
1

Automated analysis of conflicts in
WS–Agreement

Carlos Müller, Manuel Resinas, and Antonio Ruiz-Cortés

Abstract—WS–Agreement is one of the most widely used1

SLA specifications. An advantage of WS–Agreement over2

other agreement metamodels is that it allows one to define con-3

ditional and optional term sets inside an agreement document,4

which are commonly found features in real-world agreements.5

Unfortunately, they increase the complexity of the automated6

detection and explanation of conflicts between SLA terms,7

leading to new kind of conflicts that are not supported by8

current techniques. Furthermore, creating a general-purpose9

conflict analyser in WS–Agreement is a hard task since it10

should understand the semantics of an unbounded number11

of languages that can be used in the eight extension points12

that WS–Agreement includes for the sake of flexibility. In13

this article we address these issues by providing a conflict14

classification for SLAs that includes new conflicts derived15

from the use of conditional and optional term sets; and16

a novel, language-agnostic technique based on constraint17

satisfaction problems to automatically detect and explain these18

conflicts. In pursuing these results, we defined some WS–19

Agreement concepts as well as a fully-fledged WS–Agreement-20

compliant language. The developed technique and its reference21

implementation have been thoroughly validated.22

Index Terms—Service Level Agreement, SLA, WS–23

Agreement, Conflict Management, Consistency.24

I. INTRODUCTION AND MOTIVATION25

Service level agreements (SLA) play an important role26

during the entire life-cycle of a service-based application27

(SBA) because they establish the functional and quality as-28

pects of SBAs between providers and consumers or service29

integrators [2]. Although there is no commonly accepted30

way to describe SLAs, it ranges over a variety of ap-31

proaches that include: the use of natural language in SLAs32

intended to be used only by humans1; the use of formal33

languages with the intention of analyzing some properties34

of the SLA [3]–[5], and the use of XML documents in35

standardization efforts aimed at making the interoperability36

between consumers and providers easier [6]–[8]. One of the37

most widely used SLA standards is WS–Agreement [6], a38

proposed recommendation of the Open Grid Forum2 that39

provides a protocol for establishing agreements between40

two parties using an extensible XML language for spec-41

ifying agreements; and agreement templates to facilitate42

discovery of compatible agreement parties.43

Manuscript received July XX, 2012; revised Month YY, 2012.
Authors’s affiliation: ETS. Ingeniería Informática, University of Seville,

41012 Sevilla (Spain), {cmuller, resinas, aruiz}@us.es.
This work is an extended version of the earlier paper [1]. This work has
been partially supported by the Spanish Government under the CICYT
projects SETI (TIN2009–07366); and by the Andalusian Government
under the projects THEOS (TIC–5906) and ISABEL (P07–TIC–2533).

1For instance, the SLAs of companies such as Amazon (aws.amazon.
com/s3-sla/) or Google(www.google.com/apps/intl/en/terms/sla.html)

2www.ogf.org

An advantage of WS–Agreement over other agreement 44

metamodels is that it includes several aspects that are nec- 45

essary to model real-world agreements, namely: (1) condi- 46

tional terms, i.e. terms whose service level objective (SLO), 47

which defines the agreed quality of service, is subject to 48

a qualifying condition (QC); and (2) terms compositors 49

(TC) that enable the inclusion of optional term sets inside 50

an agreement document. For instance, the AmazonS3 SLA 51

guarantees a DataDurability >= 99.999999999 %, but only 52

if the consumer does not request the Reduced Redundancy 53

Storage (RRS) (which is cheaper than default redundancy 54

check), i.e., “RRS is false” is the QC of the agreement term 55

that guarantees the DataDurability. In addition, the SLA 56

provides several client support features such as an online 57

reporting support, a turn around time of 15 minutes to solve 58

problems, a phone support, an extended support and so on. 59

All of them can be modelled as optional terms by means 60

of TCs to allow clients to choose a customized support 61

plan. Unfortunately, these aspects increase the complexity 62

of the agreements and, hence, the complexity of the tools 63

to manage them. As a result they are not usually supported 64

despite their importance to model real-world SLAs. In fact, 65

a comparison of eight WS–Agreement implementations [9] 66

reveals that only one of them (Phosphorus-WSAG4U) 67

supports TCs and only another different one (AssessGrid) 68

supports QCs. 69

A part of the SLA management whose complexity in- 70

creases significantly is the automated detection and expla- 71

nation of conflicts that may appear between SLA terms, 72

such as inconsistencies, a type of conflict that involves 73

semantics contradictions between terms. This is a key part 74

of the agreement creation process and it has received sig- 75

nificant attention by the research community. In particular, 76

a number of approaches focus on detecting inconsistencies 77

that affect the whole agreement [3], [4]. Other proposals 78

go further and also report some explanation for such 79

inconsistencies [1]. However, these proposals are not well 80

suited to deal with SLAs that include QCs a TCs because of 81

two reasons. First, not all proposals are able to deal with 82

the additional complexity that these aspects involve. For 83

instance, [3], [5] do not consider neither QCs nor TCs. Sec- 84

ond, these aspects lead to types of conflicts different than 85

inconsistencies that are not supported by current techniques. 86

These new types of conflicts arise because QCs and TCs 87

introduce optional terms and, hence, conflicts may appear 88

in optional parts of the SLA without invalidating the whole 89

document. Thus, a proposal that only detect inconsistencies 90

that affect the whole agreement may incorrectly consider 91

an SLA as conflict-free if its conflicts only affect optional 92

2

or conditional terms.93

Furthermore, the extension mechanism of WS–94

Agreement poses an additional problem in the automated95

detection and explanation of conflicts in WS–Agreement96

documents. Contrary to what could be thought, WS–97

Agreement does not provide a fully-fledged language for98

specifying agreement documents. Instead, it defines99

a general–purpose schema that can and must be100

complemented with a set of languages to specify101

several parts of the agreement document such as service102

description terms or service level objectives. Many different103

languages such as JSDL (Job Submission Description104

Language) and the WSLA [8] expression language, have105

been used for this task since WS–Agreement do not impose106

additional constraints on their expressiveness. In this paper,107

we call sublanguages (SubLs) to those languages that can108

be used within a WS-Agreement document.109

Consequently, the first thing one has to do to create a110

WS-Agreement document is to decide which are the SubLs111

that are going to be used in it. We call a WS-Agreement112

Configuration (WSAC) to the set of SubLs used within a113

given WS-Agreement document. For instance, the WSAC114

used by the WSAG4J framework3 involves using JSDL115

as the language for specifying service description terms116

and JEXL as the language for specifying service level117

objectives. SWAPS [10] also proposes a WSAC by using118

WSDL-S/OWL as SubLs for the service functionality, and119

WSLA [8] expression language as SLOs SubL. A complete120

example of WSAC is included in Section IV-A.121

These extension points are a great advantage of WS–122

Agreement since they make it possible to use WS–123

Agreement in an unbounded number of different ways [11].124

However, as usual, this advantage comes with a price for125

WS–Agreement users: the difficulty of creating a general-126

purpose tool since such a tool should deal with the great127

variety of SubLs that can be used in different WS–128

Agreement documents. This problem gets even harder for129

conflict analysis since the tool should understand not only130

the SubLs syntaxes, but also their semantics.131

In this paper, we face the aforementioned problems to132

enable the automated detection and explanation of conflicts133

in WS–Agreement documents. In particular, this paper134

contributes to the research on SLAs analysis in general and135

WS–Agreement in particular in the following ways:136

First, we propose a novel classification of conflicts for137

SLAs as well as a rigorous definition for each of them. The138

classification identifies three kinds of conflicts that can be139

found in two possible scopes including the only conflict140

already identified in the literature (i.e., inconsistencies that141

affect the whole agreement) and those we have found while142

applying our proposal to several scenarios (cf. Sec. VI).143

Furthermore, the classification is WSAC-agnostic.144

Second, we propose a technique based on constraint145

satisfaction problems (CSP) [12] that allows the use of146

any off-the-shelf CSP solver to automatically detect and147

3WS–Agreement framework for Java developed by GRAAP members
http://packcs-e0.scai.fraunhofer.de/wsag4j/index.html.

