
A Query Rewriting Approach
for Web Service Composition

Mahmoud Barhamgi, Djamal Benslimane, and Brahim Medjahed, Member, IEEE

Abstract—Data-Providing (DP) services allow query-like access to organizations’ data via web services. The invocation of a DP

service results in the execution of a query over data sources. In most cases, users’ queries require the composition of several services.

In this paper, we propose a novel approach for querying and automatically composing DP services. The proposed approach largely

draws from the experiences and lessons learned in the areas of service composition, ontology, and answering queries over views.

First, we introduce a model for the description of DP services and specification of service-oriented queries. We model DP services as

RDF views over a mediated (domain) ontology. Each RDF view contains concepts and relations from the mediated ontology to capture

the semantic relationships between input and output parameters. Second, we propose query rewriting algorithms for processing

queries over DP services. The query mediator automatically transforms a user’s query (during the query rewriting stage) into a

composition of DP services. Finally, we describe an implementation and provide a performance evaluation of the proposed approach.

Index Terms—Services integration framework, advanced services invocation framework, services delivery platform, composite web

services.

Ç

1 INTRODUCTION

RECENT years have witnessed a growing adoption of web
services as a medium for enabling cross-organizational

collaborations on the web [29]. Modern enterprises are
increasingly embracing the service-oriented paradigm to
provide interoperable and programmatic interactions with
their internal systems [28]. Such interactions are generally
performed via two types of services: Effect-Providing (EP)
services and Data-Providing (DP) services. EP services imple-
ment organizations’ business functions. The execution of an
EP service produces effects that may change the state of the
world. For instance, a book-selling service has as effects
charging the customer’s credit card and physical transfer of
the book from the bookstore’s warehouse to the customer’s
address. DP services allow query-like access to organizations’
data sources. The invocation of a DP service results in the
execution of a query over the data sources’ schema [6], [32],
[1]. However, in contrast to EP services, such invocation has
no effect on the state of the world. For instance, a
pharmaceutical DP service may return the generic equivalent
of a given brand medication; a homology search DP service
scours a DNA sequence database to find sequences that have
a common ancestor with a given sequence.

DP services provide bridges to access (or query) enter-
prise data sources [6], [32], [1]. However, in most cases,
users’ queries require the invocation of several services. For
instance, let us consider the following query: “what are the

tests performed in ABC Lab by patients who have been
administered Glucophage in XWZ hospital?” Let us assume
that ABC Lab and XWZ hospital provide two DP services
SABC and SXYZ, respectively: SABC returns the tests per-
formed by a given patient in ABC Lab and SXWZ returns the
list of patients that have been administered a given drug in
XWZ hospital. The execution of the above-mentioned query
involves the composition of SABC and SXYZ services. Web
service composition is a powerful solution for building
value-added services on top of existing ones [46], [23].

Composing web services is not a new problem; significant
research has been devoted to service composition in the past
years [14], [41], [42], [45], [5], [23], [24]. However, current
approaches mostly focus on EP services and hence are not
directly applicable to DP services [20], [22]. The capabilities
of EP services were modeled in the aforementioned
approaches through 1) input, output, effects, and preconditions
(a.k.a. IOPE) and/or 2) concepts defined within a taxonomy/
ontology (e.g., RosettaNet) enumerating all potential ac-
tions/functions that may exist in a particular domain. Both
ways are inappropriate to represent the capability of DP
services. Indeed, DP services have no preconditions and
produce no effects, and as a result, representing them as state
transformation (i.e., via their IOPEs) would be reduced to
representing their input and output. However, DP services
may have similar input and output, yet completely different
semantics. For example, two services may have the same
input and outputs, say a Drug, the first returns the drugs that
would interact with the given one whereas the second
retrieves the drugs that are equivalent to a given one. That is,
the semantics of a DP service should capture the way input
parameters relate to output parameters, i.e., the input/output
semantic relationship. Assuming a domain ontology, the
relationships in the previous example might be defined by
relations like, for example, “isEquivalentTo,” “interactsWith”
that relate the concept “Drug” to itself in the ontology. It
should be noted that input/output semantic relationships
may be complex and, as such, cannot be conveniently

206 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

. M. Barhamgi and D. Benslimane are with the LIRIS Lab, Claude Bernard
University Lyon1, LIRIS, Bâtiment Nautibus, 8 Bd Niels Bohr, 69100
Villeurbanne, France.
E-mail: {mahmoud.barhamgi, djamal.benslimane}@liris.cnrs.fr.

. B. Medjahed is with the Department of Computer and Information Science,
University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI
48128. E-mail: brahim@umd.umich.edu.

Manuscript received 11 June 2009; revised 15 Oct. 2009; accepted 20 Dec.
2009; published online 11 Feb. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSCSI-2009-06-0159.
Digital Object Identifier no. 10.1109/TSC.2010.4.

1939-1374/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

represented by exhaustively enumerating them in taxo-
nomies/ontologies as is done for actions/functions in the EP
services’ case. Consider the example of DP services that
return the medications administered to a given patient; one
service may specify that the medications it returns are
prescribed by doctors, as opposed to over-the-counter
medications that can be bought without prescriptions. Input
and output—the concepts “Patient” and “Medication” here—
are not only linked via a relation such as “takes,” but also via
additional concepts like “Doctor” that is linked to the input
via a relation like “treats” and to the output concept via a
relation like “prescribedBy.”

In this paper, we propose a novel approach for querying
DP services. The proposed approach largely draws from the
experiences and lessons learned in the areas of service
composition, ontology, and answering queries over views.
It assumes the existence of a mediated ontology (MO)
specified in Resource Description Framework (RDF) to
capture consensual and shared knowledge in a given
domain (e.g., healthcare). RDF is a W3C-supported lan-
guage for ontology representation [11]. The contributions of
this paper are summarized below:

. Query Model for DP Services—We introduce an RDF-
based model for the 1) description of DP services
and 2) specification of service-oriented queries. We
model DP services as RDF views over domain
ontologies. Input/output relationships are declara-
tively represented based on concepts and relations
that are semantically defined in a mediated ontol-
ogy. We adopt SPARQL language for posing queries
over DP services.

. Processing DP Service Queries—We propose query
rewriting algorithms for processing queries over DP
services. The idea behind query rewriting is the
following: given a query over the mediated ontology
and a set of RDF views of DP services, reformulate the
query into an expression that refers only to the RDF
views and provides the answer to the query. The
proposed approach automatically transforms a user’s
query (during query rewriting) into a composition of
DP services (modeled as RDF views) that are selected,
orchestrated, and invoked to execute the posed query.

. Implementation and Evaluation—We describe an im-
plementation and provide a performance evaluation
of the proposed approach.

The rest of this paper is organized as follows: In Section 2, we
motivate the need for querying DP services; discuss the
underlying challenges, and overview the proposed ap-
proach. In Section 3, we describe our query model for DP
services. In Section 4, we propose a query rewriting approach
for processing queries over DP services. In Section 5, we
extend our approach to handle parameterized queries. In
Section 6, we describe our implementation and evaluate our
approach. We overview related work in Section 7. We
provide concluding remarks in Section 8.

2 QUERYING DP SERVICES: MOTIVATION AND

CHALLENGES

In this section, we first describe a motivating scenario from
the e-prescription domain. Then, we discuss the challenges

to be addressed for querying DP services and give an
overview of the proposed approach.

2.1 The E-Prescription Scenario

As a running scenario, let us consider the e-prescription
system that provides access to the set of services described
in Table 1. S1 and S2 return the medications taken by a
given patient identified by a Social Security Number (or
SSN). Both services have a similar signature and semantics
but impose different constraints on their inputs/outputs as
specified in the “Constraints” column of Table 1. S4 and S5

return information (name and URL to more details) about a
given medication; S4 gives information about medication
with a code higher than “p660” while S5 gives information
about medications with a code lower than “x8999.”

Let us now assume that a physician Alice would like to
submit the following query Q1: “check whether the drug d
identified by code “x9999” to be prescribed to patient John
interacts with the ones currently taken by that patient.”
Alice uses the services described in Table 1 to obtain such
information. As depicted in Fig. 1a, Alice invokes S1 to
retrieve the list of drugs (called L1) currently taken by John
(step a.1); this assumes that John’s SSN satisfies the
condition “a� x888.” Alice also invokes S3 to get the list
of drugs that interact with d (step a.2). We refer to the list of
drugs returned in step a.2 as L2. Note that steps a.1 and a.2
may be executed in parallel. The result set of Q1 contains the
drugs that belong to L1 \ L2 (step a.3). Alice may get
additional information about d and the drugs in the result
set by invoking S4 and S5 services (step a.4); if a drug’s code
verifies the condition “a� p660,” then S4 is invoked; if the
code verifies the condition “a� x8999,” then S5 is invoked.

