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Minimum Phone Error Training of Precision Matrix
Models

Khe Chai Sim and M.J.F. Gales

Abstract— Gaussian Mixture Models (GMMs) are commonly Recently, more advanced covariance modelling techniques
used as the output density function for large vocabulary con- have been found to give improvements over the feature
tinuous speech recognition (LVCSR) systems. A standard prob- yeco(rieating schemes above. Techniques that approximate the
lem when using multivariate GMMs to classify data is how . . e .
to accurately represent the correlation in the feature vector. |nv_ers_e Covarlan_c_e (precision) ma_trlces are commonly us_ed.
Full covariance matrices yield a good model, but dramatically This is more efficient than modelling the covariance matrix,
increase the number of model parameters. Hence diagonal covari- as it eliminates the need to invert the covariance matrices
ance matrices are commonly used. Structured precision matrix gg required by schemes such as the factor_ana|ysed HMMs
approximations provide an alternative, flexible and compact (FAHMMs) [8]. This yields efficient likelihood computation

representation. Schemes in this category include the extended]c recision matrix models. Exambpl f th models ar
maximum likelihood linear transform and subspace for precision Or precisio a oaeis. ples of these modaels are

and mean models. This paper examines how these precisionthe semi-tied covariance (STC) [9], extended MLLT (EM-
matrix models can be discriminatively trained and used on state- LLT) [10] and subspace for precision and mean (SPAM) [11]

of-the-art speech recognition tasks. In particular the use of the models. These models have been successfully applied to

minimum phone error criterion is investigated. Implementation | y/cgRr m ina the Maximum Likelih ML) trainin
issues associated with building LVCSR systems are also ad- CSR systems using the Maximu elihood (ML) training

dressed. These models are evaluated and compared using IargeSCheme [91, [12], [13]. ) .
vocabulary continuous telephone speech (CTS) and broadcast For many years, ML estimation has been the standard
news (BN) English tasks. approach to train the HMMs for speech recognition. However,

Index Terms— precision matrix modelling, minimum phone dispriminative training.h.as been.found to yie,ld promising
error, discriminative training, speech recognition. gain over the ML training on diagonal covariance matrix
systems [14], [15]. This has motivated the use of discriminative
training for many state-of-the-art LVCSR systems [16]. The
|. INTRODUCTION STC [17] and SPAM [18] models have previously been dis-
criminatively trained using the Maximum Mutual Information
TATE-OF-THE-ART speech recognition systems are tygMMI) criterion on small and medium vocabulary systems. An
ically based on continuous density hidden Markov modlternative discriminative training criterion, Minimum Phone
els [1] with Gaussian mixture models (GMMs) representingrror (MPE), has been found to consistently outperform MMI
the output distribution associated with each state. A standardining on large vocabulary diagonal covariance matrix sys-
problem when using multivariate GMMs to classify data isems [15]. This paper investigates the use of MPE trained pre-
how to accurately model the correlations in the feature vectaision matrix models for LVCSR systems. The MPE training
The use of a full covariance matrix for each Gaussian compapproach adopted in this paper is based on the optimisation
nent dominates the total number of model parameters and dsé-the weak-senseauxiliary function with I-smoothing, as
matically increases the computational cost to train and perfopresented in [15]. Implementation issues regarding building
recognition with these models. Furthermore, a large amountl&fCSR systems with precision matrix models will also be
training data is required to ensure robust model estimatiafiscussed.
For these reasons, more compact and efficient correlatiorThis paper is organised as follows: Section Il describes a
modelling techniques are required, particularly for a large vgeneric framework of basis superposition [19], [20] which sub-
cabulary continuous speech recognition (LVCSR) [2] systemumes various forms of precision matrix modelling techniques.
which comprises many Gaussian components (typically greak@xt, discriminative training of precision matrix models based
than 100,000) and high dimensional data (typically 39 or 52)n the MPE criterion will be discussed in Section IIl. Section
The conventional approach to addressing these problems is/tthen addresses the implementation issues of these precision
use a diagonal covariance matrix approximation. The featuretrix models for LVCSR systems. Experimental results on
dimensions are assumed to be uncorrelated given a partic@@arS and BN English tasks are presented in Section VI.
component. Several methods have been employed to improve
the validity of this assumption. For example, the use of Mel
frequency Cepstral coefficients (MFCC) [3] and perceptual
linear prediction (PLP) [4] coefficients provide data with Compact precision matrix modelling has been found to yield
low correlation. Further decorrelation can be achieved usiggod gains over the diagonal covariance matrix approximation
feature transformation techniques such as linear discrimindoat GMM covariance modelling. The generic framework of
analysis (LDA) [5], heteroscedastic LDA (HLDA) [6] andbasis superposition [20] may be used as a convenient way of
heteroscedastic discriminant analysis (HDA) [7]. analysing various forms of precision matrix models, such as