explain these conflicts in WS–Agreement documents. The 148

only requirement is that the semantics of the SubLs used 149

in the WS-Agreement document can be interpreted as a 150

CSP. This requirement is quite reasonable since, according 151

to [4], it can be assumed that for automated analysis 152

purposes any SLA can be interpreted as a CSP regardless 153

of the specification language. In this paper, to illustrate this 154

technique, we detail how this mapping can be done with 155

WS–Agreement documents specified with a WSAC called 156

iAgree [13]. The main features of the SubLs of iAgree are: 157

(1) they are endowed with a precise semantics provided by 158

the semantic mapping to CSPs (cf. Sec. IV-B), (2) they are 159

general-purpose, meaning that they can be used regardless 160

of the domain of the agreement, and (3) they are expressive 161

enough to define many real-world SLAs (cf. Sec. VI). 162

The developed technique comes with a publicly-available 163

reference implementation, SLA Explainer from now on, 164

that support WS–Agreement documents specified with iA- 165

gree WSAC. Therefore iAgree is the first general-purpose 166

WSAC proposed with support for conflicts detection and 167

explanation. Furthermore, an advantage of using iAgree is 168

that the mechanism to detect and explain conflicts can be 169

directly used with any WS-Agreement document whose 170

WSAC is iAgree or can be mapped into iAgree. In our 171

validation, we have successfully mapped the WSACs used 172

in WSAG4J framework and SWAPS (cf. Appendices A 173

and E), which suggests that iAgree is generic enough to 174

accommodate a significant variety of WSACs, although a 175

detailed evaluation in this direction is out of the scope of 176

this paper. We are convinced that as well as the inherent 177

value of our techniques, the development of adaptable 178

and easy to use open source tooling support has been 179

a deciding factor for the adoption of SLA Explainer by 180

users from different domains and with different WSACs 181

and needs. We are aware that SLA Explainer is merely a 182

first step, but it simplifies the development of tools that 183

have to manage agreement documents in general and WS– 184

Agreement documents in particular because it ensures the 185

assumption that said documents are free of conflicts. SLA 186

Explainer has been validated not only by other researchers 187

in the community, but also in a real SOA-Governance 188

system of our Regional Government, and in an end-user 189

monitoring platform [14]. 190

The paper is organized as follows. Section II provides 191

an overview of WS–Agreement and introduces our def- 192

inition of variants in a WS–Agreement document. Our 193

conflict classification is described in Section III. Section IV 194

discusses the process to automate the detection and ex- 195

planation of conflicts by using CSP. Section V describes 196

the major features and implementation issues of SLA Ex- 197

plainer and a prototypical implementation, while Section VI 198

reports on its use in a number of different scenarios. Related 199

work is discussed in Section VII and, finally, conclusions 200

and future work are drawn in Section VIII. 201

II. UNDERSTANDING WS–AGREEMENT DOCUMENTS 202

In this section, we briefly discuss the structure and 203

semantics of the XML–based schema proposed in WS– 204

3

Agreement recommendation [6] for agreement documents205

as well as the SubLs that are necessary to get a WSAC.206

Fig. 2 depicts an example of WS–Agreement document207

using a human-friendly syntax instead of XML for the sake208

of clarity. The WSAC used in the example is our general-209

purpose WSAC so-called iAgree [13].210

A. WS–Agreement Documents: An Overview211

The WS–Agreement recommendation specifies two types212

of agreement documents to reach an agreement between the213

interested parties: agreement offers and templates.214

The most common usage scenario of WS–Agreement215

starts with a pre-defined agreement template. A template216

is a partially completed offer that specifies customizable217

aspects of the documents, and rules that must be followed in218

creating an agreement, which are called agreement creation219

constraints. Fig. 2 depicts a template created by a company220

that provides a language translation service. Once the tem-221

plate is published, any customer demanding the translation222

service creates an agreement offer compliant with the223

published template and initiates the process by sending it to224

the provider. Finally, the provider either accepts or rejects225

the agreement offer. If accepted, such an offer becomes the226

agreement4 that regulates the service provision. As can be227

seen, the customer initiates the interaction and therefore it228

plays the role initiator in the agreement creation process,229

whereas the provider plays the role responder.230

Although the previous is the usual usage scenario, two231

additional considerations are included in WS–Agreement.232

First, the publication of a template is optional and thus,233

any party may send an agreement offer to other party234

without any template published. However, the acceptance235

of an agreement offer is more likely if it is defined based236

on a previously published template. Second, although the237

service provider usually acts as responder, WS-Agreement238

also allows consumers to play the role of responders239

by publishing templates with the service they intend to240

consume and some desired guarantees.241

The general structure of WS–Agreement documents is242

depicted in Fig. 1 from an abstract point of view. The243

small white boxes represent the SubLs a user must define to244

describe the corresponding element of WS–Agreement doc-245

uments. Thus, a WS–Agreement document is composed of246

an agreement identifier, an agreement context, and agree-247

ment terms. Templates can also include agreement creation248

constraints to restrict the space of template–compliant249

offers that can be created from them.250

The agreement context contains information about251

whether the service provider is the agreement initiator or252

responder, which is the information that is included in253

Fig. 2. In addition, it optionally provides information about254

the agreement parties endpoints, the agreement’s lifetime,255

references to the template from which the offer is created256

if this is the case; and any other relevant information such257

as the metrics datatype and domain included Fig. 2.258

4From now on, we will use SLA and agreement as synonyms.

Unificando el formato del SDT de la izquierda

Fig. 1. WS–Agreement documents structure overview.

Template − T r a n s l a t e i t !
Context :

Responder : T r a n s l a t o r , as S e r v i c e P r o v i d e r
Metr ics [g e n e r a l M e t r i c s , T r a n s l a t i o n . m e t r i c s]

Id , Ur i : s t r i n g
P e r c e n t : f l o a t [0 . . 1 0 0]
Time : i n t e g e r [1 . . 1 0 0] / / i n m i n u t e s
T r a n s l a t i o n s : s e t {ES_to_EN−UK, ES_to_EN−US , ES_to_FR ,

EN−UK_to_ES , EN−US_to_ES , FR_to_ES , Auto }

A l l
SDT1 : S e r v i c e D e s c r i p t i o n f o r T r a n s l a t i o n S e r v i c e

I n p u t F i l e , O u t p u t F i l e : Ur i
T r a n s l a t i o n L a n g s : T r a n s l a t i o n s = " ES_to_EN−UK" ;
I n p u t F i l e S i z e : i n t e g e r
I m a g e T r a n s l a t i o n : boo l
Cos t : i n t e g e r

SP1 : S e r v i c e P r o p e r t i e s f o r T r a n s l a t i o n S e r v i c e
T r a n s l a t i o n T i m e − measured by Time

− r e l a t e d to SDT1
/ / D e s c r i p t i o n : % of s o u r c e t e x t t y p o s
I n p u t E r r o r s − measured by P e r c e n t

− r e l a t e d to SDT1 / I n p u t F i l e
SR1 : S e r v i c e Reference f o r T r a n s l a t i o n S e r v i c e

www. t r a n s l a t o r . com / t r a n s l a t o r . wsdl / / e n d p o i n t

GTTrans l a t ionT ime1 : Guaranteed by S e r v i c e P r o v i d e r
QC: NOT I m a g e T r a n s l a t i o n
SLO : T r a n s l a t i o n T i m e <= 1min

GTTrans l a t ionT ime2 : Guaranteed by S e r v i c e P r o v i d e r
QC: I m a g e T r a n s l a t i o n
SLO : T r a n s l a t i o n T i m e <= 2min

G T I n p u t E r r o r s : Guaranteed by ServiceConsumer
SLO : I n p u t E r r o r s <= 1

Creat ion C o n s t r a i n t s :
C1 : T r a n s l a t i o n L a n g s be longs {ES_to_EN−UK, ES_to_FR ,

EN−UK_to_ES , FR_to_ES , Auto } ;
C2 [I n p u t F i l e S i z e C o n s t] : I n p u t F i l e S i z e <= 50 pages ;
C3 [Cos tCons t] : Cos t [0 . . unbounded] ;
C4 [B a s i c C o s t] : Cos t = I n p u t F i l e S i z e ∗ 1 ;

o n l y I f (NOT I m a g e T r a n s l a t i o n) ;
C5 [ImageCost] : Cos t = I n p u t F i l e S i z e ∗ 2 ;

o n l y I f (I m a g e T r a n s l a t i o n) ;
C6 [MinSize] : NOT I m a g e T r a n s l a t i o n ;

o n l y I f (I n p u t F i l e S i z e < 3 0) ;

Fig. 2. WS–Agreement template of the translation service scenario using
a human-friendly syntax

