
This is a repository copy of Singing synthesis with an evolved physical model.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/3711/

Article:

Cooper, Crispin, Murphy, D.T. orcid.org/0000-0002-6676-9459, Howard, D. orcid.org/0000-
0001-9516-9551 et al. (1 more author) (2006) Singing synthesis with an evolved physical 
model. IEEE Transactions On Audio Speech And Language Processing. pp. 1454-1461. 
ISSN 1558-7916 

https://doi.org/10.1109/TSA.2005.860844

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



promoting access to White Rose research papers 

   

White Rose Research Online 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 

 
 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/3711/ 
 

 
 
Published paper 
Cooper, C., Murphy, D., Howard, D. and Tyrrell, A. (2006) Singing synthesis with 
an evolved physical model, IEEE Transactions on Audio, Speech and Language 
Processing, Volume 14 (4), 1454 - 1461. 

 
 

 

eprints@whiterose.ac.uk 

 



1454 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 4, JULY 2006

Singing Synthesis With an Evolved Physical Model
Crispin Cooper, Damian Murphy, David Howard, and Andy Tyrrell, Senior Member, IEEE

Abstract—A two-dimensional physical model of the human vocal
tract is described. Such a system promises increased realism and
control in the synthesis of both speech and singing. However, the
parameters describing the shape of the vocal tract while in use are
not easily obtained, even using medical imaging techniques, so in-
stead a genetic algorithm (GA) is applied to the model to find an
appropriate configuration. Realistic sounds are produced by this
method. Analysis of these, and the reliability of the technique (con-
vergence properties) is provided.

Index Terms—2-MUSI, digital waveguide mesh, finite difference,
genetic algorithms (GAs), optimization methods, singing synthesis,
speech synthesis, voice analysis.

I. INTRODUCTION

A
LTHOUGH digital speech synthesis has existed since the

1960s, research still continues into creating natural, hu-

manlike sounds—both for those who cannot speak themselves

and for human–computer interaction. Singing synthesis is a

much newer problem, with additional difficulties and different

applications. The world of music would benefit from singers

who can achieve articulations beyond human ability, 24-h

availability and also, singers who do not tire of “trying out” all

of a composer’s successive refinements to their composition!

Increased understanding of the mechanism of singing aids

teachers in both the music and speech therapy professions. As

in the real world, it should be possible to unify speech and

singing synthesis in the same model.

A. Speech and Singing Synthesis

Synthesis methods can be divided into two broad categories:

spectral and physical models [1]. The earliest spectral model

is Dudley’s Vocoder [2], which approximates the voice source

and vocal tract filter in the source-filter model [3] to enable later

reconstruction. Linear predictive coding (LPC) [4] predicts the

next sample of a speech signal based on past samples. Formant

synthesizers (e.g., [5]) directly invoke the source-filter model of

speech production. These methods assume linearity which can

cause a resynthesized signal to sound artificial.

Some commercial speech systems splice together recorded

sounds (often diphones—the transitions between phonemes) to
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synthesize speech. This concept has recently been extended to

singing.1

Although some spectral synthesis methods have reached a

level of practical everyday usage, it is not possible to recreate

the voice of a speaker or singer who has not already undertaken

a lengthy studio analysis session. A true physical model would

provide this.

The first digital physical model was created by Kelly and

Lochbaum [6], who simulated the vocal tract as a series of one-

dimensional tubes. More recent extensions of their model, for

example Cook [7], add greater control and more sophisticated

modeling of the vocal tract wall, based on digital waveguide

synthesis [8].

Such one-dimensional (1-D) models are often considered suf-

ficient for speech synthesis. However, it has been argued that

a two-dimensional (2-D) model provides more realism [9] and

shown that it provides increased control of formant bandwidths

over a 1-D model [10]. A 2-D mesh can also demonstrate addi-

tional modes of resonance, depending on closed wave paths be-

tween the two pairs of opposing boundaries or the four bounding

surfaces combined. In the 1-D case, resonant modes are only

supported between the two boundaries to the system formed at

the glottis and lip ends. The additional frequencies generated in

the 2-D model are well within the range of human hearing. Fi-

nally, 2-D and 3-D models may provide more data for the anal-

ysis of real singing. A 2-D model has been implemented using

a 2-D rectilinear waveguide mesh [11]. However, the question

remains as to how we choose the parameters that determine the

shape of the mesh structure.

