8 from bmr018) are missing.

the eHMM classifier is capable of detecting most of the frames

required for optimal ASR. In comparison, the word accuracy on

VAD segments is much lower due to significantly lower segment

accuracy.

Fig. 6 shows the ASR results obtained using the three dif-

ferent types of segment by channel. The inconsistent VAD ASR

results emphasise that an energy based measure for speaker de-

tection is highly unreliable: some channels can be so noisy that

the VAD classifier labels all frames as speech activity. For ex-

ample bmr001 was particularly problematic, since the whole of

channels 0 and 8 were labeled as speech activity.

VIII. GENERAL DISCUSSION

Two experiments are described in this paper, both relating

to the broad classification of audio data from meeting record-

ings. Our goals were to produce accurate labels corresponding

to the number of speakers active at a particular time and to indi-

cate if the local speaker is active. The first experiment identified

the optimal feature set for each channel classification, each of

which achieved approximately 80% frame accuracy when con-

sidering equal true-positive and false-positive error rates. Sev-

eral cross-channel correlation measures were selected in addi-

tion to conventional features such as short-term energy and kur-

tosis. Additionally, we found that features which were origi-

nally designed for a different purpose can also play a role in

crosstalk analysis (e.g., “fundamentalness” [14]). Furthermore,

features which have previously been used to identify overlap-

ping speakers such as MFCCs, PPF [16], and SAPVR (e.g., [8])

were rejected.
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In the second set of experiments, the optimal feature set was

used to train a number of eHMM classifiers (one per meeting

channel) which operated in parallel. This allowed transition con-

straints to be dynamically applied depending on the previous

state and the unconstrained GMM classifications. This approach

improved performance for some classes, notably speaker alone

(S). Indeed, automatic speech recognition results using the au-

tomatically generated speaker alone segments indicate perfor-

mance equal to that obtained using the ground truth segments.

To conclude, a multichannel activity classification system has

been described which can distinguish between the four activity

categories shown in Table I. Furthermore, the segmentation of

speaker alone activity has been shown to be particularly reliable

for speech recognition applications: ASR performances using

the eHMM segments and the transcribed ground truth segments

are extremely similar.
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