4

The terms section of a WS–Agreement document de-259

scribes both the characteristics of the services to be260

provided and the guarantees on such services. In WS–261

Agreement there are two kinds of terms, namely service262

terms and guarantee terms.263

Service terms describe those service features that are264

relevant for an agreement and can be divided into service265

description terms, service properties, and service refer-266

ences. Service description terms (SDT) define the features267

of the service that will be delivered under an agreement.268

In addition, when they appear in templates, as in document269

of Fig. 2 for TranslationLangs, they are considered270

as default values that can be changed by the other party271

according to their domains and the constraints included272

in the template (see creation constraints at the end of the273

section). How these service description terms are organized274

and expressed must be defined in one or more SubLs.275

For instance, in our example, we use the iAgree SubL276

syntax to describe the translation service by means of a set277

of attribute–value pairs, namely: the supported translations278

(TranslationLangs), the input and output files, the279

size limit of the text to translate, whether the consumer280

wants to translate images or not, and the service cost.281

Service properties (SP) define named, service–related sets282

of monitorable variables that can be used for the specifica-283

tion of guarantee terms and must be therefore considered284

for agreement monitoring. All variables must be related to285

a service description term or a part of it and they may286

include a metric definition to specify the semantics and type287

of a variable with one or more SubLs. In our example,288

the context includes such metrics definition for the two289

defined properties: (1) TranslationTime represents the290

time the service translation takes; and (2) InputErrors291

represents the percentage of spelling and grammar errors292

in the InputFile. Finally, Service references provide293

endpoint references for the services under agreement and294

they also need one or more specific SubLs to be defined.295

Guarantee terms (GT) describe the SLOs that an obli-296

gated party, usually the service provider, must fulfil as297

part of the agreement (see guaranteed by... in figures). The298

SLO of a guarantee term is an assertion defined over mon-299

itorable variables defined in the service properties section300

of the agreement document, and over external factors such301

as date, time, etc. Each guarantee term can be guarded302

by an optional qualifying condition (QC) that expresses303

a precondition under which the guarantee holds. Thus,304

using QCs is the way WS–Agreement allows for defining305

conditional terms. Both QCs and SLOs can be expressed306

using any suitable assertion language and so, users must307

specify SubLs for them. The structure of a guarantee term308

also includes a scope to which the guarantee is applied and309

a list of business values. However, these two elements are310

out of the scope of this paper. In our example, the provider311

assures diverse translation times depending on the selection312

of the translation of images. It also includes a guarantee313

term to assure that the source text to translate sent by the314

consumer has less than 1% errors of typos.315

Finally, creation constraints specify the mandatory pres-316

ence of specific elements in the offers created from the 317

template, and their acceptable values. To this end, the 318

template may define specific items using XML Schema [15] 319

to delimit the possible value assignments for the service 320

features defined in the SDTs or, if the creation constraint 321

involves several elements, they can be specified using 322

any suitable constraints language that must be described 323

by means of one or more SubLs. Since items can be 324

considered as a particular case of constraints, we just use 325

the latter in Fig. 2. For instance, simple constraints are used 326

to set the allowed translations, or the size of the text to be 327

translated, while more advanced constraints depending on 328

the selected optional features are also included to specify 329

how the cost of the service is calculated. 330

B. Variants in a WS–Agreement Document. 331

The terms in a WS–Agreement document can be grouped 332

using and, or and xor–like compositors. In an and–like 333

(All) compositor, every comprised term or compositor is 334

mandatory. i.e., all of them must be fulfilled. All terms 335

at the top level of the terms section must be inside an 336

and–like compositor, as depicted in Fig. 2. In an or– 337

like (OneOrMore) compositor, every comprised term or 338

compositor is optional. i.e., a set of them, at least one, must 339

be fulfilled. Finally, in a xor–like (ExactlyOne) compositor, 340

every comprised term or compositor is alternative. i.e., only 341

one of them must be fulfilled. 342

Furthermore, term compositors can be nested, thus en- 343

abling the specification of alternative branches with poten- 344

tially complex nesting within the agreement terms. Choices 345

expressed using compositors can be exercised by the party 346

that makes the next step in the agreement creation process, 347

i.e., by the agreement initiator if it is creating an offer from 348

a template, by the agreement responder if it is creating an 349

agreement from an offer, or by the service provider if it 350

is delivering the service according to a previously created 351

agreement. For instance, document of Fig. 3 offers the 352

alternative of either choosing GT1 or choosing GT2 and 353

one or more terms between GT3 and GT4. SDT1 is not an 354

optional term since it is in the top-level and-like compositor. 355

Note that parties can exercise the choice but it is not 356

mandatory to do so. In other words, the term compositors 357

can remain in an offer and even in a final agreement, exactly 358

as they were defined in the former template. 359

Given this structure of term compositors in a WS– 360

Agreement document, it is possible to analyse them to 361

identify all of the sets of terms that can be chosen in the 362

next step of the agreement creation process. For instance, 363

from the document of Fig. 3, it is possible to choose the sets 364

of terms depicted in Fig. 4. We call variant to each of those 365

sets of terms that can be chosen in one WS–Agreement 366

document. Consequently, term compositors can be seen 367

as a means to define the variability of a WS–Agreement 368

document in terms of the variants that can be chosen 369

by the party that makes the next step in the agreement 370

creation process. To obtain these variants it is necessary to 371

follow a recursive procedure that iterates through the nested 372

5

Template − T r a n s l a t e i t !
Context :

Responder : T r a n s l a t o r , as S e r v i c e P r o v i d e r
. . .
A l l

SDT1 : S e r v i c e D e s c r i p t i o n f o r T r a n s l a t i o n S e r v i c e
. . . / / a s i n F i g u r e 2

E x a c t l y One between :
GT1 : Guaranteed by S e r v i c e P r o v i d e r

QC: T r a n s l a t i o n L a n g s = FR_to_ES
SLO : T r a n s l a t i o n T i m e <= 2min

A l l
GT2 : Guaranteed by S e r v i c e P r o v i d e r

QC: T r a n s l a t i o n L a n g s be longs {EN−UK_to_ES}
SLO : T r a n s l a t i o n T i m e <= 1min

One Or More between :
GT3 : Guaranteed by S e r v i c e P r o v i d e r

SLO : I m a g e T r a n s l a t i o n
GT4 : Guaranteed by ServiceConsumer

SLO : I n p u t E r r o r s <= 1%

Fig. 3. An example of nested term compositors

V a r i a n t 1 : SDT1 , GT1
V a r i a n t 2 : SDT1 , GT2 , GT3
V a r i a n t 3 : SDT1 , GT2 , GT4
V a r i a n t 4 : SDT1 , GT2 , GT3 , GT4

Fig. 4. Enumeration of all of the variants defined by the term compositors
in document of Fig. 3

term compositors, and processes them according to their373

semantics. More specifically, let variants(t) be a function374

that, given a term, returns the set of variants that it defines,375

then variants(t) can be defined as follows:376

If term t is not a composite term, then variants(t) = {t}.377

If term t is a composite term, C(T), where T is the set378

of composed terms, T = {t1, . . . , tn}, then379

variants(C(T)) =



⋃
p∈P(T)−∅

variants(All(p)) (1)

{{
n⋃

i=1

ji} |
n∧

i=1

ji ∈ variants(ti)} (2)

n⋃
i=1

variants(ti) (3)


where P(S) is the power set of S and (1), (2) and (3)380

depends on the type of term compositor C(t1, . . . , tn):381

(1) If term compositor C is OneOrMore, then every com-382

posed term is optional, but there must be at least one383

term selected. Therefore, the variants are all combinations384

of the composed terms. For instance, in the previous385

example, the variants of the one or more compositor are386

{GT3,GT4, {GT3,GT4}}. Note that, in the definition, the387

use of variants(All(p)) is necessary due to the nesting of388

term compositors, i.e., the terms nested in a one or more389

compositor could be term compositors themselves.390

(2) If term compositor C is All, then every composed391

term is mandatory. Therefore, the variants should al-392

ways contain one variant of each of the composed393

terms. For instance, in the previous example, the vari-394

ants of the nested All compositor always contain395

one variant of GT2, which is {GT2}, and one vari-396

ant of OneOrMore(GT3,GT4), which are {GT3,GT4,397

{GT3,GT4}}. Consequently, the variants of this composi-398

tor are: {{GT2,GT3}, {GT2,GT4}, {GT2,GT3,GT4}}. 399

(3) If term compositor C is ExactlyOne, then every com- 400

posed term is an alternative. Therefore, the variants of 401

the ExactlyOne compositor are all of the variants of 402

each composed terms. For instance, in the previous ex- 403

ample, the variants of the ExactlyOne compositor are the 404

union of the variants of GT1, which is {GT1}, and the 405

variants of All(OneOrMore(GT2,GT3)), calculated above. 406

Hence, the variants of the ExactlyOne compositor are: 407

{GT1, {GT2,GT3}, {GT2,GT4}, {GT2,GT3,GT4}}. 408

III. CLASSIFICATION OF CONFLICTS 409

In this paper, we propose a novel classification that 410

includes all the conflicts that we have found in our use 411

of WS–Agreement. Conflicts in WS–Agreement can be 412

classified attending to two different criteria: the type of 413

conflict and its scope. 414

A. Types of conflicts 415

All of the literature related to conflicts in SLAs focus on 416

inconsistencies exclusively. However, the use of qualifying 417

conditions in guarantee terms leads to other types of 418

conflicts, namely dead terms and conditionally inconsistent 419

terms. Moreover, according to the experience of users 420

validating our proposal (see Sec. VI), these conflicts are 421

more common than inconsistencies since they are harder to 422

detect because they usually involve relationships amongst 423

several properties. Next, we detail these types of conflicts. 424

Inconsistencies: A contradiction between terms, 425

parts of terms, or creation constraints, and all of 426

these amongst themselves (e.g., “InputErrors < 1 & 427

InputErrors = 1” in the same expression) constitute 428

an inconsistency of the WS–Agreement document. This 429

means that it is impossible to find a satisfactory assignment 430

to the variables that appear in those terms or creation 431

constraints. The consequence is that the whole document 432

(or one or more variants) is invalidated because it will 433

never be fulfilled regardless of the way the service is 434

provided. For instance, document of Fig. 5 includes an 435

inconsistency between the SLO of GT4 and the creation 436

constraint C2 because they state contradictory expressions. 437

This contradiction may occur in the real world if the 438

provider tries to obtain a minimum benefit by imposing 439

a minimum file size in the GT4 term, due to the translation 440

service cost depends on such size (see the cost creation 441

constraints of Fig. 2). However, the template owner skips 442

the C2 creation constraint by mistake. 443

Dead term: This conflict is caused when the condition 444

of a conditional term never holds in a document or one or 445

more variants. In other words, a dead term is a guarantee 446

term whose qualifying condition has a contradiction with 447

itself or one or more terms and/or creation constraints of 448

the document making the term dead because its SLO can 449

never be applied since its precondition never holds. For 450

instance, document of Fig. 6, includes a dead term (GT5) 451

because its qualifying condition can never be satisfied (by 452

the SLO of the GT3 guarantee term). This contradiction 453

6

Template − T r a n s l a t e i t ! v e r s i o n 1 . 1
. . .

