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Induction algorithms
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Abstract— We report on the tempo induction contest organ-
ised during the International Conference on Music Information
Retrieval (ISMIR 2004) held at the University Pompeu Fabra

in Barcelona in October 2004. The goal of this contest was to

evaluate some state-of-the-art algorithms in the task of iducing
the basic tempo (as a scalar, in beats per minute) from musita
audio signals. To our knowledge, this is the first publisheddrge
scale cross-validation of audio tempo induction algorithrs.
Participants were invited to submit algorithms to the contest
organiser, in one of several allowed formats. No training d&
was provided. A total of 12 entries (representing the work of

time, sometimes called the “foot-tapping” rate) and theipos
tions of individual beats in musical files or streams. A numbe
of diverse formalisms have been used to implement computer
systems performing these tasks; a survey can be found in [1].
There are many applications of automatic beat induction and
tracking of audio signals, e.g., audio-to-score transionip
musical performance research, retrieval of musical piects
similar tempo to a specific query, generation of playlists,
automatic sequencing of musical pieces, determination of

7 research teams) were evaluated, 11 of which are reported in Poundary points for audio editing operations (cut-andeas
this document. Results on the test set of 3199 instances werdooping, synchronisation with MIDI clocks or other audio

returned to the participants before they were made public. Aussi
Klapuri's algorithm won the contest.

This evaluation shows that tempo induction algorithms can
reach over 80% accuracy for music with a constant tempo, if
we do not insist on finding a specific metrical level. After the
competition, the algorithms and results were analysed in ater
to discover general lessons for the future development of tepo
induction systems. One conclusion is that robust tempo indttion
entails the processing of frame features rather than that of
onset lists. Further, we propose a new ‘redundant” approach
to tempo induction, inspired by knowledge of human perceptal
mechanisms, which combines multiple simpler methods using
voting mechanism.

Machine emulation of human tempo induction is still an open
issue. Many avenues for future work in audio tempo tracking ae
highlighted, as for instance the definition of the best rhytmic
features and the most appropriate periodicity detection méhod.

In order to stimulate further research, the contest results
annotations, evaluation software and part of the data are axil-
able athttp://ismr2004.isnmr.net/1SMR_Contest.
ht m

Index Terms— Tempo Induction; Evaluation; Benchmark.

EDICS Category: 2-MUSI

. INTRODUCTION
Much effort in the computer music community has be

dedicated to the automation of the beat induction and tragcki
tasks: determining the basic tempo (rate of musical beats
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sources), application of beat-synchronous audio effettsal
animations and rhythmic expressiveness transformations.

In any computational modelling endeavour, systematic-eval
uations play an important part. They require on the one hand
reference examples of correct analyses, that is, large and
publicly availableannotated data set@vhich in turn calls for
an agreement on the manner of representing and annotating
relevant information about this data) and on the other hand
agreed evaluation metrics

Such evaluations have received little attention in the field
of tempo induction and tracking. Early models usually did
not present quantitative evaluation of the proposed models
and only recently have researchers begun to report on the
performance of their systems, but they meet with the folhmvi
difficulties:

First of all, even if a number of papers propose evaluation
methodologies, no consensus has been reached on how to
evaluate algorithms, because of the diversity of input and
output data representations as well as the diversity ofiegpl
tions [2]. For instance, Temperley [3] convincingly higitits
shortcomings of metrics proposed by Goto and Muraoka [4]
and Cemgil et al. [5], and proposes an evaluation method that
feems suitable for systems processing MIDI input. However,
as this metric is based on a note-by-note evaluation (ndt bea

b'?-beat), in order for it to be useful for acoustic signality

Fabrait would require complete transcriptions of these signals,

unrealistic requirement from the point of view of manual

the Tampere University —of Technology, annotation, and well beyond the scope of the tempo induction

algorithms themselves.

M. Alonso is with theEcole Nationale Supérieure des Télecommunications, Secondly, the evaluation data sets used by many researchers

miguel.alonso@enst.fr

G. Tzanetakis is with Victoria Universitygtzan@cs.uvic.ca

C. Uhle is with the Fraunhofer Institute for Digital Media Cfaology,
uhle@idmt.fraunhofer.de

P. Cano is with the Universitat Pompeu Falpaano@iua.upf.es

are usually private and of relatively small size, which nsake
it difficult to compare one system with another. For exam-
ple, a collection of score-matched MIDI performance data
is available from the Music, Mind and Machine Group of
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the University of Nijmegeh (around 200 performances of aalgorithm (GPL-licensed) was downloaded from the web. One
couple of Beatles songs by 12 pianists performed in seveeaitrant chose not to participate in this report, so we relpeng
tempo conditions). Results on this data set were reported day 11 algorithms, which are described below in alphabetical
Cemgil et al. [5] and Dixon [6], and the latter argued that enororder. The contest organiser did not compete.
challenging data was needed. Also, Temperley [3] provides aAlgorithms were submitted in various formats: the open-
publicly available data sétof 46 pieces with metronomical source entries were submitted as C, C++ or Matlab source
timing and 16 performed pieces, all taken from the commonede, and the others as Windows or GNU/Linux binaries or
practice Western repertoire. However, in both cases, the d®atlab pre-parsed pseudocode files.
sets are only suitable for evaluating systems dealing wilBIM  All of the algorithms are based on a common general
input, and not acoustic signal input. scheme: deature list creatiorblock, that parses the audio data
As a first step towards more systematic evaluations amdo a temporal series of features which convey the predom-
comparisons, a contest was organised during the Interratioinant rhythmic information to the followingpulse induction
Conference on Music Information Retrieval (ISMIR 2004plock (see Figure 1 and [1] for more details). The features
held at the University Pompeu Fabra in Barcelona in Octobean be onset features or signal features computed at a tduce
20042 The task was restricted to the induction of tempo aampling rate. For example, onset features might consist of
a scalar, in beats per minute (BPM), and not the individuallist of times and amplitudes of note onsets, whereas signal
beat positions. Researchers were encouraged to paréicidaatures might consist of average energy values computed on
by several means, including a “call for algorithms” on thsuccessive 10 ms or 20 ms frames, or a differential of the
Music Information Retrieval mailing-list;the respondents setenergy in various frequency bands.
up and agreed upon a common evaluation benchmark for théMany algorithms also implement keat tracking block.
competition. However, as the contest did not address the issues of tgackin
In this paper, we present 11 of the 12 algorithms tested ateinpo changes and determining beat positions, the suldmitte
highlight differences in their implementations —note tha¢n algorithms either bypassed this block or added a subsequent
if most of these algorithms are often referred in the currehaick-end for the purpose of the contest, i.e. a parsing of the
literature as state-of-the-art algorithms, we acknowdetitat beat positions into a global tempo estimation.
they do not represent a comprehensive coverage of work in
beat induction (see [1] for a review). We then detail tha. Alonso
evaluation framgwork set up for the contest, the test databa Miguel Alonso from theEcole Nationale Supérieure des
and the evaluation method. The results are then presented §8jacommunications (ENST) in Paris submitted two algo-
discussed, with a focus on relating the performance difi@#8 (it ms, referred to aslonsoACF and AlonsoSP , which
to design choices in the systems. We stress important @hi€yare submitted in the form of p-files, i.e. Matlab pre-parsed
ments_ in the field of .audlo tempo induction, and_ hlg_hllg seudocode files (source code is not visible).
open issues and possible avenues for future work in this field goth methods are based on the same front-end that extracts
proposing ways to tackle them in further, improved, tempghenomenal accents, i.e., onsets of notes, by detectirdgaud
induction contests. _ o changes in dynamics, timbre, or harmonic structure. A time-
For information on other audio description contests, al§f,quency representation of the audio signal is calcujaad
held during ISMIR 2004 (on Genre Classification, Artisjhg rate of change of the spectral energy content is found by
Identification, Melody Detection and Rhythm Classifica)ion fiitering this representation with a differentiator FIRdilt The
see [7] and the contest webpage. positive contributions of each spectral line are summedhén t
frequency domain and a quasi-periodic and noisy pulse-trai
is obtained. This pulse-like signal exhibits sharp maxirha a
those time instants where a phenomenal accent occurs.

