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Beat Tracking of Musical Performances Using
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Abstract—This paper presents and compares two methods
of tracking the beat in musical performances, one based on a
Bayesian decision framework and the other a gradient strategy.
The techniques can be applied directly to a digitized performance
(i.e., a soundfile) and do not require a musical score or a MIDI
transcription. In both cases, the raw audio is first processed into a
collection of “rhythm tracks” which represent the time evolution
of various low-level features. The Bayesian approach chooses a
set of parameters that represent the beat by modeling the rhythm
tracks as a concatenation of random variables with a patterned
structure of variances. The output of the estimator is a trio of
parameters that represent the interval between beats, its change
(derivative), and the position of the starting beat. Recursive (and
potentially real time) approximations to the method are derived
using particle filters, and their behavior is investigated via simula-
tion on a variety of musical sources. The simpler method, which
performs a gradient descent over a window of beats, tends to
converge more slowly and to undulate about the desired answer.
Several examples are presented that highlight both the strengths
and weaknesses of the approaches.

Index Terms—Musical rhythm, particle filters, rhythmic anal-
ysis, spectral center, spectral dispersion, tempo tracking.

I. INTRODUCTION

ACOMMON human response to music is to “tap the foot”
to the beat, to sway to the pulse, to wave the hands in time

with the music. Underlying such mundane motions is an act of
cognition that is not easily reproduced in a computer program or
automated by machine. This beat tracking problem is important
as a step in understanding how people process temporal infor-
mation and has applications in the editing of audio/video data
[5], in synchronization of visuals with audio, in audio informa-
tion retrieval [33], in audio segmentation [38], and in error con-
cealment [36].

Underlying the beat tracking algorithms is a method of data
reduction that creates a collection of “rhythm tracks” which are
intended to represent the rhythmic structure of the piece. Each
track uses a different method of (pre)processing the audio by
extracting different low-level audio features, and so provides a
(somewhat) independent representation of the beat. The rhythm
tracks are described in detail in Section III and they may be mod-
eled as a collection of normal random variables with changing
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variances: the variance is small when “between” the beats and
large when “on” the beat.

The first algorithm for beat tracking exploits this simple
stochastic model of the rhythm tracks using Bayesian methods
as in Section IV-A. The tracks are examined to find the best

(interval between successive beats), (rate of change of
the interval), and (starting point or phase). Since each track
represents a different realization of the underlying process (the
audio), the technique attempts to combine the tracks to obtain
optimal estimates. Using the “particle filter methods” of [12],
Section IV-B demonstrates a recursive version that operates
over successive blocks using the output distribution at one
block as the prior distribution (initialization) of the next.

Because the Bayesian framework can be computationally
complex, Section V explores a second algorithm for beat
tracking that defines a cost function and invokes adaptive
(gradient) methods for approximating the optimal values of
and . The behavior of the resulting algorithms is explored in
Section VI which compares the strengths and weaknesses of
the two methods. The final section concludes the paper.

II. LITERATURE REVIEW

Listeners can easily identify complex periodicities such as
the rhythms that normally occur in musical performances, even
though these periodicities may be distributed over several inter-
leaved time scales. The simplest such activity is to identify the
pulse or beat of the music; yet even this is not easy to automate.
An overview of the problem and a taxonomy of beat tracking
methods can be found in [25], and a review of computational
approaches for the modeling of rhythm is given in [16].

Traditional attempts to identify the metric structure of mu-
sical pieces such as [6], [23] and [30] often begin with a sym-
bolic representation of the music: a musical score or a MIDI
file transcription. This simplifies the rhythmic analysis since the
pulse is inherent in the score, note onsets are clearly delineated,
multiple voices cannot interact in unexpected ways, and the total
amount of data to be analyzed is small compared to a CD-rate
audio sampling of a performance of the same piece. The beat
tracking of MIDI files has been explored extensively using: the
(AI) beam search method [1], gradient methods [7], sets of com-
peting oscillators [32], and probabilistic methods such as the
Kalman filter [3], MCMC methods and particle filters [4], and
a Bayesian belief network [22].

Many methods that deal directly with audio (such as [7], [25])
begin by locating interonset intervals (IOIs) using amplitude or
energy profiles. When the location of IOIs is successful, the beat
tracking can proceed analogously to when the input is a MIDI
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file. The pulse finding technique of [13] tracks the temporal po-
sition of quarter notes, half notes and measures, and incorpo-
rates a multi-agent expert system. Each agent predicts (using a
windowed autocorrelation) when the next beat will occur based
on onset time vectors that are derived from a frequency de-
composition. Other methods [37] exploit some feature of the
music such as the low-frequency bass and drum of much pop-
ular music.