GT4 : Guaranteed by ServiceConsumer
SLO : I n p u t F i l e S i z e > 30

Creat ion C o n s t r a i n t s :
. . .

C2 : [I n p u t F i l e S i z e C o n s t] I n p u t F i l e S i z e <= 30 / / i n pages
. . .

Fig. 5. Document with an inconsistency between a GT and a creation
constraint

Template − T r a n s l a t e i t ! v e r s i o n 1 . 2
. . .

GT3 : Guaranteed by ServiceConsumer
SLO : I n p u t E r r o r s <= 1

. . .
GT5 : Guaranteed by S e r v i c e P r o v i d e r

QC: I n p u t E r r o r s > 1
SLO : T r a n s l a t i o n T i m e <= 1min

. . .

Fig. 6. Document with a dead GT caused by another GT

may occur in the real world if the template owner is the454

provider and he/she only considers their guaranteed terms455

(GT5) while editing, skipping terms guaranteed by the other456

party (GT3), by mistake.457

Conditionally inconsistent term: This conflict is458

caused when a conditional term makes the document incon-459

sistent when its condition holds, which contradicts usual ex-460

pectations. In other words, a conditionally inconsistent term461

is a guarantee term with the following characteristics: (1)462

it is not inconsistent, and (2) when its qualifying condition463

holds, then its SLO does not hold because of a contradiction464

within itself, with the qualifying condition or with other465

terms or creation constraints of the WS–Agreement docu-466

ment. Consequently, the conditionally inconsistent term is467

one that when the qualifying condition holds, the SLO and,468

hence, the guarantee term, does not hold. For instance, the469

GT12 term of Fig. 7 is conditionally inconsistent because470

when its qualifying condition enables the SLO, such SLO471

is contradictory with the GT6 SLO. This contradiction472

may occur in the real world if the template owner tries473

to obtain a minimum benefit by imposing a minimum file474

size (as in the GT6 term), since the translation service cost475

depends on such size (see creation constraints of Fig. 2).476

However, in a further revision of the template, the provider477

decides to reduce the file size of FR to ES translations due478

to technical problems. The provider skips that GT6 term479

applies to every language and therefore, the conditionally480

inconsistent GT12 does not allow reaching agreements for481

any FR to ES translations.482

B. Scope of conflicts483

As stated in Sec. II-B, term compositors enable the defi-484

nition of variants in a WS–Agreement document. Therefore,485

depending on the term or terms that are involved in a486

conflict, it may affect all of the variants of a WS–Agreement487

document or just some of them.488

Total conflicts: When a conflict affects all of the489

variants of a document. For instance, assuming that there490

Template − T r a n s l a t e i t ! v e r s i o n 1 . 3
. . .

GT6 : Guaranteed by ServiceConsumer
SLO : I n p u t F i l e S i z e >= 30

. . .
GT12 : Guaranteed by ServiceConsumer

QC: T r a n s l a t i o n L a n g s = FR_to_ES
SLO : I n p u t F i l e S i z e < 20

. . .

Fig. 7. Document with a conditionally inconsistent GT caused by another
GT

Template − T r a n s l a t e i t ! v e r s i o n 1 . 4
. . .

GT3 : Guaranteed by ServiceConsumer
SLO : I n p u t E r r o r s <= 1

. . .
E x a c t l y One between :

GT1 : Guaranteed by S e r v i c e P r o v i d e r
QC: T r a n s l a t i o n L a n g s = ES_to_DE
SLO : T r a n s l a t i o n T i m e <= 2min

GT2 : Guaranteed by S e r v i c e P r o v i d e r
QC: T r a n s l a t i o n L a n g s be longs {EN−UK_to_ES ,

FR_to_ES , Auto }
SLO : T r a n s l a t i o n T i m e <= 1min

. . .
Creat ion C o n s t r a i n t s :

C1 : T r a n s l a t i o n L a n g s be longs {ES_to_EN−UK, ES_to_FR ,
EN−UK_to_ES , FR_to_ES , Auto } ;

. . .

Fig. 8. WS–Agreement document with a partial dead term originated by
a contradiction between the QC of GT1 and the creation constraint

are no term compositors in the examples of the previous 491

section, the scope of all those conflicts is total. 492

Partial conflicts: When a conflict only affects a subset 493

of the variants of a document. For instance, document of 494

Fig. 8 has a set of terms composed by the ExactlyOne term 495

compositor. It defines two variants, namely: {GT3, GT1, 496

C1} and {GT3, GT2, C1}. The first variant includes 497

a dead term because the QC of GT1 never holds since it 498

contradicts the creation constraint. However, in the second 499

variant there is no conflict because it does not contain 500

guarantee term GT1. Therefore the scope of the conflict 501

is partial since it only affects one variant of the document. 502

Another example of partial conflicts can be found in 503

document of Fig. 9. It has a set of optional guarantee terms 504

(GT1, GT2 and GT3) by the OneOrMore term compositor. 505

However, GT2 and GT3 are contradictory. Therefore, every 506

variant that contains both GTs is inconsistent. However, 507

since they are optional, there are other variants in which 508

they do not appear together. Consequently, in this document 509

there is an inconsistency conflict with a partial scope. 510

IV. AUTOMATING THE DETECTION AND EXPLANATION 511

In the previous section, we have provided a description 512

of the different kinds of conflicts that can be found in a 513

WS–Agreement document. However, its semantics has been 514

defined in an intuitive way. In this section, we provide a 515

precise definition of them by means of a semantic mapping. 516

A semantic mapping is a way to provide semantics to a 517

model, in this case WS–Agreement documents, by mapping 518

the concepts into a semantic domain, i.e., a target domain 519

whose semantics has been formally defined [16]. 520

7

WS‐Agreement
documents

SLA Explainer Explanation
Mapping

W
S‐
Ag

. t
o
CS
P CSP

So
lv
er

+
Ex
pl
ai
ne

r

Fig. 10. Automated process to detect and explain conflicts in WS–Agreement documents.

AgreementOffer T r a n s l a t i o n S e r v i c e O f f e r v e r s i o n 1 . 1
f o r Template T r a n s l a t e i t ! v e r s i o n 1 . 0

. . .
SP1 : S e r v i c e P r o p e r t i e s f o r T r a n s l a t i o n S e r v i c e

. . .
/ / D e s c r i p t i o n : % of t a r g e t t e x t t y p o s
O u t p u t E r r o r s − measured by P e r c e n t

− r e l a t e d to SDT1 / O u t p u t F i l e
. . .

GTTrans l a t ionTime2 : Guaranteed by S e r v i c e P r o v i d e r
QC: I m a g e T r a n s l a t i o n
SLO : T r a n s l a t i o n T i m e <= 2min

. . .
One Or More between :

GT1 : Guaranteed by S e r v i c e P r o v i d e r
SLO : O u t p u t E r r o r s <= 1%