Il. ALGORITHMS

Tempo— The difference between the systems is found in the pulse in-
‘ ——— -~ duction block. The first method is based on the autocormelati
eature lis se H H
W—{M«—» Creatlijon ! ) inl:juction —Pulse Back| ©f the pulse signal, while the latter uses the spectral pbdu
 audio I T/ tracking [ T -end Both algorithms are described in detail in [8]. These system
- Onset fealures ol | were originally conceived for beat-tracking, but the tiagk
. Signal features €mpo . . . .
hypotheses Beats part was disabled in the versions submitted to the contest.
Fig. 1. General tempo induction computational scheme. B. Dixon

Of the 12 algorithms entered in the contest, 11 Wef& Simon Dixon from the Austrian Research Institute for

submitted by 6 different research teams, and one openfso%gtmzlilolnglt%eiggﬁlOFQ:))((I)?].\I_A e;:g;&%r:ﬁtgg three entries

Ihitp://www.nici.kun.nl/mmm/archives/ The first two are GNU/Linux binaries based on the beat

2ftp://ftp.cs.cmu.edu/usr/ftp/usr/sleator/ tracking system BeatRoot detailed in f9They are both based
melisma2003

3The conference webpage ligtp://ismir2004.ismir.net/ 5BeatRoot is available as GPL code http://www.oefai.at/

4http://listes.ircam.friwws/info/music-ir “simon/beatroot/index.html
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on a simple energy-based onset detector followed by an-intdren combined, rather than on a single series containing the
onset interval (I0OI) clustering algorithnDixonl selects a combined features. In the implementation used, the number o
tempo based on the “best” cluster, where the clusters are fiequency subbands is 6.

sessed by the number of 10ls they contain, the amplitudesof th Another important novelty was to introduce the use of comb
corresponding notes, and the support of other clustertecklafilterbanks for the pulse induction block. This technique is
by simple integer ratiosDixonT selects several prominentforeshadowed by the “clock model” of Povel and Essens [14]
clusters as tempo hypotheses, performs beat tracking basethat it seeks the series of periodically-spaced cloclsgsll

on these hypotheses, and outputs the mean of the inter-dbat best matches the feature list (the implementation én th
intervals (IBI) from the best beat tracking solution as tmalfi form of a bank of comb filters introduces an exponential decay
estimate of tempo. on the clock pulse amplitudes).

DixonACF (Matlab source code) is described in [10]. This The output of the algorithm is a set of beat times rather than
algorithm splits the signal into 8 frequency bands, and them overall tempo estimate, so we added a small back-end to the
smooths, downsamples and performs autocorrelation on e&olle that outputs the state of the filterbank after the aisalys
of the frequency bands. From each band, the 3 highest peakghe whole sound file. Then the tempo is taken to be the
(excluding the zero-lag peak) of the autocorrelation fiomct resonance frequency of the filter with the highest instaetas
are combined, and each is assessed as a possible teeigygy after the whole analysis. The choice of this pawicul
candidate, with the highest scoring peak determining thed fiback-end was based on the observation that this algorithm
tempo value. provides more reliable estimates after some processinigeof t
sound file than at the beginning. However, note that other
methods could also be considered, as for instance, the total
number of beats divided by the duration, or the mean of the

Anssi Klapuri from the Tampere University of TechnologyBis. See [11] for more details on the algorithm.
submitted one algorithm as a GNU/Linux binary, referred to

C. Klapuri

asKlapuri . E. Tzanetakis
An important aspect of this algorithm lies in the feature lis George Tzanetakis from Victoria University submitted
creation block: the differentials of the loudness in 36 treacy 3 entries:  TzanetakisH , TzanetakisMS and

subbands are combined into 4 “accent bands”, measuringqnetakisMM (standing respectively for “Histogram”,
the “degree of musical accentuation as a function of time{jedianSum” and “MedianMultiband”). GNU/Linux binaries
The goal in this procedure is to account for subtle energyere compiled at the UPF labs from the source code available
changes that might occur in narrow frequency subbands (&g the SourceForge wéb.
harmonic or melodic changes) as well as wide-band energya|| the three methods are based on the wavelet front-end
changes (e.g. drum occurrences). The pulse induction blagéscribed in [15]. The signal is segmented in time into 3 s
implements a bank of comb filters comparable to that proposgflalysis windows (with an overlap of 1.5 s). In each window,
by Scheirer [11] (see below). the signal is decomposed with the help of a wavelet transform
Another particularity of this algorithm is the joint deterinto 5 octave-spaced frequency bands, and the amplitude
mination of three metrical levels (the tatifnthe beat and the envelope is extracted in each band.
measure) through probabilistic modelling of their relagbips  Regarding the pulse induction block, all three methods use
and temporal evolutions. After computing the beats of th&utocorrelation, however, they differ in some aspects. The
whole test excerpt, the tempo was computed as the medifsfault method TzanetakisMS ) sums the diverse subband
of the IBIs of the excerpt's latter half. See [13] for a comple amplitude envelopes and computes an autocorrelation of the

description of the algorithm. resulting sum. The maximum peak in the autocorrelation (a
tempo estimate) is computed on each analysis window and
D. Scheirer the median of the tempo estimates is chosen as the final

