
1

Verification of Semantic Web Service
Annotations Using Ontology-Based Partitioning

Khalid Belhajjame, Suzanne M. Embury, and Norman W. Paton
School of Computer Science, University of Manchester

F

Abstract—Semantic annotation of web services has been proposed
as a solution to the problem of discovering services to fit a particular
need, and reusing them appropriately. While there exist tools that assist
human users in the annotation task, e.g., Radiant and Meteor-S, no
semantic annotation proposal considers the problem of verifying the
accuracy of the resulting annotations. Early evidence from workflow
compatibility checking suggests that the proportion of annotations that
contain some form of inaccuracy is high, and yet no tools exist to help
annotators to test the results of their work systematically before they
are deployed for public use. In this paper, we adapt techniques from
conventional software testing to the verification of semantic annotations
for web service input and output parameters. We present an algorithm
for the testing process, and discuss ways in which manual effort from the
annotator during testing can be reduced. We also present two adequacy
criteria for specifying test cases used as input for the testing process.
These criteria are based on structural coverage of the domain ontology
used for annotation. The results of an evaluation exercise, based on
a collection of annotations for bioinformatics web services, show that
defects can be successfully detected by the technique.

Index Terms—Semantic web services, semantic annotations, test ade-
quacy, specification-based testing, model-based test generation.

1 INTRODUCTION
Semantic annotations of web services have been pro-
posed as a (partial) solution to web service discovery and
composition [5], [4]. These annotations relate the various
service elements (i.e. operations, inputs and outputs)
to concepts in ontologies describing their semantics,
form and role. For example, an operation which takes
a protein sequence as input and performs a search for
the most similar protein in some given database might be
annotated with the task concept SimilaritySearch. Its sin-
gle (string-valued) input parameter might be annotated
with the concept ProteinSequence, and its output with the
concept ProteinAccessionNumber.

Such semantic annotations can be used by tools to
e.g., assist in service discovery and composition [16],
[17]. Such tools can only be of value if semantic anno-
tations accurately reflect web services’ semantics. Our
experience using data flow connections between ser-
vices in workflows to check compatibility of annotations
has revealed that this is frequently not the case [2].
Manual annotation of services is a time-consuming task
that requires expertise in the application domain, in its
representation in the specific ontology being used, and

in the task supported by the web service. Where the
annotations are supplied by the web service providers,
one would reasonably expect them to be of good quality,
in the sense that the chances that they suffer from errors
can be low. However, the annotation task is generally not
integrated within the web service development lifecycle,
and, as a result, web services are often annotated by
third parties. For example, web service annotations in
registries, such as Biocatalogue1, are provided in the
majority of cases by the users of web services or curators
who are hired to perform the annotation task, and not by
the service providers. In the typical case, the annotator
will have been involved with neither the design of the
domain ontology nor the implementation of the web
service, and there is therefore considerable scope for
mistaken interpretations of concepts and behaviours in
selecting annotations. Despite this, there is a dearth of
tools and methods that can assist in the verification of
annotation accuracy. Based on discussions with annota-
tors working on the myGrid project2, peer inspection of
annotations is the main means of verification in practical
use, supplemented with feedback from users after the
annotations have been published.

In this paper, we explore how techniques from soft-
ware testing can be applied to the problem of verifying
semantic annotations of web service parameters. Soft-
ware testing is a well established discipline that has
been a major research topic in software engineering
during the last three decades, techniques from which
have proved to be effective in practice for verifying
that the behaviour of a software program conforms with
its specification [18]. A software program, e.g., a web
service, is tested by using a test suite composed of a
collection of test cases, each of which specifies data val-
ues for feeding the software execution and the outputs
expected as a result according to the specification. The
software is executed using the input values specified by
the test cases. A defect is found if the outputs delivered
as a result of the software execution are different from
those expected by a test case.

1. http://www.biocatalogue.org
2. http://www.mygrid.org.uk

2

We adapt the above technique for verifying the an-
notations of web services. We begin by examining the
semantics of annotations on service parameters, and
derive from this the form of a test case for parameter
annotations (Section 2). These semantics provide us with
the basics of an oracle for automatic test case generation
(Section 3). An exhaustive test that uses every possible
test case can be expensive, and most of time is impossible
as the domains of the inputs can be infinite. Because of
this, only a subset of possible input values is used to con-
struct test cases. To ensure that this subset is representative
of the range of possible input values, thereby increasing
its defect-detecting power, it is constructed carefully
based on test adequacy criteria. In this respect, we
propose two new adequacy measures, based on coverage
of concepts in the ontology used for annotation, that
can be used to automatically select the inputs needed to
form representative test suites (Section 4). We assess the
effectiveness of the adequacy criteria by applying them
to the verification of real-world annotations produced
by a domain expert, and show that both approaches
result in much higher defect detection rates than when
the same number of test cases are selected at random
from the input pool (Section 5). We compare our method
to existing proposals (in Section 6), and conclude by
highlighting our main contributions (in Section 7).

2 VERIFYING SEMANTIC ANNOTATIONS

Semantic annotations for web service parameters are
effectively high-level descriptions of the domains of the
parameters that go beyond the usual data types found
in interface description languages (such as WSDL). As
such, it should be possible to generate test cases based
on the information they contain, in much the same way
as is done in other forms of model-driven/specification-
based testing (e.g. [9], [10], [24]). In these approaches,
however, the specification is regarded as being the cor-
rect description of the software’s behaviour, and the
test cases created are intended to reveal defects in the
software. In the case of semantic annotations, however,
which are typically generated after the code has been
publicly deployed, and by some third party not involved
in its creation, the software is considered to be de facto
correct and the test cases derived are intended to verify
that the specification accurately reflects its behaviour. In
addition, we are not attempting to verify the complete
behaviour of the web service. Instead, we are attempt-
ing to verify a somewhat weaker proposition, namely,
whether the concepts used to annotate the parameters
are accurate descriptions of the sets of values that can
legally be input to or output by the service.

In the standard model-based test case generation ap-
proaches, for a web service with n input parameters,
we would use the specification model to generate the
following pieces of information for each test case:

• An n-tuple containing the values that should be
used as inputs to the web service in one test run.

• A statement of the expected outcome of the test
when these input values are given.

In order to generate test cases for semantic parameter
annotations, therefore, we must show how to create both
these test case components based only on the ontology
concepts that have been assigned to the web service
parameters under test.

2.1 Generation of Inputs for Parameter Tests

Since web services are black-box software components,
we must find a way to verify the input parameter
semantics by executing the services and observing the
result. In conventional testing, we would be interested
in the actual data value returned by the web service for
some given input values, but in this context, as we have
said, we are testing only whether the input is legal for
the service and not whether it leads to a correct result.
How, then, can we determine whether an input is legal
based on observation of the execution of the service?

