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Abstract—Automated service discovery enables human users or software agents to form queries and to search and discover
the services based on different requirements. This enables implementation of high-level functionalities such as service
recommendation, composition, and provisioning. The current service search and discovery on the Web is mainly supported by
text and keyword based solutions which offer very limited semantic expressiveness to service developers and consumers. This
paper presents a method using probabilistic machine-learning techniques to extract latent factors from semantically enriched
service descriptions. The latent factors are used to construct a model to represent different types of service descriptions in a
vector form. With this transformation, heterogeneous service descriptions can be represented, discovered, and compared on the
same homogeneous plane. The proposed solution is scalable to large service datasets and provides an efficient mechanism that
enables publishing and adding new services to the registry and representing them using latent factors after deployment of the
system. We have evaluated our solution against logic-based and keyword-based service search and discovery solutions. The
results show that the proposed method performs better than other solutions in terms of precision and normalised discounted
cumulative gain values.
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1 INTRODUCTION

THe ubiquitous access and significant advantages
of Service-Oriented Computing (SOC) is driving

businesses to implement or transform their online
applications into Web Services (WS) [1]. Consequently,
the Internet is shifting from data and web applications
to a framework of data and service platforms [2]–[4].
However the common technologies used to describe,
publish, and discover these services offer very little
expressiveness to service developers. The World Wide
Web lacks a homogeneous structure (beyond that of
the service interface) for describing and discovering
functional and non-functional parameters in service
descriptions. This results in different ways to name
and define parameters and describe internal pro-
cesses which inhibits straightforward integration of
WS [5].In this paper we focus on search and match-
making functionalities to support automated service
discovery for software agents and human users.

1.1 Motivation
Automated service discovery is an important aspect in
service oriented computing as many high-level service
oriented concepts such as service composition, service
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provisioning, and service recommendation highly rely
on the precision of an underlying automated service
discovery engine. To achieve such high-level goals,
service discovery needs first to extend from syntax-
based matchmaking and take an automated approach
where machines interpret the meaning behind the
service description data and matchmaking is per-
formed based on both functional and non-functional
attributes of a service. The services used in service
oriented computing technologies are software arti-
facts that are autonomous, self-described, reusable,
and highly portable [6]. Such artifacts are searched
for based on their functionality (e.g. inputs, outputs,
processes, and operations) rather than based on their
text descriptions. Semantic service discovery has an
edge over syntax-based approaches and most state-
of-the-art service discovery approaches are now based
on semantic service description models [7]–[21]. Work
on semantic service discovery is split in three main
categories: logic-based approaches, non-logic-based
approaches, and hybrid approaches.

Logic-based semantic service discovery
approaches [10]–[13] use a reasoner to infer new
knowledge from the concepts and relationships
defined in semantic service descriptions. Logical
reasoning tends to be very accurate given its solid
mathematical basis [8]. These kind of approaches
provide an improvement on the short-comings of
syntax-based methods but come at the expense
of increased complexity. A known limitation of
logic-based approaches is that when two concepts
are semantically synonymous but defined differently
in their terminological definitions, the similarity
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between the two is not captured by the subsumption
hierarchy and a reasoner would fail to find the
match between the two [18]. Another limitation is the
complexity of logic-based discovery solutions which
makes logical reasoning and the discovery process
over large service repositories an intractable process.

Non-logic-based semantic service discovery ap-
proaches [5], [14]–[16] aim to reduce the complexity
of semantic matchmaking by analysing the frequency
of occurrence of certain terms within service descrip-
tions and determine semantics which are implicit in
service descriptions. These approaches generally use
techniques such as graph matching, linguistic anal-
ysis, data mining, and information retrieval (IR) [8].
Approaches based on information retrieval techniques
are very popular as these techniques require the ser-
vice descriptions to be expressed in terms of vectors
which make it easier to use mathematical tools to pro-
cess the data. However, this transformation results in
the loss of the machine-interpretable semantics found
in some service descriptions and thus non-logic-based
approaches cannot perform the fine grained match-
making that is possible with logic-based approaches.

Hybrid Matchmakers [17]–[23] combine the advan-
tages of Non-Logic-based techniques with the fine
grained reasoning capabilities of Logic-based tech-
niques. Klusch et al. [18] state that the objective of
this hybrid semantic matchmaking is to appropriately
exploit both crisp logic-based and non-logic-based
semantic retrieval where using each of the solutions
alone could fail.

Although literature suggests that hybrid match-
makers always outperform syntax-based and logic-
based matchmakers in terms of precision and rank-
ing, hybrid matchmakers suffer from interoperability
problems similar to logic-based methods. This hap-
pens because the algorithm for logic-based match-
making differs for various service description models
and thus to make a logic-based or hybrid matchmaker
compatible with different service descriptions models,
a separate implementation of the logic matchmaking
component is required for each service description
model.

In this paper, we propose a non-logic-based match-
making method that uses machine learning tech-
niques and in particular Probabilistic Latent Semantic
Analysis (PLSA) [24], [25] and Latent Dirichlet Allo-
cation (LDA) [26] to extract latent factors from se-
mantic service descriptions and search for services
in latent factor space where heterogeneous service
descriptions are all represented as a probability dis-
tribution over latent factors. The latent factors are
discussed in more detail in Section 5. This approach
reduces the complexity of semantic service match-
making while still preserving the knowledge in the
machine-interpretable semantics.

PLSA and LDA are unsupervised machine-learning
techniques that use a generative probabilistic model

to map high-dimensional count vectors (such as the
distribution of semantic concepts describing the ser-
vices in a repository) to a lower dimensional rep-
resentation in latent factor space. Representing the
information contained in service descriptions in terms
of latent factors rather than semantic concepts reduces
the dimensionality of service descriptions as each
latent factor represents a group of concepts. Latent
factors can also resolve problems in service discovery
related to synonymy (different concepts referring to
the same meaning). Dimensionality reduction also
decreases the number of computation steps needed to
compare services thus simplifying the matchmaking
process. Heterogeneous service descriptions (i.e.; ser-
vice descriptions represented using different service
description models such as OWL-S1 and WSMO2)
are all converted to the same latent factor space
thus creating a homogeneous plane on which these
different service descriptions can be compared with
each other directly in terms of latent factors. Queries
are also expressed in terms of latent factors (using a
technique known as query folding-in [27] described
in Section 5.3). Automated service discovery is then
obtained by matching the queries and services in
latent factor space using vector proximity measures.
The contributions of our work include:

1) The service descriptions are transformed from a
number of semantic annotations to a vector of
smaller dimensions (latent factors). Services are
classified and matched based on these vectors,
thus the dimensions of the required computa-
tions are reduced.

