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Acoustic Echo Cancellation and Doubletalk Detection
Using Estimated Loudspeaker Impulse Responses

Per Åhgren

Abstract—In this paper, we present a new approach to acoustic
echo cancellation and doubletalk detection for a teleconferencing
system including a loudspeaker for which an estimate of the loud-
speaker impulse response is available. The approach is general in
the sense that it may be applied to most existing acoustic echo can-
cellation and doubletalk detection algorithms. We show that the
new approach reduces the computational complexity for both the
echo cancellation and the doubletalk detection algorithms. Fur-
thermore, the numerical examples show that the new approach also
may increase the echo cancellation and doubletalk detection per-
formances.

Index Terms—Acoustic echo cancellation, adaptive filtering,
doubletalk detection, loudspeaker.

I. INTRODUCTION

THE problem of acoustic echo cancellation (AEC) was
introduced in [1] and is still an active field of research.

Acoustic Echo Cancellers are needed for removing the acoustic
echoes resulting from the acoustic coupling between the loud-
speaker(s) and the microphone(s) in communication systems.
In Fig. 1, a typical setup for AEC is shown. The main purpose
of the setup is that the near-end speech signal is to be
picked up by the microphone and propagated to the far-end
room while far-end speech is to be emitted by the loudspeaker

into the near-end room. During doubletalk, which is the case
when both near-end and far-end speech is present, the near-end
speech in the microphone signal is corrupted by the echo
of the far-end speech signal that is propagated in the
near-end room from the loudspeaker to the microphone .
Therefore, during doubletalk, the resulting microphone signal

consists of near-end speech mixed with far-end speech
filtered by the near-end room impulse response from the
loudspeaker to the microphone

(1)

In (1), is noise and the input data vector is defined as

(2)

where is the order of the room impulse response modeled as
a finite impulse response (FIR) filter (in this paper we will only
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Fig. 1. Typical AEC setup.

consider FIR filters which is the most common filter type for
AEC)

(3)

The room impulse response is varying with time since move-
ments (e.g., people moving around) may occur in the room.
Thus, usually in order to remove the undesired echo an adaptive
filter estimate of is used to predict the far-end speech
contribution and subtract it from the microphone signal

. Thereby, we get the error signal

(4)
that ideally should be equal to the near-end speech signal .
Note that in (4), for simplicity, we have assumed that and

are of the same length. If that is not the case, then (4) has to
be modified accordingly.

When no near-end speech is present the error signal can
be used to adapt the adaptive filter using some algorithm
for filter adaptation. Several different algorithms for filter adap-
tation in AEC have been proposed [2]. The most common one is
perhaps the normalized least-mean squares (NLMS) algorithm
[3] which has been shown to perform well for the AEC problem
while at the same time having a rather low computational com-
plexity.

When there is doubletalk, however, the near-end speech
signal disturbs the adaptation and can cause the adaptive
filter to diverge. Therefore it is important to detect doubletalk
in order to stop the filter adaptation when doubletalk is present.
Several different algorithms have been proposed for doubletalk
detection (DTD) and in this paper we choose to compare the
results with the results obtained by the cross-correlation (CR)
algorithm [4] and the normalized cross-correlation (NCR)
algorithm [5]. We also compare the results with the results
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obtained by the computationally cheap approximation of the
NCR algorithm (Cheap-NCR) presented in [5].

The AEC algorithms as well as the DTD algorithms are to
be run in real-time on a digital signal processor with limited
memory and computational power. As the numerical complex-
ities of these algorithms usually are proportional to a power of

(the length of the impulse response ), and usually is very
large, ranging from several hundred to several thousand, it is
important to minimize the computational complexity. The main
purpose of this paper is to show how the knowledge of the im-
pulse response for the loudspeaker can be used to reduce the
computational complexity of existing AEC and DTD algorithms
while at the same time increasing the performance.

II. AEC AND DTD USING ESTIMATED LOUDSPEAKER

IMPULSE RESPONSES

In this paper, we propose a new approach to AEC as well as
DTD based on the knowledge of the impulse response of the
loudspeaker in Fig. 1. This new approach, which we will de-
note the loudspeaker-impulse-response (LIME) approach, may
be used to modify existing AEC and DTD algorithms.

