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Sparse and Structured Decompositions of Signals
With the Molecular Matching Pursuit

Laurent Daudet, Member, IEEE

Abstract—This paper describes the Molecular Matching Pur-
suit (MMP), an extension of the popular Matching Pursuit (MP)
algorithm for the decomposition of signals. The MMP is a prac-
tical solution which introduces the notion of structures within the
framework of sparse overcomplete representations; these struc-
tures are based on the local dependency of significant time-fre-
quency or time-scale atoms. We show that this algorithm is well
adapted to the representation of real signals such as percussive
audio signals. This is at the cost of a slight sub-optimality in terms
of the rate of convergence for the approximation error, but the ben-
efits are numerous, most notably a significant reduction in the com-
putational cost, which facilitates the processing of long signals. Re-
sults show that this algorithm is very promising for high-quality
adaptive coding of audio signals.

Index Terms—Matching pursuit, overcomplete representations,
parametric audio coding, time-frequency transforms.

I. INTRODUCTION

F INDING sparse representations of signals has become a
major area of research in the last few years (see [1] for a

review on methods and recent results). Sparse representations
are obviously useful for signal compression [2], [3] but are also
relevant in the context of applications such as denoising [4],
source separation [5], etc.

Generally, we look for decompositions of a signal on a dic-
tionary of indexed elementary waveforms , in
the form

(1)

It is sometimes useful to use a dictionary that is overcom-
plete, which means, in finite dimension , that spans the
whole space and has more than elements. In that case, the
above decomposition (1) is not unique and one has to select a
decomposition according to a sparsity criterion or some other
appropriate metric. Indeed, in many applications, useful repre-
sentations are the ones where most of the energy of the signal
is concentrated into a small number of coefficients, so that
the signal can be approximated using only terms ( th order
nonlinear approximation)

(2)

Manuscript received July 30, 2004; revised June 14, 2005. This work was sup-
ported by the French Ministry of Research and Technology, under contract ACI
“Jeunes Chercheuses et Jeunes Chercheurs” number JC 9034. The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Dr. Gerald Schuller.

The author is with the Laboratoire d’Acoustique Musicale, Université Pierre
et Marie Curie (Paris 6), 75015 Paris, France (e-mail: daudet@lam.jussieu.fr).

Digital Object Identifier 10.1109/TSA.2005.858540

Accurate and compact nonlinear decompositions of the signal
can only be obtained if the elements of the dictionary

have strong similarities with the signal, in which case the cor-
responding waveforms can be seen as elementary components
of the signals, or “atoms”. In general, overcompleteness (i.e.,
redundancy) in the dictionary is required in order to get truly
sparse representations, since real orthonormal bases, such as
discrete wavelets or lapped local cosines, cannot be shift-in-
variant [6], or because the signals have complex structures that
cannot be represented using only one class of waveforms. Such
dictionaries can be made e.g., by the use of redundant trans-
forms (for instance wavelet packets or Gabor frames), by the
union of orthogonal bases, or by parametrized waveforms such
as damped sinusoids [7].

Many algorithms have appeared for such atomic decomposi-
tions of complex signals. Amongst these, an important class of
algorithms is the so-called iterative “greedy” algorithms, such
as the Matching Pursuit (MP) [8] (or variants such as the Or-
thogonal Matching Pursuit [9]–[11]). The basic principle of MP
is as follows.

(1) Initialization: compute all the inner

products �� = hx;u���i. Let R0 = x and i = 0.

(2) Find maximum modulus amongst all inner

products: �i = argmax� j��j

(3) Update the residual by subtracting the

corresponding atom

Ri+1 = Ri � �� u��� :

(4) Update the inner products

��  hRi+1;u���i:

(5) if j�� j < "stop then stop, otherwise i  i + 1

and iterate to step (2).