Many psychoacoustically based models of the auditory
system begin with a subband decomposition or bank of filters
that divide the sound into a number of frequency regions. Such
decompositions can be used as a first step in beat tracking, as
shown by the spectrogram-like method of [29], the wavelet
approach of [33]. Scheirer [26] argues that rhythmically im-
portant events are due to periodic fluctuations of the energy
within various frequency bands and creates a beat tracking
algorithm that uses a collection of comb filters to determine the
frequency/period of the dominant beat. Similarly, [14] follows
a subband decomposition with an autocorrelation method for
periodicity determination.

III. CREATING “RHYTHM TRACKS”

There are many possible models for the pulse of a piece of
music. One commonplace observation is that a large propor-
tion of the most “significant audio events” occur on or near the
beat, while events which are less significant rhythmically tend
to occupy the space between the beats. One way to transform
this observation into a concrete model is to suppose that the
rhythm can be encoded into a sequence of random variables:
times near the beat are highly likely to have significant energy
(the random variables will have a large variance) while times be-
tween beats are likely to be unenergetic (the random variables
will have small variance). We call such a model a rhythm track
corresponding to a particular musical performance.

Sections III-A–D provide four different methods of ex-
ploiting low-level audio features for the creation of rhythm
tracks.

1) time-domain energy method ;
2) frequency-domain method based on group delay ;
3) measure based on the center of the spectrum ;
4) measure of the spectral dispersion .

Each of these provides a different meaning to the phrase “sig-
nificant audio event.” This approach of utilizing low-level audio
features is perhaps most similar to that of [15]which focuses on
the problem of distinguishing duple from triple meter.

Since the periodicities associated with musical pulse occur on
a time scale between tenths of a second and a couple of seconds,
the standard audio sampling rate of 44.1 kHz contains signifi-
cant redundancies. The rhythm tracks are formed using overlap-
ping (Hamming) windows (and applying the fast Fourier trans-
form (FFT) for methods 2, 3, and 4). The data in each window is
reduced to a single summary statistic, and so the rhythm tracks
reduce the amount of data by a factor of 100 to 1000, depending
on the window size and amount of overlap. Many other methods
of creating rhythm tracks are possible: using other norms or dis-
tance measures, applying filters to the signals, etc. These four
are highlighted because they are easy to compute, convenient

Fig. 1. Example of the various “rhythm tracks” applied to the first 10 s of a
recording of Handel’s Water Music. (a) Audio waveform. (b) Energy method. (c)
Group delay. (d) Change in the center of the spectrum. (e) Dispersion of spectral
energy. Tick marks emphasize beat locations that are visually prominent.

to describe, and each has some intuitive relevance to the task at
hand.

An example of the various rhythm tracks is shown in Fig. 1,
which compares the first 10 s of a recording of Handel’s Water
Music with its various rhythm tracks. The audio waveform
shown in part Fig. 1(a) contains 440 K data points (44.1 kHz
times 10 s). Each of the rhythm tracks in Fig. 1(b)–(e) contains
about 800 points (a window size of with an overlap of
2). The beats of the piece can be seen quite clearly in certain
places in certain of the rhythm tracks, and these are annotated
using tick marks. For instance, three strings of beats occur in
Fig. 1(c): in the first 2 s, between 3.5 and 5 s, and between 6.5
and 8 s. Rhythm track Fig. 1(b) has regular spikes between
4 and 6 s, and again between 8 and 9.5 s. For this particular
example, a combination of Fig. 1(b), (c), and (e) shows almost
all the beats throughout the 10 s. In other examples, other
combinations of the rhythm tracks may be more useful.

A. Energy Measure

The simplest of the rhythm tracks is particularly appropriate
for audio in which the envelope of the sound clearly displays
the beat. Let represent the audio waveform, which is sam-
pled at a constant interval to give the sequence . Group the
sampled data into overlapping segments each containing
consecutive terms. Let represent the th element (out of

) in the th segment. The energy in the th segment is

(1)

Then the terms of the “energy” rhythm track are defined to
be the change in (the derivative of) the . Though numerical
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derivatives can be poorly conditioned, the action of the sum-
ming, combined with sensible overlapping ensures that the nu-
merical problems do not overwhelm the data. An example is
provided in Fig. 1(b).

B. Group Delay

The remaining methods operate in the frequency domain and
share a common notation. With , , , as above, let

be the FFT of . Each of the frequency-domain methods
processes in a different way to form the scalar value ,
and the sequence of such values (one for each set) forms the
rhythm track sequence.