In order to provide one possible answer to this ques-
tion, we introduce the notion of acceptance of an input
parameter by a web service operation. The web service
interface standard allows programmers to clearly distin-
guish normal termination of an operation (in which a
result message is returned, for example) from abnormal
termination (in which an exception is thrown). Therefore,
we can say that an input (or collection of inputs) is
accepted by an operation only if, when supplied with
the input(s) as parameters, the operation terminates nor-
mally. This gives us a very simple operational means of
distinguishing web service behaviour with valid inputs
from that with invalid inputs. Note, however, that in
practice, unfortunately, it is more difficult to interpret
both normal and abnormal terminations of web services.
In the case of abnormal terminations, there are several
other factors that might cause a web service to exit with
an exception, besides being supplied with an invalid
input. For example, an e-bookstore may report that the
book is out of order. Such a termination should not be
interpreted as abnormal. Also, the server hosting the
web service might be temporarily inaccessible, or the
service may be attempting to manage its own load by
refusing requests when its load gets too high. In some
cases, problems will go away if the tests are run again,
and the user need not be bothered with them. However,
in others, the only safe way to interpret the results of
the test is to ask a human user to investigate. Similarly,
a service execution which seems normal, i.e., does not
throw any exception, may be unsuccessful. Although
the web services standards provide proper exception
mechanisms for flagging errors to the caller, many web
service implementations make no use of them. This is
commonly the case when a web service is rapidly imple-
mented by wrapping existing software implemented in a
programming language that did not support exception
handling. Such programs typically report errors to the
user by returning an empty string, or a string value that

3

contains an error message. For example, the getUnipro-
tEntry web service provided by the DDBJ3, returns an
empty message when the value used as input is invalid.
Where the forms of these error messages are known,
we can write string matching functions that distinguish
between a normal and an abnormal termination even
when no exception has been thrown.

We can see that to test a semantic annotation for
an input parameter, we should generate a collection of
legal and illegal values for the parameter, and create test
cases which look for normal and abnormal termination
respectively. For a given parameter ip annotated with
concept c

ip

, the set of legal values are those which are in
the extension of c

ip

and the set of illegal values are those
in the extension of ¬c

ip

(i.e., any value in the extension of
any concept that is not equivalent to c

ip

and which is not
in the extension of c

ip

). Thus, to generate candidate input
values, we need a pool of data values that are annotated
with the ontology concepts to which they belong.

Since semantic types are typically more complex than
standard data types, the task of generating values for
them is correspondingly more challenging. Although
some finite numeric ranges or simple enumerated types
may be present as parameters for some operations, in
general we cannot expect to be able to provide a set of
built-in data generators that will cover the majority of
cases, as we can in software testing. For certain semantic
types, it may be possible for the user to indicate a
computational procedure by which candidate instances
can be obtained. For example, a large and representative
collection of ProteinSequence instances can be created
by querying one of the major public protein databases
(such as Uniprot4). This may be a satisfactory solution
for semantic types that occur frequently in operation
parameters, but it demands too much effort from the
annotator to be a good general solution.

An alternative source of annotated instances does
exist, however, namely, workflow provenance logs [6].
A provenance log is effectively an execution trace that is
recorded by the workflow management system during
workflow enactment. Most importantly for our pur-
poses, these logs contain copies of the intermediate data
values that were produced by the execution of each
component service in the workflow. Every data item that
was passed as an input parameter to some component
service, or returned as an output, is recorded in the log.
Where those services have been semantically annotated,
the logged data values are also tagged with the semantic
type of the parameter with which they are associated.

By trawling these workflow logs, we can collect an-
notated instances for use in test case generation. Note,
however, that the annotations found in the provenance
logs may not be entirely accurate. As in object-oriented
programming, if an input parameter has a semantic type
of c then it may legitimately take instances of c or any

3. http://xml.nig.ac.jp
4. http://www.uniprot.org

of its subconcepts as values. Thus, the annotations given
to the data values in the provenance logs may often be
superconcepts of the correct annotations, and therefore
somewhat inaccurate. Fortunately, however, this does
not affect the validity of their use in test case genera-
tion. Consider, for example, an operation which takes
a Sequence but which is supplied with an instance of
ProteinSequence (a subconcept of Sequence) as an input at
run-time. This instance will then be mistakenly tagged as
a Sequence in the provenance logs, and may be supplied
as a possible test input whenever Sequence instances are
required. But, since the instance actually is an instance
of its tagged class, no serious consequences arise.

It is worth stressing that only workflows with services
that have annotations that are known to be correct
are used. Moreover, the instances that are collected by
trawling provenance logs are checked by a human user
before they used in the generation of test cases.

So far, we have focused on the values to be used
for constructing the test cases for input parameters.
Regarding the test cases for output parameters, we ex-
ploit an obvious source, namely the results generated by
the service operation in question when invoking them
using the (legal) input values from the pool of annotated
instances.

2.2 Determining Expected Outcome for Parameter
Tests Under the Weak Semantics
To complete the test case for a given operation param-
eter, we must be able to determine what the expected
outcome of the case should be, if its annotation is an
accurate description of the legal values for that param-
eter. For this, we need a clear statement of the intended
semantics of parameter annotations. Unfortunately, the
literature on semantic web services has not reached a
consensus on exactly what the meaning of a semantic
annotation for an operation parameter is. Two alternative
semantics can be gleaned from the literature. Unsurpris-
ingly, the clearest statement of intended semantics can
be found in the proposals for languages for specifying
semantic annotations (such as SAWSDL5, WSML6 and
OWL-S7). The specifications of these languages state that
all valid inputs for an annotated parameter must belong
to the domain concept with which it has been annotated.
However, it is not necessary for the operation to accept
all such instances as valid (or, at least, such a condition is
not explicitly stated by the authors of these proposals).

To illustrate this point with an example, let us return
to the SimilaritySearch operation mentioned earlier, the
sole input parameter of which is annotated with the
ProteinSequence concept. This annotation should be read
as indicating that no instances of any concepts that are
disjoint with ProteinSequence should be accepted by the
operation; so no NucleotideSequence instances should be
accepted, nor any Organism instances. But, there may

5. http://www.w3.org/TR/sawsdl/
6. http://www.wsmo.org/wsml/
7. http://www.daml.org/services/owl-s/1.0/

4

also legitimately be instances of ProteinSequence that
cannot be accepted by the operation.

We call this interpretation of the annotations the weak
semantics, since it does not place very stringent require-
ments on which instances the operation can accept. Sim-
ilarly, under the weak semantics, the instances that are
generated by an operation output belong to the concept
used for annotating that output. However, the output is
not required to produce every possible instance of the
concept used for annotation. With the following nota-
tion, we can define this semantics formally. An operation
op has a set of input parameters given by the function
inputs(op) and a set of outputs given by outputs(op). A
parameter is denoted by a pair hop, pi where p is the
name of the parameter and op is the operation to which
the parameter belongs. The set of all input parameters is
INS and the set of all outputs is OUTS. If ✓ is the set
of concepts {c1, . . . , cn} in our domain ontology, then
the function: domain : INS [OUTS ! ✓ returns the
domain annotation for any given parameter. Given a
function hasInstances(), which takes a concept and returns
the set of all instances of that concept, we can define a
correct parameter annotation under the weak semantics
as follows.

Definition 2.1: An input (resp. output) parameter
hop,pi is annotated correctly under the weak semantics
iff:

• there exists an instance i 2
hasInstances(domain(hop, pi)) that is accepted
(resp. generated) by op, and

• no instance j 2 hasInstances(¬domain(hop, pi)) ex-
ists that is accepted (resp. generated) by op.

Based on this definition, we can see that if an op-
eration accepts (resp. generates) a particular instance
of a concept that is disjoint with the annotation c for
the relevant input (resp. output) parameter, then the
annotation is incorrect. However, if an instance of c is
not accepted (resp. generated) by the operation, then we
cannot conclude that the annotation is incorrect.

As explained earlier, in the case of input parameters,
we use operation acceptance as a means for determining
validity based on the execution of the web service oper-
ation in question. We need a similar operational means
for output parameters. By selecting legal input values
from our pool of annotated instances, we can create a
set of output values produced by the operation. How-
ever, to determine the result of the test case, we need
to determine to which semantic concept the instance
produced belongs. This is a much harder task than we
faced when generating input parameter test cases, when
we were given a concept and had to locate instances in
its extension. In the case of output parameters, we have
the reverse task. For example, given a string value, we
must determine whether it is an instance of DNASequence
or GeneIdentifier or LabName.