When the algorithm has stopped (after iterations), the
signal is estimated using (2). At every iteration, the algorithm
is “optimal” in the sense that it selects the atom that minimizes
the residual energy (hence the “greedy” nature of the search).
Note that other criteria for best atom selection can be employed
[12]. Also, it should be emphasized that this procedure is only
optimal at every iteration and not globally : it is not true in
general that MP after iterations will provide the best -term
approximation of the signal [1], [10]. Finally, other stopping
criterion can be used: for instance, in compression applications,
the algorithm can be stopped when the available bit budget
is reached, or when all remaining tones are masked by the
previously detected components.
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The main limitation of the above method is its intrinsic com-
plexity. At every iteration there are two stages that may be com-
putationally expensive: step (2) that looks for the maximum of
the inner product, which can be lengthy if the dictionary is large;
step (4) when one has to update the inner products of the residual
with every element of the dictionary.

In order to reduce the complexity of these potential bottle-
necks, in some cases it is necessary to consider “fast” schemes,
that are generally somewhat less effective (in a rate-distortion
sense) than a full MP. For instance, in order to accelerate the
search step (2), the parameters can be organized hierarchically,
and the search conducted only on first ones (in [13], a frequency
chirp parameter is fixed to zero in the search step and estimated
a posteriori). Also, a set of all local maxima can be stored and
updated adaptively [14]. Similarly, “Weak Matching Pursuits”
stop the search when it has found an atom that is nearly op-
timal, i.e., a such that , where
is a fixed weakness parameter [1], and is assumed
nearly constant for a few successive iterations before being re-
computed explicitly. For a fast update of the inner products [step
(4)], one can in some cases pre-compute all cross-products of
the basis functions, but for a size- dictionary this requires
memory calls to potentially very large look-up tables.
Such implementation schemes have made it possible to use MPs
for the analysis and representation of “real” data (i.e., large),
and significant advances have been made in the context of still
image coding (see for instance contributions by Vandergheynst
and collaborators—e.g., [15]). However, even in such cases typ-
ical computational requirements are still high, and so far none of
the above methods could realistically be applied globally to very
large datasets, such as audio files (at CD-quality 44.1-kHz sam-
pling rate, a mono 5-min song has samples). For such
long signals, existing practical solutions use only local searches,
on a frame-by-frame basis [16]–[18]. The work presented here
shows that, under certain assumptions, it is possible to apply MP
globally on the whole data (at least on a duration that is longer
than the typical note duration, i.e., a few seconds), and to extract
components whose time duration range from a few milliseconds
to a few seconds.

In this paper, we consider another class of “fast” suboptimal
MPs, where the above suboptimality is compensated by a better
description of the structure of the signal. In MP decomposi-
tions, the localization of the selected atoms in the time-fre-
quency/time-scale planes is not uniform but reveals some of the
intrinsic structure of the analyzed signal. The goal of this paper is
to make use of this structural information, by grouping together
atoms of the same class (i.e., belonging to the same orthonormal
basis) with neighboring time-frequency/time-scale parameters.
These groups of atoms will be referred to as “molecules”. Now,
we want to design a “Molecular Matching Pursuit” (MMP),
where at any given iteration one full molecule of signif-
icant atoms is estimated and subtracted from the residual. From
a signal compression perspective, grouping significant coeffi-
cients into simple structures can offer a significant advantage in
terms of coding cost, as encoding the shape of a structure usually
requires less information than individually encoding the indices
of the coefficients contained in it [19], [20] (in the same way as
run-length encoding binary images usually results in much less

data than entropy coding independent sample values). From a
signal analysis point of view, these molecules provide relevant
information about the structure of the signal. Finally, from a
computational complexity perspective, there is also a significant
advantage in considering such molecules: at each iteration,
atoms are picked up at once, and therefore the inner product
update [step (4)] is performed jointly for atoms. The diffi-
culty lies in that, if not designed carefully, such improvements
could be at a cost of a very large increase in the complexity of
the search step (2).