B. Speech and Singing Analysis

Obtaining data on the shape of the vocal tract while in use is

an ongoing area of research. The subject has teaching and med-

ical applications as well as being essential to a physical model

as detailed in Section I-A. However, such data is hard to obtain.

Functional magnetic resonance imaging (fMRI) techniques

can provide an estimate (e.g., [12]), but there are issues con-

cerning the acoustic noise levels associated with the machine,

the supine position required of the subject and too low a time

resolution to enable dynamic changes to be accurately tracked.

Improved time resolution as well as imaging of the teeth can be

achieved with X-ray computed tomography (CT), but there are

issues concerned with safe radiation dose levels [13].

Instead of direct measurement, it would be desirable to be

able to infer the exact shape of a vocal tract from the sound it

produces. For example, LPC analysis can provide access to the

cross-sectional area functions of an acoustic tube model of the

1Yamaha Vocaloid Technology. http://www.vocaloid.com.
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oral tract from a speech pressure waveform [14]. This has been

used to provide tools for the training of singers [15]. However,

the mapping of sounds to potential tract shapes is one-to-many,

so the LPC system does not provide a unique solution. It is con-

ceivable that a unique solution achievable by a human vocal

tract exists, however, it is not clear how to constrain the LPC

process to exclude the other “unwanted” solutions. In addition,

being an all-pole model, LPC can not model the acoustic effects

of the nasal cavity.

Another approach is to wrap a synthesis model in an op-

timization loop [16]—automatically tweaking the parameters

until a sound is produced which matches a human voice. We

must of course, constrain the parameters to those that a human

can achieve. This is not an easy optimization problem as it is

not convex.2 However, if successful, especially with a physical

model, highly realistic synthesis and accurate analysis could be

achieved.

The contribution of this paper is a system consisting of a 2-D

physical model of the vocal tract, evolved using a genetic al-

gorithm (GA) to find a shape suitable for the production of a

given sound. While shapes derived in this way are not yet con-

strained to those achievable by a real vocal tract, a GA is capable

of finding a shape which produces a synthesized output close to

the original.

This method offers the potential for vocal tract area estima-

tion that: 1) does not involve the presence of the informant for

direct physical vocal tract measurement and 2) has the poten-

tial to provide a unique solution, as GA evolution can readily be

constrained to model the known articulatory limits of the human

vocal tract.

The remainder of the paper is structured as follows. Section II

provides some background on Genetic Algorithms. Section III

describes our system. The audio and shape data produced by the

system is presented and discussed in Sections Sections IV–VI

concludes.

II. GENETIC ALGORITHMS

GAs are now a standard technique for multivariable optimiza-

tion problems, as described in numerous textbooks, e.g., [18].

They can be regarded as a smart (although partly random) search

of the space of all possible solutions, which is infeasibly large

to explore in its entirety. In this case the space consists of the

range of possible shapes for the human vocal tract; the variable

being optimized is the “realism” of the output, in other words

its similarity to a sung sound recorded in the studio.

The search works by mimicking the biological process of

evolution. Some random potential solutions are encoded into

a population of genotypes (also referred to as individuals).

The genotypes are evaluated for fitness (optimality). These

are then copied to the next generation, but with preference

given to the fitter individuals who are likely to receive more

“offspring” while unfit individuals may receive none. Mutation

and crossover operators are defined which operate on one or

2In many cases [17] a genetic algorithm with excessive selective pressure, i.e.,
a hill-climbing algorithm, is found to converge prematurely to a local optimum.
This would not be possible on a convex problem.

two genotypes respectively, and these operators are applied to

the new generation. The process is iterated until the population

converges to a solution.

GA searches can also be viewed as a quest for the highest (or

another suitably high) peak on a “fitness landscape.” The land-

scape may have many local optima, analogous to minor peaks.

Any GA must strike a good balance between selective pressure

(a tendency to climb the nearest peak) and diversity (a tendency

to explore the landscape more), else a suitable solution will not

be found. A good algorithm demonstrates the ability to converge

to good solutions regardless of the random number seed.