Annotating an instance, that is discovering the seman-
tic type of an instance, based solely on its content is, in
general, a difficult task. One (last resort) option would

be to rely on the domain expertise of the annotator, and
to ask him or her to classify the output values produced
by the web services. However, it would obviously be
preferable if some automatic means of classifying output
instances could be found.

In fact, an automatic mechanism does exist. Our dis-
cussion of the requirements for testing input parameters
points to a resource of software components able to
perform this classification task: namely, the annotated
web services themselves. Consider, for example, a web
service with an output that is annotated with the Ge-
neOntologyID concept. If we assume that the annotations
of service inputs have a strong semantics (see Section
2.3), then any web service with an input parameter
annotated with this same concept can, in theory, act as
a means of testing whether the output value belongs to
the concept or not. For instance, we can potentially use
the GetGOTerm8 web service to verify the semantic type
of any values claiming to be instances of the GeneOntol-
ogyID concept. If GetGOTerm accepts the output value,
then we know it is a valid gene ontology ID.

A test case for an output parameter annotation, there-
fore, looks similar to that for an input annotation. We
must provide a collection of values to be used as the
inputs to the operation under test, in order to generate
a sample output value. We then define the expected
response in terms of normal or abnormal termination
of a web service. The main difference is that the test
case involves the execution of a composition of two
operations, rather than just one operation.

All this, however, depends upon the rather rash as-
sumption that the input annotations are correct. Since we
have evidence to suggest that quite a high proportion of
annotations are inaccurate to some degree or other [2],
this approach to verifying output parameters should
only be used with web services with trusted input
annotations. This suggests a phased approach to testing,
in which the annotator first concentrates on verifying
the input annotations for a batch of web services, and
on correcting any errors found, before beginning to
tackle the correctness of output annotations. Another
advantage of this phased approach is that we can collect
and record the details of the output values generated
while testing the input parameters, and thus save some
time in the output parameter testing phase.

2.3 Determining Expected Outcome for Parameter
Tests Under the Strong Semantics
The annotation of an operation input is said to have a
strong semantics, if the operation accepts any instance
that belongs to the concept used for annotating the
input. This alternative strong semantics for input pa-
rameter annotations is implied by the requirements of
several applications in which annotations are used, in
particular service discovery and workflow composition.
Consider, for example, tools that assist designers in the

8. http://www.inab.org/dproxy/inb.bsc.es/getGOTerm?wsdl

5

composition of workflows, e.g., Biomoby Taverna plug-
in [25] and Galaxy [7]. Given a service operation in an
incomplete workflow, such tools suggest to the designer
the service operations that can be composed with it,
in order to move towards the completed workflow.
Specifically, such tools use the semantic annotations of
output parameters to search for services that are able
to consume the values output by the service already in
the workflow. The implication here is that the suggested
service operations are able to consume any instance of
the concept used to annotate the output of the preceding
service in the workflow. The same implication can be
made from tools that diagnose parameters connections
to detect mismatches [1].

We can formally define correctness of annotations
under this strong semantics, as follows.

Definition 2.2: An input parameter hop,pi is annotated
correctly under the strong semantics iff:

• every instance i 2 hasInstances(domain(hop, pi))
is accepted by op, for every assignment of valid
instances to all other input parameters of op, and

• no instance j 2 hasInstances(¬domain(hop, pi)) ex-
ists that is accepted by op for some assignment of
instances to all other input parameters of op.

Note that while the annotations of input parameters
specified using languages such as OWL-S and WSMO
have a weak semantics, these languages offer a mecha-
nism, namely preconditions, using which the semantics
of annotations specified can be upgraded from weak
to strong. Specifically, using WSMO, for example, every
operation op can be associated with a precondition prec,
that only holds when the values bound to the inputs
parameters of the operation op are accepted by op.

In the rest of this paper, we assume that the input
annotations has a strong semantics, since it is the seman-
tics adopted in practice as illustrated in the workflow
composition example presented above. That said, we
discuss the conclusions that cannot be made when the
annotations have a weak semantics.

Regarding output parameters, it does not seem rea-
sonable to insist that an operation with an output anno-
tated with a concept c

op

must be capable of outputting
every possible instance of c

op

. To illustrate this using an
example, consider a service operation that produces a
biological sequence. It is neither reasonable nor practical
to require such an operation to be able to produce
every possible sequence. Instead, service operations that
produce outputs of that kind are confined to biological
sequences that are either stored in a public database
or in-house labs. Also, the set of output instances are
usually reduced to the subset of the instances of c

op

that are output given valid input parameters for the
operation. Given the above reasons, we consider only
a weak semantics for output parameters.

The above definitions formalise the sets of valid and
invalid inputs implied by the annotations, and so pro-
vide us with a means of deducing the expected output
for a given test case (in terms of normal or abnormal

termination of the operation). In the case of input param-
eters, if the annotations have a strong semantics, then we
can be more confident in interpreting the results of the
test than we could with the weak semantics. Here, if an
instance of a concept c is not accepted by an operation
for an input parameter that is annotated with c, then we
know that the annotation is definitely incorrect, since all
instances of c should be valid for this parameter.

Based on all this, we can now specify the full al-
gorithm for testing semantic annotations for input and
output parameters.

3 ANNOTATION VERIFICATION APPROACH
We start this section with an overview of the lifecycle
of semantic web service annotations. We then present
the details of the phases that constitute the annotation
verification process.

3.1 The Lifecycle of Semantic Web Service Annota-
tions
Figure 1 shows that the lifecycle of semantic annotations
of web services can be decomposed into three main
steps: annotation, verification and use.

In the first step, Annotation, web services are annotated
either manually, e.g, using Biocatalogue9 or Radiant [12],
or semi-automatically using tools such as Meteor-S [20],
APIHUT [11], KINO [21]. These tools provides the user
with suggestions for terms that can be used for anno-
tation, and which are inferred using existing schema
matching and machine learning techniques. Detailed
information about the above annotation tools is given
in the related work section.

In the second step, Verification, semantic annotations
are verified to identify potential defects. A detailed
description of this step is given in Section 3.2.

In the the third step Use, curated semantic annotations
are deployed for public use. In particular, semantic an-
notations are used to discover and compose web services
using tools such as Galaxy10, Meteor-S [20], APIHUT [11]
or KINO [21]. Detailed information about these tools is
given in the related work section.

Now that the lifecycle of semantic annotation of web
services has been presented, we can proceed to the
details of the verification method.

3.2 Verification Process
The phases that constitute the verification process are
illustrated and numbered in Figure 1. The verification
process starts by generating a pool of annotated in-
stances (phase 1). Once the pool of annotated instances
is available, the test cases for input parameters are con-
structed (phase 2), executed (phase 3), and the results are
analyzed to identify defects in inputs annotations (phase
4). Test cases for the annotations of output parameters
are then identified (phase 5) by exploiting the result of
execution of the test cases for input parameters. The test

9. www.biocatalogue.org
10. http://http://galaxyproject.org

6

Fig. 1. Web Service Annotation Lifecycle and the Verification Approach.

cases for outputs are executed (phase 6), and analyzed
to identify defects (phase 7). A curator can then correct
annotations in the light of the defects discovered (phase
8). We present, in what follows, each phase in detail.

Phase 1: Generating a pool of annotated instances. In
the first phase, a pool of annotated instances is generated
using workflow provenance logs. Workflow provenance
logs are not used directly to verify parameters annota-
tions, rather they are used as a source of instances of
ontological concepts. In doing so, only provenance logs
of workflows, that are composed of web services that
are known to have correct annotations, are used. Note
also that, this phase is not fully automatic; rather, it is
done under the control of a human who checks that
the instances retrieved from the provenance logs belong
to the concepts used for annotating the corresponding
parameters.