. . , tempo. TzanetakisMM makes a separate tempo estimate
The source code of Eric Scheirers algorithm (formerlyor each band and each analysis window, and then selects
MIT Medla_Lab_) was downloaded fr_om the wehtip:// the median.TzanetakisH sums the subband amplitude
sound.me_d|a.m|t.gdu/"eds/_beat/tappmg.tar. . envelopes, computes an autocorrelation of the resulting, su
g2). Anssi Klapuri p_orted I t(.), GNU/L'OUX —it is the SaMEsalects several autocorrelation peaks and accumulates the
code that was used in Klapuri's evaluations [13]— and it wag histogram which summarises the peaks of all analysis

then cpmpiled in the UPF labs (itis r(_aferred tSeheirer ). windows. The tempo is finally set to the highest peak of the
An important novelty promoted in [11] was to perfomhistogram

pulse induction on regularly-sampled series of signal fea-

tures (amplitude envelope) rather than on series of discrgt yhle
events (as onset times). Further, Scheirer also argued th
pulse induction should be performedparatelyon the signal
features computed on each of several frequency bands,

% hristian Uhle from Fraunhofer Institute for Digital Media
;géhnology submitted one algorithm as a Windows binary,
rred to adJhle .

Stastest metrical level, i.e. the regular time division thabst highly "marsyas-0.2 undehttp://www.sourceforge.net/projects/
coincides with all note onsets [12, p.22] marsyas
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This algorithm calculates the rates of metrical pulses an the contest webpage and may be used e.g. for setting
three levels (the tatum, the beat and the measure). The ayglior probabilities in Bayesian approaches). They all have
signal is segmented into characteristic long-term segsneapproximately constant tempi, and the format is the same for
corresponding for example to a verse or a chorus [16]. Amal: mono, linear PCM, 44100 Hz sampling frequency, 16 bit
plitude envelopes for logarithmically spaced frequencydsa resolution. The total duration of the test set is approxatyat
are calculated by means of the Discrete Fourier TransfodB140 s (i.e. around 12 h 36 min). This data was not available
and smoothed using an FIR low-pass filter. Slope signals tof participants before the competition. Part of the datanoas
the amplitude envelopes are computed by means of the rddaen made available on the contest webpage.
tive difference function, as suggested in [13], and halkeva 1) Loops: Many sound libraries are made up of short
rectification. The slope signals are summed across all barifi®ps” to be used in DJ sessions, or for home recording needs
to produce an “accent signal.” An autocorrelation functiohe loops used here were originally in MP3 format, they come
(ACF) is computed for non-overlapping 2.5 s segments insifi@m different sound library retailers and are courtesyrs t
each long-term segment. The tatum period is estimated frampe Gallery° It is usual that tempo in BPM (and additional
the ACF by means of a periodicity detection procedure; amdetadata) are sold together with sound files. These anoosati
a second ACF is calculated on a larger time scale (7.5 wgre not double-checked. We do not distribute these loaps fo
to detect periodicities in the range of musical measures. gdpyright reasons, however, an exhaustive list of loops and
function representing periodicity saliences at integeltiples corresponding tempo is available on the contest webpage.
of the tatum period (i.e. ACF local maxima) is computedne can search by name for, listen to MP3 versions of and
and compared (i.e. correlated) with a number of pre-defingdy high audio quality versions of any of these loops from the
metrical templates, which characterise musical knowlesfge webpage of the Tape Gallery.
different meters. The currentimplementation has 17 tetepla A loop is often used as a basic short “kernel” to be looped in
The most highly correlated template determines the value ®tomposition, that is, to generate a long audio file by sévera
the segment’s tempo. Tempi are accumulated in a weightg@shcatenations of the same instance. However, the samples
histogram and the maximum yields the basic tempo of thged in the analysis were not looped.

piece. See [17] for more details. « Total number of instances: 2036

« Duration: a few bars

. EXPERIMENTAL FRAMEWORK . Total duration: around 15170 s

A. Infrastructure « Tempo range: between 60 and 215 BPM, see Figure 2(c)
Two computers were usedlonsoACF , AlonsoSP and « Genres: Electronic, Rock, House, Ambient, Techno.

Uhle were run on Windows OS (XP Professional edition 2) Ballroom: BallroomDancers.coi provides information
2002, version 5.1.2600), the rest on GNU/Linux OS (Debiagn ballroom dancing (online lessons, etc.). Some chaiatter
Sarge), both 1.6 GHz, with 512 MB RAM. The evaluatioexcerpts of many dance styles are provided in real audio
framework was designed as a set of Matlab (version 6fbrmat, labelled with a tempo value. Tempo values were
Release 12.1 on GNU/Linux and version 6.5, Release 13 @ouble-checked by the third author.
Windows), perl, shell and dos scripts. For a robustness tesbata and annotations are available on the contest webpage.
(see below), several types of distortion were applied to the. Total number of instances: 698
signal using the programs Sox and Matlab. However, it was 5\ ation: around 30 s
ensured that the tempo was _stiII cIea_rIy perceiyable even in. Total duration: around 20940 s
the cases of severe degradation of signal quality. All of the. Genres: see style distribution in Table I.

test scripts are available from the contest webpage. . Tempo range: between 60 and 224 BPM, see Figure 2(b)

B. Data

Style # instances
No training data was provided. However, some preparatory ?ha Cha lécl)
data (7 instances and corresponding tempo values) was given Quickstep 82
to the participants in order to compare whether algorithms Rumba 98
yield the same output when run in participants’ labs and on Samba 86
UPF machi d to check formatting of algorith Jango %
. machines, and to check proper formatting of algorithm Viennese Waltz o
input and output. Slow Waltz 110
The test data consisted of 3199 tempo-annotated instances
in 3 data sets as described below. The instances range from 2 TABLE |

to 30 SeCOﬂdS, and from 24 BﬁMO 242 BPM Figure 2 STYLE DISTRIBUTION OF THE BALLROOM DANCE MUSIC EXCERPTS
illustrates the distribution of test excerpts along the gem
axis (these tempo statistics are all available in text farma

8This was not considered as “training data” as it would not besiple to  *°http:/www.sound-effects-library.com/
properly train a system with so few instances and test it oesa set more Unttp://www.iua.upf.es/mtg/ismir2004/contest/
than 400 times greater. tempoContest/node4.html