For the rest of this paper, we will focus on audio (musical)
signals, as these are a good example of well-structured data.
Audio signals can be well modeled as a sum of three compo-
nents [21]: the tonal part (sum of sinusoids with slowly varying
amplitude and frequency), transients (well-localized at the at-
tack of notes) and a residual (modeled as locally stationary fil-
tered white noise). This relatively simple structure (although
covering a wide range of signals) allows us to work with a small
degree of redundancy in our dictionary. Here, we take a 2-times
redundant dictionary , where is an
orthogonal basis of lapped cosines (also called a modified dis-
crete cosine transform (MDCT) basis), and
is an orthogonal basis of discrete wavelets [or discrete wavelet
transform (DWT)]. Note that this hybrid model is additive, i.e.,
the tonal component (represented by MDCT atoms) and the
transient component (represented by DWT atoms) can coexist
at the same time, as opposed to some audio coding algorithms
[22] that implement a switch between a MDCT basis and a DWT
basis around attacks.

Although the representations described here are specifically
tailored to sounds, similar methods can also be applied to images
[23], with two-dimensional (2-D) dictionaries made of different
orthogonal bases to represent edges, slowly varying areas and
textures. More generally, the MMP is a relevant technique when
the coefficients display strong structural information simultane-
ously in a small number of bases that are mutually weakly co-
herent, and where these structures correspond to different fea-
tures of the signal.

For audio signals, the idea of selecting at each iteration a
group of atoms in a MP framework has already been developed
in the so-called harmonic matching pursuit [14], which looks
for harmonic structures made of (quasi) harmonically related
Gabor atoms. This approach gives good results for the anal-
ysis of harmonic data, but its range of applicability is limited
by the following three factors: first, it requires the estimation of
a large set of (potentially continuous) parameters, making it un-
suitable for compression purposes (the cost of coding the param-
eters, i.e., the significance map, becomes prohibitive). Second,
the best analysis results require a significant amount of informa-
tion on the data, such as the number of partials or the time en-
velope near the attack, that must be known or assumed a priori
or estimated by some other means. Third, a large fraction of
musical sounds that are difficult to represent through standard
(local Fourier-based) analysis are not harmonic (e.g., percussive
sounds). For real data, a given harmonic partial cannot simply
be described by a single Gabor atom: it has frequency and am-
plitude modulations, it may have a sharp or a very slow attack
transient; and therefore a given note requires a potentially large
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number of (independent) harmonic atoms. One of the claims of
our paper is that the local time-frequency/time-scale grouping
is a stronger and more robust assumption about the structure of
real audio signals than the harmonicity. We shall also see that
this type of structure has additional benefits, such as the ability
to control pre-echoes and to interpolate sinusoids in the MDCT
domain.

Finally, one may see the main goal of this article as to give
practical solutions for unifying two recent paradigms that have
emerged separately in the signal processing community within
the last few years: sparse representations in overcomplete spaces
(see, for instance, [1], [7], [8], [15]), and structured representa-
tions (such as EZW [19] or SPIHT [20] in image coding). So
far, algorithms for sparse signal representations in overcomplete
spaces have not considered dependencies between significant
atoms; and algorithms that have considered structures in the sig-
nificance map only work within orthonormal bases. Unifying
these two concepts is possible here because we consider dictio-
naries made by concatenation of a small number of orthonormal
bases that are sufficiently incoherent, i.e., with sufficiently dif-
ferent time-frequency localization properties. This is a major
difference with the harmonic matching pursuit, where the dic-
tionary is made of a large number of very coherent atoms that
make it more difficult to consider local time-frequency/time-
scale structures. In that case, it is not possible to compute simply
the energy of a group of atoms as the sum of the energy of the
individual atoms within that group, since neighboring atoms are
not (even approximately) orthogonal.

The paper is organized as follows: after a presentation of the
two types of “molecules” (Section II), we describe the plain
MMP decomposition algorithm (Section III). Results are pre-
sented in Section IV, and finally, refinements of the decomposi-
tion are found in Section V. The conclusion (Section VI) dis-
cusses the generality of the method and future directions for
research.