It is worth mentioning that the use of workflow logs
is not mandatory. Other sources of annotated instances
can be used. For example, where the ontology used for
annotation is already associated with instances that are
annotated using that ontology (or what is known as
ABox in the literature), then those instances can be used
for constructing test cases.

Phase 2: Generating test Cases for Input Parameters.
As mentioned earlier, we consider that the annotations
of operation inputs have a strong semantics, and that,
if needed, operations are associated with preconditions
that are used to enforce that semantics. We also discuss
the conclusions that cannot be made when the annota-
tion of input parameters have a weak semantics.

Generation of test cases for input parameters is an
automatic process. Once the user has specified the set
of parameters and the semantic annotation registry to
be tested, as well as the location of the ontology used
for the semantic annotations, generation is carried out as
specified in the algorithm in Figure 2. Interested readers
can find example test cases online11.
Notice that the algorithm does not specify how legal
and illegal values for each parameter (variable pool) are
selected, since this is performed in the first phase. It is
worth noting, however, that when the input parameter
under test hop, pi is associated with a precondition prec,
then this predicate can be used to reduce the number of
legal values used for verifying the accuracy of the anno-
tation of the input parameter to those satisfying the pred-
icate prec. Specifically, a legal value v will be used for

11. http://img.cs.man.ac.uk/quasar/example test cases.php

7

Inputs ps

i

:= input params to be tested
Outputs ts

i

:= empty test suite
Begin
For each operation parameter hop, pi 2 ps

i

pool := selected values from pool
(should be a mixture of legal and illegal)
For each v in pool

If v is legal
Select tuple of legal values lv for
other input params of this operation
such that the precondition of op holds
eo := “normal

00 //expected outcome for lv [v

If v is illegal
Select tuple of legal values lv for
other input params of this operation
eo := “abnormal

00

tc := hhop, pi, lv [v, eoi
Add test case tc to ts

i

End

Fig. 2. Algorithm for Generating Test Cases for Testing
Input Parameters

testing the annotation of hop, pi iff holds(prec, hop, pi, v),
where holds(prec, hop, pi, v) is true iff prec is satisfied
when v is used as a value for hop, pi.

Phase 3: Executing test Cases for Input Parameters.
When the test suite has been created, the test cases within
it are executed in turn, and the results are logged for
subsequent analysis (phase (3) in the overall approach).
The steps required are specified by the algorithm in
Figure 3. Existing tools such as SoapUI [8] can be used
in this phase, since they support large numbers of web
service invocations.

Inputs: ts
i

:= test suite
Outputs: rs := a null tuple

inputLog := the results of execution of test cases
outputLog := the results delivered by

output parameters
Begin
For each tc in ts

i

tc := hhop, p
i

i, vs, eoi
Execute operation op with input params vs

rs := result returned from op

If op terminated normally then
ao := “normal”
For each output param hop, p

o

i of op
r := value for hop, p

o

i in rs

Add hhop, p
o

i, ri to outputLog

Else
ao := “abnormal”

Add hop, vs, rs, aoi to inputLog

End

Fig. 3. Algorithm for Executing Test Cases for Input
Parameters

Notice that when executing an operation op using the
inputs parameters vs, we may need to transform the
values in vs to make them structurally compatible with
the representations adopted by op parameters. This is
because different operation parameters adopt different

structures to represent the same value.

Phase 4: Interpreting the results of execution of test
cases for input parameters. Once the test cases have
been executed, the logged results from the input param-
eter test cases are analysed. The main task at this point is
to compare the expected outcome with the termination
status of the task, to determine which test cases have
revealed a defect and which have not. As hinted in the
algorithm in Figure 3, the result of the execution of a
test case for an operation op is logged using tuples of
the form:

hop, I
input

, I
output

, statusi

Here, I
input

is a set of pairs hhop, p
i

i, ins
i

i where hop, p
i

i
is an input parameter of op and ins

i

is the instance used
to feed hop, p

i

i during the test case execution. Similarly,
I
output

is a set of pairs hhop, p
o

i, ins
o

i where hop, p
o

i is an
output parameter of op and ins

o

is the value of hop, p
o

i
that was obtained from the execution of op with the input
values given in I

input

. The final component, status, has
either the value normal or the value abnormal, describing
how the operation terminated.

We retrieve executions from the log using the function:

getExecutionsByParamValue : (INS [OUTS) ⇥ I ! E

where I is the set of all instances and E is the set of all
operation log tuples just described. The function returns
all executions in which the given parameter took the
given value.

In interpreting the results of each test case, there
are four possible situations to be considered. In the
following discussion, op is the operation executed during
the test case, and hop, pi is the parameter being tested.
The annotation associated with hop, pi is the concept c.

1) Valid Input/Normal Termination
In this situation, an instance of c was supplied as
the value for hop, pi and the operation terminated
normally, as expected:

9 ins 2 domain(hop, pi),
9 e 2 getExecutionsByParamValue(hop, pi, ins),

e.status = “normal 00

A test result of this kind presents no evidence for
the existence of a defect in the annotation, and it is
not reported to the user.

2) Invalid Input/Normal Termination
In this situation, an instance of a concept that is
disjoint with c was supplied as the value for hop, pi.
We would have expected an abnormal termination
from such a test case, but the operation has ac-
cepted the supposedly invalid instance.

9 ins 2 ¬domain(hop, pi),
9 e 2 getExecutionsByParamValue(hop, pi, ins),

e.status = “normal 00

This result is evidence of an error in the annotation.
The parameter annotation may be over-specialised
(i.e. the true annotation is one of its superclasses)

8

or it may simply be incorrect. This result should be
flagged to the user.

3) Valid Input/Abnormal Termination
In this situation, an instance of c was supplied as
the value for hop, pi but the operation unexpectedly
terminated abnormally.

9 ins 2 domain(hop, pi),
9 e 2 getExecutionsByParamValue(hop, pi, ins),

e.status = “abnormal 00

This result is evidence of the presence of a defect in
the annotation of input parameter or the precondi-
tion associated with op, if such a condition exists. In
the case where the operation is not associated with
any precondition, and the annotation of the input
has a strong semantics, then this test is evidence for
the presence of a defect; it could indicate that the
annotation for hop, pi is over-generalised (i.e. the
correct annotation is a subconcept of c) or it may
be entirely incorrect.
It is worth mentioning that in the case of the weak
semantics, a test run of this kind presents no evi-
dence of any defect in the parameter’s annotation.

4) Invalid Input/Abnormal Termination
In this situation, an instance of a concept that
is disjoint with c was supplied as the value for
hop, pi and the operation terminated abnormally as
expected.

9 ins 2 ¬domain(hop, pi),
9 e 2 getExecutionsByParamValue(hop, pi, ins),

e.status = “abnormal 00

A test result of this kind presents no evidence for
the existence of a defect in the annotation, and it is
not reported to the user.

As we pointed out, in practice, it is more difficult to
interpret both normal and abnormal terminations of web
services than the above characterisation suggests. In the
case of abnormal terminations, there are several other
factors that might cause a web service to exit with an
exception, besides being supplied with an invalid input.
One of these is when an service operation with multiple
input parameters terminates with an error. This will
occur if any of the parameter values given is invalid;
the problem may not be because of an error with the
annotation for the parameter under test. To reduce the
number of false positives of this kind reported to the
user, we consider only cases in which the operation has
always failed when given this particular value for the
parameter under test, regardless of the values of the
other parameters. In other words, this kind of test failure
is reported only when:

9 ins 2 domain(hop, pi),
8 e 2 getExecutionsByParamValue(hop, pi, ins),

e.status = “abnormal 00

(The only change in the above expression compared with
the expression given in (3) is the quantifier in the second
conjunct.)

