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A Two-Stage Algorithm for One-Microphone
Reverberant Speech Enhancement

Mingyang Wu, Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Under noise-free conditions, the quality of rever-
berant speech is dependent on two distinct perceptual components:
coloration and long-term reverberation. They correspond to two
physical variables: signal-to-reverberant energy ratio (SRR) and
reverberation time, respectively. Inspired by this observation, we
propose a two-stage reverberant speech enhancement algorithm
using one microphone. In the first stage, an inverse filter is esti-
mated to reduce coloration effects or increase SRR. The second
stage employs spectral subtraction to minimize the influence of
long-term reverberation. The proposed algorithm significantly
improves the quality of reverberant speech. A comparison with
a recent enhancement algorithm is made on a corpus of speech
utterances in a number of reverberant conditions, and the results
show that our algorithm performs substantially better.

Index Terms—Dereverberation, inverse filtering, one-micro-
phone algorithm, reverberant speech enhancement, reverberation
time, spectral subtraction.

1. INTRODUCTION

MAIN cause of speech degradation in practically all lis-

tening situations is room reverberation. Although human
listening is little affected by room reverberation to a considerable
degree—indeed increased loudness as a result of reverberation
may even enhance speech intelligibility [19]—reverberation
causes significant performance decrement for current automatic
speechrecognition (ASR) and speaker recognition systems. Con-
sequently, an effective reverberant speech enhancement system
is essential for many speech technology applications including
speech and speaker recognition. Also, hearing-impaired lis-
teners suffer from reverberation effects disproportionally [26].
A system that enhances reverberant speech should improve
intelligent hearing aid design.

In this paper, we study one-microphone reverberant speech
enhancement. This is motivated by the following two consider-
ations. First, a one-microphone solution is highly desirable for
many real-world applications such as telecommunication (e.g.,
processing of telephone speech) and audio information retrieval
(information mining from audio archives). Second, moderately
reverberant speech is highly intelligible in monaural listening
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conditions. Hence, how to achieve this monaural capability
remains a fundamental scientific question.

Many methods have been previously proposed to deal with
room reverberation. Some enhancement algorithms assume
that room impulse response functions are known. For instance,
delay-sum beamformers [13] and matched filters [14] have
been employed to reduce reverberation effects. One idea to
remove reverberation effects is by passing the reverberant signal
through a second filter that inverts the reverberation process
and recover the original signal. A perfect reconstruction of the
original signal exists, however, only if the room impulse re-
sponse function is a minimum-phase filter. However, as pointed
out by Neely and Allen [28], room impulse responses are often
not minimum-phase. Another solution is to use multiple mi-
crophones. By assuming no common zeros among the room
impulse responses, an exactinverse filtering can be realized using
finite-impulse response (FIR) filters [25]. In the one-microphone
case, methods, such as linear least-square equalizers, have been
suggested that partially reconstruct the original signal [17].

A number of reverberant speech enhancement algorithms
have been designed to perform in unknown acoustic environ-
ments but utilize more than one microphone. For example,
microphone-array based methods [10], such as beamforming
techniques, attempt to suppress the sound energy coming from
directions other than that of the direct source and, therefore,
enhance target speech. As pointed out by Koenig et al. [23], the
reverberation tails of the impulse responses, characterizing the
reverberation process in a room with multiple microphones and
one speaker, are uncorrelated. Several algorithms are proposed
to reduce the reverberation effects by removing the incoherent
parts of received signals (for example, see [3]). Blind deconvo-
lution algorithms aim to reconstruct the inverse filters without
the prior knowledge of room impulse responses (for example,
see [16], [18]). Brandstein and Griebel [9] utilize the extrema
of wavelet coefficients to reconstruct the linear prediction (LP)
residual of original speech.

With multiple sound sources in aroom, the signals received by
microphones can be viewed as convolutive mixtures of original
signals emitted by the sources. Several methods (for example,
see [7]) have been proposed to achieve blind source separation
(BSS) of convolutive mixtures, estimating the original signals
using only the information of the convolutive mixtures received
by the microphones. Some methods consider unmixing systems
as FIR filters, while others convert the problem into the frequency
domain and solve an instantaneous BSS for every frequency
channel. The performance of frequency-domain BSS algorithms,
however, is quite poor in a realistic acoustic environment with
moderate reverberation time [4].
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Reverberant speech enhancement using one microphone is
significantly more challenging than that using multiple micro-
phones. Nonetheless, a number of one-microphone algorithms
have been proposed. Bees er al. [6] employs a cepstrum-based
method to estimate the cepstrum of reverberation impulse
response, and its inverse is then used to dereverberate the
signal. Several dereverberation algorithms (for example, see
[5]) are motivated by the effects of reverberation on modulation
transfer function (MTF) [21]. Yegnanarayana and Murthy [36]
observed that LP residual of voiced clean speech has damped
sinusoidal patterns within each glottal cycle, while that of
reverberant speech is smeared and resembles Gaussian noise.
With this observation, LP residual of clean speech is estimated
and then the enhanced speech is resynthesized. Nakatani and
Miyoshi [27] proposed a system capable of blind dereverber-
ation by employing the harmonic structure of speech. Good
results are obtained but this algorithm requires a large amount
of reverberant speech produced using the same room impulse
response function.