2) An efficient mechanism for publishing new
service descriptions using a technique called
Folding-In [27]. Any new service description, as
long as the service description technology or de-
fined parameters are used in the initial training
set, can be transformed into latent factor space
and included in the index repository.

3) Interoperability between different service de-
scription technologies and different methods for
defining parameters is achieved by mapping all
the service descriptions to a latent factor space
(using folding-In).

4) The comparisons of Precision @ n and Nor-
malised Discounted Cumulative Gain (NDCGn)
values for LDA with full registry search, LDA
with nearest three clusters search, PLSA with full
registry search, the Hybrid Matchmaker OWLS-
M4, the logic-based matchmaker OWLS-M0, and
a syntax-based search indicate that the methods
based on LDA presented in this paper outper-
form all the other matchmakers in terms of
ranking of the most relevant services.

1. http://www.w3.org/Submission/OWL-S/
2. http://www.wsmo.org/
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2 PROPOSED SYSTEM

The work in this paper builds upon our previous
work on representing service descriptions in terms of
latent factors [28], [29]. Latent factors are a concept
introduced by Probabilistic Topic models [30] (some-
times also called Latent Factor Models). These are a
family of generative probabilistic graphical models
based on the assumption that documents are gen-
erated by a mixture of topics (latent factors) where
topics are probability distribuitions on terms. Based
on this assumption, Bayesian inference can be used
to invert this process and infer the unobserved hid-
den topics (latent factors) that generated a collection
of documents. Different probabilistic Topic models
have been used to analyse the meaning of words in
documents [24]–[26], [31]–[33]. In our work, a latent
factor is associated with a group of semantic concepts
that can appear in service descriptions and can be
expressed as a probability distribution over semantic
concepts P (c|z).

A service description is generated from a topic
model by following a number of probabilistic sam-
pling rules that describe how the concepts in the
service description are generated by sampling from a
set of latent factors. First a distribution of latent factors
for the service description is chosen. Then a latent fac-
tor from the chosen distribution is picked randomly
and a concept is drawn from that latent factor. The
chosen concept is put in the service description and
the process is repeated for every concept in the service
description. This kind of generative process is based
on the bag-of-words assumption [30] and assumes the
concepts in a service description appear in a random
manner (i.e. no assumption is made about the order
of the concepts as they appear). The only matter of
relevance to this model is the number of times a
concept is produced in a service description.

As a result, service descriptions can be described
in terms of a vector s = {z1, z2, ..., zK}, where every
dimension zk is an integer between 0 and 1 describing
the probability of the service being related to latent
factor k. This vector is essentially the probability
distribution over latent factors for the service. This
reduces the dimensionality of service descriptions and
allows service descriptions written in different hetero-
geneous service description models to be represented
on the same homogeneous plane (i.e. Latent Factors;
see Section 5 for details).

We assume there exists a registry containing a num-
ber of semantic service descriptions. The concepts in
the service descriptions are the observed data and the
challenge is to find the best set of latent factors that
hypothetically generated the observed dataset. This
statistical inference problem is to find the probability
distribution over concepts associated with each latent
factor and the latent factor distribution for each ser-
vice description.

In this context, we provide our descriptions and
main evaluations based on the Onthology Web Lan-
guage for Services (OWL-S) model; a Service Descrip-
tion Model that provides both rich expressive descrip-
tions and well-defined semantics. OWL-S has been
used as the base service model for evaluating various
works on semantic service matchmaking [18]–[21].
However, as mentioned earlier, the proposed solution
is not limited to only one technology. In the following
sections we elaborate this concept in more detail.

Semantic concepts are extracted from the OWL-S
service descriptions using a reasoner and the occur-
rence of each semantic concept in each service descrip-
tion is tallied in a Service Transaction Matrix (discussed
further in Section 4). The Service Transaction Matrix
provides the training set (observed data) that is used
as input for the machine-learning techniques that we
use to infer the latent factors.

The learned probability distribution over concepts
for each latent factor can be used to compute the
probability distribution of latent factors for any new
service description using a technique called Folding-
in [30] (discussed further in Section 5.3). Folding-in
can be used on service descriptions written in any
semantic service description model as long as con-
cepts used to describe the service have already been
observed in the initial training dataset. Folding-in can
also be used to calculate the probability distribution
of latent factors for a service request, provided that
the service request contains machine-interpretable se-
mantic concepts.

3 THE ASPECT MODEL FOR SEMANTIC
SERVICE DESCRIPTIONS

The Aspect Model is a generative topic model de-
veloped by Hoffman et. al. [24], [25] to model the
probabilistic sampling rules that dictate how terms
in a text document are generated by sampling terms
from hidden variables (topics). This model belongs
to a family of topic models [24]–[26], [31]–[33] which
assume that text documents are generated from a mix-
ture of topics, where a topic consists of a probability
distribution over words.

Semantic service descriptions are different from
text documents because they usually contain very
little textual descriptions, include concepts (described
by URIs) instead of words, and are full of prop-
erty assertions in the form of subject-predicate-object
expressions. We adapt the Aspect Model to define
how semantic documents such as OWL-S service de-
scriptions are generated by sampling from a set of
latent factors {z1, z2, ..., zK}. The model assumes that
semantic concepts observed in a service description
are independent of each other given the latent factors
they were generated from. No assumptions are made
about the order in which the concepts appear in
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a service description. However, the property asser-
tions in semantic service descriptions cannot be ig-
nored. The components making a property assertion;
subject-predicate-object, are clearly not independent
from one another and cannot be assumed to have
been generated from different latent factors. If we
assume that the components of a property assertion
(subject-predicate-object) are independent from each
other, all the logic relationships expressed in machine-
interpretable semantics would be lost when the latent
factors are inferred from the dataset of service de-
scriptions. A different approach is required in order to
preserve the semantic data when projecting semantic
service descriptions to a different mathematical plane.
In [20] the concepts from OWL-S service descriptions
are extracted and represented in a collection of Fuzzy
Multisets. The advantage of this approach is that the
role of a concept in a service description as an input,
output, precondition, or effect is also captured in the
conversion.