The LIME approach for the DTD problem we will denote
DTD-LIME. As we will see, the DTD-LIME approach use a
data model similar to the one in (1). Thus the DTD-LIME ap-
proach may probably be used for most existing DTD algorithms
working with the model in (1). In this section, we show how
the approach can be applied to the NCR algorithm. The reason
for choosing the NCR algorithm is that it has a high numerical
complexity and that it has been shown to perform well. It turns
out that the DTD-LIME approach can significantly reduce the
computational complexity of the NCR algorithm while still ob-
taining a comparable DTD performance.

The LIME approach for AEC filter adaptation algorithms we
will denote the AEC-LIME approach. Similarly to DTD-LIME,
AEC-LIME may probably be applied to most AEC filter adap-
tation algorithms as it uses a data model similar to the one in (1).
As we will see, the AEC-LIME approach is best used together
with the DTD-LIME approach as both have common parts. In
the numerical examples we apply the approach to NLMS. It
turns out that AEC-LIME yields a similar echo cancellation per-
formance while achieving a lower computational complexity.

The LIME approach is based on the fact that the all far-end
speech, and no near-end speech, is filtered by the time-invariant
impulse response for the loudspeaker in Fig. 1. This can be
exploited and if we know the loudspeaker impulse response we
can modify many of the existing AEC filter adaptation and DTD
algorithms. These modifications are described in Sections II-A
and II-B. For the LIME approach to be feasible, it is vital that we
can somehow obtain the loudspeaker impulse response and this
is discussed in Section II-C. In general, many DTD algorithms
have problem when the acoustic path changes. This is discussed
in Section II-D. In Section II-E, we present and summarize the
AEC-LIME and DTD-LIME approaches for an AEC algorithm
where NLMS is used as the filter adaptation algorithm, and NCR
is used as DTD algorithm. Finally, in Section II-F, we discuss
the computational complexities of the unified AEC-LIME and
DTD-LIME approach.

A. AEC-LIME Approach

The loudspeaker impulse response in (1) includes both the
unknown time-varying impulse response of the echo path
in the near-end room, and the time-invariant impulse response

of the loudspeaker of which an estimate is assumed to
be available. Assuming these impulse responses can be approx-
imated as linear (which is a common basic assumption in AEC),
we can write as

(5)

where denotes convolution, the loudspeaker impulse response
of length is defined as

(6)

and the echo path impulse response is defined similarly. If
denotes the length of , we have from (5) that

(7)

Most AEC filter adaptation algorithms work with the data model
in (1). Since we have assumed that we know an estimate of

, we can rewrite this equation as

(8)

where

(9)

(10)

(11)

Since (8) is almost identical to (1), the AEC filter adaptation al-
gorithm can be applied to (8) instead of (1). As is shorter
than , and the computational complexities of the AEC filter
adaptation algorithms usually are proportional to the order of the
filter to estimate, the transition from (1)–(8) results in a reduc-
tion of the computational complexity for the AEC filter adapta-
tion algorithm. Note, however, that this reduction is only sub-
stantial if we have a good estimate of . If the estimate is
very poor, we still have to estimate a filter of similar length as

(using an input signal prefiltered by ).

B. DTD-LIME Approach

Most DTD algorithms work with the data model in (1) and
rely of the fact that is a filtered version of (filtered by
the impulse response ) and that is not. In the DTD-LIME
approach we modify the data model in (1) and end up with the
following model:

(12)

where

(13)

(14)

(15)

and is the estimate of obtained from the model in (8)
with AEC-LIME. The computational complexity of many DTD
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algorithms are generally proportional to the length of the filter in
the AEC data model. Thus, by applying the DTD algorithms to
the model in (12) instead of the model in (1), we will lower the
computational complexity of the algorithms significantly since
the filter in (12) generally is much shorter than the filter
in (1).

C. Estimation of the Loudspeaker Impulse Response

The impulse response of a loudspeaker may be obtained in
different ways. The best, and perhaps most direct way, is to com-
pute it from measurements taken in an anechoic chamber. There
are, however, also methods for computing the impulse response
from measurements taken in an ordinary echoic room [6].