When evolving 2-D model shapes, the solution comes in two

parts: the fittest genotype contains a set of model parameters,

defining its geometry, but we must also consider the sound they

produce. As fitness is evaluated in terms of the latter, the pro-

duced sounds should all be similar; however similar sounds can

be produced by dramatically different shapes so it will be in-

teresting to note, over several algorithm runs, how similar our

evolved shapes are.

III. SYSTEM DESIGN

A. Synthesis Engine

In our synthesis engine, a two dimensional rectilinear wave-

guide mesh3 model is excited at one end with either: 1) white

noise or 2) the signal from an electrolaryngograph (Lx) [19].

Output is recorded from the opposite end of the model. The

LX signal represents the current flowing between two electrodes

placed superficially on the neck at the level of the vocal folds,

and it is usually interpreted as representing the change in vocal

fold contact area. Whilst this is not directly representative of the

acoustic excitation during voicing, it embodies many dynamic

features associated with a voiced output.

The 2-D model is chosen as computation is relatively

cheap—but some of the properties of a full three-dimensional

(3-D) model are preserved. In particular, it has the ability to

contain complex standing waves and allows greater control of

boundary conditions, thus potentially offering more realistic

synthesis than is achievable with LPC. It can also be consid-

ered as proof of concept for a 3-D model, which would allow

for a direct mapping of vocal tract articulations to synthesis

parameters.

A spatial resolution of 1.1 cm has been chosen, to model the

vocal tract with a sufficient degree of accuracy. The sampling

rate is dependant on the spatial resolution (see the Appendix)

and is accordingly set to 44.1 kHz. Undersampling effects re-

duce this to 22 kHz. However, note that by by comparison,

human speech typically has a bandwidth of 8 kHz.

The human vocal tract is 17 cm long in the average male,

and is thus simulated by a model 16 nodes in length. However,

18 nodes are used in order to include a partial region outside

the lips. The width is variable, but 9 nodes, not including the

reflective edge, is chosen as a maximum. This gives a diameter

of 9.9 cm, which is not exceeded in nature.

The walls of the mesh model have a coefficient of reflec-

tion while the mouth has : these figures

3The digital waveguide mesh is described in the Appendix.
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are chosen as they are close to those believed to be natural. A

hardware implementation of an evolvable 2-D digital waveguide

mesh is also under development as part of the POEtic project

[20], using which produces similar results but is

more efficiently implemented.

B. Genetic Representation

A genetic representation is required to encode potential so-
lutions into an evolvable genotype. A population of genotypes
can then be evolved as described in Section II.

For simplicity, symmetry along the long axis is assumed, as
is the presence of at least one normal node in the centre of the
mesh model (otherwise no sound would pass through). Thus,
the genotype is defined to be a string of integers such that at
each point, the width in nodes of the mesh is

(1)

To reduce the amount of information stored in the genome and
thus the size of the search space, and also to create a smoother
fitness landscape to aid convergence, not all of these widths are
stored (we store then ). The remaining
widths are restored by linear interpolation.

C. Fitness Evaluation

A fitness function is needed to evaluate the effectiveness of
evolved solutions.

In the algorithm presented, some two-track recordings are
created in the studio, in which one track contains an ordinary
recording of a sung vowel sound, while the other track is con-
nected to an Lx—thus providing data on the excitation to the
vocal tract used to produce the same sound.

The fitness is measured by exciting the 2-D model with the
Lx signal and comparing the spectral content of the output to
the desired vowel sound.

The spectral comparison is similar to that described in [21].
The individual being evaluated and the target sound are both
normalized and transferred to the Fourier domain, where a mean
absolute difference between the two spectra is computed (ex-
cluding dc components). Phase information is discarded. The
optimal individual is thus defined to be the one with the lowest
fitness.

Two minor variations on this were tried.

• A penalty was added to overly quiet sounds, this being a
constant factor multiplied by the difference in peak levels
of the target and individual sounds (before normalization);

• Phase information was included.

However, neither of these showed better results.
The region of signal evaluated was 2400 samples long,

starting at the 10 000th sample. This was chosen as a repre-
sentative part of the recording. It also means all frequencies
above 18 Hz were analyzed. While the lower frequencies may
not be audible or even present in the excitation signal, this was
found to improve results purely because a greater portion of
the output signal is sampled. Simulation and fitness evaluation
took approximately 1.5 s per individual.