II. PRECISIONMATRIX MODELLING



JOURNAL OF IEEE TRANS. ACOUST., SPEECH, SIGNAL PROCESSING, JULY 2006 2

the STC, EMLLT and SPAM models. Within this frameworkand K subsumes terms independent of the model parameters.
the precision matrix,P,,, is given by the following general 8 denotes the set of new parameter. The required statistics for

expression the estimation of precision matrix parameters are given by
n n R T ml /
= t)(or — m) 0t — By
Po=> M8 =3 AN Nahar (D) wet = 2= T (O tﬂml” O ) (g
1=1 i=1 r=1 m
T
wheren is the number of basis (basis ordef), are a set of ml nl (4 6
s the ; R . B = D () (6)
symmetricbasis matricesind \;; "’ are the corresponding su- ]

perposition coefficients for component The basis matrices, . - . .
S,, can be further decomposed into a linear combination 8 = and G, are the ML full covariance statistics and the

R basis row vectorsa;, weighted by),, and R denotes the compongnt occupancy cognts respectively. For all the forms
rank of S;. If R = 1, the precision matrix in equation (1)01‘ precision matrix modelling, the mean vectors are uncon-

becomes a STC [9] when — d and an EMLLT [10] model strained. Thus, the following standard update formula may be

whend < n < 4(d+1), whered is the feature dimensionality. US€d T
Alternatively, a SPAM [18] model may be modelled with= W, = 1 Z 7 () oy (7)
d. In this case, provided one of ttf is positive-definiten is ' =

allowed to be as small as 1. Furthermore, setfihg d yields The ML update formulae for various precision matrix models

the Hybrid—EMLLT_ .mOQeI [21]. Due to t_he parameteri;atiorére summarised in [20]. Further details regarding these models
of basis superposition into thglobal (basis vectors/matrices) ay also be obtained from the corresponding literatures ([9],
andcomponent{basis coefficients) parameters, compact modH%] [18], [19])

representation may be achieved via sharing of the basis vector
or matrices. The PMM-HLDA model [19] employs tying of
the basis coefficients, which further reduces the number of lIIl. MINIMUM PHONE ERROR (MPE) TRAINING
model parameters. Recently, discriminative training has been found to yield im-
One of the attractive attributes of precision matrix modellingroved performance in LVCSR compared to the conventional
is its efficiency during decoding. This can be seen clearly froML training [15]. Various forms of discriminative objective
the likelihood expression given by functions have been described in these literatures, for example
- Maximum Mutual Information (MMI), Minimum Phone Error
1 (MPE) and Minimum Word Error (MWE) criteria [14], [15].
Lt Prl0) = K+ 5 3" {log |Po| = @)y Proens } (2 . M ra LLal
(e ©) * 2 tz_; 08 | Pm| = @ P2 t} @ Several forms of MMI trained precision matrix models have
_ . recently been publishedoel et al, 2003 [18] presented the
Whereﬁ.(“m’f’”lo) IIS the Ilkelllchogd of tho%gno?jel Ioarim'MMI estimation of the SPAM models with small vocabulary
eters given t ; lclz_omphete set_ oro Seryatl ANd Ty = system.McDonough et al[17] also employed MMI trained
(01— pr,,,). Modelling the precision matrix?,,, as & SUPETPO- STc mogels in speaker-adapted training (SAT}akalidis
sition of basis eliminates the need to invert the covariance M& al [23] also introduced Discriminative Likelihood Linear
trix when computing the likelihood. Furthermore, it is Showq'ranéform (DLLT), a variant of MLLT whose parameters

in [20] that th_e terms in equation (2) can be divided intodel estimation is also based on the MMI criterion. The consistent
and observationdependent. The former can be precomputqﬂs]é)rovement of MPE training on large scale diagonal co-

and cached once the model parameters are loaded. The | fance matrix systems compared to the MMI discriminative

can be caF:hed for each obse.rvat.|on and 'thefr] reused forc erion [15] motivates the investigation of MPE training of
the Gaussian components. This yields a significantly Chea?ﬁécision matrix models on LVCSR systems

computational cost, which is linearly proportional to the basls
order,n.