To make the scenario even more challenging, Alice may
obtain the results of query Q1 in a different way as depicted
in Fig. 1b. Steps b.1 and b.4 are similar to steps a.1 and a.4,
respectively. For each drug in L1, Alice invokes S3 to update
the list L2 of drugs that interact with those in L1 (step b.2).
L2 contains tuples (A: taken drug, B: interacting drug). Alice
finally needs to filter out L2 and look for tuples whose
second part B refers to d (step b.3).

2.2 Challenges

Our reference scenario shows that Alice needs to perform
several tasks to execute her query. These tasks may

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 207

TABLE 1
DP Services in the E-Prescription Reference Scenario

especially be tedious in application domains such as
bioinformatics where the last count of DP services approx-
imates three thousands [20]. First, Alice needs to understand
the semantics of the existing services and the relationships
between the input and output parameters of each DP
service. For example, S3 and S6 have the same input and
output parameters (i.e., drug). However, S3 returns the
medications that interact with a given drug d whereas S6

returns the medications that are equivalent to d. Unfortu-
nately, Alice will not be able to differentiate between these
two services as current web service description languages
provide little or no support for declaring input/output
semantic relationships. Second, Alice needs to manually
select the services that are relevant to her query and invoke
them in the right order. For instance, she has to figure out
the execution plan for her query (Fig. 1a or 1b). Third, Alice
needs to consolidate results and manually perform poten-
tial joins as mentioned in step 3 of the scenario. The above-
mentioned tasks fall under the following two challenges:
developing 1) a query model for DP services and
2) techniques for processing queries over DP services.

2.2.1 Developing a Query Model for DP Services

The query model allows the declarative specification of DP
service semantics as well as queries over DP services.
Semantic web services are usually modeled using languages
such as WSMO [33], OWL-S [22], and WSDL-S [36]. A survey
of major service description languages is given in [45]. For
example, OWL-S’s Service Profile permits the modeling of
the service input, output, the preconditions for invoking the
service and the produced effects. It also allows the
categorization of services according to their functionality
and domain. While such semantic properties are important
for describing web services in general, they are not sufficient
in the case of DP services. DP services are mostly concerned
with retrieving the appropriate outputs given specific
inputs. They do not provide any functionality, beyond
retrieval, and have no external effects. However, it is
important to capture the semantic relationship that may
exist between the inputs and outputs of DP services. For

instance, S3 and S6 have the same input and output sets but
different semantics linking the two sets (“interacts with” and
“is equivalent to”). In this paper, we propose an RDF-based
model for DP services. We represent DP services as RDF
views over a mediated ontology. Each RDF view contains
concepts and relations from that ontology. We adopt
SPARQL, the de facto query language for RDF, for posing
queries over DP services.

2.2.2 Developing Techniques for Processing Queries

over DP Services

Users should be relieved from the burdensome task of
selecting, composing, and invoking DP services. Given a
query specified according to our query model, a query
mediator will automatically execute the query by selecting
and orchestrating the right DP services. DP services should
be treated as first-class objects that could be transparently
selected, invoked, and composed much like database tables
are transparently located, queried, and joined in traditional
DBMS systems [45]. The query mediator proposed in this
paper adopts a query rewriting approach: given a SPARQL
query specified over the mediated ontology and a set of
RDF views corresponding to DP services, reformulate the
query into an expression that refers only to the RDF views
and provides the answer to the query. The query mediator
automatically transforms a user’s query (during the query
rewriting stage) into a composition of DP services (modeled
as RDF views) that are selected, orchestrated, and invoked
to execute the posed query.

2.2.3 Overview of the Proposed Approach

Fig. 2 gives an overview of the proposed approach. DP
services are modeled as RDF Views over a mediated
ontology. RDF views capture the semantic relationships
between input and output parameters using ontological
concepts defined in the mediated ontology. They are
incorporated within WSDL description files as annotations.
Users pose their queries over the mediated ontology using
SPARQL query language. The DP service query mediator
uses an RDF query rewriting module and the existing RDF

208 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Fig. 1. The e-prescription reference scenario.

views to select the services that can be combined to answer the
posed query. Then, it generates a composite service as an
execution plan for the query, execute the composite service,
and returns data to the user. The generated composite service
may also be deployed as a new DP service and used to answer
subsequent parameterized queries.

3 THE DP SERVICE QUERY MODEL

In this section, we describe the proposed model for DP
service queries. We first introduce some preliminaries.
Then, we use RDF views to describe DP services. Finally,
we present preprocessing steps that need to be performed
prior to query resolution.

3.1 Preliminaries

The model presented in this section relies on three major
concepts: mediated ontology, query, and query containment.

3.1.1 Mediated Ontology

In the proposed approach, users formulate their queries
against an MO. Such ontology is defined by domain experts
and specified in RDF/RDFS. Formally, MO is defined by
the 6-tuple (C, D, TP, OP, SC, SP). C is a set of classes. D is a
set of data types. TP is a set of data-type properties; each TP
property has a domain in C and a range in D. OP is the set
of object properties; each OP property has its domain and
range in C. SC is a relation over C� C, representing the
subclass relationship between classes. SP is a relation over
(OP�OPÞ [ðTP� TPÞ; it represents the subproperty
relationship between properties in OP or properties in TP.
Fig. 3 depicts a portion of the MO ontology in the healthcare
domain—the employed representation is very similar to ER
diagrams; the sole difference is that subclassing relation-
ships SC and SP (denoted by dashed arrows) are distin-
guished from other ordinary relations. Examples of
concepts include Patient and Drug. This ontology specifies
that patients take drugs. Drugs have different character-
istics like name, a universal code, and a URL reference to
detailed information about it. Drugs may interact with each
other and have specializations (e.g., Medications).1 Con-
cepts are interlinked by object properties; they are related to
data types via data-type properties.

3.1.2 Queries

We consider conjunctive queries over MO. Queries are
expressed using SPARQL, the de facto query language for
the Semantic Web.2 Formally, a query Q has the form
QðXÞ :�GðX;YÞ. QðXÞ is called the head of the query; it has
the form of a relational predicate.X and Y are called the head
(or distinguished) and existential variables, respectively.
GðX;YÞ is called the body of the query; it contains a set of RDF
triples where each triple is of the form (subject.property.ob-
ject). The body may also contain constraints on the body
variables of the form: x� Constant where � 2 f>;<;�;�g.
This type of constraints is added to represent potential
equality and order constraints that may be placed on the query’s
variables (e.g., age >50, name = “John Smith,” etc.). Fig. 4
gives the SPARQL and graphical representations of the query
Q1 described in our e-prescription scenario. A query can be
seen as a graph with two types of nodes: class and literal
nodes. Class nodes refer to classes in the MO ontology (e.g.,
M1 and M2). They are linked via object properties and
represent existential variables in the query. Literal nodes
represent data types (e.g., y1, w1, z1). They are linked with
class nodes via data-type properties. Literal nodes may
correspond to both existential and distinguished variables in
a query.

3.1.3 Query Containment

Query containment enables the comparison between
queries [17]. A query Q1 is said to be contained in Q2,
denoted by Q1 � Q2, if and only if the answer to Q1 is a
subset of the answer to Q2 for any knowledge base D. A
knowledge base [4] is the union of a set of axioms defining
the ontology at the class-level (a.k.a. TBox) and a set of facts
defining the instances of the ontology’s classes (a.k.a.

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 209

Fig. 2. Overview of the proposed approach. Fig. 3. Example of mediated ontology.

Fig. 4. SPARQL specification and graph 1.

1. Medication refers to all medicines that are legally obtained for a
therapeutic reason. Drug refers to all medicines used legally or illegally.

2 . http://www.w3.org/blog/SW/2008/01/15/sparql_is_a_
recommendation.

ABox). Q1 and Q2 are equivalent if Q1 � Q2 and Q2 � Q1.
Containment mapping has been used in data integration as
the necessary and sufficient condition for testing query
containment [8]. A query Q1 contains Q2 if and only if there
is a containment mapping from Q1 to Q2. A mapping � from
the variables of Q1 to the variables of Q2 is a containment
mapping if 1) � maps every class node in Q1 to a class node
in Q2, 2) all object properties in Q1 hold between the
mapped class nodes in Q2, and 3) � maps the head of Q1 to
the head of Q2. In Fig. 5, Q2ðx1, z1, z2, y1Þ can be made
contained in Q1(x,y) by the following containment mapping
�: A! A0, B! B0, x! x1, z! z1, z! z2, y! y1. Indeed,
all class nodes in Q1 were mapped to the corresponding
class nodes in Q2. The object properties in Q1 hold between
the corresponding classes in Q2. The join between the class
nodes A and B over the variable z was enforced in Q2 since
Q2 projects out the data-type properties DP2 and DP3; these
two data-type properties are bound to the distinguished
variables z1 and z2 in Q2. Applying the mapping contain-
ment � to Q2 results in Q2(x,z,z,y).