D. Selection and Mutation Operators

The GA used was generational; 50 generations each of 50
individuals produced good solutions. Thus, 0.2% of the search

TABLE I
GA CONVERGENCE

space was explored; giving GA runtimes in the region of one
hour.

Universal Stochastic Sampling [22] with rank selection was
used. The stochastic part of the process can be viewed as a lot-
tery: a number of tickets, each representing an equal chance of
being selected for the next generation, are allocated. The fittest
individual receives 25 tickets, receives 24, and so on until

which receives one ticket. to all receive one ticket
each. This system was found to produce a good tradeoff of se-
lective pressure and diversity.

The mutation rate was governed by the 1/5 rule, as described
in, e.g., [23]. However it was also limited to a maximum (prob-
ability) of 0.08 per gene per generation, giving an expected 0.8
mutations per individual. The procedure for mutating a gene was
to select a different random integer for the width of the vocal
tract at that point.

The crossover rate (probability) was 0.2 per individual.
Crossover was implemented by splicing together two parents
at a random point, thus producing a vocal tract consisting of a
part from each parent.

IV. EXPERIMENTAL VALIDATION

A. Convergence

The results would be of reduced usefulness for synthesis,

and of no use for analysis, if GA runs did not converge i.e.,

successive runs of the GA, with different seedings of the

random number generator, produced dramatically different

results. Thus, the convergence properties are given in Table I.

All results concerning spectral fitness and convergence are

measures of the similarity of two signals, as defined by the fit-

ness function. This metric is zero for identical signals. The fol-

lowing are given:

• Base Fitness or similarity of 2-D model input to target

signal—the fitness of a mesh which does nothing.

• Model Fitness or similarity of the best output to target

signal—a measure of what the GA has achieved.

• Spectral Standard Deviation , or similarity of

five successive program outputs to one another—a mea-

sure of the stability of the GA.4

The standard deviation of evolved 2-D model shapes

is also given. As the range of model radii is from

0 to 4, this metric would be approximately 1 for uncorrelated

shapes.

B. Evolved Results

Figs. 1–3 give spectral plots of three vowels, and their coun-

terpart real vowels recorded in the studio. To give a clearer pic-

ture of the differences between real and evolved vowels, Fig. 4

4Experiments involving 15 runs of a single vowel have also been performed,
with similar results.
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Fig. 1. Real and evolved spectra for an “ah” vowel.

Fig. 2. Real and evolved spectra for an “ii” vowel.

Fig. 3. Real and evolved spectra for an “uu” vowel.

shows the associated error for the “ii” vowel. Figs. 5–7 show the

shapes evolved to produce these vowels.

Fig. 4. Plot of the difference between a real and evolved “ii” vowel.

Fig. 5. Evolved 2-D model shape for the “ah” vowel. The error bars extend to
one standard deviation either side of the mean.

Fig. 6. Evolved 2-D model shape for the “ii” vowel.

V. DISCUSSION

A. Synthesized Sounds

The sounds produced in this experiment can be heard online

[24]. As can be seen from the spectra plotted in Figs. 1–3,

the sounds are very similar (although not identical) to real

recordings.

There are a number of ways in which this similarity might

be improved. First, the physical model could be matched more

accurately to reality in a number of ways, including:
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Fig. 7. Evolved 2-D model shape for the “uu” vowel.

Fig. 8. Spectrogram of a real, sung “ah” vowel.

• implementing the model in 3-D not 2-D;

• deriving a more accurate model of the vocal folds, so

that the exact signal produced by them can be known

(rather than using the Lx signal which is at best an

approximation);

• implementing a more sophisticated 2-D model—alterna-

tive decompositions of the 2-D plane have been proposed

offering improvements over the rectilinear topology [25],

as have improved boundary models [27], [28];

• implementing a higher-resolution 2-D model, but with

more interpolation between the genome and mesh so as

not to increase the search space;5

• implementing the nonlinear loss which is known, in re-

ality, to occur at the boundaries of the vocal tract.