Maximum likelihood estimation (MLE) is a standard apA- Maximising the MPE Objective Function
proach to finding model parameters. Within the HMM MPE training aims to minimise the phone classification
framework, this is commonly optimised using the wellerror (or maximising the phone accuracy). The objective
known Baum-Welch (or more generally Expectation Maximifunction to be maximised by the MPE trainin&npr(0),
sation) [22] algorithm. The auxiliary function to be maximisednay be expressed as
in the M-step is given by

M Rup(0) = Z > < o(Oy|s)"P(s)PhoneAcc(s, s,) ®)

0"(6,0) = K+% > ﬂm{10g|Pm\ fTr(PmW‘;‘,i)} (3) > 2w Po(Or|u)* P(u)
m=1 whereQ,. is therth training sentence anbl(s) is the language
where model probability for sentence « is an acoustic de-weighting
factor, which can be adjusted to improve the test-set perfor-
mance.PhoneAcc(s, s,-) represent the raphoneaccuracies
B of the sentence given the correct sentence.

T is the total number of frames!(¢) is the probability of ~ As with the ML objective function, the MPE objective
componentm at time ¢ given the current parameter sé, function is difficult to optimise directly. In this paper, MPE

T ml /
T\I‘(mel;ﬂ_) — Zt:l Tm (t)(ot — /’l’m) Pm(ot - I‘l’m) (4)
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training of the precision matrix models is based on th&hich correspond to the smoothing function (LG)(B,@) =
approach presented Bovey et al[15]. The MPE objective G(©*™), are given by
function (8) is using an auxiliary function of the fotm

) T ) g = Dm (17)
Q(B,AB) =Q (0,0)A— Q°(6,6) + 7(6,0) 9) x5 = Doft, (18)
where Q»(6,0) and Q%(0,6) are the auxiliary functions Y™ = D (o + 1) (19)

for the numerator and denominator terms respectively in the . - ) )

objective function. They differ from the ML auxiliary frunction Maximising this auxiliary function with respect to the mean
in that the “posterior” is no longer based a#f}(¢), but the vector and covariance matrix parameters yields the following
numerator and denominator counts, (t) and~2,(t) respec- update formulae

tively. 7(0, 8) is a smoothing function which, as suggested in x2 —x¢ + Dp,

[15], takes the form Bm = g0~ 3d 7D (20)

m m
M 2 ~ A/
0 1 3 mpe Y?n _an+Dm(2m +/"'7n”m)
F(0,0) = K + 5 mz::l Dm{log | Pl — Tr(szm)} (10) Wibe = n 34 D - p,mp,;n(z:l_)

is also possible to consider a set of combined statistics where

where3,, is the current estimate of the full covariance matri>|$

and D,, is a component-dependent constant that controls the ®° — " _ @! (22)

amount ofX:,,, to be smoothed onto the covariance statistics.

Equation (9) is referred to as theeak-sensauxiliary function where this set “-” operator yieldg¢, = (2 — ¢, and

in [15] because an increase in this function does not guaransémilarly for Y, andxs, . Using this concept of functions over

an increase in the objective function. In the following, thetatistics it is simple to incorporate smoothing techniques such

sufficient statistics required to optimise this weak-sense aws I-smoothing [15] and Maximum a-Posteriori (MAP) [26]

iliary function will be discussed and model parameter updasenoothing. To ensure that the auxiliary function is vaw,,,

formulae for the EMLLT and SPAM models will be given. is required to be positive-definite. Combining equations (20)
and (21) gives the full covariance statistics in termspf,

B. Sufficient Statistics for MPE Training ape B,D2 + B.D,, + By
The full ML covariance statisticSW™!, can be rewritten in W™ = ©) 1 D,, (23)
terms of the sufficient statistics such that
where
(var sy’ — b’ + ot A
wn — ol (12) B, = X, ) (24)
where the sufficient statistic®™ = {4, x= Y=} for all
componentsn, are given by equation 6, (ﬂmxfn + xfn;l;n) (25)
T ’
m m BO = ;”Lan - anX:n (26)
X77]L- = Z ’y’rr} (t)ot (12)
t=1 The constantD,,, is given by the largest positive eigenval-

X T X . ues of the Quadratic Eigenvalue Problem (QEP) of equation
Yo Zﬁnn (t)o.0} (13) (23) [18]. In practice, a lower bound is applied to the smooth-
t=1 ing constant value such that the actual smoothing constant
Given the set of parameter8, the ML auxiliary fruntion 3 value, D, is given by
can be rewritten in terms of the ML statistié™

Q" (6,0) = G(O™) (14)

D = max (2D, ES,) (27)

m

where the lower boundE 3¢, is applied to ensure that the
where combined occupancy couns’,, is greater than zerdz = 2

