
Vienna University of Technology

Information Systems Institute

Distributed Systems Group

Cost-Based Optimization of

Service Compositions

Under Review for Publication in IEEE Transactions
on Services Computing (TSC)

Philipp Leitner, Waldemar Hummer and Schahram

Dustdar
lastname@infosys.tuwien.ac.at

TUV-1841-2011-01 Feb. 15, 2011

For providers of composite services preventing cases of SLA violations

is crucial. Previous work has established runtime adaptation of compo-

sitions as a promising tool to achieve SLA conformance. However, in

order to get a realistic and complete view of the decision process of ser-

vice providers, the costs of adaptation need to be taken into account. In

this paper we formalize the problem of finding the optimal set of adapta-

tions, which minimizes the total costs arising from SLA violations and

the adaptations to prevent them. We present possible algorithms to solve

this complex optimization problem, and detail an end-to-end system based

on our earlier work on the PREvent (prediction and prevention based on

event monitoring) framework, which clearly indicates the usefulness of

our model. We discuss experimental results that show how the applica-

tion of our approach leads to reduced costs for the service provider, and

explain the circumstances in which different algorithms lead to more or

less satisfactory results.

Keywords: Service-oriented Computing, Service Composition, Optimiza-

tion, Adaptation

c�2011, Distributed Systems Group, Vienna University of Technology

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
http://www.infosys.tuwien.ac.at/

1

Cost-Based Optimization of Service
Compositions

Philipp Leitner Member, IEEE, and Waldemar Hummer Member, IEEE, and Schahram Dustdar Senior
Member, IEEE

Abstract—For providers of composite services preventing cases of SLA violations is crucial. Previous work has established runtime
adaptation of compositions as a promising tool to achieve SLA conformance. However, in order to get a realistic and complete view of
the decision process of service providers, the costs of adaptation need to be taken into account. In this paper we formalize the problem
of finding the optimal set of adaptations, which minimizes the total costs arising from SLA violations and the adaptations to prevent
them. We present possible algorithms to solve this complex optimization problem, and detail an end-to-end system based on our earlier
work on the PREvent (prediction and prevention based on event monitoring) framework, which clearly indicates the usefulness of our
model. We discuss experimental results that show how the application of our approach leads to reduced costs for the service provider,
and explain the circumstances in which different algorithms lead to more or less satisfactory results.

Index Terms—Service Composition, Service Level Agreements, Adaptation, Optimization

✦

1 INTRODUCTION
Service-based applications have seen tremendous re-
search activity in the last years, with many important
results being generated around the world [1]. This global
interest is justified by the ever increasing services indus-
try, which is still only starting to explore the potential
that new paradigms like Everything-as-a-Service (XaaS)
or Cloud Computing provide [2]. However, to fully
realize this potential, research and industry alike need
to focus more strongly on non-functional properties and
quality issue of services (generally referred to as QoS). In
the business world, QoS promises are typically defined
within legally binding Service Level Agreements (SLAs)
between clients and service providers, represented, e.g.,
using WSLA [3]. SLAs contain Service Level Objectives
(SLOs), i.e., concrete numerical QoS objectives which
the service needs to fulfill. If SLOs are violated, agreed
upon monetary consequences go into effect. For this
reason, providers generally have a strong interest in
monitoring SLAs and preventing violations, either by
using post mortem analysis and optimization [4], [5], or
by runtime prediction of performance problems [6], [7].
We argue that the latter is more powerful, allowing to
prevent violations before they have happened by timely
application of runtime adaptation actions [8]–[10].

However, preventing SLA violations is, in general,
not for free. For instance, some alternative services
usable in a composition may provide faster response
times (thereby improving the end-to-end runtime of
the composite service, and reducing the probability of
violating runtime related SLOs), but those services are
often more expensive than slower ones. Therefore, there

• Philipp Leitner, Waldemar Hummer and Schahram Dustdar are with the
Distributed Systems Group, Vienna Univ. of Technology, Argentinier-
strasse 8, 1040 Vienna, Austria. E-mail: {lastname}@infosys.tuwien.ac.at

is an apparent tradeoff between preventing SLA viola-
tions and the inherent costs of doing so. We argue that
this tradeoff is currently not covered sufficiently in the
literature. Instead, researchers assume that the ultimate
goal of service providers is to minimize SLA violations,
completely ignoring the often significant costs of doing
so (e.g., [9], [10]).

In this paper we contribute to the state of the art by
formalizing this tradeoff as an optimization problem,
with the goal of minimizing the total costs (of viola-
tions and applied adaptations) for the service provider.
We argue that this formulation better captures the real
goals of service providers. Additionally, we present
possible algorithms to solve this optimization problem
efficiently enough to be applied at composition run-
time. We evaluate these algorithms within our PREVENT
(prediction and prevention based on event monitoring)
framework [8].

The remainder of this paper is structured as follows.
In Section 2 we motivate our work and present an
illustrative example, which will guide us through the rest
of the paper. Following in Section 3, we present our ear-
lier work on prevention of SLA violations. In Section 4
we formalize the problem of cost-based optimization of
service compositions. We explain possible algorithms to
solve this problem efficiently in Section 5, which are
evaluated in Section 6. Finally, we compare our work
with the most important related scientific approaches in
Section 7, and conclude the paper in Section 8.

2 MOTIVATION

In this paper we use the scenario depicted in Figure 1
(in BPMN [11] notation) to motivate and explain our
approach.

2

A
ss

em
bl

in
g

Sc
en

ar
io

As
se

m
bl

y
Se

rv
ice

Cu
st

om
er

Place
RFQ

Receive
RFQ

Plan
Assembling

Check
Availability of

Parts

Send
Offer

Receive
Offer

Order
Unavailable Parts

Schedule
Assembling

Ship

Create
Final Bill

Charge
Customer
Account

Send
Invoice

Generate
Offer

Receive Product Receive Invoice
Decide
on Offer

Place
Order

Receive
Order

Product
Assembled

Wait for
Finished

Assembling

Wait for
Parts

Cancel
Order

Cancel
Order

Quality
Control

Fig. 1: Motivating Scenario

This scenario considers the case of a manufacturer of
industry products. These products are constructed on-
demand by assembling various parts, some of which
can be produced in-house by the manufacturer, while
others need to be ordered from external suppliers. The
manufacturing process depicted in Figure 1 consists of
two segments: firstly, the customer sends a request for
quotation (RFQ), which the manufacturer responds to
with an offer (consisting of estimated price and delivery
time for the finished product), secondly, the customer
can then order this product to the offered conditions.
For reasons of brevity we concentrate on the two roles
“Customer” and “Assembly Service” in the figure, even
though the manufacturer interacts with many different
external partners (e.g., suppliers of parts, shippers, credit
card companies) to implement the described functional-
ity. Since the manufacturer’s business is based entirely
on a service-based notion, the manufacturing process is
implemented as a service composition, i.e., activities in
the process are mapped to one or more invocations of
(Web) services.

SLO Name Description

1 Time to Offer Time between receiving the
RFQ and responding with an
offer (in working days).

2 Order Fulfillment Time Time between receiving the or-
der and finishing the process (in
working days).

3 Process Lead Time Time between initializing the
process and finishing it (exclud-
ing activities at customer side)
in working days.

4 Cost Compliance Cost overrun with regard to the
offer in % of the offer.

5 Product as Specified Product is exactly as specified.

TABLE 1: Service Level Objectives

With its key customers, the manufacturer has some
established service level agreements. We provide a list
of typical SLOs in Table 1. Note that these objectives can

be of quantitative (SLOs #1 to #4) or of qualitative (SLO
#5) nature.

Target Value Costs of Violation

1 <= 2 Implicit costs - customer will choose
a different manufacturer if offer is not
received in time.

2 <= 5 Manufacturer grants 5% discount per
1 day delay, 20% max discount, not
additive with SLO#3.

3 <= 6 Manufacturer grants 5% discount per
1 day delay, 20% max discount, not
additive with SLO#2.

4 <= 5 Manufacturer cannot charge more than
the offer plus 5%.

5 n/a If wrong product is delivered, man-
ufacturer needs to produce and ship
the specified product within 7 working
days and grant a 5% discount.