In order to preserve semantic relationships, in our
approach we assume that the subject, predicate, and
object in a property expression were generated by
the same latent factor and are not independent of
each other. For example; from the service description
EBookOrder1 shown in Figure 1, the concept UserAc-
count which is described by the property hasInput is
assumed to be a single concept hasInput UserAccount
that was generated by sampling from a single latent
factor. Using this approach, a service in which User-
Account is defined as an input will be distinguished
from a service in which UserAccount is defined as an
output.

The latent factors are initially unknown and statis-
tical inference is used to find the latent factors that
best describe the observed semantic concepts. To fit
the model, we use two machine-learning algorithms:
Expectation Maximization [24] for PLSA and Collapsed
Gibbs Sampling [34] for LDA. A training set of service
descriptions is required for these algorithms to com-
pute the best fit of latent factors that explain the ob-
served semantic concepts in the service descriptions.
Both algorithms are unsupervised learning algorithms
and do not require any labelled data as input or any
intervention from the user.

The key probability distribution that we are in-
terested in learning from the Aspect Model is the
probability distribution of concepts for each latent
factor P (c|zk). This probability distribution can be
used to estimate the distribution of latent factors for
any new service description using a technique called
Folding-in [30] (discussed further in Section 5.3).

4 THE SERVICE TRANSACTION MATRIX

A Service Transaction Matrix (STM) is an adaptation
of the method used in Information Retrieval for rep-
resenting the information contained in a distributed

Service #443

EBookRequest

UserAccount

EBook

EBookOrderProcess

hasInput

A e-book order web service

The name of the book

Title

Parameter

hasInput

User

The account information of the user

Book

The desired book

Label

Parameter

hasOutput

Label

Label

Parameter

hasProcess

textDescription

Fig. 1. A sample OWL-S service description (EBookO-
rder1).

database. This conversion facilitates statistical analysis
of the data. The STM has as many rows as the number
of services in the repository and as many columns
as the number of concepts in the dataset. Each row
represents a service s as a vector of N dimensions
where each dimension represents the occurrence of a
concept in the description of that service. A vector s̄i
describing a service i is denoted as:

s̄i = {c1, c2, ..., cN} , where ∀ c ε Z+ (1)

Different strategies exist for extracting such con-
cepts from service descriptions and converting them
to vector form. The Text Frequency and Inverse Text
Frequency (TF/IDF) algorithm is used in [35] to rep-
resent a dataset of the WSDL service descriptions in
an STM. A variation of TF/IDF is proposed in [5]
where a higher weight is given to the IDF value. This
approach aims to normalise the bias of the TF measure
as the frequency of concepts in very short documents
such as service descriptions tends to be incidental.
One limitation of these methods is that they treat
service descriptions like text documents and do not
take advantage of the semantic annotations used in
the service descriptions.

In our approach concepts and their roles are
extracted from the OWL-S service descriptions
using OWL API3 and Pellet4. Stop words in the
text descriptions of the concepts are removed using
the Stanford Log-Linear POS-tagger5. The array of
concepts extracted for sample service EBookOrder1 is
shown below:

EBookOrder1 = {e-book, order, web, service,

3. http://owlapi.sourceforge.net/
4. http://clarkparsia.com/pellet/
5. http://nlp.stanford.edu/software/tagger.shtml
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desired, book, account, information, user, hasPro-
cess EBookOrderProcess, hasInput UserAccount,
hasInput User, hasInput EBookRequest,
hasInput Title, hasOutput EBook, hasOutput Book}

The STM is created after parsing the whole repository
using our concept extraction mechanism. Each entry
cij of the matrix represents the number of times
concept j occurs in service i where ∀ cij ε Z+.

5 EXTRACTING LATENT FACTORS

In this section we discuss two unsupervised machine-
learning techniques that we use to extract latent fac-
tors from the service descriptions. The first method
we discuss is Probabilistic Latent Semantic Analy-
sis (PLSA); a generative statistical model used for
analysing co-occurrence of data. The second method
is Latent Dirichlet Allocation (LDA) which improves
the performance of PLSA by introducing a Dirichlet
prior on the distribution of latent factors over service
descriptions [26].

5.1 Probabilistic Latent Semantic Analysis

PLSA is an unsupervised machine-learning technique
that maps high-dimensional count vectors (such as
the ones expressed in the STM) to a lower dimen-
sional representation in Latent Factor Space [24]. PLSA
is based on the Aspect Model; a latent variable
model that associates an unobserved class variable
zkε {z1, z2, ..., zK} with each observation [36].

PLSA discovers a hidden dimension behind the
vector of concepts describing a service, i.e. topics
that include concepts in the service descriptions. The
concepts are observable variables and their occurrence
in a service description can be described in a vector
as defined by Equation 1. Topics on the other hand
are latent factors which are not directly observable
through examining a service description. These latent
factors are learned through statistical inference. A set
of services can then be described as a multinomial
probability distribution P (z|s).

The distribution P (z|s) is a matrix with K rows
and M columns. Where K is the number of generated
latent factors and M is the number of service de-
scriptions. Each entry zki represents the probability of
service i belonging to topic k. Each service description
si can be described as an array of latent factors
denoted as:

s̄i = {z1i, z2i, ..., zKi} , ∀ z ε R+ ≤ 1 (2)

Representing a service in terms of these latent vari-
ables reflects the likelihood of a service belonging to
certain concept groups [35].

The joint probability of the observed concept cj in
service description si is denoted as:

(a)

(b)

s z cP(z|s) P(c|z)P(s)

s z cP(s|z) P(c|z)

P(z)

Fig. 2. Graphical model representation of the
PLSA model in asymmetric (a) and symmetric (b)
parametrization.