II. MOLECULES AS COHERENT SETS OF ATOMS

In this section, we describe what we call “molecules” of
time-frequency or time-scale atoms. We restrict ourselves to
redundant spaces that are the concatenation of orthogonal
bases, for instance , where denotes the basis of
MDCT atoms and the basis of the DWT atoms. In order to
eliminate the redundancy within one molecule, we will consider
only molecules that are formed of one class of atoms: “tonal
molecules” that are clusters of MDCT atoms, or “transient
molecules” that are clusters of DWT atoms.

A. Tonal Molecules: Clusters of MDCT Atoms

Molecules of MDCT atoms are used to represent the tonal
part of the signals. The MDCT [24] is an orthogonal local co-
sine transform with smooth windows that satisfy a perfect re-
construction condition. Typically, one uses sinusoidal windows
given by , where is the
window half-length and the stride, i.e., the hop size between two
analysis frames. The MDCT expansion of the signal is given
by

(3)

Fig. 1. Time-frequency representation of the MDCT of a 2.2-s recording of
a glockenspiel. Note the narrow horizontal structures corresponding to the
partials.

where

(4)

with and . Note that, due
to the overlap between frames, for a given time frame the set

does not constitute a basis, and this transform
can only be seen as an orthonormal transform globally on the
whole signal, with proper boundary conditions.

In musical signals, the tonal part is made of so-called
“partials”, which can be described as sinusoids with slowly
varying parameters (amplitude and frequency). For the sake
of simplicity, we will restrict our model to signals where the
instantaneous frequencies of the partials remain constant or
approximately constant (fluctuations within one frequency bin),
although our system can readily be expanded to slowly varying
frequencies.

The MDCT coefficients of a stationary sinusoid, with fre-
quency , are distributed around the center frequency bin

with a relatively slow decay (in ). Here, we define
tonal molecules as horizontal structures in the MDCT time-fre-
quency plane (well identified on Fig. 1). Since the minimum
number of MDCT coefficients required to effectively represent
a stationary sinusoid [25] is three per window (these can be seen
as the equivalent of frequency, phase, and amplitude), we will
define the tonal molecules as “tubes” with a width in frequency
equal to three bins , and with an arbitrary
time duration (see Fig. 3).

B. Transient Molecules: Dyadic Trees of Discrete Wavelet
Coefficients

Similarly, one can construct “transient” molecules by
grouping together wavelet coefficients. A basis
of DWT atoms is organized according to two coefficients: a
scale coefficient ( , where denotes the largest
scale) and a time coefficient . With a proper shift at the origin,
a given wavelet is localized around the time .
Therefore, discrete wavelets are organized as dyadic trees [19],
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Fig. 2. Top: discrete wavelet coefficients are organized as dyadic trees. The
subtree in thick lines represents a transient molecule in this grid. Bottom:
corresponding time-domain waveform.

[20], where every atom has two “children”
and . Let be the corresponding

wavelet expansion of our signal

(5)

The molecules of wavelets will correspond to clusters of
significant coefficients sharing neighboring time localiza-
tion, while still forming a connected (incomplete) tree [26]. By
their very precise time localization (we use generating wavelets
with a short support, such as Haar or Daubechies-4 wavelets),
wavelet trees are well adapted to the description of transients
[27]. Fig. 2 shows the dyadic grid (thin lines) with an example
of a transient molecule (thick lines), and the corresponding
waveform.

III. MOLECULAR MATCHING PURSUIT

With the above definitions, we would like to design a molec-
ular MP decomposition algorithm that, at every iteration, identi-
fies, and subtracts the most significant molecule. Unfortunately,
performing an exhaustive search amongst all possible molecules
is not realistic [10]. For instance, in the general case where we
allow the frequencies of tonal molecules to vary in time, their
number is exponentially growing with , the number of atoms
in a molecule; note that we want to be able to define molecules

that may contain a rather large number of atoms—typically be-
tween 5 and 100. Similarly, the number of subtrees of a dyadic
tree is rapidly growing with the number of wavelet scales
(we typically use ). Therefore, the search for the max-
imum is performed over values of two indices of correlation,
one called the local tonality index in the MDCT domain for
the tonal part, one called the regularity modulus in the DWT
domain for the transient part. The corresponding molecules are
then constructed around the location of the maximum index of
correlation.