TABLE 2: Target Values and Penalties

All SLOs have some target values and penalties for
violating these targets associated (see Table 2). Therefore,
the manufacturer has a strong interest in complying to
these SLOs, as long as the costs of doing so do not exceed
the benefit. The manufacturer may apply a number of
runtime adaptations to the process. We sketch some ex-
ample adaptation actions in Table 3. The columns + and
- refer to SLOs in Table 1, and indicate that the respective
action has a positive (+) or negative (-) impact on this
SLO. Note that these actions and impacts are just of ex-
amplatory nature, that is, while for some business cases
outsourcing may reduce costs and increase the process
duration (and error rate), this does not necessarily hold
for all processes. Additionally, applying these actions
generally also has some associated costs, which need to
be taken into account (for instance, express shipping is
more expensive than regular shipping). As we can see,
for the manufacturer there is a tradeoff between the three
dimensions duration, costs and quality, which is well-
known in many fields of engineering.

Since the manufacturer business process is imple-

3

Adaptation Action + -

1 Use faster shipper or faster shipping
option, e.g., express shipping.

#2, #3 #4

2 Order more parts instead of produc-
ing them in-house.

#2, #3 #4

3 Generate offer with higher priority. #1, #3 -

4 Outsource assembling and quality
control.

#4 #2, #3, #5

5 Skip quality assurance or do it less
thoroughly.

#2, #3, #4 #5

6 Add an additional quality assur-
ance step.

#5 #2, #3, #4

TABLE 3: Possible Adaptation Actions

mented as a service composition, applying these adap-
tations essentially boils down to adapting the service
compositon. This can be done by either adapting the
data flow of the composition (e.g., to use a different
shipping option), by invoking different base services,
or by changing the structure of the composition itself.
In our previous work we have already shown how
such adaptations can be applied at runtime [8], [9].
However, until now we have not discussed the question
of how the service provider can select the actions which
are economically most senseful to apply. Evidently, this
question results in an optimization problem, minimizing
the total costs of all SLA violations plus all costs arising
from the adaptation. Furthermore, this problem needs to
be solved very efficiently, since this optimization has to
be repeated at runtime for every composition instance
that is predicted to violate one or more SLOs.

3 BACKGROUND

In order to provide some background information for
this paper, we now present the PREVENT framework,
which forms the basis for the research discussed here.
Generally, PREVENT is a closed loop system [12] for self-
optimizing service compositions. PREVENT is based on
the existing SOA runtime environment VRESCO [13].
As we have sketched in Figure 2, the PREVENT frame-
work consists of the seminal steps “monitor”, “analyze”,
“plan” and “execute”, as defined in the vision of au-
tonomic computing [14]. We have previously presented
our initial version of the PREVENT framework in [8].

Generally, the idea of PREVENT is to use event-based
monitoring of composition data to generate runtime pre-
dictions of SLA violations before they have happened.
Based on these predicted violations, adaptation actions
are triggered with the goal of preventing the violation.
In this paper we focus on the implementation of the
Cost-Based Optimizer component in Figure 2, which we
have not discussed so far in our earlier work. For every
composition instance, this component receives estima-
tions of concrete SLO values from the Violation Predictor
component, and decides (based on these estimations as
well as on knowledge of standing SLAs and available

Monitor

Service
Composition

Generate
Predictions

Cost-Based
Optimizer

SLA
Database

Adaptation
Executor

Violation
Predictor

Composition
Monitor

Trigger
Optimization

Trigger
Adaptation

Apply
Adaptation

Adaptation
Actions

Database

SLO Prediction
Database

Monitoring
Database

Fig. 2: Overall Framework

adaptation actions) which adaptations should be applied
to a composition instance. In the following, we refer to
this decision procedure as cost-based optimization. We use
the term optimization time as the point in time during
a composition instance’s execution at which cost-based
optimization happens. The interested reader may down-
load our current version of the prototype1.

3.1 Prediction of SLOs
Generally, the PREVENT approach to prediction of SLA
violations is based on the idea of predicting concrete
SLO values based on whatever monitoring information
is already available at optimization time. We distinguish
three different types of information. Facts represent data
which can already be measured at optimization time.
Unknowns are the opposites of facts. They represent data
which is entirely unknown at optimization time. Evi-
dently, unknown data cannot be used in the prediction.
Estimates are a kind of middle ground between facts and
unknowns, in that they represent data which is not yet
available, but can in some way be estimated. This is
often the case for QoS data, since techniques such as QoS
monitoring [15] can be used to get an idea of e.g., the
response time of a service before it is actually invoked.
The Violation Predictor uses both facts and estimates
from previously monitored historical service executions
to train a machine learning function (we use multi-layer
artificial neural networks [16] for quantitative SLOs and
C4.5 decision trees [17] for qualitative SLOs), which
can then be used to produce a numerical estimation
of the SLO values at runtime. More details about our
approach to prediction of SLOs can be found in our
earlier work [6].

We have sketched this machine learning based imple-
mentation of the SLO Predictor in Figure 3. One model
trained per SLO that needs to be predicted (even though
the same model can be used if this SLO is used in

1. http://sourceforge.net/projects/vresco/

4

23 ACME
S43 1 923 26

Number
Of_Parts

Product
To_Asse Quantity QoS_

Warehouse
QoS_

Supplier

27953

Predicted Process
Lead Time

Process Lead Time
Network

Violation Predictor

23 ACME
S43 1 Miami,

Florida

Number
Of_Parts

Product
To_Asse Quantity Customer

Address

142368

Predicted Costs

Cost Compliance
Network

Facts and Estimates Predicted SLO Values

Product Quality
Decision Tree

ACME
S43 1

Product
To_Asse QA Steps

False

Predicted Quality
Problem?

Fig. 3: Predicting SLOs Using Machine Learning

multiple customer SLAs), and every model is trained
from different data. In order to identify which data
should be used to train which model, some domain
knowledge is necessary. However, dependency analy-
sis [5] can be used to identify the factors which have the
biggest influence on the respective SLOs. These factors
of influence are also the most important data to use as
basis for generating the prediction models. Apparently,
some historical executions of the service composition
are necessary to bootstrap the prediction. The concrete
amount of instances that are necessary depend both on
the expected quality of prediction (more historical infor-
mation in tendency improves the prediction quality) and
on the size and complexity of the service composition.

For understanding the remainder of the paper it is
important to keep in mind that the machine learning
models trained in the SLO Predictor essentially imple-
ment a set of estimator functions, which can be used
for any partially known instance of the composition
(i.e., an instance, whose facts and estimates are partially
known, for instance a half-finished instance) to generate
an estimation of the SLO value when the instance is
finished. We will use these estimator functions in our
modelling in Section 4.

3.2 Adaptation Actions

The PREVENT Adaptation Executor can execute a range of
different adaptations of service composition instances.
Generally, we distinguish three types of adaptations:
data manipulation, service rebinding and structural
adaptation. Data manipulation actions represent the
most simple type of adaptation, where the composition
is in fact not changed. Instead, the data flow of the
composition instance is intercepted and some datum
is changed (e.g., the priority parameter of the service
invoked as part of the “ship” activity is changed to
“high priority”). Service rebinding represents the com-
mon case where a different service is used to implement
an activity in the composition, e.g., a faster shipping
service is used in the activity “ship”. For this type of

adaptation we differentiate between three types, one-to-
one service rebinding without interface mediation (the
original and the new service have identical interfaces),
one-to-one service rebinding with interface mediation
(the services have different interfaces, but the same
number of service invocations is needed to achieve the
required functionality), and substitution with subflow
(the original service invocation is not only replaced with
another single service invocation, but with a whole sub-
composition). This adaptation is similar to the another
type of adaptation, structural adaptation. In this case
not only the data or service bindings of a composition
are changed, but the logical structure of the composition
itself. This includes simpler cases like removing activities
in an instance (e.g., skip the “quality control” activity)
and more complex adaptations, where an entire subtree
of the composition definition is replaced (e.g., outsource
the assembling process to an external provider). Please
refer to our earlier publications [8], [9] for details on
how these actions are implemented. Most important for
the remainder of this paper is to know how adaptation
actions are defined in the PREVENT framework. We have
sketched this in Figure 4.

ACTION use_faster_shipper

IMPACT MODEL

Estimated
Shipping Time

Time
[2 Days]

ACTIONS

ACTION DEFINITION

CONSTRAINTS AND ORDERING

CONFLICTS_WITH use_fastest_shipper
REQUIRES_BEFORE assign_fast_shipper

.........

