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Analysis of the Filtered-X LMS Algorithm
and a Related New Algorithm for Active

Control of Multitonal Noise
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Abstract—In the presence of tonal noise generated by periodic
noise source like rotating machines, the filtered-X LMS (FXLMS)
algorithm is used for active control of such noises. However, the al-
gorithm is derived under the assumption of slow adaptation limit
and the exact analysis of the algorithm is restricted to the case of
one real sinusoid in the literature. In this paper, for the general
case of arbitrary number of sources, the characteristic polynomial
of the equivalent linear system describing the FXLMS algorithm
is derived and a method for calculating the stability limit is pre-
sented. Also, a related new algorithm free from the above assump-
tion, which is nonlinear with respect to the tap weights, is proposed.
Simulation results show that in the early stage of adaptation the
new algorithm gives faster decay of errors.

Index Terms—Active noise control, convergence analysis, fil-
tered-X LMS (FXLMS) algorithm, multitonal noise.

I. INTRODUCTION

ACTIVE noise control (ANC) provides a very useful tool
for suppressing low-frequency noises [1], [2]. The primary

noise dominated by low frequencies is usually generated by sev-
eral independent periodic sources such as rotating machines.
The principle of ANC is that the control system produces the
antinoise field so that the primary sound field from the noise
sources is cancelled by destructive interference of sound fields.
Typical applications of ANC can be found in transportation sys-
tems such as propeller aircrafts, motorboats, helicopters, etc. In
such applications, a synchronized signal from each noise source
and a multiple-reference control system are usually needed to
attain noise reduction efficiently and substantially [3], [4].

A narrow-band multiple-reference feedforward system for
ANC with independent noise sources from rotating ma-
chines is shown in Fig. 1. If harmonic components of each
noise source are present, we regard such components as other
separate noise sources by setting their frequencies as multiples
of the fundamental frequency. Each adaptive filter is used to
control the amplitude and the phase of a single-frequency ref-
erence signal before adding their outputs to drive a secondary
source such as a loudspeaker. The microphone is employed to
measure the residual noise achieved. The detected error signal
is then used to adjust the adaptive filters so as to minimize the
level of the residual noise.
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Fig. 1. Physical model of a multireference active noise controller for
cancelling multitonal acoustic noise.

Now, with respect to the convergence analysis of such ANC,
in the case where a pair of a sinusoid and a cosinusoid is used
as reference signals, i.e., in the notch filtering, the analysis of
the LMS algorithm using transform is well known [5]. Also,
a new method using the eigen decomposition of the determin-
istic correlation matrix has been proposed for the twin-reference
case [3]. If the effect of the secondary path is significant, the fil-
tered-X LMS (FXLMS) algorithm is usually employed. In [6],
the FXLMS algorithm is employed for the case of one real sinu-
soid, and the effect of the secondary path to the passband char-
acteristic of the ANC system is analyzed.

In this paper, for the general case of arbitrary number of
sources, the analysis of the FXLMS algorithm is performed
using a new approach based on a state-space expression. First,
the characteristic polynomial of the equivalent linear system de-
scribing the FXLMS algorithm is derived. Then, a method for
calculating the stability limit about the step size is proposed.
Also, by reconsidering the derivation of the FXLMS algorithm
under the assumption of slow adaptation limit, a related new al-
gorithm free from this assumption is proposed. So far, in order
to be free from the slow adaptation assumption, some alternative
algorithms to the FXLMS have been proposed such as a “modi-
fied filtered-x” or a “delay compensated filtered-x” algorithm,
which utilizes an internal model control structure [7]. How-
ever, the structures of the algorithms are rather complicated.
The proposed new algorithm has a simple structure using the
special property of the input signal. Moreover, it is shown by
linearization that our new algorithm is equivalent to the conven-
tional FXLMS algorithm near the convergent point. Therefore,
the local stability property is the same as that of the FXLMS al-
gorithm. Finally, we show that the stability limit derived in this
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Fig. 2. Block diagram of the whole ANC system for multitonal noise.

paper is in good agreement with the simulation results and the
proposed new algorithm gives improved speed of decay of er-
rors in the early stage of adaptation compared with that of the
FXLMS algorithm. It is noted that some filtered-x based algo-
rithms with faster convergence have been proposed, based on
more sophisticated adaptive filtering methods such as the fast
affine projection (FAP), recursive-least-squares (RLS), etc. [1],
[8], but, again our new algorithm is much simpler than those
algorithms.