A. Local Tonality Index in the MDCT Domain

Here, one has to design a scheme for correlations across time
for MDCT spectra. However, the MDCT is not invariant through
time shifts, and therefore a direct correlation may give rise to an
estimation of the peak frequency bin that is not robust to time
shifts. Instead, one can design a pseudo shift-invariant repre-
sentation out of the set of MDCT coefficients , called the
MDCT pseudo-spectrum , defined as follows [6]:

(6)

where we define . It has been shown that the
pseudo-spectrum of a pure sinusoid will always be maximum in
the same frequency bin , for any value of its phase.

At each point of the time-frequency plane, we associate
a local tonality index by looking at local averages (in time)
of the pseudo-spectrum

(7)

where represents a time persistence constant.

B. Regularity Modulus in the DWT Domain

Similarly, it is possible to measure the correlations across
scales of the wavelet coefficients. From the set of DWT
coefficients, the following modulus of regularity has been in-
troduced in [26] as

(8)

where is the number of wavelet scales and is the set of
ancestors (full branch) of the smallest-scale atom . Note
that is defined for every second time sample, and this makes it
a very local measure of the strength of singularities in the signal.

C. MMP Decomposition Algorithm

With the above definitions, molecular decomposition of audio
signals can be implemented using a modified version of the MP
algorithm. At every iteration, we now look for the highest value
of the indices of correlation (local tonality index and reg-
ularity modulus ), identify the corresponding molecule and
subtract it from the residual. More precisely, the basic MMP
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is as follows (compare with the standard MP described in the
introduction):

(1) Initialization: compute all the inner

products, i.e., the DWT coefficients �b;a and

the MDCT coefficients �p;k of the signal x. Let

R0 = x and i = 0.

(2) Compute modulus of regularity � and local

tonality index T , find K = max� and T = max T .

(3) Identify the most significant structure.

If T � K then the most significant structure

is of type “tonal molecule”; otherwise (K > T )

it is of type “transient molecule”.

(4) Identify atoms the define the most sig-

nificant molecule, update the residual, and

update the pursuit correlations.

� For tonal molecules, identify the set of

weighted MDCT atoms that define the corre-

sponding molecule Mi = f��g���g�=1...m , as de-

scribed in Section III-D.

Update the residual by subtracting the corre-

sponding atoms:

Ri+1 = Ri � �=1...m
��g���.

Update MDCT coefficients by setting to zero

all f��g�=1...m , update DWT coefficients by di-

rect recalculation: �b;a = hwb;a;Ri+1i.

� For transient molecules, identify the set

of weighted DWT atoms that define the corre-

sponding molecule Mi = f��w���g�=1...m , as de-

scribed in Section III-E.

Update the residual by subtracting the

corresponding atoms:

Ri+1 = Ri � �=1...m
��w���.

Update DWT coefficients by setting to zero

all f��g�=1...m , update MDCT coefficients by di-

rect recalculation: �p;k = hgp;k;Ri+1i.

(5) if max(K;T ) < "stop then stop, otherwise i 

i + 1 and iterate to step (2).

With regards to computation, note that in the implementation
of MMP the search step (2) is fast , since it is only per-
formed over time-frequency (MDCT) parameters, and
time-scale (DWT) parameters (only at the smallest scale). Sim-
ilarly, the update (4) of the inner products is fast , since
only half of them have to be fully recomputed, the other half
being updated by a simple difference. The update is performed
by computing the new residual and then by using fast
transforms to compute the new correlations. If a tonal molecule
has been selected, the DWT update is ; if a transient mole-
cule has been selected, the MDCT update is on each
of the windows, therefore . Note that, for small
molecules it may be faster to use a direct update of the coeffi-
cients via , which is typically
the method used by standard MP [8], and whose complexity
scales as . For the sake of simplicity, and since we are
only interested in the first iterations that are likely to provide
large molecules (see Section IV-A), we will not consider this
possible improvement.