ADAPTATION COSTS

1567

REBINDING
WITHOUT MEDIATION

Ship [Faster Shipping
Service]

Fig. 4: Definition of Adaptation Actions

As depicted in Figure 4, we can define any number
of adaptation actions which can be applied to an in-
stance. Each of those definitions contains the description
of the actual action, which can be any of the action
types discussed above. In addition, the action definition
also contains the impact model of the action, a list
of constraints and ordering clauses and the costs of
applying this action. We assume that every adaptation
action has a constant, non-negative cost. For example,
the cost of using a faster shipping service is the cost
of using the new service minus the costs of using the
original shipping service. The impact model contains a
set of impact clauses. Every impact clause represents the
concrete impact that applying this adaptation action has
on one concrete monitorable fact or estimate. Essentially,
therefore, the clauses model updates to the data used to
generate predictions (see Figure 3). Every adaptation ac-
tion can have any number of positive as well as negative
impacts on any fact or estimate. This impact value can
be determined in several ways: (1) based on measured

5

history data if the corresponding advice has already been
used before, for example, using data mining; (2) based
on SLAs with external providers, if such SLAs exist;
or (3) by using QoS aggregation techniques [18]. We
assume that the impact model specifies impact clauses
for all metrics which the advice affects. Of course, impact
clauses do not need to be exact (very often it will
realistically be impossible to statically define an exact
impact model before execution), however, more exact
impact models lead to better predictions of SLOs after
adaptation, which in turn leads to a better end-to-end
performance of the PREVENT system.

4 OPTIMIZATION PROBLEM FORMULATION

In this section we formalize the problem of selecting the
most cost-effective adaptation actions to prevent one or
more predicted SLA violations in a service compositon.

We consider an interaction of the service composition
with a given client, who has a given SLA with the
composition provider. Let I be the set of all possible
composition instances of this client, and let i ∈ I be
concrete instances that we can monitor using the PRE-
VENT tooling. Furthermore, let S = {s1, s2, . . . sk} be
the set of SLOs defined in the relevant SLA. As part of
the SLO definition, a penalty function is associated with
all SLOs in S. Collectively, we refer to these functions
as P = {ps1, ps2, . . . psk}. Penalty functions define the
costs for the provider based on a measured SLO value,
i.e., they are functions defined as ps : R → R, s ∈ S.
Similarly, the measured value of an SLO ms is a function
ms : I → [0 : 1]. We normalize SLO values to the interval
[0 : 1] in order to make them comparable. Putting it all
together, we define the penalty function for a given SLO
s and instance i as p

i

s

def= ps(ms(i)).

Measured Value

Pe
na

lty

Staged Penalty

t1

t2

t4

t3

f1

f2

f3

f4

Measured Value

Pe
na

lt
y

Constant Penalty

t1

f

Measured Value

Pe
na

lty

Linear Penalty with Cap

t1

t2
f

Measured Value

Pe
na

lt
y

Polynomially Increasing Penalty

t1

Measured Value

Pe
na

lty

Linear Penalty

t1

Measured Value

Pe
na

lt
y

Asymptotic Penalty

t1

f

Fig. 5: Typical SLA Penalty Functions

Penalty functions for SLOs can take many different
shapes. We give some examples of typical penalty func-
tions in Figure 5. Even though this is not a complete list,
these functions still incorporate the most common types
of penalties: (1) constant penalty (a constant payment
needs to be made if a certain SLO threshold value
is surpassed), (2) staged penalty (similar to a constant
penalty, but with different levels of penalty), (3) lin-
ear penalty (the penalty is linearly increasing with the
degree of violation), (4) linear penalty with cap (the
penalty is linearly increasing up to a maximum value),
(5) asymptotic penalty (the penalty asymptotically con-
verges against a maximum penalty), and (6) polynomially
increasing penalty. Note that even though these functions
apparently span many different types of mathematical
functions, they share two essential characteristics. Firstly,
SLA penalty functions are always monotonically increas-
ing, i.e., ∀ps ∈ P : ∀x1, x2 ∈ R : (x1 < x2) =⇒
(ps(x1) ≤ ps(x2)). This is evident, since the penalty for a
higher degree of violation should never be smaller than
the penalty for a lesser violation. Secondly, SLO penalty
functions always have a point discontinuity in a special
violation threshold point (t1). Before (and including) t1

the penalty is generally 0 (no violation has occured), and
beyond this point a positive penalty needs to be paid
(∀s ∈ S : ∀x ∈ R : (x ≤ t1 ⇐⇒ ps(x) = 0) ∧ (x >

t1 ⇐⇒ ps(x) > 0)). This also means that penalty
functions are generally discontinuous. Furthermore, this
property signifies that there is no incentive for the service
provider to apply further adaptation and improve an
SLO value below t1, since all further improvements do
not further reduce his costs (they are already 0 for this
SLO).

To prevent violations, we are able to apply a num-
ber of possible adaptations to an instance i. We define
A = {a1, a2, . . . al} as the set of all possible adaptation
actions, and A

∗ ∈ P(A) (P(A) denotes the powerset of
A) as the subset of adaptation actions that are selected
to be applied. We assume that all adaptations have some
costs associated, defined as a cost function c : A → R. We
assume that cost functions are constant, that is, we do not
consider cross-pricing models for services [19], which
would lead to non-constant costs of adaptation. Further-
more, adaptation actions have some defined impact on
the composition instance i if applied. Hence, we define
the transformation of i to a modified instance i

� using
the ◦ operator, defined as a function ◦ : I × P(A) → I .
This is captured by the impact model which has to be
specified as part of the action definition (see Section 3).

Selecting the most cost-effective adaptation actions
means finding the adaptation actions (A∗) that minimize
the total costs for the service provider. The total costs
TC are defined in Equation 1 as the sum of the costs
of SLA violations after adaptation (V C) and the costs of
adaptation (AC).

TC : P(A) → R, TC(A∗) = V C(i ◦A
∗) + AC(A∗) (1)

6

AC is the sum of the costs of all applied adaptation
actions (Equation 2).

AC : P(A) → R, AC(A∗) =
�

ax∈A∗

c(ax) (2)

V C is defined as the sum of all penalty functions
applied to an instance (Equation 3).

V C : I → R, V C(i) =
�

sx∈S

p
i

sx
(3)

Obviously, the goal of the service provider is to min-
imize TC. Hence, the optimization objective becomes
finding the A

∗ that minimizes TC for a given instance i

(Equation 4).

TC(A∗) =
�

sx∈S

p
i

sx
+

�

ax∈A∗

c(ax) → min! (4)

Note that we can easily calculate AC for any given
A
∗, but at optimization time V C is unknown (we do

not know for sure which SLOs will be violated, with
or without adaptation). However, the SLO Predictor
provides estimations for SLOs based on instance data
(see Section 3). Hence, we can assume that we have
estimation functions es : I → R, s ∈ S available for
each SLO, which estimate the concrete penalty values
in advance with a reasonably small estimation error �

(∀s ∈ S, i ∈ I : |es(i)− ps(i)| < �). Replacing V C with its
estimation using es leads to Equation 5, which we can
solve.

TC(A∗) ≈
�

sx∈S

e
i

sx
+

�

ax∈A∗

c(ax) → min! (5)

However, not all combinations of adaptation actions
are legal. Some adaptation actions are mutually ex-
clusive (e.g., use Shipping Service DHL and use

Shipping Service UPS), while others depend on
each other (see our earlier work [9] for details on de-
pendencies between adaptation actions). For simplicity,
we capture these additional constraints using a penalty
term v : P(A) → N. The definition of v is shown in
Equation 6.

v(A∗) =
�
∞ A

∗ contains constraint violation
0 otherwise (6)

By incorporating this penalty term we arrive at our
final target function (Equation 7).

TC(A∗) ≈ v(A∗) +
�

sx∈S

e
i

sx
+

�

ax∈A∗

c(ax) → min! (7)

We have all necessary information to evaluate Equa-
tion 7 at optimization time for any set of actions A

∗.
However, finding the A

∗ that minimizes TC(A∗) is still
far from trivial, since Equation 7 is discrete and cannot
be optimized analytically. We present algorithms to find
a (near-)optimal solution in Section 5.

5 ALGORITHMS
We will now discuss different approaches for finding
solutions to this problem. These algorithms are imple-
mented in the Cost-Based Optimizer component. Opti-
mization is always triggered by a predicted violation of
at least one SLO, and receives as input a list of monitored
facts and estimates of the current instance.