If the loudspeaker impulse responses were time-varying the
LIME-approach would not be feasible. Fortunately, it seems that
the loudspeaker impulse responses are relative time-invariant, at
least for more sophisticated loudspeakers. However, no scien-
tific results have been published about this, instead this property
has simply been assumed by the industry and the assumption
seem to be correct. Indeed, this time-invariance is a property
used by music products such as the Dirac Research Corrector
that can compensate for the acoustic properties of loudspeakers
[7].

It should also be noted that what we mean by the loudspeaker
impulse response is the part of the impulse response that cor-
responds to the electronics in the loudspeaker and the ampli-
fier. It is clear that the loudspeaker impulse response is highly
dependent on what direction to the loudspeaker it is measured
for. What we are interested in is, however, the part that is di-
rectional independent (the case is the same for the Corrector
product mentioned above).

D. Sensitivity to Changes in the Acoustic Path

A case that many DTD algorithms have problems with is
when the acoustic path between the loudspeaker and the micro-
phone changes. Often these changes are detected as doubletalk.
Unfortunately, the DTD-LIME approach is definitely sensitive
to this. This is easily seen from the model in (12) where the
input signal is dependent on . If changes a lot, this
model will not be valid anymore. For small changes in the
model should still be applicable but large changes in will
be detected as doubletalk. Another DTD algorithm the same
problem appears for is Cheap-NCR which is dependent on an
estimate of that has to be valid. For DTD-LIME, as well
as for Cheap-NCR, there are several practical solutions to this
problem. One way is to detect the changes in the acoustic paths
separately. However, the simplest way is probably to use a snap-
shot of the adaptive filter estimate computed just before the dou-
bletalk was detected to cancel the echo, and continue to adapt
the filter during the doubletalk and use the most recent adaptive
filter estimate in the DTD. A study of these solutions is, how-
ever, not included in this paper.

E. AEC-LIME and DTD-LIME Approaches Applied to NLMS
and NCR

The AEC-LIME and DTD-LIME approaches are summa-
rized in the steps below where the DTD-LIME approach is

applied to the NCR algorithm and the AEC-LIME approach
is applied when NLMS is the adaptive algorithm. We will
assume that we have previously computed an estimate of
the loudspeaker impulse response .

i) Compute

(16)

ii) If doubletalk is not present, compute (adaptively and
recursively in time) an estimate of from
and using NLMS and use as the estimate
of the echo signal used to cancel the echo. (This is the
AEC part.)

iii) Compute

(17)

iv) Directly applying the NCR algorithm developed in [5]
on and we get the following decision variable

(18)

For this decision variable, we have that doubletalk is
detected at time sample if , and not detected
if , where is constant threshold that should
be chosen to minimize the probability of false alarm

, as well as the probability of missed detection
(defined in Section III-A).

In (18), and are defined as

(19)

where denotes the expectation operator. The standard devia-
tion is defined as . In practice, estimates

, and are used in (18) instead of , and
. In this paper, we choose to compute these over a sliding

time window of length

(20)

(21)

(22)

It is important to note that applying the DTD-LIME algorithm
for a loudspeaker impulse response of length 1 is not
a good idea, since for ideally (for correctly estimated

and without any noise) we have and thus
and we get in (18). Fur-

thermore, for small values of , the DTD-LIME approach can
probably be expected to perform poorly since the extra informa-
tion added by using the known impulse response is minor [e.g.,
when applied to the NCR algorithm fewer correlation lags are
used for computing in (18)].
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TABLE I
SUMMARY OF THE NUMBER OF MULTIPLICATIONS PER SAMPLE FOR AN AEC
SETUP WITH NLMS AS FILTER ADAPTATION ALGORITHM AND NCR AS DTD

ALGORITHM WITH AND WITHOUT THE LIME APPROACH

Fig. 2. Required multiplications per sample as a function of the filter length
n for the AEC setup with NLMS as adaptive algorithm and NCR as DTD
algorithm with (solid) and without (dotted) the LIME approach.