P (s, c) = P (s)P (c|s) (3)

and by assuming that a service and a concept are
conditionally independent given a set of K latent
factors, we can express P (c|s) in terms of latent
factors:

P (c|s) =

K∑
k=1

P (zk|s)P (c|zk) (4)

The graphical model representation of this condi-
tional independence is shown in Figure 2(a). This
model indirectly associates the concepts to their
corresponding service descriptions by introducing
an intermediate layer of latent factors. The model
achieves dimensionality reduction by mapping a
high-dimensional P (s, c) space (describing services in
terms of concepts) into a lower K-dimensional latent
factor space (describing services in terms of latent
factors) [35]. By substituting equation 4 in equation 3,
we obtain an equivalent representation of the model
given by Equation 5 (illustrated in Figure 2(b)).

P (s, c) =

K∑
k=1

P (zk)P (s|zk)P (c|zk) (5)

The parameters P (z), P (s|z), and P (c|z) can be
found using a model fitting technique such as the
Expectation Maximization (EM) algorithm as described
in [24]. The PLSA model for our approach is im-
plemented using the PennAspect6 model which uses
maximum likelihood to compute the three parame-
ters: P (c|z), P (d|z), and P (z). In our work, half of
the dataset is used to train the algorithm and the
other half is used for validation in order to prevent
overfitting [27].

5.2 Latent Drichlet Allocation
Latent Dirichlet Allocation (LDA) is another machine-
learning technique which uses a generative proba-
bilistic model for collections of discrete data. LDA

6. http://www.cis.upenn.edu/ũngar/Datamining/
software dist/PennAspect/index.html
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α

β Φ(k)

CZθ(i)

K

M

N

α is the parameter of the 

uniform Dirichlet prior 

on the per-service latent 

factor distribution.

β is the parameter of the 

uniform Dirichlet prior 

on the per-latent factor 

concept distribution.

Fig. 3. Plate Representation of LDA Model.

introduces a Dirichlet prior on the P (z|s) distribution
in order to simplify the problem of statistical infer-
ence [26]. The principle of LDA is similar to PLSA:
mapping high-dimensional count vectors to a lower
dimensional representation in latent factor space.

The generative process of LDA is shown in Figure 3
where the plates represent replicates. The outer plate
represents service descriptions (repeated M times)
and the inner plate represents the repeated choice of
latent factors and concepts within a service descrip-
tion (repeated N times) where M is the number of
service descriptions and N is the number of concepts.
The concepts c represent the observed data and z
represents the latent variables which need to be es-
timated. φk is a multinomial distribution of concepts
for latent factor k. θi is a multinomial distribution
of latent factors for service i. α and β are constant
hyperparameters of the Dirichlet priors on φk and θi
respectively.

Using the same notation described in PLSA, the
generative model of LDA can be represented as:

P (cj) =

K∑
k=1

P (cj |zk)P (zk) (6)

where P (zk) is the probability that latent factor k is
sampled for concept j and P (cj |zk) is the probability
of sampling concept j given latent factor k.

The multinomial distributions with dirichlet priors
are defined as:

Φ(k) = P (c|z) (7)

and

Θ(i) = P (z) (8)

Instead of estimating P (s|z) and P (c|z) as in PLSA,
the LDA generative model estimates Φ, Θ, and z.
Different methods can be used to train the algorithm

and estimate these parameters. Blei et al. [26] use vari-
ational inference with the Expecatation Maximization
algorithm. Wang et al. [27] estimate the parameters
using a method based on Gibbs Sampling which was
proposed in [33] and [30]. In general these solutions
provide methods using Expectation Maximisation to
estimate Φ, Θ, and z and do not effect the function of
the LDA model.

In our work, the LDA model is implemented using
LingPipe7 toolkit. This toolkit uses Gibbs sampling to
train the algorithm and estimate the parameters Φ, Θ,
and z.

5.3 Folding-In

Folding-in is a technique used for publishing (i.e.
fitting) new service descriptions into the latent factor
model after the model has been trained. New services
and also service requests can be expressed in terms of
latent factors by computing the distribution of latent
factors for the concepts that describe a new service or
a service request.

For PLSA, once the algorithm is trained and the
parameters are found, any new service description or
request can be folded into the model using [35]:

P (zk|snew) =
P (snew|zk) · P (zk)∑K

j=1 P (snew|zj)
(9)

For LDA, after training the algorithm, new service
descriptions or queries can be folded in using Gibbs
sampling by assuming a fixed service description to
concept probabilities P (c|s) and sampling the assign-
ment of concepts to latent-factors in the new service
description or request [27].

5.4 Determining the Number of Latent Factors

In PLSA and LDA the number of latent factors must
be decided before training. The choice of the number
of latent factors with respect to the original dataset
has an impact on the interpretability of the results. A
solution with too few latent factors will result in dis-
tributions over concepts for each latent factor that are
too broad [30]. A solution with too many latent factors
will result in uninterpretable latent factors. Griffiths
and Styvers [37] discuss a method for estimating the
posterior probability of the model while integrating
over all possible parameter settings. The number of
latent factors is chosen based on the model that leads
to the highest posterior probability.

Topic models based on non-parametric bayesian
statistics have also been used to automatically deter-
mine the number of latent factors that best explains
the observed data [38], [39].

Another method is to empirically determine the
number of latent factors that leads to the best general

7. http://alias-i.com/lingpipe/
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performance [30]. Griffiths and Styvers [37] discuss
that as the number of latent factors is increased
the model can more accurately fit the data until an
optimal point is reached. Increasing the number of
latent factors beyond this point makes the model more
complex than necessary and results in fitting noise (i.e.
overfitting) which degrades the performance of the
model. We evaluated the performance of our system
for increasing numbers of latent factors and the results
peak at K = 90 for 1000 services (where K is the
number of latent factors) before the performance starts
to decrease. These evaluation results are shown in
Figures 7 and 8. In Section 9 we discuss this in more
detail and describe the evaluation settings.