5.1 Branch-and-Bound
Branch-and-Bound is a very general deterministic algo-
rithm for solving optimization problems. The high-level
idea of this approach is to enumerate the solution space
in a “smart” way, so that at least some sub-optimal
solutions can be identified and discarded prematurely,
i.e., before they have been fully constructed and evalu-
ated. We use binary encoding to represent solutions, i.e.,
every solution is represented as a binary vector, and an
adaptation action with index j is applied iff the solution
vector is 1 at index j. For example, the solution vector
00110100 encodes that the third, fourth and sixth adap-
tation action should be applied. Evidently, 2|A| different
solutions exist for each optimization problem, where |A|
is the number of possible adaptation actions (but not all
combinations need to be legal). For solutions that are
still being constructed we allow a third symbol, “∗”,
representing an action which is still undecided (alive).
We refer to solutions which contain at least one alive
action as partial, and solutions which do not contain any
alive actions as complete. Therefore, the vector 001101∗0
is a partial solution, where the last-but-one action is
alive.✞ ☎

1 # name: bab
2 # i n p u t : p a r t i a l s o l u t i o n p ,
3 # next a l i v e a c t i o n index i ,
4 # t a r g e t funct ion v
5 # output : optimal complete s o l u t i o n
6
7 bab (p , i) :
8 # recurs ion break condi t ion
9 i f (p i s complete s o l u t i o n)

10 re turn p
11
12 # check i f t h i s sub−t r e e can be pruned
13 i f (p i s pruneable)
14 f o r a l l a l i v e a c t i o n s (p) as j
15 s e t p (j) = 0
16 re turn p
17
18 # i n v e s t i g a t e s o l u t i o n sub−t r e e with p (i) =0
19 s e t p (i) = 0
20 s1 = bab (p , i +1)
21
22 # i n v e s t i g a t e s o l u t i o n sub−t r e e with p (i) =1
23 s e t p (i) = 1
24 s2 = bab (p , i +1)
25
26 # re turn b e t t e r s o l u t i o n from both subtrees
27 i f (v (s1) <= v (s2))
28 re turn s1
29 e l s e
30 re turn s2✝ ✆

Fig. 6: Branch-and-Bound Algorithm

We describe our general branch-and-bound algorithm
in Figure 6. The algorithm is straight-forward and easy to

7

understand. What is most important is the implementa-
tion of Line 13, the rules for pruning the search tree (i.e.,
for prematurely discarding solutions). In our branch-
and-bound approach, we prune a partial solution in two
cases: (1) if the partial solution already contains at least
one conflict, or (2) if the partial solution already prevents
all SLA violations (the penalty function ps is 0 for all
SLOs s) without applying any more actions. Case (1) is
trivial, since the target function value for all solutions
in such a sub-tree will always be ∞. Case (2) lends
itself to more discussion. Remember the assumption that
every action has non-negative costs, and that we de-
scribed SLA penalty functions as non-negative functions.
Therefore, we can assure that for any solution where
all penalty functions are 0, the additional application
of more actions can never improve the target function
value. Hence these partial solutions cannot be improved
by applying more actions, and the remaining solution
sub-tree can be pruned.

Note that in Listing 6, we simply iterated over all
actions in the order they appeared in the solution vec-
tor (in every step, we always just investigate the next
action, see Lines 18 and 22). In general, this approach
is suboptimal. Even though the order in which we
investigate actions has no impact on the quality of our
solution (the algorithm is deterministic, i.e., we will
always find the global optimum eventually), the order
may have an impact on the number of solutions we are
able to prune. This is illustrated in Figure 7. Assume
the following simple scenario: there is only one SLO,
and 3 possible adaptations. Only adaptation 3 is able to
prevent the violation of the SLO. Actions 1 and 2 have
costs but no relevant influence. There are no conflicts
between actions. Hence, the optimal solution vector is
001. In Figure 7(a), we strictly followed the algorithm in
Listing 6 and investigated the actions in the order they
appear in the solution vector. Since the only “useful”
action is investigated last, we extend the whole solution
tree without any pruning (the worst case, equivalent to
full enumeration). Now, in Figure 7(b), we investigate
the actions in reverse order (from back to front). Now,
the “useful” action is investigated first, and a large part
of this solution tree can be pruned according to pruning
case (2).

* * *
0 * *

0 0 * 0 1 *

0 0 0 0 0 1 0 1 0 0 1 1

1 * *

1 0 * 1 1 *

1 0 0 1 0 1 1 1 0 1 1 1

(a)

* * *
* * 0

* 0 0 * 1 0

0 0 0 1 0 0 0 1 0 1 1 0

* * 1

(b)

0 0 1

X

Fig. 7: Pruning of Solution Trees

Therefore, we can conclude that it is beneficial to
investigate actions in a specific order that maximizes the
number of solutions that can be pruned. We specify two
possible criteria for this ordering: (1) the impact of an
action on the SLOs (actions with higher total impact
should be investigated first), and (2) the utility of an
action (actions with higher utility should be investigated
first). We will now define those two orderings.

Assuming we have a defined set of historical process
instances available (we already used the same assump-
tion in Section 3 to train the Violation Predictors) we can
calculate an estimation of impact and utility of each
action as follows. We use the same definitions as in
Section 4. Additionally, we define the set of available
historical process instances as H = {h1, h2, . . . hq}, with
H ⊆ I . We refer to the number of historical instances as
q = |H|. Now, we are able to calculate an estimation
of the overall impact of an adaptation action a on a
SLO s as ∆a,s (Equation 8). Simply put, the impact
is the arithmetic mean of the difference between SLO
value with and without applying the adaptation to each
historical instance.

∆a,s =
�

h∈H

ms(h)−ms(h ◦ {a})
q

(8)

Note that we have already defined in Section 4 that
SLA penalty functions are monotonically increasing.
Hence, higher impact values are generally good. How-
ever, the impact value may also be negative (i.e., ms(h) <

ms(h◦{a})). In this case this action has a negative impact
on one of the SLOs, which is reasonble and realistic. For
instance, an adaptation which reduces the process lead
time can very well have a negative impact on the SLO
cost compliance. Based on ∆a,s, we can now define the
total impact of each action (Equation 9).

∆a =
�

s∈S

∆a,s (9)

Finally, we define ua as the utility of an action (Equa-
tion 10).

ua =
∆a

c({a}) (10)

ua is the sum of the impact values of this action on
all SLOs in relation to the costs of this action. A high
utility means that, in average, this action is cheap for its
usefulness in preventing violations. We can now improve
the branch-and-bound algorithm trivially: instead of in-
vestigating the actions in the order they are specified
in the solution vector, we now investigate them either
in the order of their impact ∆a (impact-based sorting),
or in order of their utility ua (utility-based sorting). We
will evaluate and discuss both alternatives in Section 6,
and compare them to Branch-and-Bound with randomly
ordered actions.

8

5.2 Local Search
While the Branch-and-Bound algorithm discussed above
has the advantage of always finding the optimal set
of actions for any composition instance, the execution
time of the algorithm increases exponentially with the
number of available actions. Even though we can reduce
the runtime using impact- or utility-based sorting of
actions, the complexity still remains exponential. Hence
there is an evident need to find strong heuristics, i.e.,
non-deterministic algorithms that find “good” (even if
not necessarily optimal) solutions in polynomial time.

A simple heuristic that is often used to very good ends
is Local Search. Local Search is a metaheuristic, i.e., final
solutions are constructed by iteratively improving a start
solution. The general idea is that in each iteration the
algorithm searches a specified neighborhood for better so-
lutions than the current one. If at least one such solution
is found the algorithm progresses to the next iteration
with one of the better solutions (typically the best one
in the neighborhood, equivalent to steepest descent). If
no better solution can be found in the neighborhood
the algorithm has converged to a local optimum and is
terminated. Usually, this algorithm is repeated multiple
times with different starting solutions (since, obviously,
different starting solutions can lead to different local
optima). This kind of algorithm typically depends on
the definition of (1) a suitable neighborhood and (2)
a senseful selection of starting solutions. We use the
following neighborhood definition: a complete solution
vector is in the neighborhood of an original vector if
the two vectors have a Hamming distance of 1, i.e., if
they differ in exactly one bit. We have visualized this
neighborhood definition in Figure 8.