3.2 DP Service = RDF Parameterized View

We model DP services as RDF Parameterized Views (RPVs)
over the MO ontology. As mentioned in Section 2.2, RPVs
use concepts and relations from the MO ontology to capture
the semantic relationships between input and output sets of
a DP service. An RPV requires a particular set of inputs (the
parameter values) in order to retrieve a particular set of
outputs; outputs cannot be retrieved unless inputs are

bound. For example, one cannot invoke the service S3 from
above without specifying a medication for which it is
needed to learn the interacting medications. Therefore, a
parameterized view must indicate which parameters are
inputs, and which parameters are outputs. Parameterized
views have been used to describe content and access
methods in Global-as-View (GaV) integration architectures
[17]. However, to the best of our knowledge, this work is the
first to use parameterized views to model DP services.

A parameterized view can be seen as a parameterized
SPARQL query. Formally, an RPV of a DP service Si over an
MO ontology is a predicate Sið$Xi;?YiÞ :� < �ðXi;Yi;ZiÞ;
Cti > where:

. Xi and Y i are the sets of input and output variables of
Si, respectively. Input and output variables are also
called as distinguished variables.

. �ðXi;Yi;ZiÞ represents the semantic relationship
between input and output variables. Zi is the set of
existential variables relating Xi and Y i. � has the
form of RDF triples where each triple is of the form
(subject.property.object).

. Cti are the constraints imposed on Xi, Y i, or Zi
variables. A constraint has the form: x� Constant
where � 2 f>;<;�;�g.

Fig. 6 gives the RPVs of the DP services depicted in Table 1.
Each RPV view is characterized by an access pattern; an
access pattern specifies whether a parameter is input or
output. The input and output variables are prefixed with the
symbols “$”and “?,” respectively. For example, the access
pattern of the S1 is ($a,?b). Other services may have the same
body as S1 but with different access patterns such as (?a,?b),
($a,$b), and (?a,$b).

RPVs support semantic reasoning while matching a
service description with a query. Consider, for example,
the case of a DP service S with an input parameter of type
Geographic-Region and output parameter of type Drug; S
returns the list of drugs that are produced in a given region.
The RPV of S will express that “the returned drug d is produced
by a pharmaceutical company c located in the region r.” Let us
assume that the user is looking for a service that takes as
input the name of a French-Geographic-Region and returns as

210 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Fig. 5. Example of query containment.

Fig. 6. RDF parameterized views—examples.

output the list of French-Drug produced in the region.
Assume also that the MO ontology defines the concepts of
French-Drug as “a drug produced by a pharmaceutical company
located in France” and the concept of French-Region as “a region
that is part of France.” Based on the previous ontological
definitions and on the RPV of S, a reasoner may infer that the
results returned by invoking S with a French-Region para-
meter are subsumed by the concept French-Drug since a
pharmaceutical company located a geographic region that is
part of France is located in France, thus satisfying the
definition of French-Drug.

3.3 Preprocessing RDF Parameterized Views

The RPVs associated to DP services are preprocessed (i.e.,
performed offline) prior to query resolution. Preprocessing
enables the query mediator to return more results for a
given query; for example, a service like S4 that returns the
details about a given Medication will not be returned as a
matching service to a query that uses the concept Drug to
request the same details. The preprocessing phase over-
comes the problem based on the subclassing semantic
constraints that are defined in the ontology. We identify two
preprocessing steps: 1) applying RDFS semantic constraints
and 2) skolemizing class nodes.

3.3.1 Applying RDFS Semantic Constraints

In this step, RPVs are extended to take into account the
RDFS semantic constraints of the MO ontology. RDFS
semantic constraints include: rdfs:subClassOf, rdfs:subProper-
tyOf, rdfs:domain, and rdfs:range. These semantic constraints
are defined in the mediated ontology; for instance, the class
Medication is a subclass of the class Drug. Fig. 7 extends the
RPVs of Fig. 6 to state that a variable of type Medication is
also of the type Drug. It also states that MedName is a
subproperty of DrugName.

3.3.2 Skolemizing Class Nodes

Variables denoting classes nodes in RDF parameterized
views are skolemized. By “skolemized,” we mean that each

variable denoting a class node is conceptually associated
with a skolem function [27]; such function is helpful to merge
class instances stemming from different services. In the RDF
data model, a skolem function associated with an RDF class
generates a new “unique value”—used as an identifier to the
class instance (a.k.a. blank nodes)—when invoked with
some new values of its arguments; it always returns the
“same value” whenever it is invoked with the same values of
arguments. We used skolem functions to specify the data-
type properties that can be used to uniquely identify a class
instance. For instance, the variable “?M” (of type Medica-
tion) is associated with a function F2(hasCode) to specify
that if two instances have the same code then they denote
the same medication and thus can be merged. This is
somewhat similar to the primary key constraint. The
properties of a skolem function for a particular class are
chosen by the domain experts. In our scenario, the skolem
function associated with variables of type Patient is
F1(hasSSN); variables of types Medication and Drug are
associated with the skolem function F2(hasCode).

4 PROCESSING QUERIES OVER DP SERVICES

In this section, we describe our query rewriting algorithms.
Given a queryQ and a set of DP services represented by their
corresponding RPVs V ¼ v1; v2 . . . ; vi, the query mediator
rewrites Q as a composition of services whose union of RDF
graphs (denoted to by GV) covers the RDF graph of Q
(denoted to byGQ). The term “covers” means that: 1) all class
nodes in GQ are in GV , 2) all object properties that hold
between class nodes in GQ hold between the corresponding
class nodes in GV , and 3) there is a containment mapping �
from GQ ! GV so that:

. � maps class nodes in GQ to those in GV , i.e., they
have the same class types.

. � maps each literal node inGQ to a literal node inGV .

. Distinguished variables in Q are provided by the
composition.

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 211

Fig. 7. Applying RDFS constraints to RPVs—example.

The RPV of an individual service may cover only a
subgraph of GQ. Therefore, the answer to Q may only be
obtained by examining the various compositions of the
different RPVs. The RDF graph of a valid combination has
to satisfy the above-mentioned conditions. The construction
of the compositions comprises two phases: 1) finding the
subgraphs of GQ that are covered by each RPV and
2) generating the composite service.

4.1 Finding Relevant Subgraphs

In the first phase, the query mediator compares GQ with
every RPV vi in V and determines the class nodes and object
properties in GQ that are covered by vi. The mediator stores
information about covered class nodes and object properties
as a partial containment mapping in a mapping table. The
mapping table points out the different possibilities of using
an RPV to cover part of GQ. The query mediator considers
the following two cases for populating the mapping table:

Case 1 (Covering Class Nodes). Let us assume that vi has
a class node Cv whose type is similar to the type of a class
node CQ in Q. The RPV vi covers CQ if the mapped
class node Cv verifies the following conditions:

1. If CQ has a distinguished variable x in Q (i.e., a data-
type property of CQ is bound to a distinguished
variable x in Q), then either the same data-type
property ofCv is projected3 in vi, or it can be recovered
because all data-type properties used in the skolem
function ofCQ are projected in vi and thus can be used
to recover the missing distinguished variable of Cv.

2. IfCQ has an existential variable x inQ (i.e., a data-type
property ofCQ binds to an existential variable x inQ),
then one of the following conditions must be true:

a. The variable x maps to a distinguished variable
in vi, or,

b. The data-type property that is bound to x can be
recovered because the data-type properties used
in the skolem function of CQ are projected in vi,
and thus it is possible to recover the data-type
property of Cv that corresponds to x.

c. All class nodes in Q that have x in their triples
are covered in vi and the join between these
class nodes over x is enforced in vi.

3. If CQ has a constant in its triples, then either vi has to
project the data-type property of Cv that corre-
sponds to the constant, or such data-type property
can be recovered.

4. If CQ is involved in an object property p in Q, then vi
has either to project the attributes of the skolem
function of Cv to enforce the join implied by p, or it
has to cover p.

Case 2 (Covering Object Properties). Let us assume that vi
includes an object property p of Q in its definition such that
the class nodes linked by p can be mapped to the correspond-
ing class nodes of p in Q (i.e., they have the same types). The
RPV vi coversp if it 1) projects the data-type properties used in
the skolem function of each of the class nodes linked by p or
2) covers the class nodes for which it does not project the data-
type properties used in its skolem function.

Example. Let us now illustrate the above-mentioned cases
using the services and query Q1 described in our e-
prescription scenario. We consider the following candi-
date services:

. ServicesS1 andS2—The same discussion applies to
S1 and S2; however, S2 is eliminated because John’s
SSN (“x999”) is out of the range accepted by S2. S1

has a matching object property takes. The class
nodes S1:P

4 and S1:M linked by this property map
to the corresponding class nodes inQ1 (i.e., toQ1:P
and Q1:M1) as required in Case 2. S1:M is mapped
to Q1:M1 owing to the added triple (in the
preprocessing phase) to state that a Medication is
also a Drug. The data-type properties used in the
skolem functions of Patient and Drug (medications
can be uniquely identified by their codes based on
their data-type property hasCode) are projected by
S1 (i.e., they correspond to distinguished variables
in S1). Note that there is a join over the existential
variable Q1:M1 (i.e., Q1:M1 is the subject of the
object property interacts in Q1). Even though S1

does not contain interacts property and does not
provide all of the requested data-type properties of
Q1:M1, it provides the codes of Q1:M1’s instances
which can be used to enforce the join over Q1:M1

and recover the missing data-type properties of
GQ1 through other services. Therefore, S1 is
considered as covering the object property takes
(Case 2). The covered property takesðQ1:M1; Q1:P Þ
along with class nodes that are necessary for this
partial covering (i.e., Q1:P ðxÞQ1:M1ðw1Þ) are in-
serted in the mapping table (Table 2). The corre-
sponding partial containment mapping � : Q1:
P ! S1:P ;Q1:M1 ! S1:M; xð‘‘x999}Þ ! a; w1 ! b
along with the service inputs and outputs are also
inserted in Table 2.