Structurally, the transform consists of complex num-
bers that are most commonly represented as magnitude and
phase pairs, with the phase unwrapped (meaning that factors
of are added or subtracted so as to make the phase angle
continuous across boundaries at integer multiples of ). For
many musical waveforms, the unwrapped phase lies close to a
straight line. The slope of this line defines the “group delay”
method of creating rhythm tracks , which represents the
slope of the unwrapped phase of the th segment. An example
is provided in Fig. 1(c). Appendix A shows how the slope
is proportional to a time-shifted version of the energy. It is not
dependent on the total energy in the window, but rather on the
distribution of the energy within the window.

C. Spectral Center

With notation inherited from the previous sections, the “spec-
tral center” method of creating rhythm tracks locates the fre-
quency where half of the energy in the spectrum lies below

and half lies above. This is

(2)

The rhythm track value is then defined as the change
in (i.e., the derivative of) . The spectral center is sensitive
to pitch changes and to changes in the distribution of energy
such as might occur when different instruments enter or leave,
or when one instrument changes registers. Like the group delay,
it is insensitive to amplitude changes in the audio. A numerical
example is provided in Fig. 1(d).

D. Spectral Dispersion

The spectral dispersion gives a measure of the spread of the
spectrum about its center. Let

(3)

define the spectral dispersion of the th segment about
the spectral center . It weights energy at remote frequencies
more than those close to the spectral center. The rhythm track

is then defined as the change in (the derivative of) .
This provides a crude measure of how the spectral energy is dis-
tributed: small values mean that the energy is primarily concen-

trated near the center while large values mean that the energy
is widely dispersed. For example, near the percussive attack of
a violin the spectral dispersion is large, while it is small in the
(relative) steady state between attacks. An example is provided
in Fig. 1(e).

These are just four of the many possible low-level audio fea-
tures that could be used in the creation of rhythm tracks. We have
chosen to focus on these four because they appear to work well
in the appointed task of beat tracking. While these four do not
enjoy statistical independence, it is easy to see that they measure
different features of the underlying audio stream since it is pos-
sible to create a sound for which any three of the rhythm tracks
are (essentially) constant, but the fourth varies significantly. For
example, an idealized trill on a violin has constant energy, con-
stant dispersion, and constant group delay, but varying center.
Similarly, if a short sinewave burst alternates with a white noise
burst, they can be chosen so that the energy, group delay, and
center remain the same but the dispersion varies widely. This is
the sense in which the rhythm tracks provide an “independent”
measure of the changes in the sound.

IV. BAYESIAN BEAT DETECTION

This section describes a principled approach to detecting
the beats from the rhythm tracks. The approach begins by
constructing a simple (and likely over-simplified) generative
model of the probabilistic structure of the rhythm tracks in
Section IV-A. The parameters of this model can be followed
through time using a particle filter [8], [12], [34], as detailed in
Section IV-B. The framework allows seamless and consistent
integration of the information from multiple rhythm tracks into
a single estimate of the beat timing.

A. Model for the Rhythm Tracks

Inspection of the rhythm tracks in Fig. 1 reveals that, to a first
approximation, they are composed primarily of large values at
(or near) the beats and small values off the beat. The simplest
possible model for the structure of the rhythm tracks is thus
to say that they are made up of realizations of an independent
Gaussian noise process, where the variance of the noise on the
beat is larger than the variance off the beat.

Clearly this ignores much of the structure that is present. For
example, the time-domain energy method often shows larger
positive peaks compared with the negative ones. The tracks also
often display oscillatory behavior, mirroring the intuitively ob-
vious idea that the samples cannot be truly independent. How-
ever, the simple model is shown in the experiments to capture
enough of the structure to allow reliable beat extraction in a va-
riety of musical situations. While it is in principle possible to
derive the distribution of the samples in the rhythm tracks from
a probabilistic model of the original audio, this is too complex
to result in a feasible algorithm. Also, it is no more obvious how
to construct a model for the audio than for the rhythm tracks di-
rectly.

Fig. 2 shows the structure of the model. The parameters can
be divided into two sets: the structural parameters remain essen-
tially constant through the piece (and are estimated off-line from
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Fig. 2. Parameters of the rhythm track model are T , � , !, � , � and �T (not
shown).

training data as in Section VI), while the timing parameters are
the most interesting from the point of view of beat extraction.

The structural parameters:

• is the “off the beat” variance;
• is the “on the beat” variance;
• is the beatwidth, the variance of the width of each set

of “on the beat” events. For simplicity, this is assumed to
have Gaussian shape.

The timing parameters:

• is the time of the first beat;
• is the period of the beat;
• is the rate of change of the beat period.