1 & is empirically found to lead to good test-set performance [15].
G(O™) =K + 3 > B {log|Py| = Tr (P, Wit)} (15)

m=1

Equation (9) can also be expressed in terms of sufficiecn:t I-Smoothing
statistics I-smoothing is an interpolation technique proposedPbyey
e N 4 en .et .al [15] that incorporates prior information over each
G(0™") = G(©") - G(6°) + G(e%) (16)  Gaussian parameters to control the convergence of the MPE

where®™ and® denote the sufficient statistics for numeratof@ining process. The prior is based on the ML statistics.
auxiliary function (9) as

1Using this form of auxiliary function yields the same update formulae as « A X N
using the extended Baum-Welch (EBW) algorithm [24], [25] Q(6,6) = Q"(6,0) — Q%(0,0) + F(0,0) + p(0)
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where V. IMPLEMENTATION |ISSUES
A M This section addresses the implementation issues of various
pO) = K+ > {log|Py,| = Tr (P, Wi )} precision matrix models, paying particular attention to building
m=1 LVCSR systems. Many of these models have been successfully
—— (Yﬁ —x%x%’/ﬁ’ﬁ) applied to LVCSR systems [9], [12], [13]. This paper em-
mo fnl phasises issues such as memory requirement, computational

. _ _ feasibility and training robustness in LVCSR systems. System
7' is the I-smoothing constant. The prior can be regardegficiency may be adversely affected if these issues are not

as the log likelihood ofr’ data points with the mean andaddressed properly. Here, various implementation issues for
variance of the ML estimate. Incorporating I-smoothing is eagy/CSR systems will be considered.

by rewriting the combined statistics as

I
xS = X%_X%JF%X% (28) A. Memory Issues
ﬁml The major issue with implementing precision matrix models
Yo = Y —Yl 4 T—Y‘;‘,} (29) on LVCSR system_s is the Ia_rg_e amount of memory require-
Jojis ment for full covariance statistics accumulation. The update
B, = B —08%+ 71 (30) of the tied parameters is highly inefficient, especially for the

o ) SPAM models where the basis matrices are not rank-1. In
It is simple to see that as the I-smoothing constaft.tends general, it is more practical to get a good initial set of basis
to infinity, the resulting estimation formulae tend to those cﬁwtrices and concentrate on updating the basis coefficients
the ML training. which is efficient. Moreover, updating basis coefficients does

not require the full covariance statistics. For models with rank-

IV. MPE TRAINING OF PRECISIONMATRIX MODELS 1 basis (STC and EMLLT), the required statistio&™° is

Once the overall statistics in equations (20) and (21) afeéduced to the so-callgorojectedstatistics,w;
found, the auxiliary function in equation (9) can be maximised

~ A~ mpe ~/

to discriminatively train the precision matrix model parame- w; = aWpta

ters. Since the MPE optimisation has been re-expressed in _ Zlevﬁfe(t)(ati — fimi)? (32)
terms of a set of combined statistics and a function over those o mpe

m
stastics that have exactly the same form as ML training ?Hr i = 1.9 n. @ is a scalar terms. — a.or and
the standard ML optimisation formulae may be used. This =~ 77 7 ° " o Tt
. : : . . : ;i = a; are the projected observation and mean vectors
is described in more detail in [20]. In this section, the basig . iHim pro)

o . sociated with the projection vectas,. Hence, the total
gze;f)l((;rirllatleuspdates for EMLLT and SPAM models are IV€lmount of memory required is proportional #orather than

) . (m) 4(d + 1) for the full covariance statistics¥’,,,. This dra-
The basis coefficients of the EMLLT model;; *, may be \qiicaily reduces the total memory requirement. The values

updated usin_g Fhe formula given in [10], modified to refelc(gf 5, and fi,,; will have been pre-computed and cached for
the MPE statistics efficient likelihood computation [20]. Thus, no extra cost is
Am) _ §0m) ( 1 B 1 ) (31) incurred in computing the projected statistics for STC and

i T aWina, a;3,a) EMLLT models.

Likewise, the sufficient statistics required to update the basis
where 5\1(.;”) and 3, are the current estimates of the basisoefficients for SPAM models can also be expressed in terms
coefficient and full covariance matrix respectively. of the projected statisticgy;, which is given by

Similarly, the basis coefficients of SPAM models may be _

updated iteratively using the Polak-Ribeire conjugate-gradient’i — Tr(TSin)

method [27], as presented in [11]. The change in the auxil- 24— Ym(t)(0}Sior — 247, 5i04 + p, Sitty,)

iary function, Q(Am) for a corresponding change in the basis Bm

coefficient, A, is given by As before, the required memory is proportional to the basis

mpe d n order,n and the term}.S;0; and S;o; have already been
(m) _ Pm (m) (m) ~(m) . N
oW = - E log (1 + Az ) — A, E d;"™ computed and cached when calculating the likelihood.
j=1 i=1