. Service S3—S3 has a matching object property
interacts. The class nodes linked by this property
S3:M1 and S3:M2 map to the corresponding classes
in Q1 (i.e., to Q1:M1 and Q1:M2). Both class nodes
were mapped to Q1:M1 and Q1:M2, respectively,
owing to the added triple to state that a Medication
is also a Drug. Furthermore, S3 has the medication
codes as a distinguished variable for each of the
class nodes Q1:M1 and Q1:M2 (Case 2). These
codes can be used to enforce the joins over Q1:M1

and to recover missing data-type properties for
Q1:M1 and Q1:M2. Therefore, S3 is considered as
covering the object property interacts. The covered
RDF subgraph will include the covered property
along with class nodes that are necessary for this
partial covering (i.e., interactsðQ1:M1; Q1:M2ÞQ1:
M1ðw1ÞQ1:M2ðx9999ÞÞ. The associated partial
mapping is: � : Q1:M1 ! S3:M1; Q1:M2 ! S3:M2;
w1 ! a; x9999! b (Table 2).

. Services S4 and S5—The same discussion applies
to S4 and S5; however, S5 only covers Q1:M1 as
the value “x9999” specified in Q1 is out of the
range accepted by S5:S4 has a class node S4:M
that can be matched with Q1:M1 and Q1:M2. All

212 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

3. The data-type property is bound to a distinguished variable in vi.
4. We use S:Ci to denote the class node Ci in the RDF graph of S. We also

use Q:Ci to denote the class node Ci in the RDF graph of Q.

the data-type properties of Q1:M1 and Q1:M2 that
bound to distinguished variables in Q1 also
bound to distinguished variables in S4, thus
satisfying the condition 1 of Case 1. Furthermore,
Q1:M1 and Q1:M2 are involved in object proper-
ties in Q1. However, S4 has the data-type property
hasCode of medication bound to a distinguished
variable in its RDF view, thus satisfying the
condition 4 of Case 1. Therefore, S4 can be used
to cover Q1:M1 with the partial mapping � :
Q1:M1 ! S4:M; w1 ! a; y1 ! b; z1 ! c and Q1:M2

with the mapping � : Q1:M2 ! S4:M; ‘‘x9999’’!
a; y2 ! b; z2 ! c (Table 2).

. Service S6—Even though S6 has the same input
and output types as S1, it does not match Q1 since
it does not cover the object property takes. Note
that S6 covers Q1:P and Q1:M1; however, it does
not project any data-type property of Q1:P and
Q1:M1 that can be used for answering Q1. Hence,
S6 is not inserted in the mapping table.

Algorithm 1 describes the statements executed for hand-

ling cases 1 and 2 (covering class nodes and object properties)

described above. The query mediator compares each class

node Ci inQ to each class node Cj in the views and, if classes

match, it adds Ci as a covered class node to t (a candidate

tuple of T) and calls Subalgorithm 1 with t as a parameter for

testing the conditions 1-4 of Case 1 (Algorithm 1, lines 1-9). If

Subalgorithm 1 returns true, then t (augmented, if necessary,

with additional covered class nodes/object properties) is

added to T . The query mediator then compares object

properties in Q with object properties in views and, in case

of match, it calls Subalgorithm 2 to check Case 2 (Algorithm 1,

lines 12-22).

Algorithm 1. Finding relevant RDF subgraphs:

Inputs: An RDF query QQ, a set of RDF views VV .

Outputs: Containment and connectivity table TT .

/* the function pbdv(c) returns the data-type
properties of the concept c that are bound

to distinguished variables. */

/* the function rdp(c) returns recoverable data-type

properties of the concept c. */

/* the function pbev(c) returns the data-type

properties of the concept c that are bound

to existential variables. */

/* the function pbc(c) returns the data-type
properties of the concept c that are bound to

constants. */

/* consti the constant value of a data-type property

pi, predi a predicate placed on the property pi. */

Begin

01: for each class node Ci in Q do

02: for each view v in V do

03: for each class node Cj in v do
04: if Ci and Cj have the same class type then

05: Ci ! t

06: if (ClassNodeCoveringðt; Ci; CjÞ) then

07: add t to the mapping table T

08: t = ø

09: end for

10: end for

11: end for
12: for each object property pi in Q do

13: for each v in V do

14: for each object property pj in v do

15: if pi and pj are the same then

16: pi ! t

17: if (ObjectPropertyCoveringðt; pi; pjÞ) then

18: add t to T

19: t ¼ �
20: end for

21: end for

22: end for

End

Subalgorithm 1. ClassNodeCover (t, Ci, Cj)

Inputs: tt a candidate line in TT ; CCi; CCj two class nodes

Outputs: Boolean value

Begin

01: Test = true

02: if pbdvðCiÞ 6� pbdvðCjÞ [rdpðCjÞ then

03: return false

04: if pbcðCiÞ 6� pbdvðCjÞ [rdpðCjÞ then

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 213

TABLE 2
Mapping Table for the E-Prescription Scenario

05: return false

06: for each consti in pbcðCiÞ
07: if consti 62 predi then

08: return false

09: for each data-type property d in pbevðCiÞ
10: if d 62 pbdvðCjÞ [rdpðCjÞ then

11: pick up a class node Ck having d from Q

12: if Ck does not map to a class node Cm in v

such that Cj and Cm join over d then

13: return false

14: if Cm is not in t then

15: Cm ! t

16: Test = Test and ClassNodeCoverðt; Ck; CmÞ
17: if d does not appear in other class nodes in Q then

18: discard d from pbevðCiÞ
19: end for

20: if Ci is involved in an object property pi in Q

21: if Cj does project out the associated skolem

data-type properties then

22: if pi does not map to a matching pj in Q then

23: Return false
24: pi ! t

25: test = test and ObjectPropertyCoverðt; pi; pjÞ
26: return test

End

Subalgorithm 2. ObjectPropertyCovering (t; pi; pj))

Inputs: t; pi; pj
Outputs: Boolean value

Begin

01: test = true

02: fetch the nodes < Ci; Ck > linked by pi in Q

03: fetch the nodes < Cj; Cm > linked by pj in v

04: if < Ci; Ck > or < Cj; Cm > have not the same type then

05: Return false

06: Ci and Ck ! t

07: if Cj does not project skolem properties then

08: test = test and ClassNodeCoverðt; Ci; CjÞ
09: if Cj does not project skolem properties then

10: test = test and ClassNodeCoverðt; Ck; CmÞ
11: return test

End

In lines 1 and 2 of Subalgorithm 1, the query mediator

verifies Case 1.1; in lines 4-8, it checks Case 1.3 and ensures

that constants in Ci satisfy the specified values constraints

(if any) in the view; in lines 9-18, it verifies Case 1.2 and, if

Ci has an existential variable, it ensures that the view covers

all class nodes (in Q) whose triples contain the existential

variable; in lines 19-23, it verifies Case 1.4 by calling

Subalgorithm 2. In lines 1-5 of Subalgorithm 2, the query
mediator fetches the class nodes linked by the tested object
properties from Q and v. Then, it tests whether these class
nodes do not project the data-type properties used in their
skolem functions, in which case the view must also cover
these class nodes (Subalgorithm 2, lines 6-10).

4.2 Generating Composite Services

After generating the mapping table in the previous phase,
the query mediator explores the different combinations
from that table to cover the query graph [3], [17]. It
considers the combination of disjoint sets of covered object
properties and class nodes, we consider disjoint sets of
covered object properties and class nodes for the following
reason: each line in the mapping table contains a class node
CNi or an object property OPi along with the minimum set
of class nodes/object properties (CNs/OPs) that are linked
with that class node/object property (CNi/OPi) via some
joins that cannot be enforced if other class nodes/object
properties (CNs/OPs) from a different view were used in
the combination (this happens when the joins are made over
existential variables in the view). This assumption speeds
up the second step of the rewriting algorithm because it
prunes the combinations with joins that cannot be enforced.

A combination is said to be a valid rewriting of Q (also a
valid composition) if 1) it covers the whole set of class nodes
and object properties in Q, and 2) it is executable. A
composition is said to be executable if all input parameters
necessary for the invocation of its component services are
bound or can be made bound by the invocation of primitive
services whose input parameters are bound.