6 PROBABILISTIC SERVICE MATCHMAKING
AND RANKING

To achieve more automated service discovery, the
structure of a service request also needs to move from
syntax-based to machine-interpretable semantics. Tra-
ditional service request methods require the user to
specify the request in the form of a string. These meth-
ods rely on syntax and are harder for a machine to
interpret the meaning behind a service request. More-
over, it is difficult for the user to specify functional
requirements using a string. Machine-interpretable
semantics provide an alternative to service request
methods. Rather than specifying the requirements in
a string, the user can fill-in a service request template
rich with machine-interpretable semantics.

A semantic service request template follows the
same structure as a service description model. It can
contain the definitions of the required IO interface and
also other semantic concepts that describe the inter-
nal processes that are required. The use of machine
interpretable semantics enables the user to specify
functionalities (using existing semantic technologies)
and also the roles of the concepts involved.

Filling-in a service request template can be a man-
ual, semi-automated, or fully-automated process. A
semi-automated process uses machine-interpretable
semantics to recommend concepts to the user as the
request template is being filled-in. A fully automated
process occurs in machine-to-machine interactions
where the request template is filled automatically by
the client machine. The template does not need to be
filled-in completely. The user is free to input only
as much information as desired. However, a more
detailed service request template yields more accurate
and relevant search results.

Automated service discovery engines need to pro-
vide a search interface that enables both human and
machine clients to submit a request in the form of
a template which defines what type of functionality
is needed. The service discovery engine compares
the service descriptions to the request and returns
services which match the functionalities described in

the request. This ensures that services returned by the
discovery engine have inputs, outputs, and processes
that can fulfil the requirements of the client.

Our service search and matchmaking mechanism
works by computing the degree of match between a
query and a service description in latent factor space.
We map queries into latent factor space using the
folding-in techniques described in Section 5.3. The
degree of match between the probability distribution
of latent factors for the request and a service descrip-
tion can be calculated using a vector similarity mea-
sure. This is possible because for any service descrip-
tion/request the probability distribution over K latent
factors are expressed as a vector p̄ = {z1, z2, ..., zK}
where each dimension zk represents the probability
of that service description/request being generated
by sampling from latent factor k. We use a vector
similarity measure called Multidimensional Angle (or
Cosine Similarity). It uses the cosine of the angle be-
tween two vectors. Multidimensional angle is used in
various approaches dealing with vector-space analysis
of service data such as [15], [16], and [35]. This prox-
imity measure is computationally efficient because if a
dimension is not present in both vectors that are being
compared, it will be automatically dropped from the
calculation.

The multidimensional angle between a vector con-
taining the distribution of latent factors p of a service
and a vector containing the distribution of latent fac-
tors q of a query can be calculated using Equation 10.

cos(p, q) =
p · q

‖p‖ · ‖q‖
=

∑f
i=1 piqi√∑f

i=1 p
2
i

∑f
i=1 q

2
i

(10)

where f is the number of latent-factors.

The multidimensional angle takes values in the
interval [0, 1] where 0 indicates no similarity and
1 indicates identical vectors. Using this degree of
match, a query can be compared to all services in the
registry. This also allows ranking the results based
on the similarity score in descending order.

7 PROBABILISTIC CLUSTERING
Comparing a service request to all service descriptions
stored in a registry can be computationally expensive
in large service repositories. In such cases, it is desir-
able to have a scheme that helps us reduce the scope
of our search and thus reduce the amount of com-
parisons required. By organising the service registry
into clusters, we can determine which cluster contains
information that is most similar to a service request
and restrict the scope of our search to that cluster.
This reduces the number of comparisons required to
answer a request but it also means that any relevant
services that weren’t assigned to the clusters we look
into will be missed.
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The work described in this section extends our
previous work on probabilistic service clustering [28].
We use the latent factors learned from the probabilistic
models (PLSA and LDA) to group the services into
clusters. Each latent factor generated by the model
represents a particular subset of concepts. After the
model is trained, the distribution of concepts for each
latent factor is known and all the services in the
dataset can be described as a distribution of latent
factors (i.e. a vector p̄ = {z1, z2, ..., zK} where each
dimension zk reflects the probability of that service
description being generated by sampling from latent
factor k). We create K clusters; where K is the number
of generated latent factors (i.e. a cluster for each latent
factor). The vector of latent factors describing each
service is used to determine which latent factor best
describes the service. The service is then assigned
to the cluster corresponding to that latent factor. An
abstraction of this mechanism is shown in Figure 4.
If a service has more than one latent factor that is
related to it, the service will be assigned to each of
the clusters that correspond to these latent factors.

This approach gives us a number of advantages
over classical clustering algorithms [28]. The dimen-
sionality of the model is reduced as all services can
be described in terms of a small number of latent
factors rather than a large number of concepts. The
algorithm is also more scalable and can be applied
to large datasets because only a small portion of the
data set is required to train the algorithm. The rest
of the service descriptions and any other new service
published to the repository can be folded-in and as-
signed to clusters easily without high computational
requirements. Consequently, searching for a service
inside a cluster can be performed by searching for
matching latent factors rather than matching the text
describing the service to a set of key words extracted
from the service request.

Additionally, a service could be assigned to multi-
ple clusters (for example the three best fitting clus-
ters). This will increase the scope of each search.
Multiple cluster assignments achieve higher search
accuracy. However, it comes at the cost of increased
number of comparisons and computations (See eval-
uation results in Section 9.6.

8 EXTENDING TO BIGGER SERVICE ENVI-
RONMENTS

In order to extend LDA and PLSA to massive service
environments, the probability distribution of latent
factors over concepts needs to be re-learned when
the number of new concepts that are introduced for
describing the services significantly increases. In a
situation where many previously unseen semantic
concepts start appearing in new service descriptions,
the model would have to be re-trained in order to be
able to recognise the new concepts. The method can

Z1

5%

Z2

55%

Z3

27%

Z4

13%

Cluster #1

Cluster #2

Cluster #3

Cluster #4

Service 

Description

Vector of Latent 

Factors

The service is best described 

by latent factor Z2 and will be 

assigned to Cluster #2.