. B. Basis Initialisations

1 1
herez{™ is thejth eigenvalue o, > ( ”d<m)Si) P2, . o .
W K Jih elgenvalu m \2i 4 m In the basis superposition framework, the basis vectors

dEm) is theith element of the direction vector calculated fronpr matrices extract the common structure of the precision
the Polak-Ribeire conjugate-gradient method ahﬁ"’) = matrices of all Gaussian components. The update of the basis
Tr(W3°S;) is theprojectedstatistics which will be discussedvectors for EMLLT models and basis matrices for SPAM
in Section V-A. As before, the standard ML full covariancenodels does not have a closed form solution and generic
statistics is replaced by equation (21) for MPE training. Theptimisation routines such as the conjugate gradient decent
formulation of determiningif;m) is provided in [20]. method [27] have to be used. Thus, it is important to obtain a
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good initial set of basis to allow fast convergence and avoduster will then contain a smaller number of components. Ex-
hitting a poor local maximum during parameters estimatidnacting basis for each cluster of Gaussian components yields
process. This is especially true for the EMLLT and SPANhore accurate basis information. The basis matrices are now
models, where the update of basis vectors/matrices is sldiwd at the cluster level. This leads to a multiple projections
For STC, a trivial identity initialisation leads to a diagonascheme where each projection is associated with the set of
covariance matrix system. Several basis initialisation scheni®ssis matrices. A good summarisation of multiple projections
are available for the EMLLT models [20]. The STC-HLDAschemes is given in [29]. Multiple HLDA projections models
initialisation scheme was found to be the best in terms of WHRve been found to lead to good recognition performance [30].
performance and is more flexible than simply stacking multipleor multiple projections basis superposition models, equation
STC transforms [10], which constrainsto be a multiple of (1) can be rewritten as
d. n

According to [11], it is useful to initialise the set of basis P, = Z /\E?L)Sf(m) (35)
matrices{S;} for SPAM models as the symmetric matrices im1

associated to the top — 1 singular vectors of the matrix where m € g(m) and g(m) denotes the cluster to which

vV fo:l CmUmL, (33) compo.nentm belqngs to. There are many ways to perform
ZM— o Gaussian clustering. Qne way is to use a regression class
m=1 tree [31] and the terminal nodes of the tree corresponds to
where v,, = vec(W,'). On large systems, it was foundthe clusters of Gaussian components.
that the basis matrix initialisation given by equation (33) is
not robust due to the robustness of full covariance statistif::s
for each component. Instead, the inverse of the state-level
covariance statistics is used to produce a more reliable sePetermination of the smoothing constant value as described
of basis matrices [20]. earlier is memory inefficient because solving the quadratic
eigenvalue problem for equation (23) requires storing of the
full covariance statistics. Storing the full covariance statistics
o o for large systems results in intensive memory requirement.
In situations of data sparseness, which is common iNgq 'sTC and EMLLT models, the smoothing constant can
LVCSR systems, a variance floor is required to prevent oveja yetermined more efficiently by considering the transformed
fitting. It imposes a lower bound to the variances (dmgona{ean and variance vectors. By applying the projection

elements of the covariance matrix). The %}%@d"’_‘rd form, f9Letor to equation (23), the transformed variance statistics
example in HTK [28], of the variance floos;; " '~, is (projected statistics [20]) are thus given by

Approximating the Smoothing Constaht,,

C. Variance Flooring

s (s)2 . , ,
w2 _ Doy B0y D p2 o 400 (i)
o === (34) ainag _ by’ Dy, 4 by Dy, + by (36)
2ea=1 s % + D,
Whereuz(,s), gl(fﬂ and 3, are the within state mean, Varianc?/vhere b;i) — a;Boa’ bgi) — a;Bya’ and b(()i) — a;Boal.

gnd occupancy count resopectivgiy.is a SC"’T””Q fagtor Wh.iCh ore details on projected statistics will be given in Section
is typically set as 0.1 (10%). This method is readily applicab 'A. Hence, the QEP is simplified to solving independent

to the basis coefficients of the STC models due to ”?ﬁjadratic equations given by equation (36) using only the

independent basis vectors [20]. L]transformed statisticsaixﬁfl) and aiY,(ﬁ)a;. Thus, the same

However, the above method is not applicable to EML T . .
. . . . . _set of statistics is used to determine the smoothing constant,
models due to the existence of negative basis coefﬁuen%

Instead, in this work, variance floor is applied to the full™""’ and fo estimate the model parameters.