9Note however that only 15 excerpts have a tempo less than 50 BP L2http://www.ballroomdancers.com/
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Whole data (N =3199) Ballroom data (N = 698 )
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Fig. 2. Histograms of ground-truth tempo values in 5 BPM step
3) Song excerpts:A professional musician placed beat Sggﬁe # 'nStan%%S
marks on several song excerpts. (These beats were cross- Classical 70
checked by the first author). The ground-truth tempo was Electronica 59
computed as the median of the IBIs; here also, other methods ;:'Qba 1‘21
could also be considered, as for instance, the total number o Jazz 12
beats divided by the duration. éIfFOBeat 12
H H amenco
Data and annota‘uo_ns are available on the contest webpage. Balkan and Greek 122
« Total number of instances: 465
 Duration: around 20 s TABLE Il
« Total duration: around 9300 s GENRE DISTRIBUTION OF THE SONG EXCERPTS

« Genres: see distribution in Table II.
« Tempo range: between 24 and 242 BPM, see Figure 2(d)

C. Evaluation methods represent the metrical level that the majority of human lis-
Two evaluation metrics were agreed for the contest:  teners would choose. However, we assume that discrepancies
« Accuracy 1 The percentage of tempo estimates withipetween ground-truth tempo and human perception correlspon
4% (theprecision window of the ground-truth tempo.  to a focus on a different metrical level, i.e., a ratio of 2Jor
» Accuracy 2 The percentage of tempo estimates withifor duple meter music and a ratio of 3 grfor triple meter
4% of either the ground-truth tempo, or half, double, thre@usic. This assumption is ubiquitous in all previous eviitura
times, or one third of the ground-truth tempo. attempts; see V-A for further discussion. As we discuss in
The latter evaluation metric was motivated by the fact th&trther details in 1V-B.1 and V-A, the width of the precision
the ground-truth we use for evaluation does not necessarjndow is not a crucial factor.
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Whole data (N =3199)
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Ballroom data (N = 698)
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Fig. 3. Accuracies 1 (light) and 2 (dark) on the whole data-8¢&)—, the Ballroom data set —3(b)—, the Loops data se)—afwd the Songs data set —3(d).

In addition, the robustness of algorithms to sound digtarti Dixonl andDixonT suffer more from distortions than other
was evaluated on a part of the test data: the 465 soalgorithms.
excerpts. Test instances were distorted by several pregess 1) And the winner is....The performance measures accu-
downsampling/resampling, GSM encoding/decoding, fil@ri racy 1 and 2 were the criteria used to determine the contest
volume change and addition of reverberation and white noiggnner. As can be seen in Figure 3, the algoritkiapuri
(with a signal-to-noise ratio of 20 dB). The script is avhi& outperformed the others with respect to these measures on
on the contest webpage and in the appendix. all data sets: respectively 67.29% and 85.01% on the whole
data set and{70.71%, 81.57%, {63.18%, 90.97% and
IV. RESULTS {58.49%, 91.18% on the Loops, Ballroom and Songs data
sets, respectively. It was also the best algorithm witheeso
noise robustness (loss of 1.72 percentage points in agcArac
Figure 3 presents the results for each algorithm, orderé@e Figure 4).
alphabetically: Al isAlonsoACF , A2 is AlonsoSP , D1 2) Statistical significance:One must keep in mind that,
is DixonACF, D2 is Dixonl , D3 is DixonT , KL is because of the restriction to a specific data set, the num-
Klapuri , SC isScheirer , T1 is TzanetakisH , T2 is bers reported in Figure 3 are jusistimatesof the true
TzanetakisMM , T3 is TzanetakisMS and UH isUhle . (but unknown) algorithm accuracies. Therefore, in addito
For each algorithm, accuracy 1 and 2 are given, in light afdoviding success rates for each algorithm, it is important
dark shadings, respectively, for the whole data set and efclconsider whether the observed differences in performaree a
the 3 subsets. statistically significant or arise by chance.
Figure 4 illustrates the loss of accuracy for each algorithm Different statistical tests can be used to compare algusth
when distortion was applied to the Songs data set as dsed on their respective predictive accuracy: e.g. adeghé
tailed above. Clearly, algorithmalonsoACF , AlonsoSP , difference of two proportions, Student'test, McNemar's test,

A. Accuracy measures and robustness to noise
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100 S‘ongs‘data ‘set ( N = 4‘65 ) | and TzanetakisMM  (1%), Dixonl and TzanetakisMS
(less than 2%)DixonT andTzanetakisH (less than 2%)
90- 1 and TzanetakisMM and TzanetakisMS (less than 1%)

are not statistically significant, setting the threshold $@-
nificance to a p-value of 0.0%. The differences between all
1 remaining pairs of algorithms are representative of gesuin
performance differences.
Regarding accuracy 2, solely the differences between
7 AlonsoACF and TzanetakisMS (less than 3%),
] AlonsoSP and Scheirer (less than 2%), Dixonl
and DixonT (less than 1%),DixonT and Uhle (less
than 2%) andTzanetakisH and TzanetakisMS (less
| than 1%) are not significaf®. The differences between alll
remaining pairs of algorithms are statistically significan
3) Computation time:Another interesting aspect of the
algorithms is the computational resources they require. It
Al A2 D1 D2 D3 KL SC T1 T2 T3 UH . ) .
Algorithms can be expressed as processing time divided by excerpt
length® Dixonl takes approximately 0.02 times the excerpt
I_:ig. 4. Effect _of instance distortions on accuracy 2, danisltfar clean data, |ength to estimate its tempd)ixonT , Uhle , AlonsoSP
light bars for distorted data. and AlonsoACF approximately 0.1,Scheirer  approxi-
mately 0.4,Klapuri  approximately 0.5,DixonACF ap-

alidag . . . proximately 1 andTzanetakisH , TzanetakisMM and
cross-validation paired differenceégests [18]. Choosing the TsanetakisMS  approximately 2. (Note that the partici-

appropriate test to a given problem depends on the suliabill ants were not instructed to optimise computational efiicye

of several assumptions, among them independence of al ?fen submitting the algorithms and using different operati

rithm accuracies (i.e. accuracies on test items are indkgren . .
. . . systems and versions of Matlab may have an influence on
for algorithm A and algorithm B) and error independenc S
. : . computation time.)
between items (i.e. errors made by an algorithm on twoO . . . .
To facilitate comparison of other algorithms with those of

separate test items are independéht). . :
P P ) rtEe contest, detailed results on each dataset are avadable

Accuracy 2 (%)

In our problem, algorithms are all tested on the same | e contest webpagdé.In the following sections, we provide a
stances, therefore we cannot assume that, for a given agsta page. 9 ’ P

the failures of different algorithms are independent. Oa tfhore detailed analysis of the results, done after the patitic

other hand, it seems reasonable to assume that errors m%\fdtge contest results in October 2004.