Phase 5: Generating test Cases for Output Parameters.
To construct test cases for output parameters, we use the
results of execution of the test cases of input parameters.
To do so, we examine the results of execution of test cases
of input parameters, to filter out parameters for which
no output values were produced during the earlier input
parameters testing phase. Next, we further filter the
parameter set to remove all those for which no annotated
web service exists which takes as an input instances of
its semantic domain. That is, if we have a service that
produces a ProteinSequence as an output parameter that
we wish to test, then we must also have another service
that takes as one of its input parameters (and preferably,
the sole input parameter) instances of ProteinSequence.
Where the web service used for testing has more than
one parameter, then we will need to select tuples of
legal values for other input parameters for the web
service as specified in phase (1) of the overall approach.
The algorithm used for generating test cases of output
parameters is illustrated in Figure 4. Since we cannot rely
on the input annotations being correct, we would further
filter out services for which many potential defects were
located in the earlier testing phase.

Notice that this method for testing the annotations of
outputs assumes that the annotations of the inputs of the
web services used for testing have a strong semantics.

Inputs: ps
o

:= output params to be tested
Outputs: ts

o

:= empty test suite
Begin
For each operation parameter hop, pi 2 ps

o

os = output values for hop, pi from output log
For each ov in os

Find all services ss with input annotated
with the same concept as hop, pi
Select tuple of legal values lv for
other input params of this operation
eo := expected outcome for lv [ov

tc := hhop, pi, lv [ov, eoi
Add test case tc to ts

o

End

Fig. 4. Algorithm for Generating Test Cases for Output
Parameters

Phases 6 and 7: Executing and interpreting the results
of the test cases for output parameters. The execution
of the constructed test cases is much the same as for the
input parameter tests (see the algorithm in Figure 5).
Once the algorithm is executed, the results of execution
of test cases are then analysed.

Phase 8: Diagnosing errors and correcting annotations.
In this phase, the human curator examines the errors
discovered to filter out errors that are due to factors other
than acceptance or non acceptance of values by service
operations. To amend incorrect annotations, the curator
examines the ontology and chooses a different concept
for annotation. In doing so, the verification results can
be exploited to facilitate the curator’s task. To illustrate
how this can be done, consider that the annotation of an

9

Inputs: ts
o

:= test suite for outputs
Outputs: outputLog := the results of execution of test cases
Begin
For each tc in ts

o

tc := hhop, p
i

i, vs, eoi
Execute operation op with input params vs

rs := result returned from op

If op terminated normally then
ao := ‘normal’

Else
ao := ‘abnormal’

Add hop, vs, rs, aoi to output test log
End

Fig. 5. Algorithm for Executing Test Cases for Output
Parameters

Fig. 6. A Fragment of the myGrid Domain Ontology

input parameter i was found to be erroneous. Instead
of examining the whole ontology to identify the correct
annotation, the curator can focus on a typically much
smaller subset of the ontology composed of concepts,
the instances of which were found to be accepted by the
input i.

Unfortunately, the above method of reducing the frag-
ment of ontology displayed to the user to annotate
the parameter cannot be applied for the annotation of
output parameters. This is because, unlike the instances
of inputs, the instances of outputs are generally not
annotated.

4 ADEQUACY CRITERIA

The test generation method described in Section 3 de-
scribes a universe of possible test cases, divided into
two kinds: those test cases that present valid inputs to
operations and those that present invalid inputs.

Just like in software testing [18], to construct a test
suite, we partition the domains of legal and illegal values
into partitions. In doing so we use the ontology used
for annotation. The concepts within an ontology are
typically organised into inheritance hierarchies, giving a
much finer grained breakdown of the space of instances
than the valid/invalid division that we have considered
so far in this paper.

This is illustrated in Figure 6, which shows a fragment
of the myGrid bioinformatics ontology [26]. Suppose that
this ontology was used to annotate the single input
parameter of the SimilaritySearch web service with the

NucleotideSeq concept. This annotation could be incorrect
in a number of ways. It could be an over-generalisation
of the correct annotation if the web service is in fact only
designed to search for similar DNA sequences and not
RNA sequence. It could be an over-specialisation, if the
web service is in fact able to search for similar sequences
of a variety of sorts, including protein Sequences and
sequences that are neither protein sequences nor DNA
Sequences. Or, the web service could have been designed
only to operate over protein sequences, in which case the
annotation is simply incorrect.

Partitioning the input space for test generation accord-
ing to the ontology classes holds out the promise of both
increasing the diversity of the test suites that we generate
and of providing more helpful information to the user
regarding the pattern of failures and their possible causes
in terms of annotation errors. In effect, the ontology
provides us with a means of assessing structural cov-
erage of test suites, thus leading to adequacy criteria,
i.e., measures that can be applied to the test genera-
tion process for increasing the representativeness of the
test suite constructed and, thus, increasing their error-
detecting power. In the rest of this section, we present
two adequacy criteria, that exploit the ontology used for
annotation, to partition the domain of legal and illegal
values of operation parameters.
4.1 Immediate-Sub-Superconcepts
Our previous work on inference and compatibility
checking for semantic web services revealed that over-
generalisation and over-specialisation of parameter an-
notations are both prevalent in practice [2]. This first
adequacy criterion is designed to focus on the discovery
and diagnosis of exactly this kind of error, by requiring
that test suites include, for each parameter, test cases
generated from:

• the semantic type c of the parameter (as defined by
the current set of annotations),

• all immediate sub-concepts of c, and
• all immediate super-concepts of c.

4.2 All-Disjoint-Concepts
Errors that are not due to over-generalisation or over-
specialisation in annotations are unlikely to be discov-
ered using the partitioning strategy just described. For
example, if an input parameter accepts instances that do
not belong to the concept used for its annotation or to
the immediate superconcepts of that concept then this
annotation error will not be discovered using test cases
generated by the Immediate-Sub-Superconcepts strategy.

Also, the extensions of the concepts obtained using the
partitioning strategy just described are likely to overlap
and, therefore, do not form a partition in the mathe-
matical sense. For example, the domain of nucleotide
sequences covers that of DNA sequences. This is not
peculiar to our partitioning strategy. It is common, in
functional testing, for the domains obtained by partition-
ing to overlap, e.g., this is often the case with domains
obtained by path-coverage partitioning [13].

10

However, where partitions do overlap there is an
increased possibility of generating redundant test cases.
To force a more diverse and representative coverage of
the space of instances, we can specify an adequacy cri-
terion that requires the test suite to contain inputs from
each concept in the ontology that is disjoint with the
annotation concept being tested. The set of concepts to
be covered in this way can be discovered by subtracting
from the domain designated by a given concept, the
instances that belong to its subconcepts and siblings12

in the ontology. For example, using this method, parti-
tioning the domain of Sequence results in the set of disjoint
sub-domains designated by the following concepts:

• Sequence u ¬(NucleotideSeq t ProteinSeq),
• NucleotideSeq u ¬(DNASeq t RNASeq t ProteinSeq),
• ProteinSeq u ¬NucletotideSeq ,
• DNASeq u ¬RNASeq ,
• RNASeq u ¬DNASeq .