covariance or projected statistics used to update the mode}‘m“ke STC and EMLLT models where the basis matrices

parameters [19], [20]. Unfortunately, it is not possible tgre rank-1, the “projected" statisticSx(W ., 5;), associated

apply variance floor onto the projected statisties(W,, S, ), with the basis matricesS; of the SPAM model can not

for SPAM models. However, if one of the basis matrices ge used to determine the smoothing constant. There is no

initialised to be positive-definite §;) [11], the coefficient way t(.) infer the positive—de‘finit.eness, of the.full covariance
) X . statistics, W,,,, from these ‘projected’ statistics. Instead of
corresponding toS; can be gradually increased until the "~ . )
. ._obtaining the exact smoothing constant value by solving the
rbEP for equation (23), this value can be approximated by
using apseudotransformation matrix,A*. The transformed
) ) space is assumed to have negligible correlation such that
D. Multiple Transformations Scheme the QEP is once again broken down into independent
The basis superposition framework introduced earlier has @nadratic equations as for the STC and EMLLT models. Thus,
extreme basis tying scheme. A single set of basis matricedvi® sets of statistics are required: one for determining the
shared by all the Gaussian components. This requires a lasgeoothing constantD,, (a;‘Wma;‘/) and the other one for
set of basis matrices to yield good representation. Alternastimating the model parametergr(W,,.S;)). To yield a
tively, the components can be partitioned into clusters. Eaghod approximation for the smoothing constadt; should

However, this approach is computationally inefficient.
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be chosen such that the transformed space is as uncorrelated System | Dimensions|| WER (%)
as possible. So, it is intuitive to select the STC transform p | = || ML | MPE
as thepseudotransformation matrix. In the case where STC HLDA 39 | 39 || 335 | 298
transform is unavailable, an identity matrix may be used. This HLDA+SPAM 32.0 | 285
was found to be a good approximation [20]. HLDA-PMM 39 || 332 | 29.4
STC 5, | 52 || 333 207
V1. EXPERIMENTAL RESULTS EMLLT 78 || 32.6 | 29.2
SPAM 39 || 328 | 29.2

Discriminative training of precision matrices was evaluated
on an English conversational telephone speech (CTS) task, TABLE |
which consists of multi-speaker spontaneous telephone convefoMPARISON OFWER (%) PERFORMANCE OFML AND MPE TRAINED
sational speech, and an English broadcast news (BN) task, bothl6-COMPONENT PRECISION MATRIX MODELS ONdevOlsub CTS
provided by the Linguistic Data Consortium (LDC). Data was ENGLISH TASK
coded into 12 PLP coefficients at a frame rate of 10ms with
a frame size of 25ms, together with the log energy term, first,

second and third derivatives to form 52-dimensional featurr:%efricients, the EMLLT model is 0.9% absolute better than

vectors. Acoustic models are represented by decision fr, € HLDA model.The SPAM model. with half the number of
state-clustered triphone models with 6189 distinct states. Si Sisis coefficients; is only 0.2% ab’solute behind the EMLLT
based Ceptral Mean Normalisation (CMN), Cepstral Varian?ﬁodel By applyihg SPAM Within the HLDA subspace, the
Normalisation (CVN) and Vocal Tract Length NormalisatiorHLDA;SpAM model gave the best performance of 3’2.0%

(VILN) are used in all the systems. WER, which is 1.5% absolute better than the baseline HLDA.

The models used in all th.e.expenments were bu”.t using tl1‘?1is illustrate the importance of compact model representation
HTK [28]. ML and MPE training were conducted with 4 and[0 yield robust and improved performance

8 iterations respectively. All HLDA systems used a 8%2 The final column of Table | depicts the performance of
transformation matrix trained once at 16-component mod&;e MPE models. The gain from MPE training is about 3.4—
::g ﬂsxsgl\;o:nsou db(j:qvl\i?é tﬁ',:;ﬂgégfs's dn;:érrli(k:)eesd f(i)nr Ié'(\aﬂ(;i%.]B% absolute. The gains form various precision matrix models
V-B, where the STC-HLDA method was used for EMLLT ere retained after MPE training. The WER of the HLDA

and HLDA+SPAM MPE models were lowered to 29.8% and

models. For memory tractability, only basis coefficients WeI%S 506 respectively. This translates to an absolute improvement

updated in MPE training. A multi-pass decoding strategy Wa% 1 306 absolute.