by a specific algorithm on different instances are indepetde
As mentioned in [19, Paragraph 3.2] and [18, Question &
McNemar’s test is appropriate to this kind of problem. 90-

McNemar's statistical test tests the hypothesis that tbe fe 5,
that algorithm A classifies an item correctly while algomitiB ’
classifies it incorrectly is equally likely as the opposigd-( — 70
gorithm B classifies an item correctly while algorithm AS 60

100 ‘
DixonACF

Klapuri
e

AlonsoSP
cheirer .-

classifies it incorrectly). In other words it tests the fauatt < TzanetakisMS

given only one algorithm makes an error, it is equally likeh g 59 AlonsOACE TzanetakisH i

to be either one (this is the “null hypothesis”). Given g 4 TzanetakisMM ,
<

threshold for statistical significance (usually 0.01 ord).the
null hypothesis is tested by applying a two-tailed test véth
Normal distribution (see [19] for more details). 20
According to this statistical test, the observed differenc
(of around 1%) in accuracy 1 on the whole data set (s
Figure 3(a)) betweeAlonsoACF andDixonT would arise 0

by chach on 19% .qf occasions, th|s difference is therefc 0 Preeigon window Widlt?, (in % of Corrégt tempo) 20
not statistically significant (considering a p-value of D.&s
the threshold for statistical significance), and it is betibecon-  Fig. 5. Accuracy 2 vs precision window width, full data set
clude that both algorithm performances are comparable: Sim
ilarly, observed performance differences betwééonsoSP “They correspond respectively to P-values of 0.02, 0.165,M45, 0.5,
. . 0.13 and 0.5.
and DixonACF (less than 3%)AlonsoSP and Scheirer 15p_yalues of 0.03, 0.09, 0.18, 0.03 and 0.26
(less than 2%)DixonACF and Scheirer  (1%), Dixonl 18Algorithm computation times are approximately proporéibto excerpt
length.
Bwhich does not mean that algorithm accuracy would be inciigrenof lghttp://WWW.iua.upf.es/mtg/ismir2004/contest/

the test set tempoContest/Results.htm
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Fig. 6. Histogram of ratio between estimated tempo and cbtempo for

Klapuri , full test data set Fig. 7. Klapuri performance with respect to instance tempi, full test data

set

B. Error analysis in the tempo estimation represents an erroioin the 1BI,

1) Accuracy vs precision window widtlEigure 5 plots the that is, a focus on e.g. the dotted quarter-note insteadeof th
relationship of algorithm performance to precision windowalf-note, while a tempo error o represents a focus on e.g.
width. The choice of 4% precision in accuracies 1 and 2 ibe dotted-quarter note instead of the quarter-note.
somewhat arbitrary. In the literature, other values havenbe Algorithms also sometimes est|ma§eof the correct tempo.
advocated; for instance, Klapuri et al. [13] propose a gieni See, for instance, the peak around -1.58 in Figures 8(c)
of 17.5% for IBIs, however they focus otonsecutiveBls and 8(a). This error factor, as well as 3 ahdare typical of
rather than on global tempo and deal with excerpts withiple and compound meter pieces (e.g. Waltz in the Ballroom
varying tempo. The amount of tempo variation in the data #ata set). We found relatively few of these errors, presiynab
an important factor to consider in setting the precisiomc8i because relatively few such pieces are present in the tést da
we are dealing with basically constant-tempo data, a smaét.
precision window seems appropriate. 3) Algorithm performance “niches”:It is interesting to

2) Tendencies towards integer ratio errorigure 6 shows consider whether specific algorithms, regardless of theer-o
the type of errors made by the contest winnistapuri ). all performance, show unique performance on some particula
Figure 7 shows the same information plotted against temgtata. Indeed, an algorithm which performs worse than other
One can see on the one hand that the most common er@gorithms on many problems, but solves a few problems that
are doubling and halving of tempo, and on the other hame other algorithm solves, would be valuable if these specia
that it shows a “moderate tempo tendency”, i.e. a tendencgses could be identified.
to estimate half the tempo for fast pieces and double forThere are 41 pieces (3 ballroom, 35 loops and 3 songs)
slow pieces. We remark also that it estimates incorrectiyh(w whose tempi were correctly computed bif 11 algorithms.
respect to accuracy 1) all pieces whose tempi lie outside tB@ the other hand, 176 pieces (11 ballroom, 162 loops and
rough limits of 60 to 160 BPM. This is due to the explicit3 songs) were incorrectly processed &l algorithms, with
modelling of a prior probability function for the tempo [13] respect to both accuracy 1 and accuracy 2. Finally, there are
[20]. 29 pieces whose tempi were correctly computed tsirgle

Regarding the other algorithms, inspection of their err@gorithm. No clear explanations for these cases have been
histograms also shows clearly that, as expected, halvidg gaund.
doubling of tempo are the most common errors. On the otherAnother way to thoroughly inspect the results is to compare
hand,Klapuri seems to be the only algorithm that clearlpairs of algorithms. For instance, Figure 9 shows a compar-
shows a moderate tempo tendency. With the exception ispn betweerKlapuri  and DixonACF . For each data set,
Klapuri  and Scheirer , all algorithms tend to “tap too instances have been ordered with respect to increasing erro
fast” rather than too slow. For instance, as can be seennade byKlapuri , where the error is computed as follows:
Figures 8(a) and 8(b)PixonT has a very clear tendency
towards faster metrical levels.

Other typical error factors ar? and%, as seen, for example, The performance of both algorithms is given for each insanc
in the peaks around -0.58 and 0.41 on the (logarithmicallgermitting a visual comparison of algorithms on an instance
scaled) X-axis of Figures 8(a), 8(b) and 8(c). An error%of by instance basis. Three main trends are apparent: many case

abs(log2(computedT empo/correctT empo)).
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Fig. 8. Histograms of ratio between estimated tempo andecotempo forDixonl (solid) andDixonT (dashed), on the Ballroom and Loops data sets
—8(a) and 8(b) respectively— and félonsoACF (solid) andAlonsoSP (dashed), on the Ballroom data set —8(c).