The organization of this paper is as follows: Section II
presents the derivation of the FXLMS algorithm for active con-
trol of multitonal noise and Section III provides its convergence
analysis. In Section IV, the proposed new FXLMS algorithm
is derived without the assumption of slow adaptation limit and
the local stability property of the proposed method near the
convergent point is discussed. Section V presents the simulation
experiments to show that the stability limits of the conventional
and the proposed new FXLMS algorithms coincide well with
the corresponding theoretical results.

II. ACTIVE CONTROL OF MULTITONAL NOISE

WITH THE FXLMS ALGORITHM

The block diagram of the ANC system is shown in Fig. 2.
An extension to the multichannel case, with multiple actuators
and multiple error sensors is straightforward. Here, we treat the
single channel case for the sake of brevity. The noise source of
the th rotating machine is assumed to be narrow band and is
modeled by a pure complex sinusoid [3]. That is, the th ref-
erence signal to the adaptive system is (

) where is the total number of noise sources,
, is the frequency of the th rotating machine and

is the sampling rate. When harmonics of one noise source are
present, the corresponding multiple pure complex sinusoids are
used as the input signals. Let the reference signal vector
and the tap weight vector be defined respectively as

(1)

(2)

where denotes the transpose and the frequencies are as-
sumed to be known and distinct. Usually, real-valued systems
are treated so that we set a pair of frequency and with

complex conjugate pair of initial weights. The transfer function
of the secondary path from the loudspeaker to the error micro-
phone is assumed to be an th order finite impulse response
(FIR) system as

This assumption is reasonable, since a physical secondary path
of an infinite impulse response (IIR) can be approximated by a
FIR system with high order provided that it is stable. The output
of the adaptive system is passed through the secondary path to
form the antinoise signal and is expressed in the time do-
main as

(3)
where is the impulse response of the secondary path,
and , and denote the convolution operation, the Her-
mitian transpose and the complex conjugate, respectively. Each
tonal signal is passed through a linear system
with the transfer function ( ) so that the
desired signal at the error microphone is written as

(4)

where

If the adaptive tap weights change very slowly, that is,
( ), the antinoise signal (3) is

approximated as

(5)

with

where ( ). Then, the LMS algo-
rithm for minimizing the mean square of the approximate error
signal is written as

(6)

But the actual error is given by and some-
times only an approximate knowledge of , which is
the transfer function of an th order FIR filter, is available. So,
the FXLMS algorithm actually used is described by

(7)

with

where is a positive step size. From (3), (4), and (7), the
FXLMS algorithm is linear with respect to the adaptive tap
weight. Since (7) is derived based on the assumption of slow
adaptation limit, there is a room of improvement.
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III. CONVERGENCE ANALYSIS OF THE FXLMS ALGORITHM

By setting with , from (3) and (4), the
stationary point of (7) is given by

(8)

Let the tap error vector be defined by

(9)

Then, from (3), (4), and (8), is simply expressed as

(10)

Substituting (10) into (7), we have

(11)

Writing (11) componentwise for , we have

(12)
The linear system (12) is time-varying but defining

, then (12) becomes a time-invariant linear system
described by

(13)

Defining the vector , (13) is
written as

(14)

where

(15)

but (14) is expressed as the following state-space form:

...
...

(16)

where the transition matrix is defined by

...
. . .

. . .
...

(17)
Thus, the FXLMS algorithm (7) converges to the desired weight
vector (8) iff all the eigenvalues of are . To find the

Fig. 3. Movements of the roots of (20) for increasing �.

eigenvalues, let the eigenvector be , then
from and (17) we have

Hence, from , we have

(18)
Since , we have

(19)

Thus, the characteristic equation is given by

(20)

The roots are stable ones so that they are deleted from
(20). Next we obtain the interval of within which the stability
condition is guaranteed. This process is visualized in
Fig. 3. First, for sufficiently small positive , let
where ( ). Substituting this into (20),
we have

(21)

where is of order and higher order terms are discarded.
Hence, . So, for , it is neces-
sary that the following condition holds:

(22)

This is the well-known 90 condition in the ANC literature. The
corresponding result for the one real sinusoid case is given in
[1, p. 126]. The stability limit is attained when one eigenvalue
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first reaches the unit circle, that is, as increases
where ( ). Hence, from (20), we have

(23)

where . Thus, the stability limit
is obtained by finding the minimum positive value of where

(24)
with . For the special case of with
( )

(25)
where

From , it is readily seen that
. This generalizes the result of [3]. For general

, we need to compute numerically by finding such
that as moves from 0 to .