GT2 : Guaranteed by ServiceConsumer
SLO : I n p u t E r r o r s <= 1%

GT3 : Guaranteed by ServiceConsumer
SLO : I n p u t E r r o r s > 1%

Fig. 9. WS–Agreement document with a partial inconsistency

The advantage of defining such semantic mapping is that521

it allows one to use the techniques specific to the target522

semantic domain for analysing the source models [17]. This523

can be done following a process such as that depicted in524

Fig. 10. In that process, a WS–Agreement model is mapped525

into a semantic domain, in which an automated technique526

is used to identify and explain the conflicts in a WS–527

Agreement model, and then, these results are traced back528

and returned as elements of the WS–Agreement metamodel.529

There are several possible semantic domains into which530

WS–Agreement documents can be mapped such as descrip-531

tion logics [10] or event calculus [18]. In our case, we532

have chosen constraint satisfaction problems (CSP) [12] as533

the semantic domain for our mapping. A CSP is a three–534

tuple of the form (V,D,C) where V 6= ∅ is a finite set of535

variables, D 6= ∅ is a finite set of domains (one for each536

variable) and C is a constraint defined on V . Consider, for537

instance, the CSP: ({a, b}, {[0, 2], [0, 2]}, {a + b < 4}). A538

solution of such CSP is whatever valid assignment of all539

elements in V that satisfies C. (2, 0) is a possible solution540

of previous example since it verifies that 2 + 0 < 4.541

CSPs have been chosen because of two major reasons.542

Firstly, the most significant part of an agreement is a set of543

constraints that are set on some properties or descriptions of544

the service and, therefore, CSPs can be used to describe this545

problem in a very natural way as we have shown in previous546

work [4]. Secondly, there is a plethora of CSP solvers 547

available that supports a wide range of constraints and 548

can be used to automatically analyse the WS–Agreement 549

document in an efficient manner. 550

A. iAgree: An Intermediate WS–Agreement Configuration 551

To enable the automated analysis of conflicts, the seman- 552

tic mapping of a WS–Agreement document into a CSP must 553

include both the mapping of the general-purpose schema 554

and the mapping of each SubL used in the document since 555

an important part of the semantics of a WS–Agreement doc- 556

ument is included in the SubLs chosen for its extension 557

points. However, it is not feasible to provide a mapping 558

from all possible SubLs to a CSP. Therefore, a practical 559

mechanism must be provided to enable SubLs developers 560

to implement these mappings. 561

The solution we propose is to use an Intermediate WS– 562

AGREEment configuration (iAgree). iAgree is a WSAC 563

that has been designed with two main features. First, it 564

is a general-purpose WSAC, which means that its SubLs 565

can be used in any domain unlike other SubLs such as 566

JSDL that are domain-specific. Second, the SubLs chosen 567

in iAgree are generic and expressive enough to make it 568

easier to map other WSAC into it. Appendices A and E 569

include iAgree documents mapped from the WSACs used 570

in WSAG4J framework and SWAPS [10], respectively. We 571

conjecture that these mappings are easier to develop than 572

direct mappings to CSPs because the concepts used and 573

the result obtained (another WS–Agreement) are closer 574

semantically than CSPs. Furthermore, WS–Agreement doc- 575

uments could be written directly in iAgree if it fits the 576

users’ needs. Following this approach, we just need to 577

provide one unique full semantic mapping from iAgree 578

WS–Agreement documents into CSPs. Other WSACs shall 579

benefit of the semantics and automated conflict analysis of 580

iAgree by defining a mapping from them to iAgree. 581

iAgree uses the following SubLs. The service description 582

term SubL defines services as attribute–value pairs as it 583

is depicted in Fig. 2 and also provide the domain of the 584

attribute, i.e., a function domainD(attribute). Note that if an 585

XML element can be flattened in terms of attribute–value 586

pairs and its domain has been defined in a XMLSchema, 587

then it can be easily mapped into this SubL. For instance, 588

8

V = { TranslationLangs, InputFile, OutputFile, InputFileSize
ImageTranslation, Cost, TranslationTime, InputErrors }

D = { set {ES to EN-UK, ... , Auto}, string, string, integer,
boolean, float, integer [1..100], float [0..100] }

C = { NOT ImageTranslation ⇒ TranslationTime<=1,
ImageTranslation ⇒ TranslationTime<=2, InputErrors<=1,
TranslationLangs=[ES to EN-UK,...,Auto], InputFileSize<=50,
Cost>0, NOT ImageTranslation ⇒ Cost=InputFileSize*1,
ImageTranslation ⇒ Cost=InputFileSize*2,
InputFileSize<30 ⇒ NOT ImageTranslation }

Fig. 11. CSP generated from mapping Template of Fig. 2

the JSDL example included in appendix B is flattened to589

attribute–value pairs in the APPLICATION STD 1 SDT in590

appendix A.591

The metric SubL, which is used to define the metric592

of a service property, provides the domain of the service593

property, i.e., it describes its data type and its allowed594

values. From an abstract point of view, the SubL provides595

a function domainM(metric) to obtain such domain. For596

instance, Document of Fig. 2 specifies that service property597

InputErrors is measured by Percent. Therefore, as598

can be seen in the metric section of Fig. 2, there must599

be some metric model, that states Percent must be600

interpreted as the domain: “real value between 0 and 100”,601

i.e., domainM(Percent) = {x ∈ R : x ≥ 0 ∧ x ≤ 100}.602

The remaining SubLs are expression languages to spec-603

ify SLOs, qualifying conditions, and creation constraints,604

respectively. In this case, the SubLs define assertions using605

logical, relational, and algebraic operators defined on the606

domain of the service descriptions, service properties and607

literals. In practice, the expression language used shall be608

restricted by the types of expressions that a particular CSP609

solver can use. Sec. V-B provides more details about the610

expression language that we have used in our tool.611

B. iAgree to CSP Mapping612

A WS–Agreement document ∆ specified with iAgree613

WSAC describes a service by means of a set of attribute–614

value pairs and defines some service guarantees for a set615

of service properties whose domain has been previously616

defined. The semantics of such WS–Agreement documents617

can be modelled in a CSP by means of the semantic618

mapping map(∆). The basic idea is to map the service619

descriptions and service properties into CSP variables,620

whereas GTs and creation constraints are mapped into CSP621

constraints. By doing so, the set of CSP solutions represents622

the range of values that may take the service descriptions623

and properties in the next step of the agreement creation624

process, i.e., when creating an offer from a template, or625

creating an agreement from an offer. This mapping is626

summarised in Table I and detailed as follows:627

Service description terms are mapped into variables,628

domains and, if they are part of an offer, into constraints.629

Specifically, for each SDT attribute–value pair, the attribute630

TABLE I
TERMS MAPPING FROM IAGREE TO CSP

iAgree Element CSP Mapping
Template / AgreementOffer . . .

Context : . . . Not mapped into the CSP

SDT : S e r v i c e D e s c r i p t i o n
f o r " name "

a t t r i b u t e − measured
by m e t r i c = v a l u e

-in Templates-
V ← V ∪ attribute
D← D ∪ domainD(attribute)

-in AgreementOffers-
V ← V ∪ attribute
D← D ∪ domainD(attribute)
C ← C ∪ (attribute = value)

SP : S e r v i c e P r o p e r t i e s
p r o p e r t y − measured
by m e t r i c − r e l a t e d to . . .

V ← V ∪ property
D← D ∪ domainM(metric)
C ← C

SR : S e r v i c e Reference Not mapped into the CSP
GT: Guaranteed by
S e r v i c e P r o v i d e r / Consumer

QC: QCExpr
SLO : SLOExpr

V ← V
D← D
C ← C ∪ (QCExpr ⇒ SLOExpr)

GT: Guaranteed by
S e r v i c e P r o v i d e r / Consumer

SLO : SLOExpr

V ← V
D← D
C ← C ∪ (SLOExpr)

Creat ion C o n s t r a i n t s :
name : GCExpr

V ← V
D← D
C ← C ∪ (GCExpr)