Probability of the 

service belonging to Z1

Fig. 4. Abstraction of the clustering mechanism for four
generated Latent Factors.

scale up by re-training the machine-learning model
whenever the new concepts exceed a proportional
segment of existing concepts. This can be defined by
heuristics and depends on preferred trade-off between
freshness and computational efficiency. The learning
process is unsupervised and can be set to be done as
an off-line task when the number of new concepts and
services are significantly high. The model can be re-
trained offline and once the new LDA or PLSA model
is constructed it can replace the existing model. This
means that even if the training process starts taking
longer as the size of the repository increases, the
performance of the system would still not be hindered
by the training phase. When the training phase is
completed and the new latent factors are known,
the service indexes can be updated and service de-
scriptions containing the previously unseen concepts
can now be recognised by the indexing and retrieval
processes. By repeating this process, the system can
efficiently adapt to new concepts as the repository
grows bigger over time.

Other possible solutions including non-parametric
Bayesian models such as the Chinese Restaurant Pro-
cess [40] could be also used to learn new latent
factors as new semantic concepts are observed. These
models allow the number of latent factors to increase
gradually as new concepts are observed without the
need of re-learning the latent factors [38], [39]. This
would allow latent factor models to be extended
more easily to bigger service environments. However,
exploring the usage of these models in automated
service discovery is beyond the scope of the current
paper and will be conducted in our future work.

9 EVALUATION

The dataset of service descriptions used in this experi-
ment is obtained from the OWL-S service retrieval test
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collection called OWLS-TC v3.08. The dataset consists
of 1007 service descriptions defined in OWL-S form.
The services are divided into seven categories and
a total of 29 sample service requests are provided
together with a relevant answer set for each request.
Table 1 shows the number of services and requests be-
longing to each of the seven categories in the dataset.

TABLE 1
Number of Services and Requests for each domain.

Domain Services Requests
Education 284 6
Food 34 1
Medical 73 1
Travel 165 6
Communication 58 2
Economy 359 12
Weapon 40 1

Concepts and their roles are extracted from these
OWL-S service descriptions using the parser de-
scribed in Section 4. The observed concepts are repre-
sented in a Service Transaction Matrix. The service
transaction matrix is used as training data for our
implementation of the PLSA model (based on the
PennAspect9 model that uses maximum likelihood to
fit the model to the observed data) and our imple-
mentation of the LDA model (based on the LingPipe10

toolkit that uses Gibbs sampling to fit the model to the
observed data). In order to prevent overfitting half of
the service transaction matrix is used to train the al-
gorithm and the other half is used for validation [27].

The clustering mechanisms based on PLSA and
LDA are evaluated using the Normalised Mutual In-
formation (NMI) [41] which reflects the accuracy of
the clustering scheme against the number of clusters
generated. If the number of clusters is increased more
than necessary, the NMI value will stop increasing,
thus reflecting the fact that no further accuracy is
achieved by increasing the number of clusters. The
NMI gives an approximation of the required number
of latent factors needed to efficiently represent all the
data in the repository. There are seven service cat-
egories defined in OWLS-TC: communication, econ-
omy, education, food, medical, travel, and military.
The categories are used as the base classes to evaluate
Purity, Entropy, and Mutual Information [41] of the
clustering schemes which are in turn used to calculate
the NMI .

We evaluated our matchmaking and ranking ap-
proach by calculating the Precision at n (P@n) [42]
and the Normalised Discounted Cumulative Gain
(NDCGn) [43] for the results obtained for each of the
sample service requests. These are standard evalua-
tion techniques used in Information Retrieval to mea-

8. http://www.semwebcentral.org/projects/owls-tc/
9. http://www.cis.upenn.edu/ũngar/Datamining/

software dist/PennAspect/index.html
10. http://alias-i.com/lingpipe/

sure the accuracy of a search mechanism with re-
spect to completeness of the returned results [27]. The
averaged Precision at n and Normalised Discounted
Cumulative Gain were measured for up to the first 40
services retrieved from the complete list of results.

The methods (based on PLSA and LDA) described
in Section 6 are compared with a syntax-based ap-
proach powered by Apache Lucene11 and also meth-
ods from the OLWS-MX 2.012 semantic Web service
matchmaker (M0 and M4) [18]. M0 is a logic-based
approach and M4 is a hybrid approach that uses both
logic and non-logic-based methods. The number of
latent factors used for LDA and PLSA was determined
by evaluating the Precision at n and Normalised Dis-
counted Cumulative Gain performance of the system
for different number of latent factors. In the next
section, the method based on PLSA is labelled PLSA,
the method based on LDA with search narrowed
to the nearest cluster is labelled LDA with n Cluster
Assignments (where n corresponds to the maximum
number of clusters a service can be assigned to), and
the method based on LDA with a search which spans
the whole dataset is labelled LDA Full Registry Search.

The sample service requests provided in the dataset
are all in the form of OWL-S templates and contain
the semantic requirements together with a text de-
scription of the queried functionality. For PLSA and
LDA, these request templates are converted to latent
factor space using folding in and then matched to the
services in latent factor space. For the two OWLS-
MX variants the search templates are submitted using
the OWLS-MX user interface. For the syntax-based
approach, the text descriptions taken from the request
templates are used as the query string.

We also investigated how assigning the services
to different number of clusters at the same time
effects the performance of the search and ranking
mechanism. By assigning all service descriptions to
more than one cluster, purity becomes a confusing
measure because each cluster will now contain service
descriptions from a wider variety of categories rather
than a very specialised set. LDA with different num-
ber of cluster assignments is evaluated by comparing
the averaged Precision at n (P@n) and the Normalised
Discounted Cumulative Gain (NDCGn) values over all
29 service requests for different numbers of cluster
assignments.

All experiments were carried out on a computer
with Intel(R) Core(TM)2 Duo T7500 2.2GHz CPU, 2GB
RAM, and running Microsoft Windows 7 x86.

9.1 Purity
The Purity of clusters is used as a measure to evaluate
the accuracy of a clustering technique [44], [35]. If
the pool of services used to evaluate the algorithm

11. http://lucene.apache.org/
12. http://semwebcentral.org/projects/owls-mx/



IEEE TRANSACTIONS ON SERVICES COMPUTING 10

were originally organised in an ideal set of classes
c = {c1, c2, ..., cm}, then for clusters generated by the
algorithm Z = {z1, z2, ..., zK} the purity of a clustering
algorithm can be computed as:

Purity =
1

M

k∑
f=1

maxc
{
ncf
}

(11)

where M is the total number of services and nck is
the number of services in cluster zk belonging to class
c while c varies from 1 to m.