0 0 0 1 0 0

0 1 0 1 0 0

0 1 1 1 0 0

(Solution)

(Neighbor 1)

(Neighbor 2)

Fig. 8: neighborhood for Local Search

According to this definition, every solution vector
has a neighborhood of size |A|. Additionally, we note
that two solutions in the same neighborhood have a
Hamming distance of 2.

For selecting the start solutions, we use two different
approaches. The first and primitive one is to select n start
solutions with m bits set to 1 at random. Alternatively,
we propose to use an algorithm commonly referred
to as GRASP [20] (greedy randomized adaptive search
procedure). GRASP is essentially a variation of local
search where the start solutions are constructed using
a greedy heuristic. The idea is that GRASP can converge
to a better solution than a simple local search because
the start solutions are already better than random start
solutions. However, some attention needs to be paid
to using a greedy construction heuristic that actually
generates start solutions which are both of reasonable

quality and at the same time widely spread over the
search space.✞ ☎

1 # name: g r a s p i n i t
2 # i n p u t : number of s t a r t s o l u t i o n s n ,
3 RCS max s i z e r
4 # output : s e t of s t a r t s o l u t i o n s
5
6 g r a s p i n i t (n , r) :
7 G = {} // empty s e t of s t a r t s o l u t i o n s
8 repeat n t i m e s :
9 pa = empty par t ia l so lu t ion

10 while (VC(pa) > 0) :
11 r c s = c o n s t r u c t r c s (pa , r)
12 i f (empty (r c s))
13 break
14 a = random (r c s)
15 pa (a) = 1
16 add (G, pa)
17 re turn G✝ ✆

Fig. 9: GRASP Construction Heuristic

We have sketched the construction heuristic that we
have used in our implementation of GRASP in Figure 9.
Summarizing, the algorithm constructs n solutions by
stepwise addition of actions selected randomly from a
restricted candidate set (RCS). The heuristic is based
on similar concepts that we have already used in our
discussion of Branch-and-Bound: the idea is to stop
adding actions if either no more SLOs are violated or
no senseful actions are available anymore (the RCS is
empty), and to prefer adding actions which have a high
utility value (ua). Hence, in every step the RCS consists
of the r (maximum size of the RCS) actions with highest
non-negative ua, which have not yet been added and
which do not lead to a conflict.

5.3 Genetic Algorithm
As an alternative to locality-based heuristics (local
search, GRASP) we also present a solution based on the
concept of evolutionary computation. More precisely, we
use genetic algorithms [21] (GA) as a more complex,
but potentially also more powerful heuristic to generate
good solutions to the cost-based optimization problem.
The overall idea of GA is to mimic the processes of
evolution in biology, specifically natural selection of the
fittest individuals, crossover, and mutation. Therefore,
in GA we rather work on a population of solutions
instead of a single one. We use the term “fit” to describe
solutions with a good (low) target function value. Firstly,
we generate a random start population. For this, we use
the same primitive construction scheme as discusssed
above for local search: we randomly apply m actions in
every solution. Every following iteration of the algorithm
(referred to as generations) essentially follows a three-
step pattern.

Firstly, we select a set of solutions from the population
to “survive” into the next generation. In our genetic
algorithm implementation, the fittest solution (i.e., the
one with the lowest target function value) is selected de-
terministically (elitism), while all remaining slots in the

9

next generation population are selected using a process
called tournament selection. In tournament selection, t

random solutions from the last generation are put into
a tournament. The fittest solution of the tournament
is selected into the next generation. The parameter t

steers the selection pressure: low t increases the time that
the population takes to converge against a solution, but
high t increases the danger of converging against a local
optimum instead of the global one.

Secondly, crossover is used to produce new solutions
based on the selected ones from the last generation.
The main challenge of implementing a strong crossover
mechanism is to ensure that the crossover product of
two fit solutions is also likely to be fit. Given the binary
vector representation we use to encode solutions we can
make use of a simple one-point crossover scheme. We
choose a random crossover point cp from [1 : |A|−1]. To
construct a new child we copy the binary vector of the
first solution from the start until cp, and the vector of
the second solution from cp + 1 to the end of the vector.

This simple procedure ensures that characteristics of
both original solutions are preserved. However, because
of the random selection of cp it is possible that the child
solution has a conflict, even if this was not the case for
any of the parents. In this case, we remove one of the
conflicting actions at random.

Thirdly, we use mutation to introduce entirely new
features into the population. The need for mutation can
be illustrated easily: assume that a given action a is not
applied in any solution in the population. Using one-
point crossover as discussed above it is not possible to
create any solution that uses a. Hence, we introduce
some additional randomization. After crossover, we may
randomly flip every bit in every solution in the pop-
ulation with a very small probability. This means that
most solutions in the population are not mutated, but
sometimes new actions are applied which are not the
product of crossover.

Name Description Default

Population Size Number of solutions in
every generation

150

Selection Pressure Number of solutions to
select for tournament
selection

2

Crossover Probability Probability per solu-
tion that crossover is
applied

0.8

Mutation Probability Probability per bit that
mutation is applied

0.02

Break Condition Condition for stopping
the algorithm

No improve-
ment in 20
generations

TABLE 4: GA Configuration Parameters

GAs are notorious for having many parameters to fine-
tune the performance of the optimization. For illustra-
tive purposes, we have summarized the parametrization
options available in our implementation of GA in Ta-
ble 4, including some values that we found to provide

useful default parameters if applied to the cost-based
optimization problem. Evidently, further customization
would also be possible, for instance by using a different
selection or crossover scheme. Unless stated otherwise,
we will use the configuration described in Table 4 for
experimentation in Section 6.

Unfortunately, this “canonical” GA implementation
takes a significant amount of time to converge against
a solution, since the solution space is searched solely
through the (rather unguided and strongly randomized)
means of crossover and mutation. One possibility to
improve this aspect is to combine the canonical GA with
local optimization as presented above. This leads us to an
adapted algorithm, which we have sketched in Figure 10.
In literature, such combinations of GA and local search
are often referred to as Memetic Algorithms [22] (MA).

Selection

Crossover

Mutation

While break
condition

not fulfilled

Generate
Start

Population

Canonical GA

Selection

Crossover

Local
Optimization

While break
condition

not fulfilled

Generate
Start

Population

Memetic Algorithm

For each solution
in population

Fig. 10: Memetic Algorithm

The main changes of MA (as compared to GA) are
as follows. Firstly, a new Local Optimization operator is
introduced after crossover. Local optimization applies
the local search algorithm as discussed above to each
solution in the generation, basically reducing the pop-
ulation to a set of locally optimal solutions. Secondly,
we remove the mutation operator from the algorithm
(technically speaking, we set the mutation probability
parameter to 0). The main reason is that given that all
solutions in the population are already locally optimal,
randomly mutating one bit in a solution can only lead to
a worse solution. In theory it is possible that multiple bits
in a single solution are mutated at the same time, and
that these mutations lead to an improvement, but this
corner case is very unlikely in practice. Furthermore, the
main motivation for having mutation in the first place
was that it is the only way of introducing new actions in
the canonical GA. This is no longer the case, since local
search can do the same thing.

Generally, MA is slower than GA, since more solutions
are evaluated in each generation (evidently, MA executes
one local search for every solution in each generation).
However, the algorithm potentially converges against
a very good solution in a low number of generations.
Hence, we argue that in practice MA improves on the
canonical form most of the time for our problem. This
will be substantiated further in Section 6.

10

6 EXPERIMENTATION

In the following section, we will numerically validate the
algorithms discussed in Section 5 based on an implemen-
tation of the scenario presented in Section 2. For reasons
of brevity we only summarize the experiment setup
here. More details can be found in the accompanying
experimentation web page2. We have implemented the
scenario using .NET Windows Communication Founda-
tion3 (WCF) technology and the VRESCO SOA runtime
environment on a server running Windows 2007 SP2.
The server machine was equipped with 2 2.99GHz Xeon
X5450 processors and 32 GByte RAM. In order to train
PREVENT we have initialized the system with a set of
9796 historical composition instances. These instances
were created by executing the service composition re-
peatedly. In this historical data set, 3660 instances have
not been adapted, while one or more adaptation actions
have been applied in the remaining 6136 instances. In
our experiments, we consider the case of an SLA con-
taining up to five SLOs, similar to the previous example.
Note that we have used an integer value in [0 : 15]
to represent product quality in this example, in order
to allow for more fine-grained distinctions of different
levels of product faults. In Table 5 we have sketched
these SLOs and their basic statistics. µ is the mean value
of the SLO without adaptation. µ∗ is the mean among
instances to which some adaptation has been applied. σ

and σ∗ are the respective standard deviations. As before,
t1 is the violation threshold. Furthermore, SLO 1 is asso-
ciated with a staged penalty function with 9 stages, SLO
2 and 3 are both associated with fixed penalty functions,
SLO 4 is associated with a linear penalty function with
cap, and SLO 5 with a linear penalty function without
cap. Additionally, we have defined 49 adaptation actions
that have positive and negative influences on some or all
of these SLOs. Every action has been associated with a
positive cost value.