Despite these studies, existing reverberant speech enhance-
ment algorithms, however, do not reach a performance level de-
manded by many practical applications. Motivated by the obser-
vation that reverberation leads to perceptual components: col-
orationand long-termreverberation, we presentanovel two-stage
algorithm for one-microphone reverberant speech enhancement.
Inthefirststage, aninversefilterisestimatedin ordertoreduce col-
oration effects so that signal-to-reverberant energy ratio (SRR) is
increased. The second stage utilizes spectral subtraction to mini-
mize the influence of long-term reverberation. Our two-stage al-
gorithm has been systematically evaluated, and the results show
that the algorithm achieves substantial improvements on rever-
berant speech. We have also carried out a quantitative comparison
with a recent one-microphone speech enhancement algorithm on
a corpus of reverberant speech and our algorithm yields signif-
icantly better performance.

This paper is organized as follows. In the next section, we
give the background that motivates our two-stage algorithm.
Section III presents the first stage of the algorithm—inverse
filtering. The second stage of the algorithm—spectral subtrac-
tion—is detailed in Section IV. Section V discribes evaluation
experiments and shows the results. Finally, we discuss related
issues and conclude the article in Section VI.

II. BACKGROUND

Reverberation causes anoticeable change in speech quality [8].
Berkley and Allen [8] identified that two physical variables,
reverberation time Tgo and the talker—listener distance, are
important for reverberant speech quality. Consider the impulse
response as a combination of three parts, the direct signal, early
and late reflections, where the direct signal corresponds to the
directpathfromaspeechsourcetoalistener. Whilelatereflections
smear the speech spectra and reduce the intelligibility and quality
of speech signals, early reflections cause a different kind of
distortion called coloration: the nonflat frequency response of
the early reflections distorts the speech spectrum. The coloration
can be characterized by a spectral deviation defined as the
standard deviation of room frequency response.

Allen [1] reported a formula derived from a nonlinear regres-
sion to predict the quality of reverberant speech as measured
by subjective preference

P

Pyax

= 1—0.30’T60 (1)

where Pyrax is the maximum preference, o is the spectral
deviationindecibels, and T is the reverberation time in seconds.
According to this formula, increasing either spectral deviation
or reverberation time results in decreased reverberant speech
quality. Jetzt [22] shows that spectral deviation is determined by
SRR. Furthermore, within the same room, the relative reverberant
energy—the total reflection energy normalized by the direct
signal energy—is approximately constant regardless of the
locations of the source and the listener. Therefore, in the
same room spectral deviation is determined by the talker-to-
microphone distance, which determines the strength of the
direct signal. Shorter talker-to-microphone distance results in
higher SRR and less spectral deviation, hence, less distortion
or coloration.

Consequently, we propose a two-stage model to deal with
two types of degradation—coloration and long-term reverber-
ation—in a reverberant environment. In the first stage, our
model estimates an inverse filter in order to reduce coloration
effects or to increase SRR. The second stage employs spectral
subtraction to minimize the influence of long-term reverbera-
tion. Detailed description of the two stages of our algorithm
is given in the following two sections.

III. INVERSE FILTERING

As described in Section I, inverse filtering can be utilized to
reconstruct the original signal. In the first stage of our algorithm,
we derive an inverse filter to reduce reverberation effects. For
this stage we apply a multimicrophone inverse filtering algo-
rithm proposed by Gillespie ef al. [18] to the one-microphone
arrangement. Their algorithm estimates an inverse filter of the
room impulse response by maximizing the kurtosis of the LP
residual of speech utilizing multiple microphones. A detailed
formulation of the kurtosis maximization is given next.

Assuming that g§ = [g(1), g(2),...,g(L)] is an inverse filter
of length L, the inverse-filtered speech is

2(t) = gy (1) @
where §(t) = [y(t — L+ 1),...,y(t — 1),y(¢)]T and y is the

reverberant speech, sampled at 16 kHz.

The LP residual of clean speech has higher kurtosis than that
of reverberant speech [36]. Consequently, an inverse filter can
be sought by maximizing the kurtosis of LP residual signal of
the inverse-filtered signal [18]. A schematic diagram of a direct
implementation of such a system is shown in Fig. 1(a). How-
ever, due to the LP analysis in the feedback loop, the optimiza-
tion problem is not trivial. As a result, an alternative system is
employed for inverse filtering [18] and shown in Fig. 1(b). Here,
the LP residual of the processed speech is approximated by the
inverse-filtered LP residual of the reverberant speech z(t). Con-
sequently, we have

(1) = gy~ (1) G)
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(a) Schematic diagram of an ideal one-microphone dereverberation algorithm maximizing the kurtosis of LP residual of inverse-filtered signal. (b) Diagram

Fig. 1.
of the algorithm employed in the first stage of our algorithm.

where §,.(t) = [y.(t — L+ 1),...,y.(t — 1),5.(£)]" and
y-(t) is the LP residual of the reverberant speech. The op-
timal inverse filter g is derived so that the kurtosis of z(¢),
i.e., E[z4(t)]/E?[Z%(t)] — 3, is maximized. By obtaining the
kurtosis gradient, the optimization problem can be formulated
as a time-domain adaptive filter and the update equation of the
inverse filter becomes (see [18])

gt+1)=g(t) +nf)y-(t) (4)
where
oy - AEROIEO_E O

and p denotes the learning rate for every time step.