IV. PROPOSED NEW ALGORITHM

Here, we derive a new algorithm free from the assumption of
slow adaptation limit. We note, first, that (3) can be rewritten as

(26)

where

Thus, by replacing ( ) with its estimate (
), we obtain the following proposed algorithm:

(27)

with a time-varying step size where

(28)

When becomes 0, it is replaced by some small positive
number to avoid the division by 0 in (28). From (27) and (28),
the proposed algorithm is nonlinear with respect to the adaptive
tap weight. Note that we are treating the case where the desired
signal which is to be cancelled is a sum of pure sinusoid as in
(4); that is, it has line spectrum. Hence, our FXLMS algorithms
are not applicable to the case of wide-band stochastic noise. The
stationary point of this algorithm is also in (8). Also, from
(4) and (8) . Using the same tap error
vector in (9), (27) is rewritten as

(29)

but the system (29) is highly nonlinear and is difficult to ana-
lyze its convergence property rigorously. So, the local stability
property of the proposed FXLMS algorithm near the convergent
point is considered here. If the tap error vector becomes small,
(29) can be linearized by expanding it with respect to and

( ) around 0 and , which denotes the
th element of , respectively, with a fixed step size . That is,

denoting the th diagonal element by ,
we have

(30)

where higher order errors concerning and
are discarded. From (29) and (30), the tap error vector
can be approximated as

. . .

. . .

...

...

(31)

This shows that from (11) near the stationary point the be-
havior of the proposed new FXLMS algorithm is almost the
same as that of the FXLMS algorithm, provided its trajectory
approaches to this region. Thus, the stability limit of the FXLMS
algorithm gives some insight to that of the proposed one.

Now, we consider the case where and the step
size is time varying. It is seen that the second term
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in the right-hand side of (29) is , since
. Hence, for , this term can be discarded. Defining

, we have

(32)

Then, from (32), the squared norm of is given by

(33)

Since the difference between and is written
as

(34)

is nonincreasing for where

(35)

but the upper limit 2 is invalid, since we assume that is small
and the second term of the right-hand side of (29) is discarded.
If the trajectory of (27) with (35) approaches the stationary point

, can be written as

(36)

Hence, using the upper limit in (24) for the FXLMS algo-
rithm, the upper limit for the proposed FXLMS algorithm
is given by

(37)

For the case of , we use

(38)

in (27) with the upper limit of given by

(39)

Table I shows the numerical complexities (operations per
sample) of the FXLMS algorithm and the proposed algorithm
where and refer to the total number of noise sources and
the order of the estimated secondary path, respectively. It is
seen that the proposed algorithm requires much computations
for large .

V. SIMULATION RESULTS

To examine the validity of the above theoretical develop-
ments, some simulations have been performed. Here, we treat
the following two cases.

TABLE I
COMPLEXITY (OPERATIONS PER SAMPLE) OF THE

FXLMS AND THE PROPOSED ALGORITHM

(K and L are the total number of noise sources and the
order of the estimated secondary path, respectively.)

Fig. 4. Graph of Imf� g in (24) versus � for Case 1.

Case 1: where is the transfer function
of a 256 tap FIR system ( ) which
corresponds to a real secondary path in [1].

Case 2: is the same as Case 1 ( ). is a 32
tap FIR system by retaining the first 32 taps of
( ).

The secondary path is represented by an IIR system whose
numerator and denominator coefficients are in the files s_z.bin
and s_p.bin in [1], respectively. In the simulations, we used a
FIR system with 256 taps, which is obtained by truncating the
power-series expansion of and scaling by dividing by three
times the maximum absolute value of its impulse response co-
efficients. and in Case 2 satisfy the 90 condition in
(22).

The reference signals for the FXLMS algorithm are assumed
to be of the form of unit magnitude complex sinusoid, but to
treat real-valued systems, we set a pair of frequency and
with the same step size and complex conjugate pair of initial
weights. In our simulation studies, we consider three tonal noise
frequencies of 125, 250 (harmonic of 125 Hz), and 300 Hz and
a sampling frequency of 1 kHz, which gives rise to ,

and . So, we have with
and each
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Fig. 5. Learning curves in decibels for Case 1 (L = 256) with � = 0:05 and � = 0:4. (a) � = 0:05. (b) � = 0:4.