F. Numerical Complexity Comparison

In this Section, we compare the computational complexities
for an AEC setup where NLMS is used as the adaptive algorithm
and NCR is used as DTD algorithm for the cases when the LIME
approach is used and when it is not. Note that and
can be computed recursively in time using the matrix inversion
lemma [8], requiring multiplications and multipli-
cations per time sample, respectively (this is for the case when

and are computed recursively over a sliding time
window). The number of multiplications required for computing
the NCR decision variable for each time sample are then easily
found to be (not counting the square root) when the
LIME approach is used. The total numbers of multiplications
required per time sample for an AEC setup using NLMS as
adaptive algorithm and NCR as DTD algorithm are presented
in Table I for the cases when the LIME-approach is used and
when it is not used. It is clear that the computational complexity
of the AEC setup is much higher without the LIME approach
than with the LIME-approach. To further illustrate the gain in
computational performance, in Fig. 2 we show the number of
multiplications per sample for the algorithms in Table I as a
function of . In the figure, we use a somewhat typical value

of . Again, it is clear that the LIME-approach offers a
significant reduction in the computational complexity.

Note that we have chosen not to compare with the numerical
complexities when the LIME approach is applied to the other
two DTD algorithms (CR and Cheap-NCR) used in the numer-
ical examples. The reason for this is that for these the gain in
computational complexity is minor since the numerical com-
plexity of the CR algorithm is only proportional to , and the
Cheap-NCR algorithm can be easily be shown to require just a
few multiplications to be computed and just a few values to be
stored when implemented in a sliding window manner [9].

III. NUMERICAL EXAMPLES

To evaluate the performance of the DTD algorithms with the
LIME-approach, we have used an evaluation scheme similar to
the one that was proposed in [4]. This scheme is described in
Section III-B. In Section III-A, some basic definitions are given
and in Section III-C the results of the numerical simulations are
presented.

A. Definitions

The probability of missed detection , and the probability
of false alarm are defined as

(23)

where is the number of samples where doubletalk was
not detected but was present, is the total number of sam-
ples where doubletalk was present, is the number of sam-
ples where doubletalk was detected but where no doubletalk was
present, and is the total number of samples where dou-
bletalk was not present.

The near-end to far-end speech ratio (NFR), and the signal-to-
noise ratio (SNR) are defined as

(24)

(25)

where , and are defined in (1).
The echo return loss enhancement (ERLE) is a measure of the

echo cancellation performance, defined as

(26)

(27)

where is the length of a window over which the ERLE is
computed. Note that the ERLE measure is only applicable when
there is no near-end speech present.
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The misalignment is a measure of how well the adaptive filter
in an AEC setup approximates the true filter

(28)

Note that if the lengths of and differ, the shorter one is
padded with zeros when computing the misalignment

B. DTD Algorithm Evaluation Scheme

i) Generate 2 s of data according to the model in (1)
without any doubletalk present .

ii) Apply the detector to the data and choose a threshold
that gives a of 0.1.

iii) Create nine different data sets, each in which one of
three different 1/2-s speech samples are added in three
different positions into the original data set from step
i).

iv) Apply the detector to all the nine data sets and compute
the average probability of missed detection .

C. Simulations

The model in (1) is used to generate the data. The impulse
response in (1) is obtained in an ordinary office room using
an AEC setup with a loudspeaker with known (computed in an
anechoic chamber) impulse response . For the simulations, a
sampling frequency of 8 kHz is used in order to keep the com-
putational complexity of the simulations for NCR (without the
LIME approach) reasonably low (the low sampling frequency
allowed using shorter impulse responses, thereby lowering the
computational complexity).

In the first numerical example, the doubletalk detection per-
formance of the CR, NCR and Cheap-NCR algorithms with,
and without, the LIME approach are tested using the evaluation
scheme presented in Section III-B. As far-end speech signal a
2-s speech sample is used and three 1/2-s speech samples are
used for the near-end speech signals. The total room impulse
response (including the loudspeaker impulse response) has a
length of 250 filter taps (the reason for performing the simu-
lation with so short impulse responses is mainly that the NCR
algorithm without the LIME approach is too computationally
complex to allow much longer filters) and the loudspeaker im-
pulse response is truncated to a length of 75. The length of
the sliding data window used to compute , and
is set to . The estimate of the echo paths used in
the detector is estimated from 2 s of data generated using the
model in (1) without any doubletalk. The detectors are evalu-
ated for different NFR and SNR and the results are displayed
in Figs. 2–5, where is plotted as a function of the NFR. It
is clear from the figures that the NCR, Cheap NCR and CR al-
gorithms with the LIME approach outperforms their counter-
parts without the LIME approach when the SNR is reasonably
high (above 10 dB). The reason that the LIME approach works
poorly for low SNR is probably that the estimate of com-
puted in the LIME approach is too poor for the model in (12) to
be sufficiently accurate. It may seem strange that in general the

Fig. 3. Probability of miss for the NCR algorithm with the LIME approach
(solid) and for the NCR algorithm without the LIME approach (dotted) as a
function of the NFR for different values of the SNR (marked as numbers in the
plot).