is added into the set of variables of the CSP; its domain, 631

which is obtained from function domainD defined in the 632

SDT SubL, is added into the set of domains of the CSP, 633

and if the document is an offer, a constraint is added 634

into the set of constraints in order to assign the specified 635

value to the variable. If the document is a template, SDTs 636

represent default values and, hence, they are not mapped 637

into constraints. 638

Service properties are mapped into CSP variables and 639

their respective domain. The domain is obtained from 640

the function domainM defined in the metric SubL. These 641

variables are used in the guarantee terms. Note that we 642

just depict the mapping of one variable in the Table for 643

simplicity. If a service property defines more variables, 644

then the same mapping should be applied for each variable. 645

For instance the InputErrors property is mapped as a 646

variable with the [0..100] domain as Fig. 11 shows. 647

Guarantee terms are always mapped as CSP con- 648

straints. If there is a qualifying condition, the guaran- 649

tee term is mapped as an implication between qualify- 650

ing condition and the SLO to represent the fact that 651

the SLO can be applied only if the qualifying condition 652

holds. For instance the NOT ImageTranslation ⇒ 653

TranslationTime<=1 constraint mapped in Fig. 11 654

from GTranslationTime1 of Fig. 2. Otherwise, only 655

the SLO expression is added into the set of constraints of 656

the CSP. For instance the InputErrors<=1 constraint 657

mapped in Fig. 11 from GTInputErrors of Fig. 2. 658

Constraints are directly added into the CSP con- 659

straints. For instance, InputFileSize<30 ⇒ NOT 660

ImageTranslation in Fig. 11. We do not include a 661

mapping for items mentioned in Sec. II-A because we 662

consider them a particular case of current constraints. 663

The mapping function map(∆) assumes that there are 664

no composite terms in the WS–Agreement document and, 665

9

hence, all terms are composed by an All compositor. There666

are two approaches to take the composite term structure667

of WS–Agreement documents into account: The first one668

involves translating the semantics of term compositors into669

one CSP. In this case, the result is one CSP that uses logical670

operators OR and NOT to represent the semantics of the671

composite term structure of a WS–Agreement document.672

The second approach involves using the concept of variant673

to translate one WS–Agreement document into several674

CSPs, one for each variant of the document.675

From a semantic point of view, both solutions are equiv-676

alent. However, from an operational point of view, the first677

approach makes it much harder to identify partial conflicts678

and to obtain explanations for the conflicts. Therefore, in679

this paper we take the second approach and define an680

extended mapping function for composite terms, mapc(∆c),681

as a function that, given a WS–Agreement document with682

composite terms ∆c, returns a set of CSPs, one for each683

variant of ∆c: mapc(∆c) = {map(x) : x ∈ variants(∆c)},684

where variants(∆c) is the function that returns the set of685

variants defined by a WS–Agreement document ∆c that686

was defined in Sec. II.687

C. CSP-based analysis of conflicts688

The advantage of the previous semantic mapping is that689

we can use the techniques specific to the semantic domain690

of CSPs to analyse the conflicts in a WS–Agreement doc-691

ument as depicted in Fig. 10. In our case, to analyse these692

conflicts we need two analysis techniques that have been693

widely used in CSPs: find solutions and explaining the lack694

of solutions. The former solve(V,D,C) involves finding a695

valid assignment of values to all of the variables of the CSP696

V so that it satisfies its constraints C. To this end, many697

heuristics and techniques have been developed to obtain698

these solutions in an efficient manner. The latter technique699

explain(V,D,C) involves providing an explanation when700

such solution is not possible. This explanation is a minimal701

set of constraints c ⊆ C that makes it impossible to find a702

valid assignment of all elements in V that satisfies c, i.e.,703

that makes solve(V,D, c) = ∅. For instance, for the CSP:704

({a, b, d}, {[0..2], [0..2], [0..2]}, {a+b < 1, a = 1, d > 1}),705

the resulting c would be {a + b < 1, a = 1} because the706

minimum allowed value for b is 0. On the basis of these707

two operations, we can provide a precise semantics to the708

conflicts described in Sec. III as follows:709

Inconsistent terms. A WS–Agreement document has in-710

consistent terms, i.e., it has contradictions between its terms711

or creation constraints, if the mapped CSP has no solutions:712

inconsistent(∆) ⇔ solve(map(∆)) = ∅. For instance, the713

inconsistent term of template of Fig. 5 would be detected,714

by means of its CSP mapping as follows:715

solve({InputFileSize}, {int}, {InputFileSize>=30,
InputFileSize<30, InputFileSize<=50}) = ∅

Furthermore, the inconsistent terms are explained by the716

result of tracing back the set of constraints c returned by717

inconsistentexp(∆) = explain(map(∆)) = c718

Then, previous example would be explained as follows: 719

explain({InputFileSize}, {int}, {InputFileSize>=30,
InputFileSize<30, InputFileSize<=50}) =
= {InputFileSize>=30, InputFileSize<30}

Dead terms. A guarantee term is a dead term if it can 720

never be applied if all of the mandatory terms of the 721

agreement are fulfilled, i.e., if its QC can never be true 722

provided that the other terms of the agreement are fulfilled. 723

Therefore, to detect that a term is dead, we just have to 724

check whether its QC contradicts the remaining terms of 725

the agreement. This can be expressed in terms of a CSP 726

as follows: let GTi be a guarantee term whose qualifying 727

condition is QCGTi , GTi is a dead term if adding its QC as 728

a new constraint to the document it makes it inconsistent: 729

dead(GTi,∆) ⇔ solve(map(∆)) 6= ∅ ∧ solve(V,D, (C \ 730

map(GTi) ∪ QCGTi)) = ∅. For instance, the dead term of 731

template of Fig. 6 would be detected as follows: 732

solve({TranslationTime,InputErrors}, {int[1..100],float[0..100]},
{InputErrors>1⇒TranslationTime<=1, InputErrors<=1}) 6= ∅
∧ solve({TranslationTime,InputErrors}, {int[1..100],

float[0..100]}, {InputErrors>1, InputErrors<=1}) = ∅

A dead term is explained by the result of tracing back 733

the set of constraints c returned by: deadexp(GTi,∆) = 734

explain(V,D, (C \ map(GTi) ∪ QCGTi)) = c 735

Then, previous example would be explained as follows: 736

explain({TranslationTime,InputErrors}, {int[1..100],
float[0..100]}, {InputErrors>1,InputErrors<=1}) =
= {InputErrors>1,InputErrors<=1}

Conditionally inconsistent terms. A guarantee term is 737

a conditionally inconsistent term if when its QC is true 738

(i.e., it is enabled), its SLO is always false (i.e., it can- 739

not be fulfilled). Consequently, to detect that a term is 740

conditionally inconsistent, we have to check whether its 741

QC and SLO contradict each other taking into account 742

the other agreement terms. In terms of a CSP, this can 743

be expressed as follows: let GTi be a guarantee term 744

whose qualifying condition is QCGTi and service level 745

objective is SLOGTi , GTi is a conditionally inconsistent 746

term if: condInconsistent(GTi,∆) ⇔ solve(map(∆)) 6= 747

∅ ∧ solve(V,D, (C \ map(GTi) ∪ QCGTi ∪ SLOGTi)) = ∅. 748

For instance, the conditionally inconsistent term of offer of 749

Fig. 7 would be detected as follows: 750

solve({TranslationLangs,InputFileSize}, {set{ES to EN-UK,...
,Auto},int}, {TranslationLangs=FR to ES ⇒
⇒ InputFileSize<20, InputFileSize>=30}) 6= ∅

∧ solve({TranslationLangs,InputFileSize},{set{ES to EN-UK,...
,Auto},int}, {TranslationLangs=FR to ES,
InputFileSize<20, InputFileSize>=30}) = ∅

A conditionally inconsistent term is explained by 751

tracing back the set of constraints c returned by: 752

condInconsistentexp(GTi,∆) = explain(V,D, (C \ 753

10

map(GTi) ∪ QCGTi ∪ SLOGTi)) = c754

Then, previous example would be explained as follows:755

explain({TranslationLangs,InputFileSize},{set{ES to EN-UK,...
,Auto},int}, {TranslationLangs=FR to ES,
InputFileSize<20, InputFileSize>=30}) =

= {InputFileSize<20, InputFileSize>=30}

These definitions can be easily extended for a document756

with term compositors by obtaining the variants of the757

document and, then, applying the previous definitions to758

each of the variants of the document. If the same conflict is759

found in all of the variants, then the scope of the conflict is760

total. If the conflict is found in, at least one of the variants,761

but not all of them, then the scope is partial.762

For instance, the partial dead term of template of Fig.763

8 would be detected by means of the CSP mapping of its764

two variants map(∆1) and map(∆2):765

map(∆1) = ({TranslationTime, TranslationLangs},
{int[1..100], set{ES to EN-UK,...,Auto}},
{TranslationLangs=ES to DE ⇒ TranslationTime<=2,
TranslationLangs in {ES to EN-UK,ES to FR,
EN-UK to ES,FR to ES,Auto}})

map(∆2) = ({TranslationTime, TranslationLangs},
{int[1..100], set{ES to EN-UK,...,Auto}},
{TranslationLangs in {EN-UK to ES, EN-US to ES,
FR to ES, Auto} ⇒ TranslationTime<=1,
TranslationLangs in {ES to EN-UK,ES to FR,
EN-UK to ES,FR to ES,Auto}})

While map(∆2) has not conflicts, a partial dead term766

would be detected and explained in map(∆1), as follows:767

solve(map(∆1)) 6= ∅
∧ solve({TranslationTime, TranslationLangs},

{ int[1..100], set{ES to EN-UK,...,Auto}},
{TranslationLangs=ES to DE,
TranslationLangs in {ES to EN-UK,ES to FR,
EN-UK to ES,FR to ES,Auto}})= ∅

explain({TranslationTime, TranslationLangs},
{ int[1..100], set{ES to EN-UK,...,Auto}},
{TranslationLangs=ES to DE
TranslationLangs in {ES to EN-UK,ES to FR,
EN-UK to ES,FR to ES,Auto}})=
{TranslationLangs=ES to DE
TranslationLangs in {ES to EN-UK,ES to FR,
EN-UK to ES,FR to ES,Auto}}

V. SLA EXPLAINER768

The technique developed in the previous section has769

a reference implementation named SLA Explainer, which770

automatically detects and explains all types of conflicts.771

Fig. 12 depicts the overall architecture of such implemen-772

tation. SLA Explainer extends the desktop application de-773

veloped as a proof-of-concept of the technique to detect and774

explain inconsistent terms in WS–Agreement developed775

cmp SLA explainer lite

Consistency
Analyser

DeadTerms
Analyser

Conditional
Consistency Analyser

CSP Mapping

transform

operation

XML To iAgree

SLA explainer (OSGi compliant)

Choco Constraint
Solver

Variants Manager

WSDL
Adapter

SLA explainer
Facade

Analysis
Controller

Choco Adapter
analyse

Fig. 12. SLA Explainer components diagram.