Klapuri (solid line) and DixonACF (dots) in the liney = 0.5) is an artifact of the representation,
‘ ‘ ‘ ‘ ‘ .1l which occurs when one algorithm has a log ereprwhere
L . ##H  —1 < e < 0, and the other algorithm has double this tempo,

2
. — — _

- BallfoOMm. e Loops. - -~ _ ~« Songek hen_ce a log error of =et+l=1 le]. _

o S Figures such as Figure 9 can be generated for any pair

1.5¢ C |~ || of algorithms. They show on an instance by instance basis

which errors an algorithm makes that another one does not
make. We can then track down single files for which a
specific algorithm has a particular advantage over another
one. Cases where several algorithms make the same error
could be used to identify interesting (“pathological”) ttes
cases for further investigation, general weaknesses iregur
tempo induction systems, and errors in annotation. Howaver
order to draw conclusions about error trends, or alterabtiv
specific “skills” or “performance niches” of algorithms, otu

‘ ‘ ‘ ‘ more test data is needed, together with richer metadateethd
0 00 1000 1500 2000 2500 3000 it is difficult to make any valid conclusion just by listening

or examining specific test cases.

/halving and doubling tempo errors

oo
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abs (log2 (Computed tempo / Correct tempo ) )
o
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™ correct tempo

o

Fig. 9. Comparison of errors made Kjapuri  (solid line) andDixonACF

dot . .
(dots) C. Redundant approach to tempo estimation

Having several algorithms performing the same task and
of agreement between the algorithms, for correct and iecbrr exhibiting specific performance on specific parts of the data
tempo estimates; cases where one algorithm is correct adithportant question arises: Can we improve the tempo estima-
other has a halving or doubling error; and cases where baitn accuracy by combining the outputs of several algorgAm
algorithms are incorrect, and one algorithm has double tfiae answer seems to be “yes”, although it should be noted that
tempo of the other. simply computing e.g. the median of the tempo estimates of

For example, in the Ballroom datBjxonACF solves quite different algorithms doesot yield an improvement. This is
a few doubling and halving errors thitapuri makes (see because the “too slow” and “too fast” tempo estimates cannot
the cluster of points around the error value of 0 for indexdse guaranteed to balance each other out.
between 500 and 698), but on this very data it also makes quitéd thorough analysis of algorithm skills and error trends
a few doubling or halving errors whet€lapuri  estimates would dictate a set of rules for combining algorithms. Lack-
the correct tempo. This is also true of the Loops data deg this information, we propose in the following a voting
(indexes between around 2500 to 2734), but not the Sonmgschanism for combining the tempo estimates of different
data set, wherBixonACF makes many doubling and halvingalgorithms. Imagine an ordered list of a number of algorghm
errors (this can also be seen in Figure 3(d), third bar pamfr among the 11. Algorithms in the list being considered in turn
the left). On the other han@ixonACF seems to solve somefor each test instance, a given algorithm gets one vote fibm a
non-integer ratio errors thalapuri  makes, especially in the algorithms that agree with its tempo estimate. An atgori
the Loops data set (indexes between around 2100 and aroXnd defined to agree with an algorithm Y if the ratio of their
2500, whereKlapuri s error on the Y-axis is between 0 andestimates is 1, 0.5, or 2, with 4% precision. The tempo eséima
1). Note that the apparent mirroring of error values (reiftect of the algorithm which gets the largest number of votes among
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the algorithms is selected as the output. If several algmst is approximately 4% for music [22]. Further, larger premisi
receive the same number of votes, the order of the algorithmisdows may be required to evaluatensecutivdBlIs rather
in the list defines which estimate is selected as the output.than global tempo, especially in varying tempo situatioh3].[

An exhaustive search over all possible combinations of
five algorithms (from among the 11) was made to find B. Onsets vs frame features
combination which performs best using the voting mechanism |n Figure 4, we can see that algorithrdonsoACF ,
Applying the accuracy measure 1, the algorithii&puri ,  AlonsoSP , Dixonl andDixonT clearly suffer more from
Uhle , Klapuri , Dixonl , DixonACF ] achieved 68% per- distortion of the signal than other algorithms. These 4 al-
formance and, applying accuracy measure 2, the algorithgisrithms are the only ones that attempt to detect onsets of
[Klapuri , Scheirer , DixonT , Dixonl , DixonACF] discrete sound events as a first step. All others measure some
achieved 86% performance. This does not represent a signifiysical feature in the input signal in a more continuous
cant improvement compared to the performanc&lapuri (frame-based) manner.
alone (67% and 84% according to the accuracy mea-Therefore, implementing a robust tempo induction algo-
sures 1 and 2, respectively). However, the situation bgthm calls for the computation of low-level frame features
comes clearer wherKlapuri  is excluded. In this case, rather than that of onset lists as the first processing block.
the algorithms Phle , Scheirer , Dixonl , DixonACF, However, whether this is perceptually more valid (as pregos
DixonT ] together achieve a rate of 57% with accuracy 1 arig [11]) remains to be investigated.
the algorithms $cheirer , Uhle , DixonT , DixonACF,
DixonACF ] achieve a rate of 84% with accuracy 2. Compare@. Towards better benchmarks

to the best individual performances among the remaining-alg 1) Beat tracking: Tempo induction and beat tracking are
rithms Uhle achieves 51% with accuracy 1 alixonACF  part of the same perceptual process [23], therefore future
achieves 81% with accuracy 2), the voting mechanism mak&gjuation efforts should consider them jointly.
a statistically significant improvement to the individuasults. 2) Data: More data is needed for future contests. Impor-
The experiment described above is an example of a “remtly, a larger amount of data with triple and other meters
dundant” approach to music content analysis: instead of d¢-required. However, not all music is suitable. As discdsse
signing one very complex algorithm we combine a number @hd exemplified in [6], test instances can show diverse lev-
different and more simple mechanisms. This idea stems frag of difficulty. It may be difficult to induce or track the
Bregman, who pointed out that human perception appears togpo of specific musical pieces, even from constant-tempo
redundant at many levels: there are several different ssdtg performances, if they have a complex rhythmic structurg. (e.
principles serving the same purpose, and when one of thefany events not on beats, or many beats occurring between

fails, another succeeds [21]. musical events), while other pieces may be fundamentaily le
challenging. Additionally, in the case of performed music,
V. DISCUSSION keeping an almost steady tempo or adding expressive tempo
Let us now discuss further these results and the evaluati§iations is up to the performer. For instance, resulte aee
benchmark itself. better on Ballroom data; this was predictable as this is eanc