According to Haykin [20], however, the time-domain adap-
tive filter formulation is not recommended, because the large
variations in the eigenvectors of the autocorrelation matrices of
the input signals may lead to very slow convergence, or no con-
vergence at all. Consequently, we use a block frequency-domain
structure for optimization. In this formulation, the signal is pro-
cessed block by block using fast Fourier transforms (FFTs) and
the filter length L is also used as the block length. The new up-
date equations for the inverse filter are as follows

G/(n+1) =G(n) + +- S EmYim)  ©

G'(n+1)
Gn+1l)=—i—== 7
(1) = (G 1)) 2
where F(m) and Y, (m) denote, respectively, the FFT of f()
and y.,.(t) for the mth block. The superscript * denotes com-
plex conjugate. G(n) is the FFT of g at nth iteration and M
is the number of blocks. Equation (7) ensures that the inverse

Gradient of |
the kurtosis

filter is normalized. Finally, the inverse-filtered speech z(t) is
obtained by convolving the reverberant speech with the inverse
filter. Specifically, we choose ;1 = 3 x 10~ and use 20-s rever-
berant speech to derive the inverse filter. We run for 500 itera-
tions which are needed for good results.

A typical result from the first stage of our algorithm is shown
in Fig. 2. Fig. 2(a) illustrates a room impulse response function
(Tso = 0.3s) generated by the image model of Allen and Berkley
[2], which is commonly used for this purpose. The equalized
impulse response—the result of the room impulse response in
Fig. 2(a) convolved with the obtained inverse filter—is shown in
Fig. 2(b). As can be seen, the equalized impulse response is far
more impulse-like than the room impulse response. In fact, the
SRR value of the room impulse response is —9.8 dB in compar-
ison with 2.4 dB for that of the equalized impulse response.

However, the above inverse filtering method does not improve
on the tail part of reverberation. Fig. 3(a) and (b) show the energy
decay curves of the room impulse response and the equalized
impulse response, respectively. As can be seen, except for the
first 50 ms, the energy decay patterns are almost identical, and,
thus, the estimated reverberation times are almost the same,
around 0.3 s. While the coloration distortion is reduced due to
the increase of SRR, the degradation due to reverberation tails
is not alleviated. In other words, the effect of inverse filtering
is similar to that of moving the sound source closer to the
receiver. In the next section, we introduce the second stage of
our algorithm to reduce the effects of long-term reverberation.

IV. SPECTRAL SUBTRACTION

Late reflections in a room impulse response function smear
speech spectrum and degrade speech intelligibility and quality.
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Fig. 2. (a) Room impulse response function generated by the image model

in an office-size room of the dimensions 6 by 4 by 3 m (length by width by
height). Wall reflection coefficients are 0.75 for all walls, ceiling, and floor. The
loudspeaker and the microphone are at (2, 3, 1.5) and (4, 1, 2), respectively.
(b) The equalized impulse response derived from the reverberant speech
generated by the room impulse response in (a) as the result of the first stage of
our algorithm.

Likewise, an equalized impulse response can be decomposed
into two parts: early and late impulses. Resembling the effects of
the late reflections in a room impulse response, the late impulses
have deleterious effects on the quality of inverse-filtered speech;
by estimating the effects of the late impulses and subtracting
them, we can expect to enhance the speech quality.

Several methods have been proposed to reduce the effects of
late reflections in a room impulse response. Palomiki et al. [29]
employ a robust speech recognition technique in reverberant
environments by utilizing only the least reverberation-contam-
inated time-frequency regions. These regions are determined
by applying a reverberation masking filter to estimate the rel-
ative strength of reverberant and clean speech. Wu and Wang
[35] propose a one-stage algorithm to enhance the reverberant
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Fig. 3. Energy decay curves (a) computed from the room impulse response

function in Fig. 2(a), and (b) from the equalized impulse response in Fig. 2(b).
Each curve is calculated using the Schroeder integration method. The horizontal
dot line represents —60-dB energy decay level. The left dash lines indicate the
starting times of the impulse responses and the right dash lines the times at which
decay curves cross —60 dB.

speech by estimating and subtracting effects of late reflections.
Reverberation causes the elongation of harmonic structure in
voiced speech and, therefore, produces elongated pitch tracks.
In order to obtain more accurate pitch estimation in reverberant
environments, Nakatani and Miyoshi [27] employ a filter f, =

time domain and, thus, reduces some elongated pitch tracks in
reverberant speech.