As a first experiment, we analyse the suitability of
different variants of the Branch-and-Bound algorithm.
As all of these algorithms are deterministic, we are
guaranteed to find the optimal solution to any opti-
mization problem eventually. However, the three differ-
ent versions of the algorithm (Branch-and-Bound with
random action sorting, with impact-based sorting, and
with utility-based sorting) may differ significantly with
regard to their runtime. As an independent measure of
algorithm runtime, we use the number of solutions that
have to be evaluated. All results concerning algorithms
with randomized elements are arithmetic means of 5
repeated runs.

Figure 11 plots the number of solutions depending on
the number of adaptation actions that are available (up
to a maximum of 17 actions, note the logarithmic scale on
the y-axis). For reasons of comparison we also plot local

2. http://www.infosys.tuwien.ac.at/prototype/VRESCo/
experimentation.html

3. http://msdn.microsoft.com/en-us/library/ms735967(VS.90).aspx

SLO Name µ µ* σ σ∗ t1

1 Order Fulfillment Time 38811 35560 4708 6004 37000
2 Payment Time 4187 2202 28 1124 4150
3 Shipping Time 1285 864 144 347 1300
4 Product Quality 2.6 3 1.9 2.5 3
5 Cost Compliance 851 1149 212 521 1400

TABLE 5: Case Study SLOs

search in the figure, whose runtime grows linearly with
the number of actions. It was not feasible to evaluate
Branch-and-Bound for more than 17 actions.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 11 12 13 14 15 16 17
So

lu
tio

ns
 E

va
lu

at
ed

Nr. of Actions

Full Enumeration
Branch and Bound (Unsorted)

Branch and Bound (Impact Sorting)
Branch and Bound (Utility Sorting)

Local Optimization

Fig. 11: Solutions Evaluated For Branch-and-Bound

As we can see, there is little difference between the
three variants of Branch-and-Bound, and none is able to
reduce the number of solutions that have to be evaluated
significantly below full enumeration. The reason for this
unsatisfying result is that, in this concrete optimization
instance, very little combinations of actions can prevent
the violation of all SLOs (the SLOs are conflicting), i.e.,
bounding condition 2 cannot be applied very often. We
can see that, by relaxing the problem and disabling
SLOs 4 and 5, a significant performance boost can be
achieved (Figure 12) by both impact-based and utility-
based sorting. The difference between impact-based and
utility-based sorting is not significant in this experiment.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 11 12 13 14 15 16 17

So
lu

tio
ns

 E
va

lu
at

ed

Nr. of Actions

Full Enumeration
Branch and Bound (Unsorted)

Branch and Bound (Impact Sorting)
Branch and Bound (Utility Sorting)

Local Search

Fig. 12: Solutions Evaluated Without Conflicting SLOs

However, even though smart action sorting can reduce
the solution space if there are no conflicting SLOs, the

11

number of solutions that need to be evaluated still
grows exponentially with the number of available ac-
tions. Hence, solving the cost-based optimization prob-
lem deterministically is only possible for very small
problems. If the set of possible adaptations grows, we
need to fall back to heuristic optimization. For these
algorithms, there are no guarantees about the quality of
the solution. That means that we need to compare them
in two dimensions. Firstly, and similar to before, we need
to look at the number of solutions that are evaluated
before the algorithm produces the final result (Figure 13),
as a measure of the runtime of the algorithm. Secondly,
we also need to take into account the quality of the best
found solution (Figure 14).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 25 30 35 40 45

So
lu

tio
ns

 E
va

lu
at

ed

Nr. of Actions

Local Search
GRASP

Genetic Algorithm
Memetic Algorithm

Fig. 13: Solutions Evaluated Per Heuristic Algorithm

In Figure 13 we can see that, not surprisingly, all
algorithms scale much better than Branch-and-Bound
(note the linear scale on the y-axis and compare with Fig-
ure 12). GRASP is very efficient, and the fastest algorithm
in this experiment with an almost constant runtime. The
computation of local search is also reasonably efficient,
but the number of solutions that have to be evaluated
increases more strongly as compared to GRASP. This
is because for GRASP the start solutions are already
better, hence less local search steps are necessary before
a solution is reached. Note that the number of solutions
evaluated for local search is directly proportional to the
number of start solutions used. In this experiment we
used 25 start solutions. If we had used 50 start solutions
instead, the runtime of local search would have been
almost on the level of MA. GA also has a relatively
constant runtime, but on much higher level than GRASP.
The slowest algorithm in this experiment is MA, which
is due to its unique combination of local optimization
and genetic algorithm.

With regards to solution quality, we observe a quite
clear ordering of algorithms. GRASP and MA generally
perform best. For most instances, MA is slightly better,
even though this is not true for all cases. GA comes in
third and local optimization with random start solutions
produces, in average, solutions vastly inferior to all
competitors.

Drawing conclusions from these experiments, we note

 3000

 3500

 4000

 4500

 5000

 5500

 25 30 35 40 45

TC
 o

f B
es

t S
ol

ut
io

n

Nr. of Actions

Local Search
GRASP

Genetic Algorithm
Memetic Algorithm

Fig. 14: Quality of Solution Per Heuristic Algorithm

that Branch-and-Bound is applicable in situations where
just a small set of actions is available. In general, impact-
based or utility-based sorting should be used instead of
random sorting, since there is no evident disadvantage
to these approaches and they may be helpful if there are
no conflicting SLOs. We did not discover a significant
difference in the performance of these two variants. If
more actions are available, MA and specifically GRASP
are interesting candidate algorithms. GRASP produces
good solutions in very little time and can generally be
used even for short-running compositions where adap-
tation decisions need to be taken in a short time frame
(below 1 second). MA is very promising in case of long-
running compositions, where the time necessary to find a
solution is not critical. MA often produces slightly better
solutions than GRASP, but takes much more time to do
so.

In a second set of experiments, we now evaluate
the end-to-end effectiveness of PREVENT. That is, we
analyze if the system fullfills its main promise, prevent-
ing SLA violations and reducing the total costs for the
service provider. Hence, we execute 500 instances of
the scenario composition and monitor the actual total
costs and violations (after adaptation). We compare these
numbers with the number of violations and the total
costs that the PREVENT SLO Predictor can predict after
roughly half of the service composition if finished. We
assume that these predictions reflect the violations and
costs that we would end up with if we did nothing at
all. Since our case study is rather short-running, but uses
a relatively large set of adaptations, we use GRASP for
cost-based optimization. The results of this experiments
are depicted in Table 6.

Evidently, the usage of PREVENT fulfills its main
promise. Using PREVENT the total number of SLO viola-
tions decreases to about 28% of the number of predicted
violations. However, we can also see that PREVENT
does not primarily prevent violations, but rather aims at
minimizing the costs of violations. For instance, for SLO
4 and 5 the total number of violations even increases.
This is because these SLOs are conflicting with the first
SLOs, and SLO 1 is in general the most expensive one

12

SLO 1 SLO 2 SLO 3 SLO 4 SLO 5 Total

Considering Costs

Violations Predicted/Actual 209/129 442/1 390/42 75/104 0/41 1116/317 (-71.6%)
Avg. Costs Predicted/Actual 5207/2904 884/2 6264/558 840/1068 0/9 14923/8415 (-43.6%)

Ignoring Costs

Violations Predicted/Actual 223/40 449/0 245/17 66/218 0/115 983/390 (-60.3%)
Avg. Costs Predicted/Actual 5521/756 898/0 4086/216 756/2364 0/29 12632/22241 (+76.1%)

TABLE 6: End-to-End Results

to violate. Hence, PREVENT happily trades violations of
SLO 4 and 5 for preventing violations of SLO 1. Thereby,
the total costs for the service provider can be reduced to
56% of the predicted costs. The lower part of the table
validates the claim of the paper that it makes sense to
incorporate the costs of adaptation into the decision pro-
cess. To that end, we have modified the target function of
the optimization in such a way that the costs of adaption
are ignored. In this configuration the total costs after
adaptation are 176% of the predicted costs. That means
that in this experiment it is in fact much more expensive
for the provider to prevent adaptations (in the way that
optimization ignoring costs suggests) than doing nothing
at all.