It is easy to obtain a high value of cluster purity
if the data set is clustered into a large number of
clusters (in relation to the number of available services
in the dataset). With a large number of clusters, small
clusters will be formed. If each cluster is very small,
the likelihood of having a high percentage of the
cluster belonging to one known class could be very
high.

9.2 Entropy
Entropy is a measure of the consistency for clus-
tering [44]. The entropy for a cluster set Z =
{z1, z2, ..., zK} is defined as:

H(Z) = −
K∑

k=1

|zk|
M

log
|zk|
M

(12)

where M is the total number of services and |zk| is
the number of services in cluster zk.

9.3 Normalised Mutual Information
Mutual Information measures the mutual dependence
between two variables. In this context, mutual infor-
mation for clustering set Z = {z1, z2, ..., zK} and an
ideal set of classes c = {c1, c2, ..., cm} is defined as:

I (Z,C) =

K∑
k=1

m∑
i=1

|zk ∩ ci|
M

log
M |zk ∩ ci|
|zk| |ci|

(13)

where M is the total number of services.

We use Normalised Mutual Information (NMI) as
another measure to evaluate the clusters. Normalised
Mutual Information [41] is designed to penalize clus-
tering methods which use a large number of clusters.
NMI can show clearly that once a certain number of
clusters is reached, no further advantage is gained
by increasing the number of clusters. The NMI of a
clustering technique can be computed as:

NMI (Z) =
I (Z,C)

[H (Z) +H (C)] /2
(14)

NMI normalises the Mutual Information with the
denominator [H (Z) +H (C)] /2 which increases as
the number of clusters increases and each cluster

becomes smaller. This gives us a mean to compare the
quality of a clustering technique for different values
of generated clusters. The value of NMI is always
between 0 and 1 [41].

9.4 Precision @ n

Precision measure is used to evaluate the results of the
search and matchmaking process. Precision @ n [42]
is a measure of the precision of the system taking into
account the first n retrieved services. Precision reflects
the number of retrieved services which are relevant to
the search. The precision for a set of retrieved services
is given by:

precision =
|{RelevantServices} ∩ {RetrievedServices}|

|{RetrievedServices}|
(15)

where the set of relevant services to a given request
is defined in the high relevance OWLS-TC v3.0 test
collection. Only services in the dataset with a graded
relevance of 3 are considered for this evaluation.

9.5 Normalised Discounted Cumulative Gain

The NDCGn [43] is a measure that takes into account
the graded relevance of each service retrieved. This
measure is particularly useful for evaluating ranking
strategies since not all services in a relevance set are
of the same relevance to the request. The NDCGn for
n retrieved services is given by Equation 16.

NDCGn =
DCGn

IDCGn
(16)

where DCGn is the Discounted Cumulative Gain
and IDCGn is the Ideal Discounted Cumulative Gain.

The IDCGn is found by calculating Discounted
Cumulative Gain of the ideal first n returned services
for a given request. The DCGn is calculated by Equa-
tion 17.

DCGn =

n∑
i=1

2label(i) − 1

logb(1 + i)
(17)

where n is the number of services retrieved, label(i)
is the graded relevance of the service in the ith
position in the ranked list, b is the Discounting Factor
which models the user’s persistence (e.g. impatient:
b = 2; persistent: b = 14).
NDCGn gives higher scores to solutions which

rank services with higher relevance first and penalizes
solutions which return services with low relevance.
In our experiments we set b = 2 and used graded
relevance scheme with values from 3 (high relevance)
to 1 (low relevance). We have used both Precision @
n and NDCGn for evaluating the matchmaking and
ranking results as described in the following section.
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9.6 Results

The evaluation results for Entropy, Mutual Informa-
tion, and NMI of PLSA based clustering and LDA
based clustering are shown in Figure 5 and Figure 6.
As the numbers of generated latent factors (clusters)
is increased, the purity of both clustering mechanisms
keeps increasing (as explained in Section 9.1). On the
other hand, NMI penalizes the score if the number of
clusters is increased beyond a point where generating
more clusters does not increase the accuracy of the
clustering mechanism [41]. NMI provides a guideline
for the number of latent factors that we need to gener-
ate in order to obtain an accurate representation of the
original dataset. However, for the service search and
matchmaking process, services are not just assigned
to a cluster but they are also assigned to a vector
which describes the distribution of latent factors for
each service. Therefore the ideal number of latent
factors needed for the whole search and matchmaking
process differs from the ideal number required for just
clustering the services. Empirical results (Figures 7
and 8) suggest that 90 latent factors lead to the best
general performance of the ranking and matchmaking
process on the dataset used for evaluation. Thus
for the evaluation of the service matchmaking and
ranking, the LDA and PLSA models were trained to
generate 90 latent factors.

Figure 9 and Figure 10 show the comparison of
P@n and NDCGn scores for LDA with different num-
ber of cluster assignments. In both cases, LDA with
full registry search represents the best case scenario
where the process checks every service in the registry.
The LDA methods with different cluster assignments
show the effect of restricting the scope of search on
the average P@n and NDCGn scores of the method.
LDA with one cluster assignment exhibits the least
P@n and NDCGn performance while as we allow
services to be assigned to more clusters (thus increas-
ing the scope of the search), the P@n and NDCGn

performance start approaching that of LDA with full
registry search.