The smearing effects of late impulses lead to the smoothing
of the signal spectrum in the time domain. Therefore, we as-
sume that the power spectrum of late-impulse components is a
smoothed and shifted version of the power spectrum of the in-
verse-filtered speech z(t)

1S1(k;8)| = yw(i — p) * |S. (ks d)|? (®)

where |S. (k; )| and |S;(k; i) |? are, respectively, the short-term
power spectra of the inverse-filtered speech and the late-impulse
components. Indexes k and ¢ refer to frequency bin and time
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frame, respectively. The symbol * denotes convolution in the
time domain and w(%) is a smoothing function. The short-term
speech spectrum is obtained by using hamming windows of
length 16 ms with 8-ms overlap for short-term Fourier anal-
ysis. The shift delay p indicates the relative delay of the late-im-
pulse components. The distinction of early and late reflections
for speech is commonly set at a delay of 50 ms in aroom impulse
response function [24]. This delay reflects speech properties and
is independent of reverberation characteristics. The delay trans-
lates to approximately 7 frames for the chosen shift interval of 8
ms. Consequently we choose p = 7. Finally, the scaling factor
~ specifies the relative strength of the late-impulse components
after inverse filtering. We set -y to 0.32, although its detailed
values do not matter (see Section V for discussions).

Considering the shape of the equalized impulse response, we
choose an asymmetrical smoothing function as the Rayleigh dis-
tribution’

w(i) = S exp (7(;7%1)2) , ifi>—a ©)
w(i) =0, otherwise.
As shown in Fig. 4, this smoothing function peaks at : = 0 and
goes down to O on the left side at ¢+ = —a but drops off more

slowly on the right side; the right side of the smoothing func-
tion resembles the shape of reverberation tail in an equalized
impulse response. The parameter a controls the overall spread
of the function. Given p = 7, a needs to be smaller than p, and
we choose a = 5 (frames) which gives a reasonable match to
the shape of the equalized impulse response (see Fig. 4); more
discussions are given in Section V.

The inverse-filtered speech z(¢) can be expressed as the
convolution of the clean speech s(t) and the equalized impulse

response h, (%)

z(t) = /s(t — T)he(T)dT.
0
By separating the contributions from early and late impulses in
the equalized impulse response, we rewrite (10) as

(10)

A1) = / st — 1 )he(r1)dr + /s(t o )he(r)drs (1)

where T; indicates the separation between early and late im-
pulses. The first and the second terms in (11) represent the early-
and late-impulse components, respectively, and are computed
from different segments of original clean speech.

To justify the use of spectral subtraction, we now show that
early- and late-impulse components are approximately uncorre-
lated. If we consider that the clean speech s(t) and the equalized
impulse response h.(t) are independent random processes, we

have
T oo

E ./s(t—ﬁ)hﬁ(ﬁ)dn y ./s(t—n)he(m)dm

:'/./E[S(t_Tl)s(t_TQ)]E[he(Tl)he(TQ)]dTQdTl. (12)

IRayleigh distribution is defined as: f(x) = (x/a?) exp(—a?/2a?) fora >
0 and f(x) = 0 otherwise.

0.14 T T T
0.12}

0.08 -
0.06 |
0.04}
0.02}

—6 0 5 10 15
Time lag (number of frames)

Fig. 4. Smoothing function ((9) in the text) for approximating late-impulse
components. In the figure, a = 5.

7 and 79 cover different ranges in their respective integrations.
Due to the long-term uncorrelation of speech signal, E[s(t —
71)s(t — 72)] & 0 when the time difference 71 — 75 is relatively
large. As a result, the correlation shown in (12) is relatively
small and we assume the two components mutually uncorre-
lated. To further verify this, we have computed the normalized
correlation coefficients between early- and late-impulse compo-
nents from natural speech utterances and these coefficients are
indeed very small [34].

Consequently, the power spectrum of the early-impulse com-
ponents can be estimated by subtracting the power spectrum of
the late-impulse components from that of the inverse-filtered
speech. The results are further used as an estimate of the power
spectrum of original speech. Specifically, spectral subtraction
[11] is employed to estimate the power spectrum of original
speech | Sz (k;i)|?

1S (k3 0) |
1S, (s3)|* — yw(i — p) * |S.(k; )|

=|S.(k;i 2 max
0 EXCHLE

,E

13)

where e = 0.001 is the floor and corresponds to the maximum
attenuation of 30 dB.

Spectral subtraction is originally proposed to enhance speech
against uncorrelated background noise, and the main issue to
apply spectral subtraction is how to produce a good spectral es-
timate of background noise, which is different for different kinds
of noise. Our use of spectral subtraction to enhance reverberant
speech is motivated by the consideration that long-term rever-
beration, corresponding to late reflections in our two-stage for-
mulation, may be treated as uncorrelated noise. This then leads
to the specific estimation in (8), which differs from the estimate
in our previous one-stage algorithm [35].