music, which has relatively clear beats and stable tempo.
Therefore, measuring the level of “rhythmic difficulty” of
the instances in the test set might provide an additionarobn
Accuracy 2 was designed to account for the inherent fuzzbr thorough evaluations. Goto and Muraoka [4] and Dixon [6]
ness of the tempo induction task: two listeners might n@topose such metrics.
agree on a metrical level as the “correct” tempo. However, 3) Robustness test®ther robustness tests are needed, for
its drawback (in our use of it) is that it does not take th@stance, robustness to increasing levels of noise (dsioga
meter into account. Considering half and double grounthtruSNR) and robustness to cropping (the effect of the length of
tempo as correct makes sense solely for duple meter instandiee excerpt).
Similarly, considering three times and one third of ground- 4) Better annotations and evaluation measuréisis dif-
truth tempo as correct makes sense solely for instances withilt to evaluate the accuracy of an algorithm for determin-
a triple or compound meter. The meter is not available wiihg the correct tempo because of the inherent ambiguity of
the data used here. We therefore considered half, doubéss thmetrical levels. In future contests, more accurate eviloat
times, and one third of ground-truth tempo as correct. Hownight be obtained by considering the “degree of ambiguity”
ever, the test data does not contain many triple or compounidexcerpt tempi. This could be done by recruiting several
meter pieces, so the inclusion of the factors 3 %nm the annotators (e.g. 3 or 4) for each piece and considering slever
computation of accuracy measure 2 was perhaps not justifietktrical levels as valid optioranly in cases where annotators
One reason to choose a wide precision window is tltsagree on the tempo. This procedure could also teifhish
approximate nature of ground-truth annotations. Figure I&vels are valid for each instance. This is however a vergtim
does not indicate any significant difference between the 486nsuming procedure.
precision used here and wider windows. However, 4% is A faster way to proceed to more precise evaluations would
probably the highest precision level that should be comsitle be to manually annotate beats of each test instan& dif-
as the Just-Noticeable Difference (JND) for tempo diffeesn ferent metrical levelsnstead of one. A single person would

A. On accuracy measures
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suffice for annotating each instance. For each instance, th&he  difference  between TzanetakisMS and
accuracy measure of an algorithm would be the best mafthanetakisMM lies precisely in the integration of several
over the annotated metrical levels. frequency bands respectively before or after periodicity

One might object that, for a given instance, two algorithmestimation. The algorithms exhibit similar performanceewh
might not be evaluated with respect to the same metriGdsessed with accuracy 1, but the former performs around
level. Nevertheless, both levels have been considered bgli 5% better than the latter with respect to accuracy 2. It is
the annotator. And we can assume that, in tempo-ambigudiiicult to make any solid conclusion and confirm or refute
cases, any two listeners would perceive at least one levelSpheirer's point from these results. Let us however outiine
common, solely the rankings of metrical levels would diffefew aspects of these methods: Estimating periodicitiesr aft
Consider the following example: a piece of music whose kevahultiband integration enhances periodicities that aresgame
all share duple relationships, to which listener A taps thatb in all bands, while periodicity estimation before multiband
at 50 BPM. Being asked to define another level, he choodagegration favours signals whose periodicities appedehso
100 BPM (it is highly unlikely that he would choose 25 BPMn a restricted frequency region. Also, the former methosl ha
which is too slow to be a perceptually valid tempo). Say that bias towards fast metrical levels; indeed, it accounts for
listener B naturally taps the beat at 200 BPM, being askéte phase of periodicities while the latter does not. Caarsid
to define another level, he will most likely choose 100 BPNbr example the case where two bands have the same
(not 400 BPM). Even in this extreme case, there exists someriodicity but have a phase difference of half the peribé: t
agreement. Thus, this procedure would be a way to meastoemer method yields double the tempo of the latter. This
how close a specific algorithm gets to human agreemestverified on the data used her€zanetakisMS makes
regarding tempo perceptiorSuch annotations could be donenore double-tempo errors thaizanetakisMM .18 One can
with the help of annotation tools as proposed e.g. in [@lrgue that each method is more suitable for different types
and [24]. of data. Further evaluations are required before more géner

5) More modular evaluationsit is difficult to compare conclusions can be drawn.
systems that, even if they implement similar concepts, do no 2) Which frequency decomposition®cheirer argues that
share any piece of code. The performance of each systhim algorithm “is not particularly sensitive to the pari&u
depends on the overall implementation and it is often habénds” [11]. That is, the important point is to proceed to
to say anything more than “system A performed better thanfrequency decomposition, and not the particular choice of
system B (on this data set).” That is, we are unable ttecomposition.
say anything conclusive about the system submodules (foHowever, let us consider the algorithms that compute pe-
instance, whether frame differentials are better than lateso riodicities in frequency subband®DikonACF, Klapuri
values), without being able to switch the submodules withiBcheirer and TzanetakisMM ). They all use energy (or
a single system. On the other hand, it would be difficult tmtegrated amplitude) features. Of course, the performanic
implement different systems in a common software framewodach system depends on the overall system, so it is hard to say
so that they share simple processing blocks. Indeed, fprcianything conclusive about the best frequency decompasitio
the use of a specific implementation framework would prolfas indeed about any of the submodules). However, the fact
ably have negative repercussions in terms of the numbertbét these systems show non-negligible differences inoperf
contest entries. In the evaluations detailed above, éiffer mance suggests that the definition of the frequency filtdcbhan
system variants from the same participant (Alonso, Dixacould be a significant issue, contrary to Scheirer’s obsienva
or Tzanetakis) give the most reliable information about the Further, many features other than energy could be computed
effect on the performance of different solutions for a givean signal frames. Energy could also be normalised (or not) in
submodule of the system. A solution could therefore be &mch frequency band. This also suggests that more resaarch i
motivate participants to submit several systems, with kmaheeded on the definition of relevant rhythmic features.
but conceptually relevant, variations in some submodules. 3) Frame values vs differential valueSome pulse induc-

tion algorithms focus on energy values (elganetakisMM )
D. Open issues while others focus on changes from one frame to the next

In future contests, with more data, better annotation, moi@ 9. estimating the derivative of frame energy values, e.g
elaborate robustness tests and evaluation measures amnd #gpuri , or of the downsampled amplitude envelope, e.g.
importantly more modular evaluations, it would be posstble Scheirer ). The derivative can be estimated by a first-order
evaluate the f0||owing open issues more thorough|y: differentiator filter (aS forScheirer ) or more aCCUrater as

1) Periodicity detection before or after multiband integraproposed in [8]. If, as Klapuri claims in [13], we assume that
tion?: Current literature, e.g. [11], [13], advocates the ug@e difference between the use of the autocorrelation aatd th
of multiband processing and subsequent integration of pe@f comb filterbanks for pu_Ise int_juction is not crucial in the
odicity estimates, rather than periodicity estimatioreathe performance of a tempo induction system, the performance
integration of a signal processed in several frequency dian@f Scheirer  vs that of TzanetakisMM *° seems to indi-
For example, Scheirer argues that “a rhythmic processifgte that changes in energy values would be more valuable
algorithm should treat frequency bands s_eparately, camgin 8Note that accuracy 2 does not considered them as errors
resu'_ts at the end, rath_er than attempting to perform beatpespectively 379% vs 30% with accuracy 1 and 68% vs 50% with
tracking on the sum of filterbank outputs” [11]. accuracy 2
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rhythmic features than the energy values themselves. Haiywevrained on labelled data. Designing several classifierdtfer
here also, a solid conclusion would require implementatiosame task can be done in several manners, for instance it is
to differ solely in this aspect. possible to provide different subsets of the training data t