The average P@n and NDCGn are obtained over
all 29 service requests for LDA, LDA with 3 Clus-
ter Assignments, PLSA, Text-Matching, OWLS-M0,
and OWLS-M4. The results are shown in Figures 11
and 12 respectively. The P@n results show that Text-
Matching and the logic-based OWLS-M0 were unable
to find some of the relevant services that were not di-
rectly related to the queries through logic descriptions
or keywords. The PLSA model does not capture the
information in the latent factors as efficiently as LDA
and thus the search and matchmaking mechanism
based on PLSA exhibits poor precision. LDA captured
more information in the latent factors than PLSA and
the LDA based mechanisms exhibited better precision.
LDA with 3 Cluster Assignments performed better
than Text-Matching and the logic-based OWLS-M0

Fig. 5. Purity, Entropy, and NMI for LDA

but exhibited less precision than the LDA Full Reg-
istry Search. The LDA Full Registry Search managed
to find some of the relevant services that LDA with
3 Cluster Assignments missed out due to the lim-
ited scope of the latter mechanism. OWLS-M4 also
found more relevant services than the Text-Matching
approach and the logic-based OWLS-M0. The LDA
Full Registry Search performed better than OWLS-M4
and the other matchmaking mechanisms.
NDCGn evaluates the ranking mechanism and it

is the most important measure to evaluate the auto-
mated search and matchmaking process. The top most
relevant (e.g. the first five or ten) results retrieved by a
search and matchmaking process are the main results
that will be used by the client user. Both LDA based
mechanisms perform better than the other search and
matchmaking mechanisms in this experiment. The
LDA Full Registry Search holds a higher NDCGn

than all other methods for any number of services
retrieved, this reflects the accuracy of the probability
based ranking mechanism used by our method. Text-
Matching and OWLS-M0 have a low NDCGn be-
cause, as shown in the P@n results, both mechanisms
are unable to find some of the highly relevant services.
PLSA exhibited poor NDCGn results as expected due
to its inaccuracy in extracting latent factors. OWLS-M4
exhibited a high NDCGn but was outperformed by
both LDA methods for the first five services retrieved
and outperformed throughout by the LDA Full Reg-
istry Search.

Table 2 shows the average query response times for
LDA, LDA with different number of cluster assign-
ments, PLSA, and Text-Matching. The average query
response time of the OWLS-MX variants could not
be obtained due to an unsolved software issue on
the available open source software13. Text-Matching is
faster than the other methods as it is powered by the
optimised text search engine Apache Lucene. PLSA
is faster than the LDA methods because the folding-

13. By accessing the OWLS-MX software, some queries take
extremely long time to respond which made them inapplicable for
comparison. This was also acknowledged by the developers of the
software
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Fig. 6. Purity, Entropy, and NMI for PLSA

Fig. 7. P@n peformance of LDA for different numbers
of Latent Factors.

Fig. 8. NDCGn peformance of LDA for different num-
bers of Latent Factors.

Fig. 9. Comparison of P@n scores for LDA with differ-
ent numbers of Cluster Assignments for each service.

in process requires less computations. The LDA with

Fig. 10. Comparison of NDCGn scores for LDA with
different numbers of Cluster Assignments for each
service.

Fig. 11. Averaged P@n values

Fig. 12. Averaged NDCGn values

clustering methods gives a faster query response time
than the LDA Full Registry Search. However, this
comes at the cost of reduced accuracy in matchmaking
and ranking. Increasing the number of cluster assign-
ments increases the accuracy of the matchmaking and
ranking but also increases the query response time as
more services need to be checked before the results
are found. Considering the fact that query folding-
in will happen independent from underlying dataset,
the response time for LDA is still highly scalable. The
process takes longer than PLSA or Text-Matching due
to initial query folding in. However, for similarity
measures the process relies on a vector similarity
function (which in this work is a Cosine Similarity
measure) to match every service in the repository with



IEEE TRANSACTIONS ON SERVICES COMPUTING 13

the request. Therefore if n is the number of services
in the repository, this makes the complexity of the
main process as O(n) plus an initial query fold in
process time. For the LDA with Clustering search,
the time scale will remain lower as only a limited
number of clusters will be searched for each query
and it is mainly dependent on how many services will
be included in each cluster.

TABLE 2
Averaged Query Response Times.

Method Time (ms)
LDA Full Registry Search 15.0743

LDA 1 Cluster Assignment 11.7316
LDA 3 Cluster Assignments 12.3868
LDA 5 Cluster Assignments 13.4581

Text Matching 10.6350
PLSA 10.7271

10 CONCLUSIONS AND FUTURE WORK

This paper describes using probabilistic machine
learning for service matchmaking and ranking. We
discuss using LDA and PLSA methods to transform
the service descriptions to latent factor space. The
proposed solution applies unsupervised probabilistic
machine learning methods (i.e. LDA and PLSA) to the
service description data and creates a lower dimen-
sional vector model to represent the services. A fold-
in approach is used to process service search queries
and to add new services to the model. A vector
distance model is used to calculate the similarity of
vector representations in the latent factor space. We
have evaluated our results against a syntax-based
search (by employing Apache Lucene) and also exist-
ing logic-based and hybrid methods using OWLS-MX
software. The results show that our LDA-based ap-
proach performs better than other solutions in terms
of Precision@n and Normalised Discounted Cumula-
tive Gain (NDCGn) values. The proposed solution is
also scalable to large service repositories as it does not
require re-training of the model when new services
are added. The new services can be folded into the
model by using Gibbs Sampling or any other similar
methods. The similarity value between services is
obtained by measuring the distance between service
vectors or service and request vectors in the latent
factor space. The similarity value is also used as a no-
tation for similarity ranking. The proposed methods
enable automated service discovery by processing ser-
vice request templates or keyword/attributes-based
queries and retrieving the most relevant services to
the submitted request. The latent factor model can
also be used for clustering services according to their
similarity to a set of specific clusters in the latent fac-
tor space. The clusters can be used for distribution of
service descriptions in the latent factor space among
different registries in a distributed environment for

large-scale service platforms. By applying this method
similarity of a service request to different clusters can
be used as criteria to reduce the scope of the search
to a limited number of clusters.

The future work will focus on including a semantic
analysis and logic based search in combination with
our current solution to further enhance the search
results. This will use the current model to find the
service similarities based on the clusters and then the
detailed search will be performed based on a seman-
tic analysis method. We will also investigate using
the service discovery and matchmaking solution to
support an automated service composition process.
Enhancements of setting the number of latent factors
and number of clusters using different methods will
also be considered in the future work to optimize
the result and processes in LDA and PLSA based
solutions.
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