Example. Continuing with the e-prescription scenario,
there are two possible combinations (Table 3): the combina-
tion of the first, second, third, and fourth rows from Table 2
(referred to as C1 in Table 3) and the combination of the
first, second, fourth, and fifth rows from Table 2 (referred to
as C2 in Table 3).

Let us now consider combinationC1; only S1ð‘‘x999;’’?w1Þ
can be invoked at the beginning as its input parameter is
bound. After the invocation of S1ð‘‘x999;’’?w1Þ, the variable
w1 become available as shown in Table 4; hence, S3ð$w1;
‘‘x9999’’Þ and S4ð$w1; ?y1; ?z1Þ can be invoked. After the
invocations of these services, all variables become bound,
and the whole set of services can be invoked. Consequently,
C1 is executable and is considered as a valid composition.

Now assume that S1 has a different access pattern, say
S1ð?a; $bÞ. In this case, C1 would become unexecutable as its
component services cannot be invoked; none of their input
parameters is bound: the variable a (which is bound inQ1 to a
constant) of the service S1ð?a; $bÞ is an output variable now.

214 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

TABLE 3
Combinations in the E-Prescription Scenario

TABLE 4
Checking that C1 is Executable

In the running example, we had only two valid
rewritings (combinations), but in the general case we may
have multiple possible rewritings. In Section 6.2, we show
that in some cases we may have a sheer number of possible
rewritings. Depending on the adopted hypothesis behind
the completeness of the DP services (whether the composi-
tion system operates in the closed word or the open world
settings) one may need to choose only one or all of the
possible rewritings.

Algorithm 2 allows the composite service generation as
discussed above. The query mediator first combines atomic
class nodes with missing data-type properties to have
complete class nodes (line 1). Then, for each individual class
node and object property inQ, it sets up a subset to include the
covering services (lines 2 and 3). The query mediator inserts
each service (each tuple in T corresponds to a service) in all
the subsets corresponding to its covered class nodes and
object properties (lines 4 and 5). Then, it combines elements
from the different constructed subsets and returns the
combinations that cover all class nodes and object properties
in Q and for which the subgraphs covered by the services
involved in the combination are disjoint (lines 6-10).

Algorithm 2. Combining RDF subgraphs:

Inputs: Mapping and connectivity table.

Outputs: set of candidate compositions.

/* the function nop(s) returns the class nodes and object

properties covered by s */

Begin:

01: add missing data-type properties to each

class node that is missing properties.

02: for each class node and object property in Q

03: set up a subset seti
04: for each service S in T

05: put S in each of the covered subsets
06: from every subset seti . . . setn combine services

07: if a combination C satisfies

08: . . . [nopðSjÞ [nopðSiÞ . . . ¼ nopðQÞ and

09: nop(Si) and nop(SjÞ ¼ �; ði 6¼ jÞ then

10: add C to the candidate compositions

End

Algorithm 3 checks whether a combination is executable.
For that purpose, the query mediator initializes the
invokable services list A with ø and the bound variables
list B with Q’s constants (lines 1 and 2). Then, it adds the
services that are invokable with the current bound variables
to A (lines 3-10). Whenever a new service is added to A, its
outputs variables are added to B; the query mediator checks
again whether the remaining services become invokable
with the updated list B. If no bound variable is added to B,
the query mediator checks whether A contains all the
services in composition (lines 11 and 12), in which case it
returns true (i.e., the composition is executable).

Algorithm 3. Executability Validation
Inputs: A combination Ci of services with access patterns.

Outputs: A Boolean value denoting whether or not the

combination is a valid composition.

Begin

01: A = ø /*initialize the list of invocable services */

02: B = {Variables bound to constants in Q}

03: repeat

04: done = true

05: for i ¼ 1 to k (the total number of services in Ci) do

06: if Si 62 A and inputVariables(Si) � B then

07: A = A and Si
08: B = B [outputVariables (Si)

09: done = false

10: until done

11: if A 	 Ci return True

12: else return False

End

Component services must be executed in a particular order
depending on their access patterns. If a service Sj has an
inputx that is obtained from an output y ofSi, thenSj must be
preceded by Si in the execution plan; we say that there is a
dependency between Si and Sj (Sj depends on Si). We define
a dependency graph as a directed acyclic graph G in which
nodes correspond to services and edges correspond to
dependency constraints between component services. Fig. 8
shows the dependency graph for C1. There is a dependency
between S1ð$x; ?w1Þ and S3ð$w1; ?w2Þ, and between
S1ð$x; ?w1Þ and S4ð$w1; ?y1; ?z1Þ. Therefore, S1ð$x; ?w1Þmust
be executed first, then S3ð$w1; ?w2Þ and S4ð$w1; ?y1; ?z1Þ can
be executed in parallel. S1ð$x; ?w1Þ is called the parent of the
services S3ð$w1; ?w2Þ and S4ð$w1; ?y1; ?z1Þ. There is also a
dependency between S3ð$w1; ?w2Þ and S4ð$w2; ?y2; ?z2Þ,
hence S3ð$w1; ?w2Þ executes before S4ð$w2; ?y2; ?z2Þ.

Algorithm 4 shows the way composite services are
executed by the query mediator. The query mediator creates
a thread Ti for each service Si in composition C. The thread
Ti takes its input tuples from a separate join thread Ji that
joins the outputs of Si’s parents. If Si has no parents in C,
then Ti takes its inputs from the input relation I that
contains all specific values in the query. The thread Ti
invokes Si for each input tuple, filters the returned tuples,
joins them with the input tuple, and writes them to its
output. The query result is obtained from the output of the
join thread Jout which joins the outputs of all services that
are leaves in the dependency graph of C: / . /1

Algorithm 4. Executing Compositions:

Input: 1) - An executable composition CC

2) - An input relation II.

Output: The results of the query Q

Begin:

1: for each web service Si in CC

2: launch a thread Ti
3: if Si has no parents in CC

4: set up Ti to take input from II

5: else if Si has a single parent Sp in CC

6: set up Ti to take input from

Tp’s output

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 215

Fig. 8. Example of dependency graph.

7: else

8: launch a join thread Ji
9: set up Ti to take input from

Ji’s output

10: launch join thread Jout as query results

Thread Ti:

1: while (tuples available on Ti’s input)

2: read a tuple t1 from Ti’s input

3: invoke Si with values t1
4: for each returned tuple t2
5: apply all query predicates that pertain to the

attributes in t2
6: if t2 satisfies all predicates

7: write t1 ffl t2 to Ti’s output

Thread Ji
1: perform the join of the outputs of Si’s parents in C

Thread Jout
1: perform the join of the outputs of web services that

are leaves in C.

End

5 HANDLING PARAMETERIZED QUERIES

In the previous section, we addressed the problem of
answering queries with specific input values (e.g., a patient
and prescribed medication identified by “x999” and
“x9999,” respectively). The resulting composite service
cannot necessarily be reused to answer the same query for
a different patient and/or different medication. In this
section, we generalize our query answering approach to
answer parameterized query; in these queries, ranges of values
or no specific values are given for the input parameters of the
query. For instance, let us assume that our physician Alice
would like to answer the following query Q2 “For any given a

social security number x of a patient and a drug code w2

representing the medication to be prescribed, verify whether the
medications taken by the patient may interact with $w2.” Q2 is
parameterized over the data-type properties hasSSN of
Patient and hasCode of Drug.

One implication of considering parameterized queries is
that component services cannot be chosen at the composi-
tion time. The selection of those services depends on the
actual values of input parameters, which are provided at
the execution time. For instance, S2 was not considered in
the case of Q1 because the SSN value was out of the range of
SSNs accepted by S2. S2 becomes usable in the case of the
parameterized query Q2, as Q2 does not specify any specific
value for the SSN. Table 5 shows the mapping table for the
parameterized query Q2.

As some DP services cover partially the required ranges
of input/output values, multiple similar services (with the
same binding patterns) are combined together to cover
completely the required ranges of values. For example, S1

and S2 are used together to cover the complete range of
patients’ SSNs. The same applies to S4 and S5 in covering
the concepts Q2:M1 and Q2:M2.

5.1 Eliminating False Invocations

DP services may be called with input values that violate
their specified constraints on accepted input values.
Invoking a service with a data value that violates its
constraints is called false invocation. False invocations either
return an empty result set or throw an error message.
Eliminating false invocations has a significant impact on the
execution time of the whole composition. We exploit the
constraints placed on the accepted values of input
parameters to filter out false invocations. For example,
filters are inserted before calling S1 and S2 to verify whether
the patient’s SSN is greater than “x888” in the case of S1,
and lower than “x888” in the case of S2.

5.2 Orchestrating the Generated Composite Service

The composite service generated for a parameterized query
is deployed as a new DP service to be invoked for different

216 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

TABLE 5
Mapping Table for the Parameterized Query Q2

values of the input parameters. Similarly to traditional web
services composition (e.g., BPEL [2]), the generated
composite service needs to be translated into an execution
plan (called orchestration in BPEL) describing the data and
control flows. The generated composite service is trans-
lated into an execution plan using the operations depicted
in Table 6.