4) Which pulse induction methodZhere are significant base algorithm (as is done e.g.BaggingandBoosting, it is
differences in the accuracies obtained BjonsoSP and also possible to provide the same training data but destribe
AlonsoACF , which differ solely in the pulse induction block.with different attributes [26].
The spectral product outperforms the autocorrelation én al To use these methods for tempo induction, one would need
data sets and all accuracy measfeshis finding should be to define training and test data sets and, possibly, disereti
verified on other data sets as Alonso’s results seem to itedic&mpo in a number of classes. Then, forcing diversity in the
different conclusions (namely that the autocorrelatioruldo design of different algorithms could be done by speciaijsin
be better than spectral product [8, Tables 2 and 3, p.162dhch of them on a restricted set of signal features. Another
A comparison with a comb filterbank method (used by thgption could be to focus the performances of different algo-
contest winner) would also be interesting. rithms on different training instances (or differently-glated

5) Induction vs tracking:lt is sometimes hypothesised thainstances, which would amount Boosting.
in order to compute a tempo value that best reflects human
perception of the musical pace, it would be better to comside
the whole tracking process rather than rely solely on tempo
induction [25]. Performance differences betwé&xronT and

Dixonl are not really conclusive in that respect. On this point Quantitative comparisons of tempo induction algorithms

also, rrr:ore research 'ﬁ nelgdelzd. b q ding the b are largely absent from the literature. The contest refdorte
A short comment should also be made regarding the bagg-yhis document was aimed at promoting more systematic

en(z) adged tScheirer f,s output. Tfhehfln?II temP‘r’]Wﬁ‘s tr‘;",kinevaluations. It is our hope that the contest results, data an
to be the resonance frequency of the filter with the highest,iations might be useful in developing future benchmark

g‘lns;?nstiasneggz ri?er:'?il/v:rtl dtgrewﬁg?heorf ﬂt_]?se i;vrl;zlii Sﬁﬁgr fl(l) his evaluation showed that, for music with almost constant
ySIS. 9 g ttempo, tempo induction is feasible with around 80% accuracy

this algorithm. On the one hand, if the analysis fails at the : . . .

. . and a relatively good robustness to distortion, if we do not
very end of the sound file, the overall tempo might be Wron@sist on finding a specific metrical level. Anssi Klapurik a
while most beats were correctly tracked. On the other han 9 P ’ P

the rather slow exponential decay used by this algorithrdstengdrlthm s the best among t_he algorlthms tested. We enceurag
. : . ' otther researchers to participate in future benchmarks.
to yield more reliable estimates at the end of the file than a

the beginning (at least with constant-tempo data, as useg.he . It also showed_that the MOst common errors that all _algo-
6) Joint estimation of several metrical levelghree al- rithms make are in the choice of metrical level. The majority

gorithms Klapuri , Uhle and DixonACF ) implement, in of algorithms tend to tap too fast rather than too slow. Tests
different ways, influential schemes for the determinatié2 o of robustness to signal distortions showed that robust ¢emp

or 3 metrical levels. As they all perform very well, it seeméndUCtIOn entails the processing of frame features rathan t

interesting to evaluate more methodically the effect of thfhat of onset lists. ) )
feature. However, emulating the perception of tempo by humans
Similarly, the relevance of the *moderate tempo tendenc{® Still an unsolved problem. Inducing the basic tempo from
that has to be considered when focusing simultaneously @fpitrary audio signals, without accepting alternativet-me
several levels, and often modelled with a prior tempo probHc@! levels, is not a solved issue, and many aspects call
bility function (as in [20]), should also be the object ofthuer for further research. Here is a (non-exhaustive) list ofrope
research. issues: Should periodicity detection be performed befare o
7) Redundant approachErom the results presented in Iv-after multiband integration? Which frequency decompositi
C, it appears that combinations of algorithms can perforli MOSt appropriate? Which rhythmic features are the most
better than any single algorithm. This is an interestingnaee relevant to compute from audio as a first processing step? Is
for future work and raises the following interesting quess: it better to use absolute frame values or differential vstfue
Which commonalities and differences should we implement §fhich pulse induction method performs best? Is it better
the concurring algorithms? How simple should we keep thel consider the whole tracking process rather than relying
algorithms? Is the voting scheme proposed in this paper $lely on tempo induction, in order to better emulate human
best way to combine algorithms? perception of the musical pace? Should several metricaldev
An interesting way to tackle this problem could be t&€ €stimated jointly? What is the effect of implementing
embrace a machine learing perspective and focus on @nMmoderate tempo tindency? How can we combine several
semble learning methods. In supervised leaming, ensemBigorithms effectively? .
learning algorithms take decisions regarding the memigersh With this article, we wish to stimulate future benchmarks.
of a given instance to a class among several possible cladsgk these, we argue that beat tracking should be evaluated

by Considering the “votes” of several C|assiﬁer31 previpusjointly with induction and that-better a-nnotations, more ro
bustness tests, better evaluation metrics and more modular
20Note that it is however more sensitive to distortion evaluations are needed.

V1. SUMMARY
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APPENDIX
SOUND DISTORTION SCRIPTS

System commands:
« Resampling:

$ sox wavfile.wav -r8000
soxedfileO.wav rate

GSM encoding/decoding and upsampling:
$ sox soxedfile0.wav soxedfilel.gsm

$ sox soxedfilel.gsm -sw -r44100
soxedfile2.wav rate

Filtering and volume adjustment:

$ sox soxedfile2.wav soxedfile3.wav
filter 500-2000

$ sox soxedfile3.wav soxedfile4.wav
vol 1.8

Reverb application:

$ sox soxedfiled.wav soxedfile5.wav
reverb 1 2000 1000 700 750 760 880

Matlab commands:
« White noise addition:

>> [x,fs,bits] = wavread(
soxedfile5.wav);

>> SNR = 20;

>> Px = sum(sum(x.”2));

>> noise = rand(size(x))-.5;

>> Pnoise = sum(sum(noise.”2));
>> noisyX = x + noise*sqrt(
(Px/Pnoise) * 10°(-SNR/10) );
>> wavwrite(noisyX, fs, bits,
tempwavfile.wav);
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