Natural speech utterances contain silent gaps, and reverber-
ation fills some of the gaps right after high-intensity speech
sections. To further improve system performance, we employ a
simple method to identify and then attenuate these silent gaps.
First, even with reverberation filling, the energy of a silent
frame in inverse-filtered speech is relatively low. Consequently,
a threshold 1 is established to identify the possibility of a silent
frame. Secondly, for a silent frame, the energy is substantially
reduced after the spectral subtraction process described earlier
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in this section. As a result, a second threshold 15 is established
for the energy reduction ratio. Specifically, the signal is first
normalized so that the maximum frame energy is 1. A time
frame 7 is identified as a silent frame only if F, (i) < 1, and
E.(i)/Ez(i) > ¥, where E,(i) and E;(3) are the energy
values in frame ¢ for the inverse-filtered speech z(t) and the
spectral-subtracted speech Z(¢). We choose ¥, = 0.0125 and
99 = 5. For identified silent frames, all frequency bins are
attenuated by 30 dB. Finally, the short-term phase spectrum
of enhanced speech is set to that of inverse-filtered speech
and the processed speech is reconstructed from the short-term
magnitude and phase spectrum.

Note that reliable silence detection in a reverberant environ-
ment is far from trivial. The above silence detection and attenu-
ation method is intended to deal with those silent gaps that are
relatively easy to detect. This simple method leads to a small
but noticeable improvement on the output from spectral sub-
traction. Further improvement may be possible with a compre-
hensive treatment of silence detection for reverberant speech.

V. RESULTS AND COMPARISONS

To measure progress, it is important to quantitatively assess
reverberant speech enhancement performance. Ideally, an ob-
jective speech quality measure should replicate human perfor-
mance. In reality, however, different objective measures are used
for different conditions.

Many objective speech quality measures (for example, see
[30]) are solely based on the magnitude spectrum of speech,
in part motivated by the study of Wang and Lim [33] showing
that phase distortion is not important for enhancing speech
mixed with a moderate level of white noise. In this situation, the
phases of strong spectral components of speech are not distorted
significantly since these components are much stronger than
the masking noise. As a result, ignoring phase information is
appropriate for noisy speech enhancement. However, this may be
inappropriate for enhancing reverberant speech since the phases
of strong spectral components are greatly distorted in a rever-
berant environment. We have conducted an informal experiment
by substituting the phase of clean speech with that of reverberant
speech while retaining the magnitude of clean speech. Clear
reduction of speech quality is heard in comparison with original
speech. Consequently, we utilize frequency-weighted segmental
signal-to-noise ratio (SNRgy) [32] to measure performance,
which takes into account of phase information. Specifically,

1 & e s2(n)
2 2 ‘

k=1n=m;—-N+1 [Sk(’fl) - §k(’fl)]2
(14)

where s(n) is the original noise- and reverberation-free signal,
and §(n) is the processed signal. m; is the end-time of the jth
frame and the summation is over M frames, each of length
N (we use a length of 30 ms). The signals are first filtered
into K frequency bands corresponding to 20 classical articu-
lation bands [15]. These bands are unequally spaced and have
varying bandwidths. However they contribute equally to the in-
telligibility of a processed speech. Experiments show that fre-
quency-weighted segmental SNR is highly correlated with sub-

1 M
SNRy = - >

=1

jective speech quality and is superior to conventional SNR or
segmental SNR [30].

A corpus of speech utterances from eight speakers, four fe-
males and four males, randomly selected from the TIMIT data-
base [12] is used for system evaluation. Informal listening tests
show that the proposed algorithm achieves substantial reduc-
tion of reverberation and has little audible artifacts. To illus-
trate typical performance, we show the enhancement result of
a speech signal corresponding to the sentence “she had your
dark suit in greasy wash water all year” from the TIMIT data-
base in Fig. 5. Fig. 5(a) and (c) show the clean and the rever-
berant signal and Fig. 5(b) and (d), the corresponding spectro-
grams, respectively. The reverberant signal is produced by con-
volving the clean signal and the room impulse response function
in Fig. 2(a) with Tg9 = 0.3 s. As can be seen, while the clean
signal has fine harmonic structure and silence gaps between the
words, the reverberant speech is smeared and its harmonic struc-
ture is elongated. The inverse-filtered speech, resulting from the
first stage of our algorithm, and its spectrogram are shown in
Fig. 5(e) and (f), respectively. Compared with the reverberant
speech, inverse filtering restores some detailed harmonic struc-
ture of the original speech, although the smearing and silence
gaps are not much improved. This is consistent with our under-
standing that coloration mostly degrades the detailed spectrum
and phase information. Finally, the processed speech using the
entire algorithm and its spectrogram are shown in Fig. 5(g) and
(h), respectively. As can be seen, the effects of reverberation
have been significantly reduced in the processed speech. The
smearing is lessened and many silence gaps are clearer.

Table I shows the systematic results for the utter-
ances from the eight speakers. SNR, SN ‘ﬁ‘u' , and

SNRI;]:;)CCSSM denote the frequency-weighted segmental
SNRs for reverberant speech, inverse-filtered speech, and
processed speech, respectively. The SNR gains for in-
verse-filtered speech and the processed speech are rep-
resented by SNRYT™™ = SNRY, — SNR}, and
SNREocessed=rev — SNREIOC***d _ SNR), respectively. As
can be seen, the quality of the processed speech is substantially
improved, with an average SNR gain of 4.82 dB over rever-
berant speech. We note that some slight processing artifacts
can be heard as a result of the second stage processing. Such
distortions are commonly observed from the processing of
spectral subtraction. Nonetheless, the second stage provides a
significant SNR increase and cleans inverse-filtered speech.