7 RELATED WORK

In this paper, we discuss the problem of cost-optimal
prevention of SLA violations in service compositions. To
the best of our knowledge, no approaches with this exact
focus have been published so far. However, there are
some areas relevant or related to this problem, which
we discuss in the following.

On a fundamental level, our work is based on the
notion that both atomic and composite services exhibit
some measurable quality (QoS). Monitoring QoS has
been an active research area for some time. Different
techniques proposed in this direction include monitor-
ing based on client feedback [23], monitoring of TCP-
level metrics using network analysis techniques [15]
or event-based monitoring based on event-condition-
action rules [24]. We use the VRESCO event engine and
event-based monitoring in a manner very similar to the
approach presented in [24].

The PREVENT approach aims at autonomous op-
timization of service compositions with regards to
SLA violations and costs of adaptation. This bears
a natural resemblance to the idea of QoS optimiza-
tion for service compositions, as prominently described
in [25]. Later approaches tried to improve on this con-
cept by using more efficient heuristic algorithms, e.g.,
H1 RELAX IP [26] (a heuristic relaxation of integer
programming), WFlow [27] (based on stochastic work-
flow reduction) or the immune algorithm [28]. Different
authors approached the problem by combining global
optimization and local selection (which can be done
much more efficient than global optimization). This ap-
proach can also be considered a heuristic, since the
combination with local selection does not guarantee

a globally optimal solution [29]. Most comparably to
our work, the authors of [30] use a genetic algorithm
combined with local search to efficiently solve the QoS
optimization problem. The main difference of our work
to all these approaches is that we do not optimize the
composition with regard to global QoS goals. Instead,
our optimization goal is to minimize the costs resulting
from SLA violations and adaptations. Therefore, in our
work, some SLAs are allowed to be violated if it is
financially desirable for the provider to do so. Hence,
the optimization problem we have to solve is different.

To our work, even more important than the measure-
ment of past quality is the prediction of future QoS.
One well-known approach to establishing predictable
QoS levels in a composite service is QoS aggregation,
i.e., the process of calculating the quality dimensions of
a composite service based on the QoS of the utilized
services and aggregation functions. QoS aggregation has
for instance been discussed in [18]. The concept of QoS
aggregation has been extended to SLA aggregation by
several authors [31], [32]. As an alternative to QoS
and SLA aggregation, different authors have proposed
to use various machine learning techniques to predict
composition QoS from monitored runtime data [6], [7].
This approach is also the one that we use in PREVENT,
as explained in Section 3. The main advantage that we
see in using machine learning is that it is very easy to in-
corporate non-QoS data (composition instance data, such
as customer identifiers or ordered products) without the
need to explicitly specify aggregation rules describing
how this data influences the composition performance.

Generally, PREVENT is a system to monitor and pre-
vent SLA violations. In this area, some work exist which
discuss the runtime monitoring of composition quality,
such as [33]. This paper is of particular interest to
us, since it discusses an integrated approach towards
monitoring based on events. As stated above, this is
quite related to monitoring in PREVENT. These works
do not attempt to explain the reasons for SLA violations,
and neither do they try to prevent them. The MoDe4SLA
approach [4] is a top-down approach towards identifying
these influential factors of SLA violations. Research in
a similar direction, but using data mining techniques
instead of top-down analysis, has also been presented
in [5]. Our work is different in that we do not only try
to identify which parts of a service composition cause
SLA violations, but actively prevent them by applying
targeted adaptation actions. Therefore, our system essen-

13

tially implements the paradigm of self-adapting service
compositions. This is related to the area of flexible ser-
vice composition, as introduced in [34]. Flexible service
compositions reoptimize their composition at runtime, in
order to deal with unanticipated problems. Similar ideas
(self-healing processes) have also been presented as part
of the DISC framework [35], which implements dynamic
and only partially defined processes. A different kind
of self-healing processes have been discussed in [36]. In
this paper, the authors present the VieDAME framework,
which autonomously monitors the QoS of services used
in the composition, and triggers service re-selection if
the monitored QoS falls below a given threshold. This is
similar to the PREVENT approach, but our system sup-
ports a wider range of adaptation actions (as discussed in
our earlier work [8]). Additionally, [36] does not take the
costs of adaptation into account. Another middleware for
self-adapting compositions is MASC [37]. However, the
authors of this paper focus more on adaptation for func-
tional reasons, while our main goal is the optimization of
non-functional aspects. Furthermore, the MASC system
also does not explicitly incorporate costs of adaptation.

The core contribution of this paper is the notion that
there generally is a tradeoff to consider between prevent-
ing SLA violations and the costs of doing so. Hence,
a composite service provider is maximizing his own
revenue by minimizing his total costs. Similar models
have been investigated in many related areas before. For
instance, [38] describes a model for revenue maximizing
in Web services hosting using dynamic admission poli-
cies. Similarly, techniques to optimize application servers
in a way to maximize the provider profit in distributed
systems have been proposed in [39]. Other tradeoffs
that have been discussed in the literature include the
performance-security tradeoff [40] or the tradeoff be-
tween composition QoS and the costs of monitoring [41].
To the best of our knowledge, no research paper has yet
considered the tradeoff between preventing violations
and the costs of doing so.

8 CONCLUSION AND FUTURE WORK

For providers of composite Web services it is essential
to be able to minimize cases of SLA violations. One
possible route to achieve this is to predict at runtime
which instances are in danger of violating SLAs, and
apply various adaptation actions to these instances only.
However, it is not trivial to identify which adaptations
are the most cost-effective way to prevent any violation,
or if it is even possible to prevent a violation in a cost-
effective way. In this paper we have modelled this prob-
lem as a one-dimensional, discrete optimization prob-
lem. Furthermore, we have presented both deterministic
and heuristic solution algorithms. We have evaluated
these algorithms based on a manufacturing case study,
and show which types of algorithms are better suited for
which scenarios.

The main current limitation is that adaptation is only
considered on instance level, that is, for each compo-
sition instance separately. Aggregate SLOs, which are
defined over a number of instances, are out of scope.
Similarly, at the moment we do not consider ’permanent’
adaptations, i.e., adaptations which are done for all fu-
ture instances. We believe that the PREVENT adaptation
model can be extended to this kind of SLOs and actions,
but new approaches to predict violations and impact
models are needed to this end.

REFERENCES
[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,

“Service-Oriented Computing: State of the Art and Research
Challenges,” IEEE Computer, vol. 40, no. 11, pp. 38–45, November
2007.

[2] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
Inside the Cloud? An Architectural Map of the Cloud Landscape,”
in Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing (CLOUD’09). Washington, DC,
USA: IEEE Computer Society, 2009, pp. 23–31.

[3] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler,
H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web Ser-
vices on Demand: WSLA-Driven Automated Management,” IBM
Systems Journal, vol. 43, no. 1, pp. 136–158, January 2004.

[4] L. Bodenstaff, A. Wombacher, M. Reichert, and M. C. Jaeger,
“Analyzing Impact Factors on Composite Services,” in Proceedings
of the 2009 IEEE International Conference on Services Computing (SCC
’09). Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp.
218–226.

[5] B. Wetzstein, P. Leitner, F. Rosenberg, S. Dustdar, and F. Ley-
mann, “Identifying Influential Factors of Business Process Per-
formance Using Dependency Analysis,” Enterprise Information
Systems, vol. 4, no. 3, pp. 1–8, July 2010.

[6] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime Prediction of Service Level Agreement
Violations for Composite Services,” in Proceedings of the 3rd Work-
shop on Non-Functional Properties and SLA Management in Service-
Oriented Computing (NFPSLAM-SOC’09), 2009, pp. 176–186.

[7] L. Zeng, C. Lingenfelder, H. Lei, and H. Chang, “Event-Driven
Quality of Service Prediction,” in Proceedings of the 6th International
Conference on Service-Oriented Computing (ICSOC’08). Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 147–161.