It should be noted as well that the MMP can incorporate, in a
straightforward way, standard modifications of the MP, such as
the orthogonalization of the selected atoms [11], or (faster) weak
searches [1]. The major difficulty, and arguably the most ad-hoc
part of the algorithm, lies in step (3), i.e., the identification of
the significant molecule, once the maximum index of correlation
has been computed. This is the topic of the next two paragraphs.

D. Identification of the Tonal Molecules

This paragraph describes how the tonal molecule is estimated,
when at a given iteration the most significant structure has been
estimated as being of type “tonal”.

Let and be the time (window index) and frequency
indices, respectively, corresponding to the maximum local
tonality index . As stated in Section II.A,
tonal molecules are by definition tubes with a width equal to 3
frequency bins. The beginning and end windows are determined
when looking at the profile of (for the frequency bin ),
around (see Fig. 3). When looking iteratively forward
in time, starting from the time index , the end window

is defined as the last window before a sudden drop in
the value of (a ratio threshold of is
a typical choice), or the last window before gets below
the threshold , whichever comes first. Similarly, the be-
ginning window is defined, when looking iteratively
backward in time, starting from the time index , as the
last window before a sudden drop in the value of (same
ratio threshold), or the last window before gets below the
threshold , whichever comes first. Note that this procedure
has some similarities with the one employed in [14] for the
harmonic matching pursuit, with the major difference here
being within an orthogonal subset of the dictionary .

The last step is a final post-thresholding: the tonal molecule
is defined as the set of tonal MDCT atoms, within the

width-3 tube starting at and ending at , that are above
a given threshold

(9)

This threshold should be chosen adequately, since too large
of a value may lead us to neglect all atoms in a given time
window, and therefore to construct an apparently broken mole-
cule. A good choice for is therefore .

E. Identification of the Transient Molecules

In the case when, at a given iteration , the most significant
structure has been estimated as being of type “transient”, the
corresponding molecule is constructed in two steps: first,
from the wavelet expansion one constructs a full tree, i.e., a
wavelet tree with branches going from the largest to
the smallest scale . Let be the time index of the
maximal regularity modulus, and . We define the
full tree as the set of full branches, sharing the same root as

, whose value of is above a threshold (a typ-
ical choice is ). Second, incomplete subbranches are
pruned out. This is done in a top-down approach: starting at the
smallest scale (leaves of the branches), one prunes out coeffi-
cients that are smaller in absolute value than . On a given
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Fig. 3. Construction of a tonal molecule. Top: neighborhood of a tonal
molecule in the MDCT domain. Middle: profile of the pseudo-spectrum S

for a given molecule. Circles indicate the beginning and end windows. Bottom:
corresponding tonal molecule. Empty slots indicate MDCT atoms that are
below an established coefficient threshold.

branch, this pruning is stopped whenever a significant coeffi-
cient is found (larger than ), in order to ensure that the tree
remains connected.

IV. RESULTS

A. Complexity Reduction

In terms of computational complexity, this algorithm is sig-
nificantly faster than the standard MP, as one only has to up-
date the inner products with the dictionary once at every itera-
tion, where a whole structure of atoms is subtracted from
the signal. Fig. 4 shows the number of significant atoms
for the first 200 iterations of the MMP. For this example, the
average number is , which gives an indication of
the expected speedup ratio for the update step (4). Notice that
large peaks ( up to 134) are observed; these are related to
very long partials. As the number of iterations progresses, these

Fig. 4. Number m of atoms in the molecule M extracted by the MMP
algorithm at each iteration.

Fig. 5. Signal-to-noise ratio of three MP algorithms, with the same dictionary
and on the same glockenspiel signal. Plain Line: standard MP; Triangular
marks: plain MMP; circular marks : MMP with pre-echo control and frequency
interpolation.

large peaks tend to disappear, which means that after a number
of iterations all the “structured” information has already been
extracted, and after that point MMP should offer no advantage
over the standard MP. If one stops the algorithm at that stage
(about 200 iterations in our example), a nonoptimized Matlab
implementation of our algorithm runs in about real-time
on a standard PC. We expect that an optimized C implementa-
tion would be substantially faster and therefore suitable for pro-
cessing large sound files.