Also, while the spectral content of the recorded vowel sounds

remains relatively constant over the duration of the recording, it

may be necessary to model small changes in the sound to im-

prove the model. Fig. 8 shows the spectrogram of the “ah” vowel

used in the experiment; note how as time progresses the for-

mant peak around 3 kHz rises slightly. Formant peaks are also

known to vary when vibrato is present, as in this signal. The

modeling of such changes may not be necessary to produce a

vowel sound acceptable to most listeners (although including

them will doubtless improve realism)—but given that all time

slices of the signal are not equal, an evolved sound may be per-

ceived as unnatural if it has been evolved to match the “wrong”

part of the spectrogram.

Ideally, such improvements would be provided by a model

which changes in shape over time. This is also a natural ex-

5Better interpolation could be achieved with curve fitting, and also variable
resolution/accuracy of the stored data points, weighted toward greater accuracy
where vocal tracts vary more from individual to individual.

Fig. 9. Two-dimensional rectangular-grid mesh, showing edge nodes and the
finite difference equation variables for a single node.

tension to the project and indeed a prerequisite for producing

a complete singing synthesizer as we need to be able to morph

from one vowel to another and produce consonants. However,

the question of how to model dynamic changes in shape is an

ongoing area of research.

The final feature needed to complete a singing synthesizer is

intuitive control of pitch. Pitch in our system is determined by

the pitch of the Lx waveform, so this could easily be adjusted

either by using traditional multisampling techniques, or by use

of a physical model for the larynx.

B. Evolved Shapes

One thing known for certain since early experiments [17]

is that there are many dramatically different shapes which

produce similar sounds—for the purposes of our GA, lots of

local optima—and while it may be possible to evolve “natural”

shapes, the possible nonuniqueness of any solution should be

considered when performing shape analysis experiments with

this system. However, we deduce from the level of convergence

shown in Table I that the algorithm finds reasonably similar

optima (perhaps close to the global optimum) on each run: thus,

analysis of the evolved shapes is meaningful.

It is clear that the shapes (Figs. 5–7) are not close to those pro-

duced in real human vocal tracts, as they exhibit features known

not to be possible in reality. For example, the “ah” vowel dis-

plays a radius of 5 cm at the larynx. As mentioned in the in-

troduction, convergence to the same solution found in nature is

not guaranteed. However, in this case, the differences can be at-

tributed to differences between the model and reality as detailed

above. In particular, the use of Lx as an excitation is not a direct

substitute for glottal flow, but an approximation. The GA will

have evolved the shapes to compensate for the Lx-glottal flow

differences and thus differ from natural data.

VI. CONCLUSION

A 2-D physical model based on the digital waveguide mesh

is a promising tool for the synthesis and analysis of speech and

singing. However, real data on the shape of the human vocal

tract while in use is hard to obtain. Evolution has been shown to

be an effective alternative design method for the shape of such

models. Realistic sounds are produced through synthesis, even

though the synthesis model used is fairly simple.

If the synthesis model can be improved to better reflect reality,

it should be possible in the future to use such models to recreate

the exact shape of the vocal tract of a given singer—for both

improved synthesis (including articulations) and analysis. Both
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of these application areas require the evolved model to match the

actual vocal tract, so the possible nonuniqueness of solutions is

a concern: it is not proven that two different vocal tracts cannot

produce exactly the same sound. However, limiting the evolved

models to shapes which we know humans can definitely achieve,

and sampling the output signal in great detail for a long period

of time, may reduce the search space sufficiently that a correct

solution is overwhelmingly likely.

Finally, it is suggested that evolution is an effective design

technique not only in this and other applications where we wish

to produce an accurate simulation of reality, but also for the syn-

thesis of new sounds not available acoustically. A multi-dimen-

sional waveguide mesh, for example, could easily simulate a

10-dimensional object,6 but designing the actual shape of such

an object would be extremely difficult. Evolution allows us to

skip the design phase, instead exploring the search space until

we find a sound we like.

APPENDIX

DIGITAL WAVEGUIDE MESH

A. Introduction

The digital waveguide mesh (DWM) [31] is a discrete-time

simulation used to model acoustic wave propagation in an en-

closed system. It can be considered as an extension of the 1-D

digital waveguide commonly used to model string and wind

instruments [8], an approach similar to the Kelly–Lochbaum

1-D transmission line simulation of the vocal tract [6]. Both of

these 1-D models are founded in a discretized formulation of

the d’Alembert solution to the wave equation through the use

of bi-directional digital delay lines and scattering junctions.