Each service occurrence in the generated composite
service is translated into an “invoke” operation. An Invoke
(S, I) operation invokes the service S with each data tuple in
the input relation I. The outputs of DP services that cover
the same portion in the query (e.g., S1 and S2) are grouped
by a “union” operation. This operation is responsible for
removing redundant tuples. The “Join” operation is used to
feed a service with data tuples coming from its parents. The
“Select” operation is used to filter out tuples that do not
satisfy the service invocation constraint, hence avoiding
false invocations.

Fig. 9 shows a graphical representation of the execution
plan for the composite service generated for Q2. The plan

starts with filtering out the tuples in the input relation
before invoking S1 and S2. The results are aggregated in the
subsequent union operation (union(3)). It is important to
note that the query mediator does not wait until an
operation produces all its output tuples to proceed with
the execution of subsequent operations; an operation starts
executing as soon as its preceding operations begin to
produce data tuples on their outputs. For example, once the
union operation union(3) starts to receive tuples from its
parents operations it relays them to the operations select(4a),
select(4b), and invoke(4). The operations select(4a) and
select(4b) are used to verify the constraints placed on S4

and S5 before invoking those services. The same applies for
the operations select(4a) and select(4b). The final result is
obtained from the join(7) operation.

6 IMPLEMENTATION AND EVALUATION

In this section, we first describe an implementation of our
approach. Then, we provide an analytical and experimental
evaluation.

6.1 Implementation

The architecture of our system for querying and composing
DP services is shown in Fig. 10. Data sources (e.g., relational
databases, legacy data sources, silos of data-centric home-
grown or packaged applications) with different proprietary
interfaces are all exposed as DP services. As in WSDL-S, we
annotate DP services with their RDF views; we exploit the
extensibility feature of WSDL to hook operations elements in a
WSDL file to their corresponding RDF views. WSDL-S
annotates the different elements of a WSDL file (including
inputs, outputs, and functional aspects like operations, their
preconditions, and effects) using the XML extensibility feature
of WSDL files. In our framework, we exploit the same

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 217

TABLE 6
Execution Plan Constructs

Fig. 9. Execution plan for Q2.

extensibility feature of WSDL files to annotate each operation
element with its associated RDF view. Specifically, we added
to each operation element an extensible element “rdfQuery”
containing the RDF view. Upon publishing a DP service
within a service registry, the service provider has to define
(manually or semiautomatically) the RDF views capturing
the semantics of each published operation in the advertised
service. These views are incorporated inside the corre-
sponding rdfQuery elements.

The query mediator implementing our service query
model includes five components (Fig. 10). The interactive
query formulator is a web-based query interface that helps
users specify their RDF queries (SPARQL queries) over the
mediated ontology. The service locator discovers WSDL-S
descriptions by accessing the service registries (UDDI). At
the services registry side, services are associated with the
ontology nodes used in expressing their RDF views in
accordance with the approach [12]. The mechanism to relate
semantics (i.e., ontology concepts) with services advertised
in the UDDI registries are the tModel keys and the category
bags of registry entries. Services are matched based on
whether or not they are annotated with one or more of the
ontological concepts used in formulating the posed query.
The RDF query rewriter implements our RDF query rewrit-
ing algorithms; it determines whether the services returned
from the service locator can be used for answering the posed
query. The composition plan generator generates plans for the
posed query. The generated plans are either sent for
immediate execution or are deployed as new web services;
the choice depends on whether the posed query is specific
or parameterized. The execution engine implements the
different operators used in the generated plans. In addition,
it transforms the messages exchanged with the invoked
services. Services may have schemas for their input/output
messages that are different from the schemas of input and
output parameters of their corresponding views (which are
dictated by the ontology structure). Service providers need

to specify for each published operation the following
mappings: 1) the mapping between the input message
and xml schema obtained from the serialization of input
parameters of the associated RDF view (which is called as
the down cast mapping) and 2) the mapping between the
output message and the schema obtained from the serial-
ization of output parameters of the associated RDF view,
which is called as the up cast mapping. These mappings can
be expressed using XQuery and XSLT.

6.2 Evaluation

The RDF query rewriting algorithm has two major phases. In
the first phase, the algorithm goes through each class node
and each object property in the query and compares them to
each class node and each object property in each of the
considered views. AssumeN1 is the number of class nodes in
Q, N2 is the number of object properties in Q, and L is the
number of the considered views, the complexity of the first
phase is OðN1 �M1 � LþN2 �M2 � LÞ. In the second
phase, the algorithm constructs individually for each of the
class node and object property in Q a list Li containing their
various covering services—the number of constructed lists is
(N1 þN2). Then, it tests each possible combination obtained
from the Cartesian product of various lists for covering the
query. Assume Ii is the number of elements in a constructed
list Li, the complexity of the second step is:

O

� YN1þN2

i¼1

Ii

�
:

The worst case happens when each of the class nodes in the
views map to all class nodes in Q and each object property
in the views map to all object properties in Q, in which case
each constructed list will have a sheer number of elements
to be tested against elements from other lists. Assume N1 is
the number of class nodes in Q, M1Max is the maximal
number of class nodes in a view, and L is the number of

218 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

Fig. 10. Architecture.

views, the worst case running time will be of the order:
OðN1 �M1Max � LÞN1þN2 � note that N1 is always bigger
than N2 by /1/ in any RDF view, hence the assumption that
the list with the maximal number of elements will be a one
corresponding to a class node (IMax ¼ N1 �M1Max). We note
that all query rewriting algorithms are limited because the
general problem of answering conjunctive queries using
conjunctive views is NP-Complete [18] as it may involve
searching through an exponential number or rewritings.

While the complexity of the RDF query rewriting
algorithm is high, its performance is, in general, very good
for realistic problem sets. We conducted experiments to
evaluate the performance of our RDF-oriented query
rewriting and examine its behavior and scalability as the
number of services increases. We wanted to test the
following hypothesis: query rewriting techniques can be used
to generate composition plans for new web services from large
number of existing web services. We considered two general
classes of queries, chain, and star queries [40]. In all
experiments, the queries and views were generated
randomly by an RDF query generator implemented in Java.
The query rewriting algorithm is implemented in Java and
runs on a Pentium (4) 3.06 GHz and 512 MB RAM running
Windows XP (SP2). The results are average of 10 runs.

6.2.1 Chain Queries

The graph of a chain query/view includes a line of class
nodes linked by a chain of object properties. We have
considered RDF queries and views in which only the first
and the last class nodes project out the data-type properties
used in their skolem functions as distinguished variables.
Experiments were conducted for two particular cases:
1) queries and views with a length of 10 object properties
(linking 11 class nodes). In this case, an RDF view is usable
only if it is identical to the query. The corresponding results
in Fig. 11 show that the algorithm can handle up to 350 views
in less than 4 seconds and 2) queries with a length of
12 object properties and views with a length of three and
four object properties. As shown in Fig. 12, the algorithm
was able to handle 311 views in less than 8 seconds. As the
number of views becomes larger, the number of those
intersecting with the query increases substantially as does
the number of rewritings to be tested. However, for a set of
350 views (the maximum number of RDF views considered
in the experiments—a number considered enough for most
of realistic applications) the algorithm performed fairly well.

6.2.2 Star Queries

In star queries, only one class node is linked with every
other class node via an object property. No links exist
between the other class nodes. We have omitted the case
where class nodes in every RDF views project the data-type
properties that are used in their skolem functions because
this mirrors the performance of chain queries. Fig. 13 shows
the performance in the star scenario. When both the posed
query and views have a central class node linked to five
other class nodes via five object properties the algorithm
scales up to 350 views in less than 1 second.

6.2.3 Summary

Experiment results showed that the RDF rewriting algo-
rithm can handle hundreds of DP services in a reasonable
time. In the context of parameterized queries, the resulting
composition is meant to be deployed as a new web service
that is used for subsequent invocations: query rewriting is
performed once and the generated composite service is
used throughout the lifetime of that service. In most
application domains, while the number of concrete DP
services that are available on the web might be very large,
the logical views that are implemented by concrete services
within the application domain are limited in number (the
same view may be implemented by multiple DP services).
Therefore, one would use a scheme similar to that in [26]
whereby a query is rewritten in terms of a set of logical RDF
views; the views used in the rewriting are then matched
against the concrete DP services. In such setting, query

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 219

Fig. 11. Chain queries with 10 object properties linking 11 class nodes. Fig. 12. Chain queries with 12 object properties and views with three and
four object properties.

Fig. 13. Star queries/views with five object properties.

rewriting is generally performed in a reasonable time
because 1) the number of logical views is limited and 2) one
needs to pick up only one rewriting out of the possible ones
and match it to concrete DP services—the rewriting
algorithm can stop as soon as the first rewriting is available.

7 RELATED WORK

In this section, we compare our approach to related work.
First, we review some industrial platforms and projects that
relate to DP services. Then, we review previous work in the
following areas: 1) Web Service Composition, 2) Querying DP
Services, and 3) Data Integration.