Given the signal (the rhythm track), Bayes theorem asserts
that the probability of the parameters given the signal is pro-
portional to the probability of the signal given the parameters
multiplied by the prior distribution over the parameters. Thus

where the priors are assumed independent.1 Each of the prior
probabilities on the right-hand side are fixed vis a vis the length
of the data record, while the first term increases as a function
of the length of the data. Accordingly, the first term dominates.
Let be the time of the th beat and

let be a sum of shifted Gaussian
functions. The variance

(4)

specifies the likelihood of the rhythm track model as

(5)

where is the (positive) time at which the sample is observed,
and where denotes the Gaussian distribution.

Because the rhythm track values are assumed independent,
the probability of a block of values is simply
the product of the probability of each value. Thus is a combi-
nation of the variances on and off the beat, weighted by how far

is from the nearest (estimated) beat location. While this may

1In reality, the priors cannot be truly independent, for example, the structure
of the model dictates that � > � .

Fig. 3. An “artificial” rhythm track with a period of twenty-five samples: every
group of 20 small variance N(0; 1) random variables is followed by five large
variance N(0; 1:7) random variables. Observe the similarity between this and
the experimental rhythm tracks of Fig. 1.

appear noncausal, it is not because it only requires observations
up to the current time. Also note that the summation in the def-
inition of can in practice be limited to nearby values of .

To see the relationship between experimentally derived
rhythm tracks and the model, Fig. 3 shows an “artificial”
rhythm track constructed from alternating small and large
variance normally distributed random variables. Observe that
qualitatively, this provides a reasonable model of the various
rhythm tracks in Fig. 1.

B. Tracking Using Particle Filters

Divide each rhythm track into blocks, typically about 400
samples long. Collect the timing parameters, , and into
a state vector , and let be the distribution over the pa-
rameters at block . The goal of the (recursive) particle filter
is to update this to estimate the distribution over the parameters
at block , that is, to estimate . For the linear Gaussian
case, this can be optimally solved using the Kalman filter [17].
However, the timing parameters enter into (5) in a nonlinear
manner, and so the Kalman filter is not directly applicable.

The tracking can be divided into two stages, prediction and
update. Because the beat period does not remain precisely fixed
(otherwise the tracking exercise would be pointless), knowledge
of the timing parameters becomes less certain over the block
and the distribution of becomes more diffuse. The update step
incorporates the new block of data from the rhythm track, pro-
viding new information to lower the uncertainty and narrow the
distribution.

The predictive phase details how is related to in the
absence of new information. In general, this is a diffusion model

where is some known function and is a vector of
random variables. The simplest form is to suppose that as time
passes, the uncertainty in the parameters grows as in a random
walk

where the elements of have different variances that re-
flect prior information about how fast the particular parameter
is likely to change. For beat tracking, these variances are depen-
dent on the style of music; for instance, the expected change in

for a dance style would generally be much smaller than for a
style with more rubato.

At block , a noisy observation is made, giving the signal
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where is a measurement function and is the noise. To im-
plement the updates recursively requires expressing in
terms of , where represents all the rhythm
track samples up to block .

This can be rewritten

(6)

as the product of the predictive distribution (which
can be calculated from the diffusion model) and the posterior
distribution at time (which can be initialized using the prior),
then integrated over all possible values . Bayes theorem
asserts that

(7)

where the term is a simplification of as
the current observations are conditionally independent of past
observations given the current parameters. The numerator is the
product of the likelihood at block and the predictive prior, and
the denominator can be expanded

In a one-shot estimation, this normalization can be ignored be-
cause it is constant. In the recursive form, however, it changes
at each iteration.

This method can be applied to the model of rhythm tracks by
writing the predictive distribution as shown in the equation at
the bottom of the page, where , and are the vari-
ances of the diffusions on each parameter, which are assumed
independent. The likelihood is

(8)

where is defined as in (4). Assuming an initial distribution
is available, these equations provide a formal solution

to the estimate through time of the distribution of the timing
parameters [2].

In practice, however, for even moderately complex distribu-
tions, the integrals in the above recursion are analytically in-
tractable. Particle filters [8], [34] overcome these problems by
approximating the (intractable) distributions with a set of values
(the “particles”) that have the same distribution, and then up-
dating the particles over time. Estimates of quantities of interest
(means, variances, etc.) are made directly from the sample set.
More detailed presentations of the particle filter method can be
found in [9] and [12].

Applied to the beat tracking problem, the particle filter algo-
rithm can be written succinctly in three steps. The particles are
a set of random samples, , distributed as

.