To put our performance in perspective, we compare with a re-
centone-microphone reverberant speech enhancementalgorithm
proposed by Yegnanarayana and Murthy [36]. We refer to this
algorithm as the YM algorithm. The YM algorithm first applies
gross weights to LP residual so that more severely reverberant
speech segments are attenuated. Then, fine weights are applied
to the residual so that they resemble more closely the damped
sinusoidal patterns of LP residual from clean speech. Observing
that the envelop spectrum of clean speech is flatter than that of
reverberant speech, the authors modify LP coefficients to flatten
the spectrum. Since the YM algorithm is implemented for speech
signals sampled at 8 kHz, we downsample the speech signals from
16 kHz and adapt our algorithm to perform at 8§ kHz. The results
of processing the downsampled signal from Fig. 5 are shown in
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Time (sec)

(d)

Fig. 5. Results of reverberant speech enhancement. (a) Clean speech. (b) Spectrogram of clean speech. (c) Reverberant speech. (d) Spectrogram of reverberation
speech. (e) Inverse-filtered speech. (f) Spectrogram of inverse-filtered speech. (g) Speech processed using our algorithm. (h) Spectrogram of the processed speech.
The speech is a female utterance “she had your dark suit in greasy wash water all year,” sampled at 16 kHz.

TABLE 1
SYSTEMATIC RESULTS OF REVERBERANT SPEECH ENHANCEMENT FOR SPEECH
UTTERANCES OF FOUR FEMALE AND FOUR MALE SPEAKERS RANDOMLY
SELECTED FROM THE TIMIT DATABASE

Speaker/Gender SNR }:'v SNR }(}lvv SNR }‘):ocessetl SNR %'v—rev SNR %w:essezl—rev

(dB)  (dB) (dB) (dB) (dB)

Female#1 262 0.0l 1.84 2.63 4.46
Female#2 2,07 001 1.56 2.17 3.63
Female#3 428  -1.69 0.74 2.60 5.02
Female#4 3.02  -0.90 1.07 2.12 4.09
Male#1 447 030 1.74 4.17 6.21

Male#2 442 -0.50 1.07 3.92 5.49

Male#3 323 0.66 2.01 3.90 5.24

Male#4 3.04  -0.06 1.41 2.99 445

Average 339 -033 1.43 3.06 4.82

Fig. 6. Fig. 6(a) and (c) show the clean and the reverberant signal
sampled at§ kHz and Fig. 6(b) and (d), the corresponding spectro-
grams, respectively. Fig. 6(e) and (f) show the processed speech
using the YM algorithm and its spectrogram, respectively. As can
be seen, spectral structure is clearer and some silence gaps are at-
tenuated. The processed speech using our algorithm and its spec-
trogram are shown in Fig. 6(g) and (h). The figure clearly shows
that our algorithm enhances the reverberant speech more than
does the YM algorithm.

Quantitative comparisons are also obtained from the speech
utterances of the eight speakers separately and presented in

Time (sec)

(h)

w—8k
the frequency-weighted segmental SNR values of reverberant

speech, the processed speech using the YM algorithm, and the
processed speech using our algorithm, respectively. The SNR
gains by employing the YM algorithm and our algorithm are
denoted by SNR 'V and SNR%’ie;Eed_rev, respectively.
As can be seen, the YM algorithm obtains an average SNR gain
of 0.74 dB compared to that of 4.15 dB by our algorithm.

Our algorithm has also been tested in reverberant environ-
ments with different reverberation times. The first stage of
our algorithm—inverse filtering—is able to perform reliably
with reverberation times ranging from 0.2 s to 0.4 s, which
cover the reverberation times of typical living rooms. When
reverberation times are greater than 0.4 s, the length of the
inverse filter (64 ms) is too short to cover the long room impulse
responses. On the other hand, when reverberation times are less
than 0.2 s, the quality of reverberant speech is reasonably high
even without processing. Unless the inverse filter is precisely
estimated, inverse filtering may even degrade the reverberant
speech rather than improve it. Fig. 7 shows the performance
of our algorithm under different reverberation times. The
dot, dash, and solid lines represent the frequency-weighted

Table I1.2 SNRSY_gi., SNR, gy, and SNR?roceSSEd represent

2Sound files can be found at http://www.cse.ohio-state.edu/pnl/demo/WuRe-
verb.html.
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Time (sec)

(d)
Fig. 6. Results of reverberant speech enhancement of the same speech utterance in Fig. 5 downsampled to 8 kHz. (a) Clean speech. (b) Spectrogram of clean

speech. (c) Reverberant speech.(d) Spectrogram of reverberant speech. (e) Speech processed using the YM algorithm. (f) Spectrogram of (e). (g) Speech processed
using our algorithm. (h) Spectrogram of (g).