7.1 Industrial Platforms for DP Services

Many products are currently offered or being developed to
make the creation of DP services easier than ever, to cite a
few, AquaLogic by BEA Systems [6], Astoria by Microsoft
[25], MetaMatrix by RedHat [32], Composite Software [10],
Xcalia [44], and IBM [43]. In these platforms, the semantics
of a DP service is known as long as the SOA application
developer stays within the platform (e.g., AquaLogic) [6].
Once outside, for example, when DP services are published
in a service registry outside the enterprise boundaries, it
becomes hard to differentiate between services as their
semantics are not defined. Our work complements these
industrial efforts by providing an integrated framework to
declaratively describe the semantics of a DP service (offered
by the mentioned products) and a model to query and
compose DP services.

7.2 Web Service Composition

Previous approaches in the area of web service composition
(e.g., [14], [41], [42], [46], [23], [5]) have focused only on EP
web services. In these approaches, the exploited composi-
tion algorithms (which are largely inspired by AI planning
techniques) assume that the capability of a web service can
be captured based on the business function implemented by
the service and its inputs, outputs, preconditions, and effects
(IOPEs). The work reported in [38] is a representative
example; the described SHOP2-based system in that work
composes web services automatically based on their
implemented functionalities, input and output constraints,
preconditions, and effects. This assumption makes these
composition algorithms [37] inapplicable to DP services that
all share the same business function (i.e., data retrieval) and
have no preconditions or effects. In order to represent the
capability of a DP service (and capture its semantics) one
must define a declarative view over a mediated ontology to
capture the semantic relationship between its inputs and
outputs. For this reason, we employ a data integration
approach for the purpose of automating the composition of
DP services and use the query rewriting techniques as the
composition algorithm.

7.3 Web Services Query Models

Recent approaches addressed the issues of querying web
services [39], [34], [45], [26], [20]. The query model proposed
in [26] consists of three levels: query level, virtual level, and
concrete level. At the query level, users express their
declarative queries over a set of domain relations. Domain

relations are mapped to a set of web service-like operations
at the virtual level. These operations represent the different
functionalities services may offer in a particular domain.
Concrete services at the concrete level use these virtual
operations to represent their functionalities. Our approach
follows a similar methodology to query DP services, i.e.,
users pose their declarative queries over mediated ontolo-
gies without being concerned of how services are selected
and composed to answer their queries. However, as the
semantics of a DP service cannot be captured by a virtual
operation, we use RDF parameterized queries over RDF/S
mediated ontologies. A formal service query model is
presented in [45]. The model captures the three key features
of web services: functionality, behavior, and quality, along with
a service query algebra that is used to formulate service query
expressions. It also provides measures to evaluate the
quality of the different Services execution plans resulting
from handling a posed query. The proposed query model
does not consider the semantic relationships that may exist
between inputs and outputs of a DP service. The Web
Service Management System (WSMS) proposed in [39]
addresses query optimization over web services. Services
are modeled as relations used directly in expressing users’
queries; i.e., users are implicitly assumed to have an
understanding of the underlying semantics for each of the
services that are available to them, and they directly express
their queries by projecting/joining input/output parameters
of available services. In our work, users are not required to
have an implicit knowledge of the semantics of available DP
services. They express their queries over domain ontologies
and then queries are rewritten in terms of services based on
their RDFS views. In addition to specific queries, we are also
able to answer parameterized queries. Further, our data
model is richer, i.e., our queries are formulated on mediated
ontologies rather than on services’ relational predicates and
not restricted to “pipeline queries.”

7.4 Data Integration Systems

Another area of related research is that of data integration
systems (e.g., InfoMaster [15] and Information Manifold
[19]). Our work differs from these works in many ways. First,
the key focus in these systems is shifted toward resolving
specific queries given a set of incomplete data sources,
whereas in our work the focus is on constructing a
composition of services that is independent of a particular
input value. That is, we resolve parameterized queries. This
necessitates the introduction of an optimization mechanism
to filter out “at the execution time” irrelevant services when
the composition is invoked with a specific input value.
Second, compared to previous query rewriting algorithms
[30], [13], [16] that were proposed for the relational data
model; our proposed query rewriting algorithm is compliant
with the RDF/RDFS data models. Our proposed algorithm
takes into account the RDFS semantic constraints of
“subClassOf,” “subPropertyOf,” and “domain” and “range”
that are defined in domain ontologies. As far as we know, our
algorithm is the first to address the problem of composing DP
services based on query rewriting techniques.

Some works have addressed the problem of RDF query
answering [31], [9]; however, these works are limited only to
answering specific queries whereas our work addresses also

220 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

parameterized queries and handles queries and views with
limited access constraints. In addition, we take into account
the RDFS hierarchy constraints while resolving RDF queries.

The problem of RDF query rewriting is related to graph
covering [21]; however, existing algorithms in that area
focus on testing whether a graph H is covered by another
graph G (i.e., G can be reduced to H) whereas in our work
we focus on building a new graph (the composition’s
graph) out of set of atomic graphs (the services’ graphs).
Also, the graphs in our work are different from those in that
area as we must distinguish between edges that are data-
type properties and edges that are object properties, the
vertexes that have types from those that are blank nodes.
Such distinctions make existing algorithms in graph cover-
ing inapplicable to our purposes.

Active XML (AXML) embeds web service calls in XML
documents [1]. In contrast to our work, AXML does not
address query resolution by web service composition. In
addition, the web services inside a document remain
unchanged all along the life time of the document and are
selected at the creation time of the document. Hence, AXML
framework is suitable when there is a need to manage a
fixed predefined set of data sources. Senellart et al. [35]
address the issue of accessing the “hidden web” by means
of web services; it presents some techniques to transform
the hidden data sources on the web (e.g., web forms) to web
services that have explicit semantics for their inputs and
outputs. However, this work does not address the auto-
matic composition of the created DP services.

8 CONCLUSION

In this paper, we presented a novel approach for querying
and automatically composing DP services. DP services are
described as RDF views over a mediated ontology. These
views are enriched with RDFS semantic constraints (e.g.,
subClassOf and subPropertyOf) and used to annotate WSDL
descriptions. We proposed RDF query rewriting algorithms
to compose DP services. We also conducted a performance
analysis on a wide data set of chain and star queries to
assess our proposed. The results show that the algorithm
scales up very well to a large number of services, covering
thus most realistic applications. As a future work, we plan
to address data privacy concerns when composing DP
services. We also plan to consider Quality of Service (QoS)
while processing queries and composing DP services.

REFERENCES

[1] S. Abiteboul, O. Benjelloun, and T. Milo, “Web Services and Data
Integration,” Proc. Int’l Conf. Web Information Systems Engineering
(WISE), pp. 3-6, 2002.

[2] G. Alonso, F. Casati, H.A. Kuno, and V. Machiraju, Web
Services—Concepts, Architectures and Applications. Springer, 2004.

[3] A. Argyriou, M. Herbster, and M. Pontil, “Combining Graph
Laplacians for Semi-Supervised Learning,” Proc. Advances in
Neural Information Processing Systems, vol. 18, pp. 5-8, 2005.

[4] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F.
Patel-Schneider, The Description Logic Handbook: Theory, Implemen-
tation, and Applications. Cambridge Univ. Press, 2003.

[5] D. Calvanese, G.D. Giacomo, M. Lenzerini, M. Mecella, and F.
Patrizi, “Automatic Service Composition and Synthesis: the
Roman Model,” IEEE Data Eng. Bull., vol. 31, no. 3, pp. 18-22, 2008.

[6] M.J. Carey, “Data Delivery in a Service-Oriented World: The BEA
aquaLogic Data Services Platform,” Proc. SIGMOD Conf., pp. 695-
705, 2006.

[7] M.J. Carey, “Declarative Data Services: This Is Your Data on
SOA,” Proc. IEEE Int’l Conf. Service-Oriented Computing and
Applications, p. 4, 2007.

[8] A.K. Chandra and P.M. Merlin, “Optimal Implementation of
Conjunctive Queries in Relational Data Bases,” Proc. Conf. Record
of the Ninth Ann. ACM Symp. Theory of Computing, pp. 77-90, 1977.

[9] H. Chen, Z. Wu, and Y. Mao, “Rewriting Queries Using Views for
RDF-Based Relational Integration,” Proc. IEEE Int’l Conf. Tools with
Artificial Intelligence (ICTAI), pp. 260-264, 2005.

[10] Composite Software, Inc., SOA Data Services, http://
compositesoftware.com/solutions/soa.shtml, 2010.

[11] Y. Ding, D. Fensel, M. Klein, and B. Omelayenko, “The
Semantic Web: Yet Another Hip?” Data and Knowledge Eng.,
vol. 41, nos. 2/3, pp. 205-227, 2002.

[12] A. Dogac, G. Laleci, Y. Kabak, and I. Cingil, “Exploiting Web
Service Semantics: Taxonomies vs. Ontologies,” IEEE Data Eng.
Bull., vol. 25, no. 5, pp. 10-16, Dec. 2002.