e_mployed where word lattices were first genera_tgd using 8As described in Section V-D, multiple transformations mod-
bigram I_anguag_e model an_d a dlct|onar_y comprising 582%}5 provide a simple and powerful way of improving modelling
words with multiple pro_nunC|a_t|0n probabilities. These IattlCe&ccuracies without severely increasing the total number of
were then rescored using a trigram language model to prOdeJﬁSdel parameters. Gaussian clustering is performed in two

th?n?t?sl lé?(gsetrirgg;tshes\;;e conducted based on th(#fferent ways. For HLDA and STC models, a regression
. - class tree is used to cluster the Gaussian components with
h5etrain03 (296 hours) training set and theev01sub P

_ n initial speech-silence split. Splitting criterion is based on
Eﬁ hourfs) test setf of t_he CTS _E_nghsh ;@Sk tod elvaIL_Jra?e Euclidean distance between Gaussian components. This
ef per ormanc:ca 0 ?;.arl'oust prefC|S|on ma trlx MOGETS. I elds the 65-transform (64 speech, 1 silence) HLDA and STC
performance ot muftiple - translorms —systems was_ alsR,qe |2, Gaussian components for the EMLLT models were
compared using the same training and test sets. Fina

ustered into 64 groups without an initial speech-silence split
selected systems were tested on the full CTS (6 hou,g group P P

Rd the splitting is based on the Euclidean distance of the
evaIQ3 ) and BN (3 hours each fodev03 and eval03 ) vectors of basis coefficients.
English tasks.

Table Il summarises the WER results for multiple projec-
tions HLDA, STC and EMLLT models. These models are
A. Development Results 0.8%, 1.0% and 0.6% absolute better than their corresponding

This section evaluates the performance of various precisigiigle transform models. After 4 MPE iterations, the WER

matrix models. 16-component models were trained becadeé the HLDA and EMLLT models were both reduced by
of rapid training to serve as an initial comparison. The wor.0% absolute while the STC model achieved a 2.6% absolute

error rate (WER) numbers are summarised in Table |. TN¥ER reduction. After 4 additional MPE iterations, the WER
second and third columns show the dimensions for the me@inthe 64-transform EMLLT model was 28.3%, 0.9% absolute
vector and basis coefficients respectively. The HLDA Mibetter than its single-transform model. The slow convergence
model has a WER of 33.5% ogevOlsub . If the nuisance Of the basis update for SPAM models hinders the build of
dimensions are retained, the equivalent 52 dimensional ST@liltiple transformation SPAM models. Although it is possible
model yields a further 0.2% absolute reduction in WER. Bi@ initialise multiple sets of basis matrices for different cluster
tying the 13 basis coefficients corresponding to the HLDA, _ _

. . . . The multiple transforms HLDA and STC models were obtained from X.
nuisance dimensions using a HLDA-PMM model, anothgfy These models have been trained and decoded using the same setup as
0.1% absolute improvement was obtained. With 78 basisscribed earlier.
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system | 7O ML || MPE lter. A 16-component HLDA+SPAM model was also built to
transforms 4 | 8 compare with the unadapted HLDA BN HLDA system trained
HLDA 1 335 308 | 298 on thebnac+TDT4 (375 hours) date set. These systems were
65 3271297 | - evaluated on thdev03 andeval03 test sets, each consisting
STC 1 33.3 || 30.3 ) 297 of 3 hours data. The results are tabulated in Table IV. The
65 323 297 | -
EMLLT 1 32.6 || 29.8 | 29.2 System dev03 eval03
64 320 29.0 | 283 ML [ MPE [ GD [ ML [ MPE [ GD
TABLE Il HLDA 16.3 | 136 | 135 146 | 125 | 123
COMPARING WER (%) PERFORMANCE OF16-COMPONENT PRECISION HLDA+SPAM || 15.7 | 135 | 13.2 || 143 | 12.0 | 12.0

MATRIX MODELS WITH MULTIPLE TRANSFORMATIONS TABLE IV

WER PERFORMANCE OF28-COMPONENT PRECISION MATRIX MODELS ON
dev03 AND eval03 FORBNTASKS

of Gaussian components using the method described in Section

V-B, the resulting basis matrices gave a poorer performangf paseline WERSs are 16.3%¢v03 ) and 14.6%¢valo3 ).
than the single transform SPAM models. After MPE training, the WERs reduced to 13.6% and 12.5%
respectively. An absolute gain of 0.6% was observed from
HLDA+SPAM ML model ondevOlsub . The corresponding
gain oneval03 was only 0.3%. After MPE training, the gain