TABLE 1I
SYSTEMATIC RESULTS OF REVERBERANT SPEECH ENHANCEMENT FOR SPEECH
UTTERANCES OF FOUR FEMALE AND FOUR MALE SPEAKERS RANDOMLY
SELECTED FROM THE TIMIT DATABASE. ALL SIGNALS ARE SAMPLED AT 8 kHz

Speaker/Gender g, /r;;v_ © SNR YM SNR processed SN Rflily\/l;;ev SNR }‘)zzzgxsed—rev

Sw—k8 Jw—k8

(dB) (dB) (dB) (dB) (dB)

Female#1 -3.64 -3.06 0.92 0.58 4.56
Female#2 -3.51 -3.05 0.74 0.46 4.25
Female#3 -3.86 -3.19 -0.20 0.68 3.66
Female#4 -4.12 -3.29 0.73 0.83 4.84
Male#1 -3.86 -2.65 -0.92 1.21 2.94

Male#2 -3.33 -2.68 1.77 0.65 5.10

Male#3 -3.30 -2.53 1.20 0.76 4.49

Male#4 -3.50 -2.76 -0.13 0.75 3.38

Average -3.64 -2.90 0.51 0.74 4.15

segmental SNR values of reverberant speech, inverse-filtered
speech, and the enhanced speech, respectively. As can be seen,
our algorithm consistently improves the quality of reverberant
speech within this range of reverberation times. Note that
reverberation time can be automatically estimated by using
algorithms such as the one proposed in [35].

Many factors, such as reverberation time and the quality
of inverse filtering, contribute to the relative strength of the
late-impulse components after inverse filtering. Consequently,
one expects that the scaling factor y in (8), indicating the relative
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Fig. 7. Results of the proposed algorithm with respect to different
reverberation times. The dot, dash, and solid lines represent the
frequency-weighted segmental SNR values of reverberant speech,
inverse-filtered speech, and the processed speech.

strength, should vary with respect to these factors in order
to yield optimal subtraction. To study the effect of varying ~y
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Fig. 8. (a) Optimal scaling factors with respect to reverberation times.
(b) Frequency-weighted segmental SNR gains by using the optimal scaling
factors instead of a fixed scaling factor.

0.35 0.4

values, the optimal scaling factors are identified by finding the
maxima of frequency-weighted segmental SNR values for eight
speech utterances mentioned before in different reverberant
conditions. Fig. 8(a) shows these optimal values with respect to
reverberation time. The optimal frequency-weighted segmental
SNR gains in comparison to those derived by using the fixed
scaling factor of 0.32 are shown in Fig. 8(b). As can be seen, the
optimal scaling factor is positively correlated to reverberation
time and ranges from 0.1 to 0.6. However, the performance gain
by using the optimal factor is no greater than 0.2 dB. Informal
listening tests also show that the speech quality improvement
by using the optimal scaling factor is negligible. We think that
the main reason is the nonstationarity of speech signal, whose
energy varies widely in both spectral and temporal domains.
Comparing the spectrograms of inverse-filtered and clean speech,
clean speech exhibits much more pronounced energy valleys
(gaps). The second stage of our system is designed to restore
such valleys. The reverberant energy that fills clean speech
valleys tends to originate from earlier energy peaks of clean

speech, and a range of scaling factors can attenuate these valleys
to the energy floor as specified in (13). As a result, the system
performance is not very sensitive to specific values of +.

It is well known that speech signal is short-term stationary
but long-term nonstationary. Late reflections of reverberation
have delays that exceed the period during which speech can
be reasonably considered as stationary, and as a result, they
smear speech spectra as discussed in Section II. Early reflec-
tions, on the other hand, have delays within this period. Because
of the short-term stationarity of speech, early reflections and di-
rect-path signal have similar magnitude spectra. Consequently,
early reflections cause coloration distortion and increase the
intensity of reverberant speech. The time delay that separates
early from late reflections is, hence, not a property of room
impulse response; instead, it is a property of the source signal
and indicates the boundary between short-term stationarity and
long-term nonstationarity. For instance, music signal tends to
change less rapidly than speech and, as a result, the delay that
separates early and late reflections is longer for music signal.
Considering average properties of speech, the delay separating
early and late reflections is commonly set at 50 ms [24]. This
translates to p = 7 specified in Section IV. This explanation
implies that the choice of p should not depend on room rever-
beration time.

The selection of the parameter a in the Rayleigh smoothing
function of (9) is subject to two primary constraints. On the left
side (see Fig. 4), the function needs to quickly drop to O with a <
p. On the right side, the smoothing function should follow the
reverberation tail and therefore reflect the reverberation time.
Under these constraints, a is set to five as specified before. We
observe little improvement by adjusting the value of a.

If the reverberation time is outside the range of 0.2 to
0.4 s, the reverberant speech should be handled differently.
For reverberation time from 0.1 s to 0.2 s, the second stage
of our algorithm—estimating and subtracting the late-impulse
components—can be applied directly without passing through
the first stage. Speech utterances from eight speakers described
before are employed for evaluation. Our experiments show
that, under reverberation times of 0.12 and 0.17 s, the second
stage of our algorithm with a scaling factor of 0.05 improves
the average frequency-weighted segmental SNR values from
3.89 and 1.36 dB of reverberant speech to 4.38 and 2.55 dB
of the processed speech, respectively. For reverberation times
lower than 0.1 s, the reverberant speech already has very high
quality and no enhancement is necessary. For reverberation
times greater than 0.4 s, one could also directly use the second
stage of our algorithm. To see its effects, we perform further
experiments using a scaling factor of 2.0 and employing the
speech utterances used before. Utilizing the utterances from
the same eight speakers, our experiments show that, with
Tso = 0.58 s, average frequency-weighted segmental SNR
improves from —5.7 dB of reverberant speech to —1.4 dB of
the processed speech.