1) Prediction: Each sample is passed through the system
model to obtain samples of

which adds noise to each sample and simulates the diffusion
portion of the procedure, where is assumed to be a
three-dimensional Gaussian random variable with indepen-
dent components. The variances of the three components de-
pend on how much less certain the distribution becomes over
the block.
2) Update: with the new block of rhythm track values
evaluate the likelihood for each particle using (5). Compute
the normalized weights for the samples

3) Resample: Resample times from the discrete distribu-
tion over the ’s defined by the ’s to give samples dis-
tributed as .
To initialize the algorithm, draw samples from the prior

distribution , which is taken as uniform over some
reasonable range. If more information is available (as studies
such as [19] suggest), then better initializations may be possible.
A number of alternative resampling schemes [9], [10] with dif-
ferent numerical properties could be used in the final stage of
the algorithm.

C. Multiple Rhythm Tracks

A major advantage of the Bayesian approach is its ability to
incorporate information from multiple rhythm tracks. Assuming
that the various rhythm tracks provide independent measure-
ments of the underlying phenomenon (a not unreasonable as-
sumption given that the tracks measure different aspects of the
input signal), then the likelihood for a set of rhythm tracks is
simply the product of the likelihood for each track. Thus, the al-
gorithm for estimating the optimal beat times from a collection
of four rhythm tracks is only four times the difficulty of esti-
mating from a single rhythm track.

V. GRADIENT ESTIMATION

This section defines a “cost” that varies with the time
interval between successive beats; that minimize the cost
for particular rhythm tracks are good candidates for the dura-
tion of a beat of the corresponding music. It is not generally
possible to minimize directly, so the optimization must be ap-
proached via some kind of iterative method. This section details
two possibilities, one relies on calculation of the gradient and
the other approximates the gradient using only evaluations of

. Both are able to reasonably solve the optimization problem,
and both are inherently recursive. This should reasonably allow
the algorithm to track the beat as the beat duration changes over
time. Indeed, examples demonstrate that this is so, at least as
long as the changes occur slowly. A rate of change term analo-
gous to in (5) is not used in the gradient algorithm.

To be concrete, suppose that is the data in a rhythm
track. Let be a function that is large near the origin and
that grows small as deviates from the origin. The Gaussian
function is one possibility, where is chosen so
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that the “width” of is narrower than the time span expected
to occur between successive beats. Thus, the choice of in the
gradient method is analogous to the beatwidth parameter in
the Bayesian method. Let be the best estimate at time step

of the beat duration, and let be the time of the most recent
beat. Then the sum provides the best estimate of the
next beat location. The cost is defined to be

(9)
To understand this, observe that is a (Gaussian)
pulse with variance and centered at , the estimated lo-
cation of the next beat. The product weights
the rhythm track so as to emphasize information near the ex-
pected beat and to attenuate data far from the expected beat.
The function picks out the largest peak in the rhythm
track near the expected beat location, and returns the location of
the peak. This is (likely) the actual beat location. The difference
between the argmax (the likely location of the beat as given in
the data) and (the estimated location of the beat) is thus
the basis of the cost. If the rhythm track was a regular succes-
sion of pulses and the estimates of and were accurate, then
the cost would be zero. When the rhythm track is derived from
a piece of music as described in Section III, then the cost can be
used to continuously make better estimates of the beat duration.

One approach is to use a gradient descent strategy, which up-
dates the current estimate at time using the iteration

(10)

where is a (small) stepsize that determines how much the cur-
rent estimates react to new information. Calculating this gra-
dient is somewhat tricky due to the presence of the argmax func-
tion, and details are given in Appendix B, where (10) is explic-
itly shown to be

(11)

where

(12)

is the value at which achieves its maximum.
While this algorithm is fairly simple, it does require the cal-

culation of the (numerical) derivatives and . The update term
can be factored as

Near a beat , is large, and is negative (since
is near a maximum). Hence, the term multiplying in the

denominator is negative, and the denominator is smaller than the
numerator. Thus, the fraction is larger than 1, and so the update
has the opposite sign from . Accordingly, the simpler
algorithm

(13)

updates in the correct direction, and may be considered a rea-
sonable simplification of (11). In fact, (13) has a easy intuitive
interpretation: is the predicted location of the next beat,
while is the where the beat actually occurs. The difference
between the prediction and the measurement provides informa-
tion to improve the estimate. The algorithm increases if the
prediction was early, and decreases if the prediction was late.
This update is analogous to one of the algorithms in [7], though
the inputs are quite different since (13) operates on the rhythm
tracks and without note onset information.

VI. EXAMPLES

This section provides a number of examples that show how
the beat tracking algorithms function. In all cases, the output is
a sequence of times that are intended to represent when “beats”
occur: when listeners “tap their feet.” To make this accessible,
an audible burst of noise was superimposed over the music at
the predicted time of each beat. By listening, it is clear when
the algorithm has “caught the beat” and when it has failed. We
encourage the reader to listen to the .mp3 examples from our
website [35] to hear the algorithms in operation; graphs such as
Figs. 4 and 5 are a meager substitute.