5 REAL-WORLD EVALUATION

To assess the effectiveness of the verification method
described in this paper, we run an experiment with the
objective of measuring the defect-detecting power of the
test suites generated using the partitioning strategies
proposed. In doing so, we used as a base line for
comparison, tests conducted using randomly generated
test cases. Specifically, given semantic annotations of
web services (which will be presented later), we created
a test suite for those annotations using the All-Disjoint-
Concepts strategy, and created a randomly generated
test-suite of the same size. By randomly generated, we
mean that the values of the input parameters in the test
suite were selected randomly. Similarly, we created a
test suite for verifying semantic annotations using the
Immediate-Sub-Super-Concepts strategy, and created a
randomly generated test-suite of the same size.

To assess the effectiveness of the partitioning strate-
gies, we used the two following measures:

• Increase in Recall: we use this measure to compare
the defect-detecting power of the test suite gen-
erated using the partitioning strategies, with that
of a randomly generated test suite of the same
size. Increase in recall is defined as the ratio of the
number of true positive defects that are discovered
using the partitioning strategy to the number of
true positive defects that are detected using the ran-
domly generated test suite of the same size. A value
above 100% means that the test suite generated
using the partitioning strategy performs better than
the corresponding randomly generated test suite.

• Precision: False positive errors in annotations can
be detected due to the difficulties in dealing with
real web services, with their varying availability and
non-standard termination routes. We used precision

12. By “siblings” here, we mean two concepts which share an
immediate superclass.

to estimate the negative effect that false positive de-
fects may have on the verification method proposed.
Precision is defined as the ratio of the number of
true positive errors that are detected to the sum
of the numbers of true positive and false positive
errors. A higher precision means that fewer false
positives are reported using the verification method.

Experiment Setup

A large number of bioinformatics web services are now
publicly available, e.g., the myGrid toolkit provides ac-
cess to over 3000 third party web services. A domain ex-
pert from the myGrid team annotated a number of these,
and the results were made available through the Feta
service registry [14]; 53 accessible web services were an-
notated at the time of writing13. These annotations were
created in order to facilitate service discovery [14] and
to guide workflow composition [15], and we therefore
assumed a strong semantics when verifying the semantic
annotations of input parameters. Interested readers can
find information about the web service operations and
semantic annotations that were used in the experiment
online14.

We created a pool of annotated instances using prove-
nance logs supplied by the myGrid project, and used
them to create test cases to verify all parameters of the
applicable web services in Feta. In total, we tested 69
web service input parameters. In order to examine the
effects of different partitioning strategies on the results
of the test execution, we created four different test suites,
using the following selection strategies from the initial
instance pool:

(i) To assess the effectiveness of the All-Disjoint-
Concepts strategy, we selected data from the pool
using this partitioning strategy. This produced 1819
test cases.

(ii) As a baseline selection criterion, for comparison, we
selected an input data set with the same number
of instances as in case (i) but where the instances
were randomly selected from the input pool. This
produced 1819 test cases.

(iii) To assess the effectiveness of the Immediate-Sub-
Superconcepts partitioning strategy, we selected
data from the pool using this strategy. This pro-
duced 165 test cases (a substantial reduction on (i)).

(iv) We selected an input data set with the same number
of instances as selected in case (iii) but where the
instances were randomly selected from the input
pool. This produced 165 test cases.

Test suites were then generated from these selected value
sets, and the test cases executed.

13. The number of web services in the Feta service registry exceeds
53; however, many were unsuitable for use in our experiment since
they either had some un-annotated parameters or else were no longer
available at the endpoint specified by the WSDL files.

14. img.cs.man.ac.uk/quasar/experiment info.php

11

0"
5"

10"
15"
20"
25"
30"
35"
40"
45"

i)"All,Disjoint,Concepts"
strategy"

ii)"Random:"pool"of"the"
same"size"as"(i)"

True"posiEves" False"posiEves"

Fig. 7. Comparison of Defects Detected Using the All-
Disjoint-Concepts and Random Strategies

0"
5"

10"
15"
20"
25"
30"
35"
40"
45"

iii)"Immediate"Sub3
Super3Concepts"

strategy"

iv)"Random:"pool"of"
the"same"size"as"(iii)"

Fig. 8. Comparison of Defects Detected Using the
Immediate-Sub-Superconcepts and Random Strategies

Results

For each test suite generated, we examined the results
and classified them according to whether they cor-
rectly revealed an error (true positives), or incorrectly
revealed an error (false positives). Figure 7 shows the
results for the test suite generated using the All-Disjoint-
Concepts partitioning strategy, and the corresponding
randomly generated test suite of the same size, and
Figure 8 shows the results for the test suite generated
using the Immediate-Sub-Super-Concepts partitioning
strategy, and the corresponding randomly generated
test suite of the same size. To help analyze such re-
sults, Table 1 shows the precision of of the All-Disjoint-
Concepts strategy, the precision of the Immediate-Sub-
Super-Concepts strategy, as well as the increase in re-
call that we recorded in the results of the All-Disjoint-
Concepts (resp. Immediate-Sub-Super-Concepts) strat-
egy compared with the corresponding random testing
strategy.

The results show that, in each case, random testing
is significantly less effective than the more systematic
approach based on ontology-based partitioning strate-

TABLE 1
Analysis of Immediate-Sub-Superconcepts Strategy

Results.
Strategy Precision Increase

in recall
All-Disjoint-Concepts 81% 220%

Immediate-Sub-Superconcepts 82% 640%

gies (as suggested by the increase in recall see Table 1),
thereby providing evidence in favour of our hypothesis
regarding the usefulness of the ontology for partitioning
the input domains. Moreover, all errors discovered by
the random selection approaches were also discovered
by the partitioning strategies. The results also show that
the number of false positives is relatively small com-
pared with the number of true positives. Indeed, both
partitioning strategies yield a precision that is higher
than 80%.

The results also show the effectiveness of Immediate-
Sub-Superconcepts partitioning. A total of 32 true er-
rors were discovered, a number which compares very
favourably with the number of errors found by the All-
Disjoint-Concepts partitioning strategy, despite the fact
that our more selective partitioning strategy generated
less than a tenth of the test cases of the All-Disjoint-
Concepts strategy.

These results also show the effectiveness (in this ex-
ample) of the Immediate-Sub-Superconcepts partitioning
strategy in finding over-generalisation errors of this sort.
This raised the question of whether the strategy was
equally successful at detecting over-specialisation errors,
i.e. where the concept used for annotation is a sub-
concept of the correct annotation.

Since our collection of annotations did not contain
many errors of this kind, we seeded 7 errors, that are
representative of over-specialisation, in the annotations
of the inputs. Specifically, we randomly picked 7 inputs
parameters that were found not to be erroneous using
the All-Disjoint-Concepts partitioning method. For each
of those input, we modified its annotation by associating
it with a concept c that is a direct sub-concept of the
concept used for its annotations c. Where the concept
c has more than one sub-concept, we randomly picked
one of its sub-concepts and used it to annotate the input
parameter in question. We then ran the Immediate-Sub-
Superconcepts test cases again, and were able to discover
5 of the seeded errors. The remaining 2 errors were not
located because we were unable to find instances for one
of the partitions proposed by this strategy. Specifically,
this was the concept: DNASequence u ¬RNASequence. This
is partly due the fact that the definitions of the concepts
DNASequence and RNASequence in the ontology used for
annotation are not complete: no bioinformatics sequence
can be both a DNA sequence and an RNA sequence;
however, such a restriction was not specified in the on-
tology. As a result, even though the repository contains a
DNA sequence, we were not able to use that instance to
represent the partition: DNASequence u ¬RNASequence.

12

This kind of problem, i.e., incomplete definitions of
concepts, is common in ontology specification [22].