previously [1]. In this extension, external users have played 776

a pivotal role as they have provided high–value input we 777

have taken into account in order to prioritize some non– 778

functional requirements. We hereby comment some of the 779

aspects where the end-users input has been most important 780

in the design of SLA Explainer. 781

A. Features 782

The main features provided by the components of 783

SLA Explainer included in Fig. 12 are: (1) ready-to- 784

use by the development of a user-friendly web applica- 785

tion (see Sec. V-D) to test and use the conflict anal- 786

ysis provided by SLA Explainer with fewer effort; (2) 787

functional suitability by supporting the analysis of ex- 788

pressive WS–Agreement documents with conditional and 789

optional terms by the Variants Manager, arithmetic- 790

logic expressions inside SLOs, etc [13]; (3) understandabil- 791

ity by supporting a plain-text notation of iAgree [13] that 792

makes reading and writing WS–Agreementdocuments eas- 793

ier for humans (such notation is serialised internally to the 794

XML standard syntax of WS–Agreement by the XML to 795

iAgree component); (4) interoperability through a triple 796

distribution model (Java library, OSGi5 service, and web 797

service) through the SLA explainer Facade compo- 798

nent; and (5) CSP solver independence by protecting our 799

design from the possible variations derived from using 800

a different CSP Solver than Choco constraint solver6, 801

which is the one SLA Explainer includes by default. For 802

this reason, we have designed the interface Analyser 803

with which interacts both the CSP Mapping component, 804

which performs the semantic mapping function to map 805

WS-Agreement documents into the concrete CSP used, 806

and the components that analyse each conflict. In our 807

implementation of SLA Explainer, interface Analyser 808

is implemented by component Choco Adapter, which 809

interacts with Choco constraint solver. Therefore, the only 810

requirement to add support for a new CSP engine is to 811

provide an implementation to interface Analyser. 812

5www.osgi.org
6Laburthe et al. Choco constraint solver. http://www.emn.fr/z-info/

choco-solver/index.html

11

B. Implementation Issues813

SLA Explainer allows the detection and explanation of814

all kind of conflicts mentioned in this paper for WS–815

Agreement documents specified with iAgree. However,816

some implementation issues such as the used CSP solver817

or the way service properties metrics are expressed, affect818

to the supported type of variables and constraints. For in-819

stance, the open source Choco CSP solver only implements820

complete support for integer variables. We have made the821

following implementation decisions on the iAgree SubLs.822

As mentioned in Sec. IV-A, SDTs must be modelled823

as attribute–value pairs, independently of their domain–824

specific, internal (possibly hierarchical) organization. We825

consider that the advantages of using a generic SubL for826

SDTs are more relevant than the potential expressiveness827

of more specific SubLs like JSDL or WSDL for example.828

Applying this generic approach of attribute–value pairs in829

SDTs, we can automatically process any SLA document830

independently of the specific nature of the services to be831

agreed upon.832

According to WS–Agreement, the (mathematical) do-833

main of service property variables can be specified by834

domain–specific metrics. We have developed a simple yet835

effective metrics SubL for the definition of global metrics836

that can be used in iAgree or any other WS–Agreement837

document. Examples of the metrics definition are shown in838

the context of Fig. 2.839

Finally, regarding logic assertions SubLs for guarantee840

Terms and creation constraint, we have designed a plain–841

text predicate–oriented SubL that can be easily fed into any842

CSP solver. The abstract syntax of iAgree of the predicate–843

oriented SubL is shown below, where ID is the identifier844

of an integer variable and lit is a literal value.7845

P ::= P opL P | T , predicate, where opL ∈ {∧ |∨ | ¬ | ⇒ |⇔}
T ::= E opC E, term, where opC ∈ { = | 6= | > | ≥ | < | ≤ }
E ::= E opA E | var | lit, expression, where opA is an algebraic

operator defined on the domain of variables and literals

C. SLA Explainer Front-end846

We have developed a front-end for iAgree that is avail-847

able on-line and can be used from any platform including848

mobile devices. It uses the WSDL interface8 to consume849

SLA Explainer as a web service. The front-end offers the850

following features (the number in brackets refers to the851

corresponding part of Fig. 13): (1) an user-friendly iAgree852

notation with syntax highlighting and a line numbered853

editor; (2) skeletons for the creation of agreement docu-854

ments ("New template/offer" items of File menu), specially855

developed for users not familiar with WS–Agreement; (3)856

several document preloaded in order to reduce the learning857

curve (note that every example of current paper is included);858

(4) analysis operations to launch the conflict checking and859

explaining, and to get the number of variants; and (5) the860

7Technical report [13] includes several examples of predicates.
8http://www.isa.us.es:8081/ADAService?wsdl

(1)

(2)

(4)

(5)

(3)

Fig. 13. Edition capabilities of the iAgree front-end to try SLA
Explainer (http://labs.isa.us.es/apps/iagreeeditor/)

Fig. 14. Scenarios view of the iAgree front-end to try SLA Ex-
plainer (http://labs.isa.us.es/apps/iagreeeditor/)