A. Using the Particle Filter

For the Bayesian particle filter of Section IV it was first nec-
essary to estimate the structural parameters, , , and . Ini-
tial values were chosen by hand based on an inspection of the
rhythm tracks. Using these values, the algorithm was run to ex-
tract the beats from several pieces. These results were then used
to re-estimate the parameters using the entire rhythm tracks, and
the values of the parameters from the different training tracks
were then averaged.2 These values were then fixed when esti-
mating the beats in subsequent audio tracks which were not part
of the training set. The nominal values were ,

, and , while the initialization of was uniform in
the range s, was uniform and
was uniform .

The particle filter was applied to a variety of different pieces
in different musical styles including pop music (“Norwegian
Wood” by the Beatles, “Mr Tambourine Man” by the Byrds),
jazz (“Take Five” by David Brubek), classical (Scarlatti’s
“Sonata K517 in D Minor,” “Water Music” by Handel), film
(“Theme from James Bond”), folk (“The Boxer” by Simon and
Garfunkel), country (“Angry Young Man” by Steve Earl), dance
(“Lion Says” by Prince Buster and The Ska), and bluegrass
(“Man of Constant Sorrow”). In all of these cases the algorithm
located a regular lattice of times that correspond to times that a
listener might tap the foot. The first 30 s of each of these can
be heard at [35].

While the algorithm is running, plots such as Fig. 4 are gen-
erated. This shows the four rhythm tracks at the start (between 2
and 6 s) of “Pieces of Africa” by the Kronos quartet. The smooth
curves with the bumps show the predicted tap times. Some of the
rhythm tracks show the pulse nicely, and the algorithm aligns

2We scale the rhythm tracks so that they have approximately equal power.
This allows use of one set of parameters for all rhythm tracks despite different
physical units.
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Fig. 4. Four rhythm tracks of “Pieces of Africa” by the Kronos quartet between 2 and 6 s. The estimated beat times [which correctly locate the beat in cases (1),
(3), and (4)] are superimposed over each track.

Fig. 5. Tempo of Kronos Quartet’s “Pieces of Africa” changes slightly over
time and the tempo parameter T follows.

itself with this pulse. Rhythm track three provides the cleanest
picture with large spikes at the beat locations and small devia-
tions between. Similarly, the first rhythm track shows the beat
locations but is quite noisy (and temporally correlated) between
spikes. Rhythm track four shows spikes at most of the beat lo-
cations, but also has many spikes in other locations, many at
twice the tap rate. Rhythm track two is unclear, and the lattice
of times found by the algorithm when operating only on this
track is unrelated to the real pulse of the piece. In operation, the
algorithm derives a distribution of samples from all four rhythm
tracks that is used to initialize the next block. The algorithm pro-
ceeds through the complete piece block by block.

The predicted times actively follow the music. For instance,
over the first 1:14 s of Kronos Quartet’s “Pieces of Africa,” the
tempo wavers somewhat, speeding up at around 60 s and then
slowing back down. The algorithm is able to track such changes
without problem, and the tempo parameter is plotted in Fig. 5.
This example can also be heard at [35].

Depending on the range of the initial timing parameter ,
the algorithm would sometimes lock onto a beat that was twice
the speed or half the speed of the nominal tap rate. In one par-
ticular case (“Jupiter” by Jewel) it was able to lock onto either
twice or half (depending on the initialization), but not the an-
ticipated “quarter-note” itself. In another case “Lion Says” by
Prince Buster and The Ska, the algorithm could lock onto the
“on-beat,” the “off-beat,” or onto twice the nominal tap rate,
depending on the initialization of . These can also be heard

at the website. Given that reasonable people can disagree by
factors of two on the appropriate tempo (one clapping hands
or tapping feet at twice the rate of the other), and that some
people tend to clap hands on the on-beat, while others do so
on the off-beat, such effects should be expected. The faster rate
is sometimes called the “tatum” while the slower is called the
“beat.” Thus the algorithm cannot distinguish the tatum from
the beat without further high-level information. Of more con-
cern was the rare case that locked onto two equally spaced taps
for each three beats.

In order to explore the behavior of the method further, we
used the gnutella file sharing network [11] to locate 26 versions
of the “Maple Leaf Rag” by Scott Joplin. About half were piano
renditions, the instrument it was originally composed for. Other
versions were performed on solo guitar, banjo, or marimba. Ren-
ditions were performed in diverse styles: a kletzmer version, a
bluegrass version, Sidney Bechet’s big band version, one by the
Canadian brass ensemble, and an orchestral version from the
film “The Sting.” In 14 of the 26 versions the beat was correctly
located using the default values in the algorithm. Another eight
were correctly identified by increasing or decreasing the ranges
of the initial time , the maximum allowable rate of change ,
or the time window over which the algorithm operated. The re-
maining four are apparently beyond the present capabilities of
the algorithm.