[13] O.M. Duschka, M.R. Genesereth, and A.Y. Halevy, “Recursive
Query Plans for Data Integration,” J. Logic Programming, vol. 43,
pp. 49-73, 2000.

[14] M.A. Eid, A. Alamri, and A. El-Saddik, “A Reference Model for
Dynamic Web Service Composition Systems,” Int’l J. Web and Grid
Services, vol. 4, no. 2, pp. 149-168, 2008.

[15] M.R. Genesereth, A.M. Keller, and O.M. Duschka, “Infomaster:
An Information Integration System,” ACM SIGMOD Record,
vol. 26, pp. 539-542, 1997.

[16] G. Grahne and A.O. Mendelzon, “Tableau Techniques for
Querying Information Sources through Global Schemas,” Proc.
Int’l Conf. Database Theory (ICDT), pp. 332-347, 1999.

[17] A.Y. Halevy, “Answering Queries Using Views: A Survey,” Very
Large Data Bases J., vol. 10, pp. 270-294, 2001.

[18] A.Y. Halevy, A.O. Mendelzon, Y. Sagiv, and D. Srivastava,
“Answering Queries Using Views,” Proc. Principles of Database
Systems (PODS), pp. 95-104, 1995.

[19] A.Y. Halevy, A. Rajaraman, and J.J. Ordille, “The World Wide
Web as a Collection of Views: Query Processing in the Information
Manifold,” Proc. Workshop Materialized Views: Techniques and
Applications (VIEWS), pp. 43-55, 1996.

[20] D. Hull, “Semantic Matching of Bioinformatic Web Services,” PhD
thesis, The Univ. Manchester, School of Computer Science, 2008.

[21] J. Kratochvil, A. Proskurowski, and J.A. Telle, “Complexity of
Graph Covering Problems,” Nordic J. Computing, vol. 5, pp. 93-105,
1998.

[22] D. Martin et al., “Bringing Semantics to Web Services: The OWL-S
Approach,” Proc. First Int’l Workshop Semantic Web Services and Web
Process Composition (SWSWPC ’04), pp. 26-42, July 2004.

[23] B. Medjahed and A. Bouguettaya, “A Multilevel Composability
Model for Semantic Web Services,” IEEE Trans. Knowledge Data
Eng., vol. 17, no. 7, pp. 954-968, July 2005.

[24] B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid, “Composing
Web Services on the Semantic Web,” Int’l J. Very Large Data Bases,
vol. 12, no. 4, pp. 333-351, Nov. 2003.

[25] Microsoft Corporation: ADO.NET Data Services (also known as
Project Astoria), http://astoria.mslivelabs.com, 2007.

[26] M. Ouzzani and A. Bouguettaya, “Efficient Access to Web
Services,” IEEE Internet Computing, vol. 8, no. 2, pp. 34-44, Mar.
2004.

[27] T. Pankowski, “XML Schema Mappings Using Schema Con-
straints and Skolem Functions,” Knowledge-Driven Computing,
vol. 102/2008. Springer, 2008.

[28] M.P. Papazoglou and B. Kratz, “Web Services Technology in
Support of Business Transactions,” Service Oriented Computing and
Applications, vol. 1, no. 1, pp. 51-63, 2001.

[29] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: A Research Roadmap,” Int’l
J. Cooperative Information Systems, vol. 17, no. 2, pp. 223-255, 2008.

[30] R. Pottinger and A.Y. Halevy, “MiniCon: A Scalable Algorithm for
Answering Queries Using Views,” Very Large Scale Data Base J.,
vol. 10, nos. 2/3, pp. 182-198, 2001.

[31] B. Quilitz and U. Leser, “Querying Distributed RDF Data Sources
with SPARQL,” Proc. Fifth European Semantic Web Conf. (ESWC ’08),
The Semantic Web: Research and Applications, vol. 5021/2008,
pp. 524-538, 2008.

[32] Red Hat, Inc.: MetaMatrix Enterprise Data Services Platform,
http://www.redhat.com/jboss/platforms/dataservices, 2007.

BARHAMGI ET AL.: A QUERY REWRITING APPROACH FOR WEB SERVICE COMPOSITION 221

[33] D. Roman et al., “WWW: WSMO, WSML, and WSMX in a
Nutshell,” Proc. First Asian Semantic Web Conf. (ASWC ’06), The
Semantic Web, pp. 516-522, Sept. 2006.

[34] M. Sabesan and T. Risch, “Adaptive Parallelization of Queries
over Dependent Web Service Calls,” Proc. First IEEE Workshop
Information and Software as Services (WISS ’09), 2009.

[35] P. Senellart, S. Abiteboul, and R. Gilleron, “Understanding the
Hidden Web,” European Research Consortium for Informatics and
Math. News, vol. 72, pp. 32-33, Jan. 2008.

[36] A.P. Sheth, K. Gomadam, and A. Ranabahu, “Semantics Enhanced
Services: METEOR-S, SAWSDL and SA-REST,” IEEE Data Eng.
Bull., vol. 31, no. 3, pp. 8-12, 2008.

[37] E. Sirin, B. Parsia, and J.A. Hendler, “Filtering and Selecting
Semantic Web Services with Interactive Composition Techni-
ques,” IEEE Intelligent Systems, vol. 19, no. 4, pp. 42-49, July/Aug.
2004.

[38] E. Sirin, B. Parsia, D. Wu, J.A. Hendler, and D.S. Nau, “HTN
Planning for Web Service Composition Using SHOP2,” J. Web
Semantics, vol. 1, no. 4, pp. 377-396, 2004.

[39] U. Srivastava, K. Munagala, J. Widom, and R. Motwani, “Query
Optimization over Web Services,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), pp. 355-366, 2006.

[40] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and
Randomized Optimization for the Join Ordering Problem,” Very
Large Data Bases J., vol. 6, no. 3, pp. 191-208, 1997.

[41] S.G.H. Tabatabaei, W.M.N. Wan-Kadir, and S. Ibrahim, “A
Comparative Evaluation of State-of-the-Art Approaches for Web
Service Composition,” Proc. Int’l Conf. Software Eng. Advances
(ICSEA), vol. 4, pp. 488-493, 2008.

[42] T. Weise, S. Bleul, D. Comes, and K. Geihs, “Different Approaches
to Semantic Web Service Composition,” Proc. Third Int’l Conf.
Internet and Web Applications and Services, pp. 90-96, 2008.

[43] K. Williams and B. Daniel, “SOA Web Services—Data Access
Service,” Java Developer’s J., 2006.

[44] Xcalia, Inc., Xcalia Data Access Services, http://www.xcalia.com/
products/xcalia-xdas-data-access-service-SDO-DAS-data-
integration-through-web-services.jsp, 2010.

[45] Q. Yu and A. Bouguettaya, “Framework for Web Service Query
Algebra and Optimization,” ACM Trans. Web, vol. 2, no. 1, 2008.

[46] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
Managing Web Services: Issues, Solutions, and Directions,” Very
Large Data Bases J., vol. 17, pp. 537-572, Mar. 2008.

Mahmoud Barhamgi received the BCS degree
in computer science from Damascus University
(Syria) in 2002 and the MSc degree from the
INSA Institute (Lyon, France) in computer
science in 2005. He is a PhD candidate at the
University Claude Bernard Lyon1 (France). His
research interests include web services and web
data integration. The focus of his PhD disserta-
tion is on the automatic selection and composi-
tion of web services on the Semantic Web. He

has published several papers on web services in international
conferences including the PVLDB, the WWW, and the ICDE.

Djamal Benslimane received the PhD degree in
computer science from Blaise Pascal University.
He is a full professor of computer science at
Lyon University, France, and a member of the
Laboratoire d’InfoRmatique en Image et Sys-
tème d’information (LIRIS) research laboratory.
He has coorganized different scientific events
(e.g., local chair of the international conference
Notere 2008, FQAS 2004, ICDE-InterDB 2006
Workshop database interoperability, and VLDB-

InterDB 2007, etc.), and special issues on context-aware web services
in the Distributed and Parallel Databases International Journal (Spring-
er, 2007), and service mashups in the IEEE Internet Computing
magazine (2008). His research interests lie in the areas of distributed
information systems, ontologies, and web services.

Brahim Medjahed received the PhD degree in
computer science from the Virginia Polytechnic
Institute and State University (Virginia Tech) in
May 2004. He is an assistant professor in the
Department of Computer and Information
Science at the University of Michigan-Dearborn.
He received Computer’s best paper award
(Wilkes Award) in 2008 and the 2004 “Out-
standing Graduate Research Award” from Virgi-
nia Tech’s Department of Computer Science. He

guest edited a special issue of the ACM Transactions on Internet
Technology on Semantic Web services. He is on the editorial board of
the International Journal of Next-Generation Computing. He has served
on numerous conference program committees. He is the author of more
than 60 publications. His research interests include information and data
management, service-oriented computing, distributed computing, Se-
mantic Web, and data integration. He is a member of the IEEE, the IEEE
Computer Society, and the ACM.

222 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 3, NO. 3, JULY-SEPTEMBER 2010