VI. DISCUSSION AND CONCLUSION

Many algorithms for reverberant speech enhancement utilize
FIR filters for inverse filtering. The length of an FIR inverse
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Fig. 9. (a) The equalized impulse response derived from the room impulse

response in Fig. 2(a) using linear least-square inverse filtering of length 1024
(64 ms). (b) Its energy decay curve computed using the Schroeder integration
method. The horizontal dot line represents —60 dB energy decay level. The left
dash line indicates the starting time of the impulse responses and the right dash
line the time at which decay curves crosses —60 dB.

filter, however, puts limitation on the system performance. For
example, Fig. 9(a) shows the equalized impulse response de-
rived from the room impulse response in Fig. 1 (Tgo = 0.3 s)
using linear least-square inverse filtering [17]. This technique
derives an optimal FIR inverse filter in the least-square sense
for length 1024 (64 ms) with the perfect knowledge of the room
impulse response. The corresponding energy decay curve com-
puted according to the Schroeder integration method [31] is
shown in Fig. 9(b). As can be seen, the impulses after 70 ms
from the starting time of the equalized impulse response are
not much attenuated. Some remedies have been investigated.
For example, Gillespie and Atlas proposed a binary-weighted
linear-least-square equalizer [17], which attenuates more long-
term reverberation at the expense of lower SRR values. How-
ever, because the length of the inverse filter is shorter than the
length of reverberation, the reverberation longer than the filter
cannot be effectively reduced in principle. In theory, longer FIR

inverse filters may achieve better performance. However, long
inverse filters introduce many more free parameters that are
often difficult to estimate in practice. Sometimes, it leads to in-
stability of convergence and often requires a large amount of
training data. A few algorithms have been proposed to derive
long FIR inverse filters. For example, Nakatani and Miyoshi
[27] proposed a system capable of blind dereverberation of one-
microphone speech using long FIR filters (2 s, personal commu-
nication, 2003). To configure this long FIR filter, a large amount
of training data (5240 Japanese words) are needed for good re-
sults and the room impulse response cannot change during the
entire time period. This implies that the listener and the speech
source are fixed for a very long period of time, which is hardly
realistic. In many practical situations, however, only relatively
short FIR inverse filters can be derived. In this case, the second
stage of our algorithm can be used as an add-on to many in-
verse-filtering based algorithms.

Although our algorithm is designed for enhancing reverberant
speech using one microphone, it is straightforward to extend
it into multimicrophone scenarios. Many inverse filtering algo-
rithms, such as the algorithm by Gillespie et al. [18], are orig-
inally proposed using multiple microphones. After inverse fil-
tering using multiple microphones, the second stage of our al-
gorithm—the spectral subtraction method—can be utilized for
reducing long-term reverberation effects.

Araki et al. [4] point out a fundamental performance limi-
tation of the frequency domain BSS algorithms. When a room
impulse response is long, the frame length of FFT used for fre-
quency domain BSS needs to be long in order to cover the long
reverberation. However, when a mixture signal is short, the lack
of data in each frequency channel caused by the longer frame
size triggers the collapse of the assumption of independence
of source signals. Under these constraints, one can identify a
frame length of FFT to achieve the optimal performance of a
frequency domain BSS system. This optimal length, however,
is comparatively short with a long room impulse response. For
example, in one of their experiments, the optimal frame length
is 1024 (64 ms) for a convolutive BSS system in a room with
the reverberation time of 0.3 s. Consistent with the argument
we offered earlier, a BSS system employing the optimal frame
length is unable to attenuate long-term reverberation effects of
either target or interfering sound sources. On the other hand, the
second stage of our algorithm can be extended to deal with mul-
tiple sound sources by applying a convolutive BBS system and
then reducing long-term reverberation effects.

Our algorithm is also robust to modest levels of background
noise. We have tested our algorithm on reverberant utterances
mixed with white noise so that the SNRs of reverberant speech,
where the reverberant speech is treated as signal, are 20 dB. The
results show that our method consistently reduces reverberation
effects and yields an average SNR gain similar to that without
background noise [34].

To conclude, we have presented a new two-stage reverberant
speech enhancement algorithm using one microphone, and the
stages correspond to inverse filtering and spectral subtraction.
The first-stage aims to reduce coloration effects caused by early
reflections, and inverse filtering helps to improve the magnitude
spectrum of reverberant speech and reduce phase distortions es-
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pecially in the strong spectral components. The second-stage
aims to reduce long-term reverberation, and spectral subtraction
helps to further improve the magnitude spectrum. The evalu-
ations show that our algorithm enhances the quality of rever-
berant speech effectively and performs significantly better than
a recent reverberant speech enhancement algorithm.
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