It is worth noting that unlike the All-Disjoint-Concepts
strategy, the Immediate-Sub-Superconcepts strategy did
not manage to discover errors arising from the accep-
tance of instances that do not belong to the annotation.
This can be explained by the fact that usually to uncover
those errors, we need instances of concepts that are not
neighbours of the concept used for annotation, but rather
are disjoint concepts that are often not descendants or
ascendants of the incorrect annotation.

As discussed earlier, to verify the annotations of out-
puts, we do not generate test data for the outputs using
ontology-based partitioning strategies (since we do not
have an oracle for detecting errors using generated test
data). Instead, we use the data instances delivered by
the outputs as a result of the operation invocations
performed for testing the annotations of inputs. To test
the annotations of outputs, we located, for each of them,
a service operation having an input annotated using the
same concept as the output under test. In the case where
the service registry did not contain any operation with
such an input, we located a service operation with an
input annotated using a concept that is disjoint with the
annotation of the output parameter under test. Using
this method, we located 16 operations: 9 having an
input with the same annotation as the output and 7
annotated using a concept that is disjoint with the output
annotation. We then used the instances delivered by each
output to feed the execution of the service operation
located for it.

These test case numbers were small, especially when
compared with the large number of test cases we had
been able to generate for the inputs. Also, we were
able to discover only one error in the annotation of the
outputs by the execution of this test suite. The output of
the operation get reaction by enzyme was annotated using
the concept KeggRecord whereas the instances it delivered
were accepted by an input that is annotated using Path-
wayReactionID, which is disjoint with KeggRecord.

These poor results can be partly explained by the
following observation. The instances used for testing
the annotation of an output are not necessarily a good
representation of the domain of values of the output:
we did not generate the instances using a partitioning
strategy, but instead relied on the instances delivered as a
result of tests generated with input parameters in mind.

The above observation prompts us to elaborate and as-
sess a new strategy for testing the annotations of output
parameters. The proposed strategy exploits the fact that
many service operations are used within workflows that
produce provenance traces containing instances value
of operation outputs. Those readily available values are
obtained over time as a result of multiple executions of
workflows, and are more likely to yield sets of values
that are better representations of the domain of outputs
(compared with the case in which we only rely on the
output values obtained as a result of testing operation

inputs). Of the 53 service operations under test, 19 were
used in the composition of workflows in the myExper-
iment repository15. Those 19 operations had in total 27
output parameters. We executed those workflows using
as many legal input values as we could harvest, either
from the workflow descriptions in myExperiment or
from the authors or users of the workflows. On average,
we executed each workflow 24 times using different
legal input values (we did not use our partitionining
method since our objectve is not test the input but
the ouput parameters). We then collected provenance
traces of those workflows, which contained the instance
values produced by the service operation. To test the
annotations of the output of those operations, we used
the same method as earlier, i.e., by feeding their values
to service operations the inputs of which have the same
annotation as the operation output subject to test. Using
this method, we were able to identify 11 additional errors
in the annotation of output parameters. The errors iden-
tified resulted from over-specialization in annotations.
For example, the curator described the output of the
operation getUNIPROTEntry as a protein sequence,
whereas that operation was also able to produce protein
records as well as protein sequences.

To summarise, the experimental evaluation reported
in this section showed that:

• Real world semantic annotations suffer from errors.
Almost half of tested inputs were found to have
erroneous annotations.

• Partitioning strategies allow a more effective discov-
ery of errors in the annotations of inputs compared
with randomly generated test data. The precision of
of the tests conducted using the partitioning strate-
gies is higher than 80%, and their effectiveness in
terms of recall is much higher than random testing.

• Regarding the annotation of output parameters, the
empirical evaluation showed that the use of output
values, that are obtained using input values selected
based on the proposed partitioning strategies, is not
an effective means for testing. Rather, other sources
of information, e.g., the provenance traces produced
by workflow executions seem to be more effective.

6 RELATED WORK

In this section, we review proposals that are related to
ours. In doing so, we structure the section into three
subsections: annotation, verification, and use, representing
the steps of the semantic annotation lifecycle presented
in Section 3.1.

6.1 Web Service Annotation
Several tools have been proposed by the semantic web
service community for assisting human curators in the
annotation task. For example, Radiant [12] is an Eclipse

15. http://www.myexperiment.org

13

plug-in based tool that provides a graphical user inter-
face for annotating web services, by decorating the web
service WSDL document with concepts from domain
ontologies. To facilitate the annotation task, the authors
of Radiant, developed Meteor-S [20], a tool that semi-
automatically annotates web services by suggesting to
the user concepts from domain ontologies that can be
used for annotation. At the heart of the tool, there are
schema matching and machine learning techniques that
automatically identify a set of candidate concepts that
can be used for the annotation of web services. APIHUT
[11] is a tool for the annotation, indexing and discovery
of Web APIs, e.g., Rest Web Services. Using APIHUT, the
facets of a web service are automatically determined by
comparing the description and tags associated with the
web services, with the vectors of terms characterizing
the facet’s values using the cosine similarity metric.
Built on APIHUT, KINO [21] is a generic tool for an-
notating web APIs, including Rest web services. The
main difference between APIHUT and KINO, is that
the latter allows users to utilize the ontology of their
choice for annotation. Furthermore, Kino automatically
identifies the ontologies (and concepts) that can be used
for annotation.

We have also shown in a previous proposal [2] how
information about semantic annotations of web service
parameters can be inferred based on their connections
to other (annotated) operation parameters within work-
flows. The idea behind this work is that if an input
parameter is connected to an output parameter within a
workflow and that the connection is free from mismatch,
then the semantic domain of the output is a sub-concept
of the semantic domain of the input. This allows infer-
ring information about the semantic annotation of non
annotated parameters from the semantic annotation of
the parameters, to which they are connected to within
workflows.

We regard our work on the verification of semantic
annotations of web services, as complementary to the
above proposals. While the above proposals focus on
assisting the human user in annotating web services, the
method proposed in this paper can be used as a system-
atic means to assess the accuracy of annotations before
they are deployed for public use. This is illustrated in
the semantic annotation lifecycle in Figure 1.

6.2 Semantic Annotation Verification
To the best of our knowledge, there are no proposals in
the semantic web service literature for verifying service
annotations. Instead, semantic annotations are used by
a handful of proposals as inputs for specifying the test
suites used for verifying web services’ behaviour [19].
That is, semantic annotations are regarded as being
the correct description of the service’s behaviour, and
the test cases created are intended to reveal defects in
the service. For example, Tsai et al. propose to extend
the WSDL document with semantic annotations that

describe, among other things, the dependencies between
the web service inputs and outputs, and to use these
annotations for specifying the test suites used for ver-
ifying web services [23]. Other proposals use semantic
annotations to describe service composition, and use
these descriptions as input to test the resulting composite
service [24]. For example, Wang et al. use OWL-S to
define workflows specifying composite services [24]. To
test a composite service, they generate test cases that
exercise all possible paths in its associated workflow.

The above proposals assume that semantic annotations
accurately specify web services’ behaviour. This is rather
a strong assumption that does not always hold in prac-
tice, as shown by the experimental results in the previous
section. In practice, a web service is often a black box
annotated after its deployment by third party annotators
that have been involved with neither the design nor the
implementation of the service. The method presented in
this paper is therefore meant to help these annotators in
inspecting their annotations for errors.

Among the existing tools that assist human users in
functional testing of web services, there is SoapUI [8]. It
is a toolkit that provides the means for specifying and
executing test suites to verify the functionality of given
web service operations. Although more targeted toward
testing the functionality of web services, SoapUI can be
used together with QuASAR, the tool that implements
the verification method presented in this paper. QuASAR
provides functionalities for i) generating test cases, ii)
executing web services using the input specified in the
test cases, and iii) analysing execution results. The sec-
ond step (ii) (which corresponds to phases 2 and 3 in
the verification process illustrated in Figure 1) can be
performed by SoapUI, since it is built to support large
numbers of web service calls.