Fig. 4. Probability of miss for the Cheap-NCR algorithm with the LIME
approach (solid) and for the Cheap-NCR algorithm without the LIME approach
(dotted) as a function of the NFR for different values of the SNR (marked as
numbers in the plot).

results of the Cheap-NCR algorithm are better than those ob-
tained by the NCR algorithm. One should, however, be careful
when comparing the results of the NCR and Cheap-NCR algo-
rithms since it is hard to make a fair comparison. For instance,
the Cheap-NCR algorithm requires that an estimate of is com-
puted before it is used. Thus, in a sense, it uses more data than
the NCR algorithm that uses a data window of length
and can thereby achieve better results than the NCR algorithm
even though it is just an approximation of NCR.

In the second numerical example, we study the performance
of the AEC-LIME approach applied to an AEC-setup where
NLMS is the adaptive algorithm. As far-end speech signal a 10-s
speech sample is used, and the total impulse responses are 550
long. The loudspeaker impulse response (that is common to all
total impulse responses used in the simulation) is of length 100.
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Fig. 5. Probability of miss for the CR algorithm with the LIME approach
(solid) and for the CR algorithm without the LIME approach (dotted) as a
function of the NFR for different values of the SNR (marked as numbers in the
plot).

Fig. 6. Echo cancellation performance in terms of ERLE as a function of time
for NLMS with AEC-LIME (solid) and NLMS without AEC-LIME (dotted).

The length of the filters estimated by NLMS with and without
the LIME-approach are set to 450 and 500, respectively. The
SNR is set to 35 dB. In order to simulate a reasonably realistic
AEC-setup, we introduced changes in . During the first 5 s,

is kept constant. After 5 s, is changed abruptly (corre-
sponding to somebody suddenly blocking or moving the loud-
speaker or microphone) and then again kept constant for the rest
of the simulation. Furthermore, filter adaptation is not allowed
from 3 to 7 s, corresponding to a doubletalk situation. Note,
however, that we did not add any near-end speech as the ERLE
measure is only valid when there is no near-end speech present.
This does, however, not modify the interpretation of the simu-
lation results. The simulation results are shown in Fig. 6, where
the ERLE is plotted as a function of time.

As we can see NLMS without the LIME approach performs
similarly to NLMS with the LIME approach when there is no

Fig. 7. Echo cancellation performance in terms of misalignment as a function
of time for NLMS with AEC-LIME (solid) and NLMS without AEC-LIME
(dotted).

doubletalk. However, when there is doubletalk (and filter adap-
tation is not allowed), NLMS with the LIME approach performs
better than NLMS without the LIME approach. After the change
in at 5 s, both algorithms performs poorly, but that is to be
expected as the previous estimates for are inaccurate after
the change. In Fig. 7, the results for the same simulation are
displayed in terms of misalignment. Again we see that NLMS
with the LIME approach performs similarly to NLMS without
the LIME approach. It is clear that using the LIME-approach
for AEC it is possible to reduce the length of the adaptive filter,
and still get a comparable, or even better, AEC performance.

IV. CONCLUSION

We have proposed a new approach to doubletalk detection
and acoustic echo cancellation that can be used for most dou-
bletalk and echo cancellation algorithms. When applied to some
doubletalk detection algorithms it may offer a lower computa-
tional complexity. Furthermore, the numerical examples show
that when applied to the NCR, CR, and Cheap-NCR doubletalk
detection algorithms it may also improve the doubletalk detec-
tion performance for reasonably high SNR.

When applied to echo cancellation algorithms, the approach
offers a minor improvement in computational complexity. How-
ever, as the simulations show, it may improve the echo cancel-
lation performance.
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