Fig. 6. Learning curves in decibels for Case 1 (L = 256) with � = 0:5 and � = 0:6707. (a) � = 0:5. (b) � = 0:6707.

tonal signal is passed through either of two pri-
mary paths or which are taken from [1] where the
files p1z.bin and p2z.bin contain the numerator coefficients of

and , respectively, and p1p.bin and p2p.bin contain
the denominator coefficients. and were scaled sim-
ilary as for . Hence, the transfer function vector from the
primary source to the microphone

From (8), the stationary (optimal) weight can be obtained
and it turns out that the absolute value of ( ) is
nearly 1.

First, we obtain the upper limit in (24) numerically. In
Fig. 4, for Case 1, the graph of is presented. Besides at

, which are excluded,
becomes 0 at 16 points. Among these points, the min-

imum value of is found to be 0.5291. Hence, in this case,

we have . Since the proposed algorithm is nor-
malized as in (35), from (37), the upper limit of the proposed
algorithm is . Similarly,
for Case 2, the upper limit is found to be and

.
Next, we compare the convergence characteristics of the

FXLMS and the proposed algorithm. For the FXLMS al-
gorithm, is set to for Case 1 and

for Case 2. For the proposed algorithm,
the same is used in (35) and (38). To see the performance floor
easily, weak white noise is added to so that the error level
is dB. The performance is obtained by the average of 20
trials. Since usually we do not have a priori knowledge about

, here we use a relatively large initial weight
( ).

Figs. 5 and 6 show the plots of the magnitude of the error
in decibels for Case 1 with , 0.4, 0.5, and 0.6707,

respectively. From these figures, when is relatively small (for
example ), the performance of the proposed algorithm
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Fig. 7. Learning curves in decibels for Case 1 (L = 256) using different initial weights. (a) w (0) = 5 (i = 1; . . . ; K) for � = 0:5. (b) w (0) = 100
(i = 1; . . . ; K) for � = 0:5.

is a little better than that of the FXLMS algorithm and both
algorithms converge slowly, but the choice of gives
the fastest convergence speed for the FXLMS algorithm and the
proposed algorithm has a faster convergence than the FXLMS
algorithm. For , the FXLMS algorithm slows down
but the proposed algorithm converges as fast as the FXLMS for

. We see that for , both algorithms
always converge to dB and in Fig. 6(b) for the stability limit

, still the error of the proposed algorithm decays to a cer-
tain level whereas the FXLMS algorithm does not converge at
all. It is also observed that, for , the FXLMS algorithm
diverges, but the proposed algorithm converges to a certain level
above dB, and for , the proposed algorithm diverges.
Thus, the proposed algorithm has some robustness concerning
the choice of the step size. Also, in Case 2, we have confirmed
that almost the same tendency of the performance as Case 1 is
observed.

Fig. 7 shows the plots of the magnitude of the error
in decibels for Case 1 with using two initial weights

and 100 ( ) in order to investigate
the effect of the initial weight. From Fig. 7, with
( ), the difference of the performance of both algo-
rithms becomes small but with ( ),
the difference becomes large. It is seen that the proposed al-
gorithm can eliminate the effect of large initial weight errors.
For the FXLMS algorithm, the tap error vector obeys a linear
time-invariant (16) so that the decay of the magnitude of error
in decibels is linear. This can be seen from these learning curves.
For the proposed algorithm, after the tap error becomes small,
the corresponding decay is also linear, but in the early stage of
adaptation, the decay is much faster.

Finally, Fig. 8 plots the change of the following quantity:

(40)

in decibels for the setting in Fig. 6(a). This is a sum of the upper
bound of and is related in some sense to the vari-

Fig. 8. Plots of (n) in decibels from (40) for the setting in Fig. 6(a) (L =
256).

ation of the adaptive tap weights. From Figs. 6(a) and 8, if
is large, that is, the variation of the adaptive filter is large, the
difference between the performance of both algorithms is large.
In other words, when the assumption of slow adaptation limit
is not realized, it can be concluded that the proposed method is
effective.

VI. CONCLUSION

In this paper, first we have presented analysis of the FXLMS
algorithm with tonal reference signals. The characteristic equa-
tion is derived and a procedure for computing the stability limit
is given. Then, a related new FXLMS algorithm has been pro-
posed. By simulations, it is found that the latter algorithm gives
faster decay of errors in the early stage and has some robustness
about the choice of the step size. It is a future work to examine
these properties in detail.
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