So far, the performance of various precision matrix modefgosm HLDA+SPAM was reduced to 0.1% afev03 but was
was presented based on ttlevOlsub test set for the CTS jncreased to 0.5% oeval03 . Similar to the RTO3 setup, gen-
task. This section compares selected precision matrix modgls dependent (GD) models were also built. Starting from the
with the full CU-HTK LVCSR systems [16], [32] used in thegender-independent (GI) MPE model, GD models were built
2003 Rich Transcription (RT03) evaluatforiThe unadapted with 3 MPE+MAP[26] iterations, using the corresponding Gl
28-component HLDA system was chosen as the baseline fJapE models as the prior. The baseline system gave a further
comparison. The models were trained fBetrain03  and (.1% and 0.2% WER reductions atev03 and eval03
evaluated on botdevOlsub andeval03 . Due to memory respectively. Meanwhile, the HLDA+SPAM model yielded
Constraint, the baSiS matl’ices fOI’ EMLLT and SPAM mOde@s% improvement odev03 but no further improvement was
were initialised using the 16-component systems. obtained oreval03 . The final absolute gains of 0.3% on both
test sets were found to be statistically significant.

B. State-of-the-art Results

devOlsub eval03
System ML [ MPE | ML [ MPE
VII. CONCLUSIONS
HLDA 323 | 29.1 | 31.7 | 284 . S
HLDA+SPAM || 311 | 279 | 304 | 27.3 This paper has presented the large vocabulary discriminative
TABLE I training of various precision matrix models based on the

minimum phone error criterion. The structured approximation
of precision matrices was illustrated using a generic framework
of basis superposition, which subsumes many existing models
including the semi-tied covariance (STC), extended MLLT

The results are tabulated in Table lll. The WERs of tthMLLT) and subspace for precision and mean (SPAM) mod-

ML HLDA model were 32.3% and 31.7% respectively. Th Is. These models have efficient likelihood calculation which
gains from MPE are similar on both test sets, 3.2% and 3. %;t;js'to eff.|C|ent decodmg.' | ; impl tati

respectively. The best single-transform system from before, arious Issues concerning large system Jimpiementation
HLDA+SPAM, was built with 28 Gaussian components Ioe\/Iyere addressed. In particular, computational tractability and

state. Both ML and MPE models consistently outperform tt{ﬁem?fry. requwefmtﬁnt arettwo |rTI1portant.t1;]ac;]tprs that dettetr.mmle
baseline by 1.2% absolute atevO1lsub . On eval03 , the € efficiency ot the Systems. 1SSue wi 'gh computationa

gains after ML and MPE training were 1.3% and 1.1% abs§OSt and slow convergence of the basis matrix update was over-

lute, giving the final WER of 27.3% for MPE HLDA+SPAM come with good _initialisation s_chemes. This al_so a||0\_N§ the
model. The gains from HLDA+SPAM in Table Il were foundmo_de|§ to be tra_m_ed by updat|_ng on_Iy Fhe basis coefficients,
to be statisticallysignificant®. Although the 64-transform 16- wh|ch IS more efﬁgent and requires S|gn|f|gantly less memory.
component MPE EMLLT model is 0.8% absolute better tha he inefficiency in solving the QEP to f'm.j the smoot_hmg

the 28-component HLDA model odevOlsub , this gain constant for the SPAM models was alleviated by using a

does not generalise ®valo3 . Only 0.3% improvement was pseuddransformation matrix to mimic the smoothing constant
obtained on this test set ' ' determination process for STC or EMLLT models.

Experimental results reveal that various precision matrix
models outperform the standard HLDA diagonal covariance
matrix system on the CTS English Task. Without dramatical

WER PERFORMANCE OF28-COMPONENT PRECISION MATRIX MODELS ON
devOlsub AND eval03 FORCTSTASK

3See http://htk.eng.cam.ac.uk/docs/cuhtk.shtml
4Significance tests were carried out using the NIST Scoring Toolkit



JOURNAL OF IEEE TRANS. ACOUST., SPEECH, SIGNAL PROCESSING, JULY 2006

increase in the total number of model parameters, multigte] P. C. Woodland and D. Povey, “Large scale discriminative training of
transformations models were found to yield between 2% to
5% relative reduction in word error rate compared to singl?m]
transform models. The best performance was achieved by for improved discriminative training,” ifProc.ICASSP2002.
modelling the precision matrices using the SPAM modé&el
within a HLDA subspace (HLDA+SPAM). 1.1% and 0.2%

absolute WER reductions were obtained on conversational

telephone speech (CTS) and broadcast news (BN) tasks [t}

spectively over the unadapted HLDA model used in the 2003

Rich Transcription (RT03) evaluation.

(18]

In a nutshell, various precision matrix models have been
successfully implemented in LVCSR discriminatively trainegh g,
systems and several implementation issues were addressed tomodelling for large vocabulary continuous speech recognition?rarc.

yield robust training and efficient decoding.
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