6.3 Uses of Semantic Annotations
Semantic annotations of web services can be used by
tools to assist in service discovery and composition
[20], [21], [7], [1]. For example, Metor-S [20] provides
a selection service that locates web services based on
their semantic annotations. Kino [21] also provides the
means for locating web services. In Kino, Web APIs
(including web services) are indexed based on their
semantic annotations. The resulting indexes are then
used to answer user queries.

Semantic annotations of web services are also used to
guide the composition of scientific workflows [7], [25].
For example, Dhamanaskar et al. developed a service
suggestion engine [7] that is interfaced with the scientific
workflow platform Galaxy. The service suggestion en-
gine guides the composition of workflows by providing
the designer with a list of web services that can be
used to complete the workflow being designed. The
web services are retrieved based on two criteria: i) the
functionality implemented by the service: the designer
indicates the task that the web service should fullfil,

14

and ii) compatibility in the semantic types between the
output of the preceding web service in the workflow and
the suggested web service. Semantic annotations of web
service parameters are used to check the second condi-
tion. Similarly, in previous work [1], we have developed
a plugin for the Taverna workflow system, to check that
connected input and output parameters are compatible
within a workflow. In doing, so we made use of semantic
annotations of web services.

It is worth mentioning that semantic annotations of
web service parameters are partial descriptions of web
services in the sense that they do not describe the
transformations carried out by the web service. Yet, they
are crucial in service discovery and guiding workflow
composition. For example, to guide workflow compo-
sition, they are used to suggest web service operations
with parameters that are semantically compatible with
those in the (incomplete) workflow. The list of service
operations retrieved can then be examined by the work-
flow designer to identify the service operations that are
suitable for the task at hand. Where information about
the task carried out by the suggested service operations
is available, then it can be used to filter out those services
operations that do not implement the task required by
the workflow designer, e.g., [7].

In summary, the method for verifying semantic anno-
tation of web services that we presented in this paper
is complementary to existing proposals in the literature.
It closes the gap in the web service annotation lifecy-
cle, by providing a systematic means for assessing the
validity of semantic annotations specified using tools
such as Meteor-S and Radiant, before the annotations
are deployed for public use in web service discovery
and composition.

7 CONCLUSIONS

In this paper, we have described a first step towards pro-
viding low-cost tools to assist annotators in verifying the
semantic descriptions they create before they are made
publicly accessible. The approach has been implemented
within the QuASAR toolkit, and is available as an open
source system16.

Despite the complications of working with real web
services, which do not conform to the standard termi-
nation models and which are subject to the exigencies
of a dynamic and unpredictable communications net-
work, our approach to checking annotation semantics by
means of operation acceptance proved to be surprisingly
effective as far as annotations for input parameters are
concerned. In addition, adequacy criteria based on the
use of the ontology for partitioning demonstrated a clear
ability to improve the defect-detection power of tests
sets when compared with randomly selected suites of
the same size.

16. http://img.cs.manchester.ac.uk/quasar

REFERENCES
[1] K. Belhajjame, S. M. Embury, and N. W. Paton. On characterising

and identifying mismatches in scientific workflows. In 3rd DILS
06, pages 240–247. Springer, 2006.

[2] K. Belhajjame, S. M. Embury, N. W. Paton, et al.. Automatic
Annotation of Web Services Based on Workflow Definitions.
TWeb, 2(2):1–34, 2008.

[3] M. Brambilla, S. Ceri, F. M. Facca, I. Celino, D. Cerizza, and E. D.
Valle. Model-driven design and development of semantic web
service applications. ACM Trans. Internet Techn., 8(1):1–31, 2007.

[4] M. H. Burstein, J. R. Hobbs, O. Lassila, et al.. DAML-S: Web
Service Description for the Semantic Web. In ISWC, pages 348–
363, London, UK, 2002. Springer-Verlag.

[5] J. Cardoso and A. P. Sheth, editors. Semantic Web Services, Processes
and Applications. Springer, 2006.

[6] S. B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD, ACM, 2008.

[7] A. Dhamanaskar, M. E. Cotterell, J. Zheng, et al. Suggestions for
Galaxy Workflow Design Using Semantically Annotated Services.
In FOIS, 2012.

[8] EVIWARE. SoapUI; the Web Services Testing tool.
http://www.soapui.org/. accessed 2012-11-07.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
Verification of Web Services. In ASE, pages 152–161. IEEE, 2003.

[10] A. Gargantini and C. Heitmeyer. Using Model Checking to Gen-
erate Tests from Requirements Specification. Software Engineering
Notes, 24(6):146–162, November 1999.

[11] K. Gomadam, A. Ranabahu, M. Nagarajan, et al.. A Faceted
Classification Based Approach to Search and Rank Web APIs. In
ICWS, IEEE, 2008.

[12] K. Gomadam, K. Verma, and D. Brewer, et al.. Radiant: A tool
for semantic annotation of Web Services. In ISWC, (Demo Paper),
2005.

[13] Richard G. Hamlet. Theoretical comparison of testing methods.
In Symposium on Testing, Analysis, and Verification, pages 28–37.
ACM, 1989.

[14] P. W. Lord, P. Alper, C. Wroe, and C. A. Goble. Feta: A light-
weight architecture for user oriented semantic service discovery.
In ESWC, pages 17–31. Springer, 2005.

[15] P. W. Lord, S. Bechhofer, M. D. Wilkinson, et al.. Applying seman-
tic web services to bioinformatics: Experiences gained, lessons
learnt. In ISWC, pages 350–364. Springer, 2004.

[16] E. M. Maximilien and M. P. Singh. A framework and ontology for
dynamic web services selection. IEEE Internet Computing, 8(5):84–
93, 2004.

[17] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing
web services on the semantic web. VLDB Journal, 12(4):333–351,
2003.

[18] B. Meyer. Seven Principles of Software Testing. IEEE Computer,
41(8): 99-101 (2008)

[19] G. Oghabi, J. Bentahar, and A. Benharref. On the Verification of
Behavioral and Probabilistic Web Services Using Transformation.
In ICWS, 548–555, IEEE Computer Society, 2011.

[20] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. Meteor-
s web service annotation framework. In WWW, pages 553–562.
ACM, 2004.

[21] A. Ranabahu, P. Parikh, M. Panahiazar, et al. Kino: A Generic
Document Management System for Biologists Using SA-REST
and Faceted Search. In ICSC, IEEE, 2011.

[22] A. L. Rector, N. Drummond, M. Horridge, et al.. Owl pizzas: Prac-
tical experience of teaching owl-dl: Common errors & common
patterns. In EKAW, pages 63–81. Springer, 2004.

[23] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang. Extending
wsdl to facilitate web services testing. In HASE ’02, page 171.
IEEE, 2002.

[24] Y. Wang, X. Bai, Juanzi Li, and R. Huang. Ontology-Based Test
Case Generation for Testing Web Services. In ISADS’07. IEEE,
2007.

[25] D. Withers, E. A. Kawas, E. L. McCarthy, et al.. Semantically-
Guided Workflow Construction in Taverna: The SADI and
BioMoby Plug-Ins. In ISoLA (1), pages 301–312, 2010.

[26] C. Wroe, R. Stevens, C. A. Goble, et al.. A suite of daml+oil
ontologies to describe bioinformatics web services and data. Int.
J. Cooperative Inf. Syst., 12(2):197–224, 2003.