Two of the four failures were piano performances, one was a
jazz band rendition, and one used primarily synthesized sounds.
The likely reasons for failure are as diverse as the renditions.
In one (performed by Hyman) all is well until about at about
2:04 when there are a series of drastic tempo shifts from which
the algorithm never recovers. In another (performed by Tommy
Dorsey’s band) the algorithm synchronizes and loses synchrony
repeatedly as the instrumentation changes. This is likely a fault
of the rhythm tracks not being consistent enough. The synthe-
sized version is bathed in reverb, and this likely decreases the
accuracy with which the rhythm tracks can mirror the under-
lying beat of the piece.
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B. Using the Gradient Algorithm

The promise of the gradient approach is its low numerical
complexity. That the gradient is in principle capable of solving
the beat tracking problem is indicated in Fig. 6 which shows
70 different runs of the algorithm applied to the “Theme from
James Bond.” Each run initializes the algorithm at a different
starting value between 20 and 90 samples (between 0.11 and
0.52 s). In many cases, the algorithm converges nicely. Observe
that initializations between 35 and 45 converge to the eighth-
note beat at 0.23 s per beat, while initializations between 75
and 85 converge to the quarter-note beat at about 0.46 s. Other
initializations do not converge, at least over the minute analyzed.

When first applying the algorithm, it was necessary to run
through the rhythm tracks many times to achieve convergence.
By optimizing the parameters of the algorithm (stepsize, number
of beats examined in each iteration, etc) it was possible to speed
converge to within 30 or 40 beats (in this case, 15 to 20 s). What
is hard to see because of the scale of the vertical axis in Fig. 6 is
that even after the convergence, the estimates of the beat times
continue to oscillate above and below the correct value. This
can be easily heard as alternately rushing the beat and dragging
behind. The problem is that increasing the speed of convergence
also increases the sensitivity.

In order to make the gradient algorithm comparable to the
Bayesian approach, the basic iteration (10) needed to be ex-
panded to use information from multiple intervals simulta-
neously and to use information from multiple rhythm tracks si-
multaneously. Both of these generalizations are straightforward
in the sense that predictions of the beat locations and deviations
can follow the same methods as in (10)–(13) whether predicting
one beat or beats into the future and whether predicting from
a single rhythm track or many. What is new is that there must
be a way of combining the multiple estimates. We tried several
methods including averaging the updates from all beats and
all rhythm tracks, using the median of this value, and weighting
the estimates. The most successful of the schemes (used to gen-
erate the examples such as Fig. 6) weighted each estimate in
proportion to [using the notation from
(12)] since this places more emphasis on estimates which are
“almost” right.

Overall, the results of the gradient algorithm were disap-
pointing. By hand tuning the windows and stepsizes, and using
proper initialization, it can often find and track the beat. But
these likely represent an unacceptable level of user interaction.
Since the Bayesian algorithm converges rapidly within a few
beats, it can be used to initialize the gradient algorithm, effec-
tively removing the initial undulations in the timing estimates.
Of the 26 versions of the “Maple Leaf Rag,” this combined
algorithm was able to successfully complete only eight: signif-
icantly fewer than the particle filter alone.

VII. CONCLUSION

The analysis of musical rhythms is a complex task. As noted
in [18], “even the most innocuous sequences of note values
permit an unlimited number of rhythmic interpretations.” Most
proposals for beat tracking and rhythm finding algorithms op-
erate on “interonset” intervals (for instance [6], [7], and [13]),

Fig. 6. Estimates of the beat period for the “Theme from James Bond” using
the gradient algorithm. Depending on the initial value it may converge to
the eighth-note beat at about 40 samples per period (about 0.23 s) or to the
quarter-note beat near 80 samples (about 0.46 s).

which presupposes either a priori knowledge of note onsets
(such as are provided by MIDI) or their accurate detection.
Our method, by ignoring the “notes” of the piece bypasses (or
ignores) this element of rhythmic interpretation. This is both
a strength and a weakness. Without a score, the detection of
“notes” is a nontrivial task, and errors such as missing notes
(or falsely detecting notes that are not actually present) can
bias the detected beats. Since our method does not detect
notes it cannot make such mistakes. The price, of course, is
that the explanatory power of a note-based approach remains
unexploited. Thus the beat tracking techniques of this paper
are more methods of signal processing at the level of sound
waveforms than of symbol manipulation at the note level.