B. Convergence Rate

Let us now compare results in terms of convergence rate
of the -terms approximation for the standard MP and its
structured version, the MMP. The plain line in Fig. 5 plots
the signal-to-noise ratio (SNR) of the standard MP algo-
rithm, for the glockenspiel signal. The SNR is calculated as

, where is the nonlinear
approximation of with the first atoms selected by the MP.
Similarly, SNR values are plotted for the approximations given
by the MMP (triangular marks). It is only defined for values
of that correspond to the cumulative number of atoms in
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Fig. 6. Waveform separation results of the plain MMP after 292 iterations. (a)
Original glockenspiel signal. (b) Tonal part. (c) Transient part. (d) Reconstructed
signal (tonal + transients). (e) Residual (note the different scale).

the signal model after each iteration, namely . In
the first few iterations, only tonal molecules are selected, and
the elbow around corresponds to the appearance of
transient molecules.

C. Separation Results

Finally, Fig. 6 shows the separation of the signal into the
three signal model layers: the tonal part, the transient part, and a
small amplitude wide-band residual; corresponding sound files
are available on-line [28]. It can be noted that, as expected,
the transients are only found at the attack of notes. The recon-
structed signal (d) sounds quite similar to the original, although
slightly poorer in high-frequency components, and with a no-
ticeable pre-echo artifact. Reduction of this artifact will be dis-
cussed in Section V-A.

V. WHEN ONE TRUSTS THE SIGNAL MODEL:
ADDITIONAL BENEFITS

Using the MMP algorithm has additional benefits over the
standard MP, as it allows a better enforcement of the signal
model. In our three-layer audio signal model, this can be done
in two regards: a reduction of the pre-echo that occurs at the be-
ginning of notes, and a frequency-domain interpolation around
the spectral lines where the tone is apparently constant.

A. Pre-Echo Reduction

Once a tonal molecule has been selected, it is assumed that
this corresponds to one partial of a sound. However, the need
for good frequency resolution imposes the choice of relatively
long windows (a typical choice for the window half-length is

samples). With such long windows the well-known
“pre-echo” phenomenon occurs at the beginning of sounds that
have sharp attacks: in the reconstructed signal, the energy will be
smeared out before the actual onset of the note [see the first note
onset on the error plot of Fig. 6(e)], and this can be perceptually
a very noticeable artifact.

In the MMP algorithm, the pre-echo artifact can be sup-
pressed by adding a negligible amount of side information,

Fig. 7. Pre-echo control mechanism. (a) Original molecule (extracted from a
large neighborhood V in the MDCT domain). (b) Reconstructed molecule with
atoms from the molecule T . (c) Same as (b) but with pre-echo control.

namely the partial onset time for tonal molecules. This onset
time for a given tonal molecule is estimated by mini-
mizing the quadratic error between the actual waveform for
this partial only (reconstructed using a large neighborhood
in the MDCT domain around the molecule) and the waveform
reconstructed with only the molecule , with the beginning
chopped off (see Fig. 7)

(10)

where is the -centered Heavyside function if
otherwise. The domain uses typically

frequency bins, that is a reasonable tradeoff for a good
reconstruction of the attack transient without too much influence
of other partials.

B. Frequency-Domain Interpolation

As stated in Section II-A, three MDCT coefficients are
needed in each window to represent a stationary tone. Recip-
rocally, given three MDCT coefficients , and

one can estimate [25] the frequency, amplitude and
phase of the corresponding tone. Then, with the assumption
that the signal is stationary, it is possible to estimate the con-
tribution of this tone to the MDCT coefficients locally around
the molecule. Given these parameters, and with the use of a
sinusoidal window for the MDCT, one can easily compute
analytically [6] the coefficients corresponding to this tone in
the whole time-frequency plane. This contribution is not negli-
gible for strong partials since the decay in amplitude
around is relatively slow. Therefore, at no extra cost in the
amount of data, it is possible to estimate and subtract the whole
contribution of a stationary tone, and not only the center of
the main lobe, i.e., the three coefficients per window that are
retained.