[8] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, “Monitor-
ing, Prediction and Prevention of SLA Violations in Composite
Services,” in Proceedings of the IEEE International Conference on
Web Services (ICWS’10). Los Alamitos, CA, USA: IEEE Computer
Society, 2010, pp. 369–376.

[9] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer, S. Dust-
dar, and F. Leymann, “Preventing SLA Violations in Service Com-
positions Using Aspect-Based Fragment Substitution,” in Proceed-
ings of the International Conference on Service-Oriented Computing
(ICSOC’10), 2010.

[10] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and
F. Leymann, “Adaptation of Service-Based Applications Based
on Process Quality Factor Analysis,” in Proceedings of the 2nd
Workshop on Monitoring, Adaptation and Beyond (MONA+), 2009,
pp. 395–404.

[11] “Business Process Modeling Notation Specification,” Object Man-
agement Group (OMG), Tech. Rep., 2006.

[12] M. Salehie and L. Tahvildari, “Self-Adaptive Software: Landscape
and Research Challenges,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 4, no. 2, pp. 1–42, May 2009.

[13] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “End-
to-End Support for QoS-Aware Service Selection, Binding, and
Mediation in VRESCo,” IEEE Transactions on Services Computing,
vol. 3, pp. 193–205, July 2010.

[14] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[15] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Perfor-
mance and Dependability Attributes of Web Services,” in Proceed-
ings of the IEEE International Conference on Web Services (ICWS’06).
Washington, DC, USA: IEEE Computer Society, 2006, pp. 205–212.

14

[16] S. Haykin, Neural Networks and Learning Machines: A Comprehensive
Foundation, 3rd ed. Prentice Hall, 2008.

[17] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, pp. 81–106, March 1986.

[18] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “QoS Aggre-
gation for Web Service Composition using Workflow Patterns,”
in Proceedings of the 8th International Enterprise Distributed Object
Computing Conference (EDOC’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 149–159.

[19] L. Xu and B. Jennings, “A Cost-Minimizing Service Composition
Selection Algorithm Supporting Time-Sensitive Discounts,” in
Proceedings of the 2010 IEEE International Conference on Services
Computing (SCC’10). Washington, DC, USA: IEEE Computer
Society, 2010, pp. 402–408.

[20] T. Feo and M. Resende, “Greedy Randomized Adaptive Search
Procedures,” Journal of Global Optimization, vol. 6, pp. 109–133,
1995.

[21] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[22] N. Radcliffe and P. Surry, “Formal Memetic Algorithms,” Evolu-
tionary Computing, vol. 865, pp. 1–16, 1994.

[23] R. Jurca, B. Faltings, and W. Binder, “Reliable QoS Monitoring
Based on Client Feedback,” in Proceedings of the 16th International
Conference on World Wide Web (WWW’07). New York, NY, USA:
ACM, 2007, pp. 1003–1012.

[24] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for Web Ser-
vices,” in Proceedings of the 5th International Conference on Service-
Oriented Computing (ICSOC’07). Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 132–144.

[25] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-Aware Middleware for Web Services Com-
position,” IEEE Transactions on Software Engineering, vol. 30, no. 5,
pp. 311–327, 2004.

[26] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Stein-
metz, “Heuristics for QoS-aware Web Service Composition,” in
Proceedings of the 2006 IEEE International Conference on Web Services
(ICWS’06). Los Alamitos, CA, USA: IEEE Computer Society, 2006,
pp. 72–82.

[27] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End QoS Constraints,” ACM Trans-
actions on the Web, vol. 1, May 2007.

[28] J. Xu and S. Reiff-Marganiec, “Towards Heuristic Web Services
Composition Using Immune Algorithm,” in Proceedings of the 2008
IEEE International Conference on Web Services (ICWS’08). Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 238–245.

[29] M. Alrifai and T. Risse, “Combining Global Optimization With
Local Selection for Efficient QoS-Aware Service Composition,” in
Proceedings of the 18th International Conference on World Wide Web
(WWW’09). New York, NY, USA: ACM, 2009, pp. 881–890.

[30] F. Rosenberg, M. B. Müller, P. Leitner, A. Michlmayr, A. Bouguet-
taya, and S. Dustdar, “Metaheuristic Optimization of Large-Scale
QoS-aware Service Compositions,” in Proceedings of the 2010 IEEE
International Conference on Services Computing (SCC’10).

[31] T. Unger, F. Leymann, S. Mauchart, and T. Scheibler, “Aggregation
of Service Level Agreements in the Context of Business Pro-
cesses,” in Proceedings of the 12th International Enterprise Distributed
Object Computing Conference (EDOC’08). Washington, DC, USA:
IEEE Computer Society, 2008, pp. 43–52.

[32] I. Haq, A. Huqqani, and E. Schikuta, “Aggregating Hierarchi-
cal Service Level Agreements in Business Value Networks,” in
Proceedings of the 7th International Conference on Business Process
Management (BPM’09). Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 176–192.

[33] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo + As-
tro: An Integrated Approach for BPEL Monitoring,” in Proceedings
of the 2009 IEEE International Conference on Web Services (ICWS’09).
Washington, DC, USA: IEEE Computer Society, 2009, pp. 230–237.

[34] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: A Framework for Executing Adaptive Web-Service Pro-
cesses,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

[35] E. Zahoor, O. Perrin, and C. Godart, “DISC: A Declarative Frame-
work for Self-Healing Web Services Composition,” in Proceedings
of the 2010 IEEE International Conference on Web Services (ICWS’10).
Washington, DC, USA: IEEE Computer Society, 2010, pp. 25–33.

[36] O. Moser, F. Rosenberg, and S. Dustdar, “Non-Intrusive Monitor-
ing and Service Adaptation for WS-BPEL,” in Proceedings of the

17th International Conference on World Wide Web (WWW’08). New
York, NY, USA: ACM, 2008, pp. 815–824.

[37] A. Erradi, P. Maheshwari, and V. Tosic, “Policy-Driven Mid-
dleware for Self-Adaptation of Web Services Compositions,” in
Proceedings of the ACM/IFIP/USENIX 2006 International Conference
on Middleware (Middleware’06). New York, NY, USA: Springer-
Verlag New York, Inc., 2006, pp. 62–80.

[38] M. Mazzucco, I. Mitrani, J. Palmer, M. Fisher, and P. McKee, “Web
Service Hosting and Revenue Maximization,” in Proceedings of the
Fifth European Conference on Web Services (ECOWS’07). Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 45–54.

[39] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning Servers in
the Application Tier for E-Commerce Systems,” ACM Transactions
on Internet Technology, vol. 7, no. 1, p. 7, 2007.

[40] S. S. Yau, Y. Yin, and H. G. An, “An Adaptive Tradeoff Model for
Service Performance and Security in Service-Based Systems,” in
Proceedings of the 2009 IEEE International Conference on Web Services
(ICWS’09). Washington, DC, USA: IEEE Computer Society, 2009,
pp. 287–294.

[41] Y. Zhang, M. Panahi, and K.-J. Lin, “Service Process Composition
with QoS and Monitoring Agent Cost Parameters,” in Proceedings
of the 2008 10th IEEE Conference on E-Commerce Technology and the
Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-
Services. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 311–316.

Philipp Leitner has a BSc and MSc in business
informatics from Vienna University of Technol-
ogy. He is currently a PhD candidate and univer-
sity assistant at the Distributed Systems Group
at the same university. Philipp’s research is fo-
cused on middleware for distributed systems,
especially for SOAP-based and RESTful Web
services.

Waldemar Hummer holds a BSc (Univ. of Inns-
bruck) and MSc (Vienna Univ. of Technology) in
Computer Science, and a BSc in Business Ad-
ministration (WU Vienna). Currently he is a uni-
versity assistant and PhD candidate at the Dis-
tributed Systems Group, Vienna Univ. of Tech-
nology. His main topics of interest are in the area
of self-optimizing service-based systems, Web
service composition and Web data aggregation.

Schahram Dustdar is Full Professor of Com-
puter Science with a focus on Internet Technolo-
gies heading the Distributed Systems Group,
Vienna University of Technology (TU Wien). He
is also Honorary Professor of Information Sys-
tems at the Department of Computing Science at
the University of Groningen (RuG), The Nether-
lands.