Scheirer [26] creates a signal that consists of noisy pulses
derived from the amplitude envelope of audio passed through
a collection of “critical band” filters. Interestingly, much of the
rhythmic feel of the piece can be heard in the artificial noisy
signal. Thus Scheirer suggests that a psychological theory of
the perception of meter need not operate at the level of notes.
To the extent that our method is capable of finding pulses within
certain musical performances, our results support the conclusion
that the “note” and “interonset” levels of interpretation are not
a necessary component of rhythmic detection.

Though our method does not attempt to decode pitches
(which are closely tied to a note level representation), it is not
insensitive to frequency information since this is incorporated
indirectly into the various rhythm tracks. This allows the
timbre (or spectrum) of the sounds to influence the search for
appropriate periodicities in a way that is lost if only energy or
interonset interval encoding is used.

Cemgil and Kappen [4] compare two algorithms for the
beat tracking of MIDI data and conclude that the particle
filter methods outperform iterative methods such as simulated
annealing and iterative improvement. This parallels our results
that the particle filter outperforms the gradient method. One
interpretation for the disparity is that the gradient algorithm
has no way to exploit the probabilistic structure of the rhythm
tracks.
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The particle filter beat tracking method is generally suc-
cessful at identifying the initial tempo parameters and at
following tempo changes. One mode of failure is when the
tempo changes too rapidly for the algorithm to track, as might
occur in a piece with extreme rubato. A principled approach
to the handling of abrupt rapid changes would be to include a
small probability of a radical change in the parameters of the
particle filter. Perhaps the most common mode of failure is
when the rhythm tracks fail to have the hypothesized structure
(rather than a failure of the algorithm in identifying the structure
when it exists). Thus a promising area for research is the search
for better rhythm tracks. There are many possibilities: rhythm
tracks could be created from a subband decomposition, from
other distance measures in either frequency or time, or using
probabilistic methods. What is needed is a way of evaluating
the efficacy of a candidate rhythm track. Also at issue is the
question of how many rhythm tracks can be used simultane-
ously. In principle, there is no limit as long as they remain
“independent.” Given a way of evaluating the usefulness of the
rhythm tracks and a precise meaning of independence, it may
be possible to approach the question of how many degrees of
freedom exist in the underlying rhythmic process.

APPENDIX A
ANALYSIS OF THE GROUP DELAY

For many musical waveforms, the unwrapped phase of the
Fourier Transform often lies very close to a line. This appendix
investigates the meaning of this observation and interprets the
slope of this line in terms of the concentration of energy at a
time (shift) proportional to .

Given a signal , its complex valued Fourier Transform
can be written in terms of its magnitude and phase as

where . Consider the related transform
which is obtained from by setting all

the phase values to zero. Denote the corresponding time wave-
form .

First, we show that attains its largest value at

But is already positive, and , and hence

Thus, the procedure of removing all phase information from a
signal changes it substantively, so that the largest value occurs
at zero. In general, the bulk of the energy in is concentrated
near .

The observation that the group delay parameter is (nearly)
constant is equivalent to requiring that

be constant. Hence, is the slope of , and can
be written in terms of the transform as

When the phase is nearly linear, this can be approximated by

By the “modulation” property of the Fourier transform [20], this
is precisely , where is the zero phase version of

.
Accordingly, the process of replacing an approximately linear

phase with an exact linear phase is the same as
translating the zero phase version of the signal units in
time. Since has its energy concentrated near , the
exact linear phase signal has its energy concentrated near

.
Thus, when applying the FFT to a windowed version of a

continuous signal, provides an estimate of where the energy
is concentrated. It is not dependent of the total energy in the
window, but rather on the distribution of the energy within the
window.

One way to view this approximation is to observe that the
transform of is

where represents the magnitude of an all pass filter (which
is unity for all frequencies) and represents its
phase, which is equal to the difference between the original
phase of and the phase of .

APPENDIX B
DERIVATION OF THE GRADIENT ALGORITHM

This appendix calculates the gradient of the cost function (9)
with respect to in order to put (10) into implementable form.
For simplicity of exposition, the dependence of terms on is
suppressed, and the recommended Gaussian form for is
assumed. Applying the chain rule to (9) gives

This is a straightforward calculation except for the derivative
of the argmax function. Let
be the value at which achieves its maximum.
The analysis proceeds by writing explicitly as a function of

, and then applying the inverse function theorem to express
as a function of , at which point the desired derivative can be
computed.

Observe that achieves
its maximum when its derivative is zero, that is, when
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Since is never zero, this maximum occurs at values of
for which

This can be solved for as

(14)

which expresses as a function of . However, calculation of
the gradient requires an expression for as a function of .
If the inverse function is denoted , then the Inverse
Function Theorem [24] expresses the derivative in terms
of as

From (14), the derivative of with respect to is

and so

Gathering terms together shows that

which gives the desired form for the algorithm update.
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