Fig. 8 shows the separation results for the MMP, when the
above two modifications are added. It is clear in Fig. 8(b) and
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Fig. 8. Waveform separation results of the MMP after 221 iterations,
with additional pre-echo control and frequency interpolation. (a) Original
glockenspiel signal. (b) Tonal part. (c) Transient part. (d) Reconstructed signal
(tonal + transients). (e) Residual (note the different scale).

(d) that the pre-echo has entirely disappeared, and this results
in a significant improvement in the sound quality. Again, corre-
sponding sound files are available on-line [28]. Finally, the cir-
cular marks in Fig. 5 indicate that these improvements make it
possible to reach a performance that is roughly half-way closer
to the “optimal” (within the MP framework).

It should be noted that for signals that do not match the
model; for instance’ for quickly varying tones or soft attacks,
the above modifications do not offer any advantage over the
standard MMP, nor do they reduce the performance. Finally,
these improvements may require a significant increase in the
complexity, since they add loops in the molecule identification
process (step 3); and one has to find a tradeoff with the benefits
in terms of convergence rate.

VI. CONCLUSION

In this paper, we have presented the MMP, a modification
of the well-known MP algorithm, where we take into account
the relationship of the significant atoms to the local structure of
the signal. With a dictionary made by concatenation of a small
number of orthogonal bases, it is possible to design a practical
decomposition algorithm that at every iteration identifies and
removes a whole cluster of (orthogonal) atoms. At the cost of a
slight suboptimality in the approximation error rate, this offers
a number of advantages, most notably it is significantly faster
since the inner products update step is made for a large number
of atoms at every iteration.

The most promising application of this algorithm is in high-
quality coding of audio signals. Indeed, using structure infor-
mation allows a significant reduction in the coding cost of the
significance map (i.e., the set of parameters for the significant
coefficients). Coding a tonal molecule only requires coding the
position of the first atom and the time duration of the molecule;
coding an incomplete wavelet tree, i.e., a transient molecule,
requires coding the position of its root plus a maximum of 2
bits per retained coefficient [27], [20]. Also, for multichannel

sounds, it is likely that a large portion of the structure informa-
tion can be shared between channels, resulting in an increased
performance. Furthermore, this decomposition is intrinsically
progressive, and therefore could be used for scalable coding.
Actually, it is conjectured that, for a large class of sounds, an

-atom partial reconstruction of the signal would sound better
in the MMP case than in the MP case, in a similar way as, for
a partial reconstruction of images, it may be in some cases that
one prefers fewer fully-defined objects than all the objects at low
resolution. Indeed, the MP/MMP may be a relevant framework
to conduct such perceptual studies. Additionally, for coding pur-
poses, the separation between the three classes has some extra
benefits: first, it provides information about the audio signal that
is highly relevant for the analysis, and this can be used, e.g., for
indexing purposes; as opposed to individual atoms, molecules
of coherent atoms are perceptually relevant, since they represent
identifiable features of the signal. Second, it allows a different
psychoacoustic model (for the quantization) in each layer, for
instance the standard frequency-domain masking for the tonal
layer, and a model for temporal masking for the transient do-
main. Future research will focus on the design of a specific
quantizer and coding scheme, as well as the extension to tonal
molecules with a nonstationary instantaneous frequency.

Finally, some other signal features can also be taken into ac-
count. It should be stressed that the MMP is by no means incom-
patible with harmonic models, and indeed a possible extension
of the MMP is to group together the extracted molecules that
belong to a single note, namely its attack and its (potentially
harmonic) partials. Ultimately, it is expected that at least for re-
stricted classes of musical sounds, very efficient coding can be
performed through the isolation of sound “objects”, i.e., a si-
multaneous transcription and coding. We believe that the MMP
may be one efficient tool toward this goal.
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