However, a direct numerical solution to the wave equation

using second-order finite differences leads to the alternative

implementation of the DWM as a finite difference time domain

(FDTD) simulation. Both approaches have been employed in

DWM research and recent work has explored the equivalence

between these two models [32]. The FDTD approach is com-

putationally efficient in terms of memory and processing time,

although is exact only at dc, whereas the direct implementation

of the DWM will propagate bandlimited solutions to the wave

equation without error [33]. However, the implementation of

boundary conditions in both cases is quite different, with the

FDTD approach in particular being susceptible to problems

relating to instability, although this can be solved in some part

through the use of hybrid mesh structures [32], [34]. A thor-

ough comparison of the equivalences between these schemes

is presented in [32] and [33]. The implementation used in this

paper is the FDTD approach although it is still referred to as a

digital waveguide mesh as its background lies in this tradition

in previously published studies, e.g., [29].

B. Two-Dimensional DWM

The 1-D digital waveguide is a discretized formulation of the

d’Alembert travelling wave solution to the 1-D wave equation

(2)

6This need not be complex, indeed could contain as few as 11 elements, but
could be interesting as it breaks the constraints of 3-D space.

which shows that a 1-D wave in a medium of constant

impedance can be decomposed into two separate signals trav-

elling in opposite directions.

This can be implemented using bidirectional delay lines such

that the sound pressure of a propagating wave signal can be

defined as the sum of these travelling waves. A 2-D digital wave-

guide mesh is constructed from a regular array of such 1-D

digital waveguides connected via scattering junctions. By de-

termining that for a lossless junction , the sum of the input

velocities is equal to the sum of the output velocities (flows add

to zero), and that the sound pressures in all crossing waveguides

are equal (continuity of pressure or force), the sound pressure

at for connected neighbors at unit distance can be derived

as the following difference equation:

(3)

A number of different 2-D mesh topologies have been pro-

posed, corresponding to different decompositions of the 2-D

plane, and hence the number of neighbors, . This work uses

the 2-D rectilinear digital waveguide mesh, such that .

Note that (3) is valid for a mesh of any topology or dimension-

ality. For instance, the same expression for the 2-D rectilinear

mesh with can be used for the 3-D tetrahedral mesh [26],

the only difference is in terms of the implementation and spatial

arrangement of the neighboring junctions. Unlike the 1-D case,

this 2-D implementation is not an exact approximation to wave

propagation in the continuous domain as a signal will not prop-

agate equally in all directions [31]. However, a high-resolution

structure can provide a good approximation.

C. Boundary Conditions

A multidimensional mesh structure is typically terminated

at a boundary via a single 1-D connection and will act to re-

flect an incident sound wave via a change in the impedance

of the different waveguide elements connected at the boundary

scattering junction [35]. The simplest case can be considered

by connecting a dummy junction on the other side of the

boundary junction , essentially within the boundary itself. This

leads to the following formulation for a boundary junction based

on a FDTD implementation of a DWM:

(4)

The amount of energy reflected at the boundary is determined

by setting , with giving total reflection and

approximating total absorption.

D. Sampling Rate

The sampling rate of a waveguide mesh is determined by (5)

where is the speed of wave propagation in the medium, is

the number of dimensions, and is the internodal distance

(5)

However, the valid bandwidth of a digital waveguide mesh

is actually much lower than the limit suggested by (5). Disper-

sion error, where the velocity of a propagating wave is depen-

dent upon both its frequency and direction of travel, leads to
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wave propagation errors and a mistuning of the expected reso-

nant modes.

The degree of dispersion error is highly dependant upon mesh

topology and has been investigated in [26]. Interpolated [29] and

triangular [34] mesh topologies demonstrate dispersion charac-

teristics that are reduced substantially to a function of frequency

only. Additional pre- and post-processing of results using fre-

quency warping techniques [29], [30] gives further significant

improvements, increasing the overall valid bandwidth of the

model. Oversampling the mesh also offers improvements in this

regard, such that the required bandwidth lies within accepted

limits, typically 0.25 [31].
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