result of the analysis is shown in a message (the message 861

shown corresponds to the inconsistency explanation opera- 862

tion). Moreover, as Fig. 14 depicts using the document of 863

Fig. 9 as example, we have developed a view to launch 864

several analysis operations consecutively by using a simple 865

JavaScript notation, and the result is shown in a log window. 866

D. SLA Explainer Verification 867

A test suite has been developed comprising 780 868

implementation–independent test cases [19] to verify the 869

functionality of SLA Explainer. The test cases have been 870

designed in terms of the inputs (i.e. an agreement offer) and 871

expected outputs of the detection or explanation of conflicts 872

under test. We used three popular black–box techniques 873

from the software testing community to design our test 874

cases, namely: equivalence partitioning, pairwise testing, 875

and error guessing. The test cases helped to find: (1) a 876

couple of errors detected while handling documents, for 877

instance documents with variants were not correctly man- 878

aged because a NullPointerException were thrown 879

and it was solved with an adequate exception treatment; and 880

12

(2) a dozen of errors detected while analysing documents,881

for instance attribute-value pairs of SDTs in templates were882

considered as value assignments, instead of default values.883

VI. VALIDATION884

An important validation effort has been carried out in885

the pursuit of real–world usefulness for SLA Explainer. As886

major conclusion we can claim that the results are useful887

not only for other colleagues in the community but also to888

be used in real end-user platforms and as a tool to help889

students. In the following, the main hints of this validation890

effort are highlighted.891

Our first validation scenario was focused on the agree-892

ment creation process of WS–Agreement protocol. We893

revised WSAG4J, a framework developed by members of894

the GRAAP working group of the Open Grid Forum to895

provide an implementation of the WS–Agreement protocol.896

We noticed that WSAG4J lacked mechanisms to detect897

and explain conflicts in WS–Agreement documents which898

might led to undesired situations: SLAs with inconsis-899

tencies, dead terms and conditionally inconsistent term,900

and failures during the agreement creation process due to901

inconsistent templates or offers. It was necessary to build902

an adapter to SLA Explainer to deal with the documents903

written in the WSAC of WSAG4J. Two alternatives to904

build this adapter were considered: mapping the WSAC of905

WSAG4J to iAgree, or mapping the WSAC of WSAG4J906

to CSP. We chose the former for the sake of simplicity.907

Examples of this mapping can be found in Appendix A.908

As a second validation effort we had the opportunity909

to use SLA Explainer in the SOA–Governance System910

used by our Regional Governmental Organization (see911

Appendix C). SLA Explainer was integrated into an SLA912

Management Infrastructure to automatically analyse the913

agreement documents and to enhance editing tools with914

debugging (detection and explanation) capabilities. During915

the evaluation we were aware of an unidentified kind of916

conflict that we coined as conditionally inconsistent term.917

We asked ourselves about the existence of other unidentified918

kinds of conflicts and we decided to conduct an experiment919

with our M.Sc students. The students had to choose a920

real-world service such as PayPal, Amazon EC2, Business921

Process Management Systems, NetOpen EAI, et cetera922

and create its corresponding template and a compliant923

offer. A total number of 46 WS–Agreement documents, 24924

templates and 22 offers, were created. Amongst them, there925

were agreement documents with up to 14 service proper-926

ties, 9 guarantee terms, 5 conditional guarantee terms, 12927

variants, 4 items creation constraints or 14 general creation928

constraints. The conclusion we obtained from this exercise929

was that real-world SLAs make an intensive use of qualify930

conditions and variants in real-world SLAs. Furthermore,931

we also found another unidentified kind of conflict: dead932

term. All documents created by the students are available933

in a public repository9.934

9Available at http://www.isa.us.es/ada in the SLARepository link

VII. RELATED WORK 935

This section is organized according to the two major 936

contributions of this paper, namely: a conflict classification 937

for WS–Agreement as well as a rigorous definition for each 938

conflict, and a novel constraint satisfaction problem (CSP)– 939

based technique to detect and explain every single type of 940

conflict of that classification. 941

Although there are conflict taxonomies in other applica- 942

tion domains, we have not found any one neither in SLA 943

domain in general, nor WS–Agreement in particular. In fact, 944

the only type of conflict we have found regarding SLAs 945

is the inconsistency conflict. Our first steps in defining our 946

classification were strongly influenced by [20]. In this work, 947

an error classification of feature models and a CSP–based 948

technique to automatically detect and explain errors in such 949

models was proposed. A feature model allows to represent 950

all the products of a Software Product Line in a compact 951

way. Three major type of errors were identified in [20]: 952

dead features, full-mandatory features and void model. A 953

dead feature is a feature that despite of being defined in 954

a feature model, it will never appear in a product in the 955

software product line. We realized that this concept could 956

be translated to our context so that we could say that a 957

dead term is a term that despite of being defined in an 958

agreement document, it will never be applied during the 959

agreement lifetime. The adjective “dead” has been also used 960

with a very similar meaning to denote activities that cannot 961

be reached in web services choreographies because their 962

executions would lead to violate at least one choreography 963

constraint [21], so we consider that it is an adjective that 964

perfectly grasps the idea we wished to transmit. 965

We have not found any other correspondence so direct in 966

the case of inconsistencies and conditional inconsistencies, 967

although we have found some very complete and complex 968

taxonomies with very similar, but not the same, type of 969

errors. For instance, in the field of Information System 970

Management, according to the taxonomy proposed in [22], 971

our inconsistencies and dead term conflicts can be con- 972

sidered as mutex and our conditionally inconsistent term 973

conflict can be considered as inconsistence configuration. 974

In order to avoid misunderstandings, we have decided to use 975

“inconsistency” because it is commonly used in SLAs [1], 976

and “conditionally inconsistent term” because it transmits 977

the meaning of the error type in a more precise way. 978

As far as we know, our proposal is novel in giving 979

rigorous semantics to WS-Agreements documents and their 980

elements using a semantic mapping to CSP. The proposal 981

of Oldham et al. [10] is the closest to ours because they 982

provide semantics to an specific WSAC by means of 983

ontologies to automate the agreement compliance check- 984

ing between the parties at negotiation phase of the WS– 985

Agreement life-cycle. However, they do not support nested 986

term compositors. There are some previous formalisations 987

of WS–Agreement [23], [24] but all of them are focused 988

on the protocol-side of WS–Agreement where a formal 989

definition of the offers and templates is not necessary. 990

The novel CSP–based technique to detect and explain 991

13

the conflicts of our classification extends our preliminary992

proposal to detect and explain only inconsistent terms993

on WS–Agreement offers [1]. Although WS–Agreement994

templates, dead or conditionally inconsistent terms, and995

even conflict scope were not considered in such previous996

work, it is the unique proposal we find in the literature that997

proposes conflicts explanation in WS–Agreement.998

There are also a couple of proposals that are able to999

detect inconsistencies but neither dead nor conditionally1000

inconsistent terms conflicts. In the first one [4], we already1001

proposed a constraint-based approach to detect only incon-1002

sistencies between terms; and in the second one [3], Braga1003

et al. proposes a state-search and model-checking technique1004

that is able to analyse SLA models detecting inconsis-1005

tent SLOs. In both cases, authors dealt with non–WS–1006

Agreement documents that do not include either conditional1007

terms nor term compositors, although conditional terms1008

could be expressed as logical entailment. Furthermore, they1009

do not provide any explanation of conflicts.1010

Another problem that could be interpreted in terms1011

of conflicts between several documents is the agreement1012

violation detection during agreement monitoring. In this1013

case, the conflicts are checked between the SLA previously1014

agreed by parties and a document that includes the result of1015

monitoring the agreed service. Some proposals that allow1016

the detection of agreement violations are: [25]–[29]. As for1017

proposals that not only detect, but also propose to carry out1018

an action when a violation has been detected: [30] proposes1019

to renegotiate the SLA; [31] proposes monetary penalties,1020

impact on potential future agreements between the parties1021

and the enforced re-running of the agreed service; [32]1022

proposes actions which take into account not only penalty1023

clauses, but rewards clauses also; and finally [18] provides1024

explanation of violations based on the events of service–1025

based systems. All these proposals can benefit from our1026

SLA Explainer. Actually, proposal [14] extends the moni-1027

toring technique proposed in [28] with SLA Explainer to1028

explain the violations, i.e., which metrics and SLOs have1029

been violated.1030

Finally, there are approaches of the SLA domain in1031

general, and WS–Agreement in particular, that provide1032

detection and explanation for a different kind of conflicts;1033

those not in a unique agreement document but between1034

several documents. This is the case of [4] where a technique1035

to determine the compliance between documents described1036

in a non–WS–Agreement notation is introduced. In [33] this1037

technique is revised to be applicable in WS–Agreement and1038

a new technique to explain the non-compliance conflicts1039

between templates and agreement offers is introduced.1040

VIII. CONCLUSIONS AND FUTURE WORK1041

Three main conclusions can be drawn from this paper.1042

First, the use of qualifying conditions and term compositors1043

are at the root of two new kinds of conflicts: dead terms1044

and conditionally inconsistent terms. Furthermore, the use1045

of alternative term compositors leads to situations where the1046

conflicts affect only partially the agreement document. In1047

turn, in order to deal with partial conflicts the notion of vari- 1048

ants in a WS–Agreement document have been rigorously 1049

defined. These findings are valid for any SLA specification 1050

model incorporating conditional and alternative terms. 1051

Second, we show how constraint programming can be 1052

used to provide a rigorous definition for all kinds of 1053

conflicts in WS–Agreement documents identified to date. 1054

More specifically, the definitions rely solely on two analysis 1055

techniques widely used in constraint programming: finding 1056

solutions and explaining the lack of solutions. Both tech- 1057

niques are generally incorporated by many solvers which 1058

means our solution can be easily shared and reproduced. 1059

Third, we conjecture that both the use of ad-hoc WSACs 1060

and the lack of a commonly accepted general-purpose 1061

WSAC, are delaying the adoption of WS–Agreement by re- 1062

searchers and practitioners. In this regard, we are confident 1063

that iAgree will provide a foundation on which general- 1064

purpose tools for WS–Agreement can be built. Furthermore, 1065

apart from our technique’s inherent value, having developed 1066

open source tooling support which can be quickly integrated 1067

(as it is shown in [13]) and easy-to-use is a determining 1068

factor to achieve a useful result and settles the basis to 1069

spread the use of WS–Agreement. 1070

As far as we know, this is the first work that explores 1071

the detection and explaining of conflicts in WS–Agreements 1072

documents with conditional and optional terms, and thus a 1073

lot of work remains to be done. We mention only a twofold 1074

direction: to explore the new conflicts that poses in dealing 1075

with temporal-aware terms [34], [35] and penalties [36]. 1076

ACKNOWLEDGMENTS 1077

We would like to thank for his helpful comments and 1078

revisions: F. Casati, A. Metzger, O. Wäldrich, W. Ziegler, P. 1079

Wieder, A. Durán, O. Martín-Diaz, P. Fernández, S. Segura, 1080

J. M. Alcaraz, M. Montali, M. Aiello, F. Raimondi, P. 1081

Dolog, and the technical staff for his work and dedication, 1082

specially to J. García and A. Jurado. 1083

REFERENCES 1084

[1] C. Müller, A. Ruiz-Cortés, and M. Resinas, “An Initial Approach to 1085

Explaining SLA Inconsistencies,” in Proc. of the 6th ICSOC’08, ser. 1086

LNCS, vol. 5364, pp. 394–406. 1087

[2] P. Plebani, A. Metzger and O. Sammodi, “Validated principles, 1088

techniques and methodologies for specifying end-to-end quality (S- 1089

Cube deliverable CD-JRA-1.3.6),” 2012. 1090

[3] C. Braga, F. Chalub, and A. Sztajnberg, “A Formal Semantics 1091

for a Quality of Service Contract Language,” Electronic Notes in 1092

Theoretical Computer Science, vol. 203, no. 7, pp. 103–120, 2009. 1093

[4] A. Ruiz-Cortés, O. Martín-Díaz, A. Durán, and M. Toro, “Improv- 1094

ing the Automatic Procurement of Web Services using Constraint 1095

Programming,” Int. Journal on Cooperative Information Systems, 1096

vol. 14, no. 4, 2005. 1097

[5] M. Comuzzi and B. Pernici, “A framework for qos-based web service 1098

contracting,” ACM Trans. Web, vol. 3, pp. 10:1–10:52, 2009. 1099

[6] Andrieux et al., “Web Services Agreement Specification (WS- 1100

Agreement) (v. gfd-r.192),” 2011, OGF - Grid Resource Allocation 1101

Agreement Protocol WG. 1102

[7] C. K. et al., “SLA@SOI: SLA Management and Foundations,” 1103

SLA@SOI consortium, Tech. Rep. Deliverable D.A5.a, 2009. 1104

[8] A. Keller and H. Ludwig, “The WSLA Framework : Specifying and 1105

Monitoring Service Level Agreements for Web Services,” Network, 1106

vol. 11, no. 1, pp. 57–81, 2003. 1107

14

[9] Dominic Battré et al., “WS-Agreement Specification Version 1.01108

Experience Document (v. gfd-e.167),” 2010, OGF - Grid Resource1109

Allocation Agreement Protocol WG.1110

[10] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour, “Semantic WS-1111

Agreement Partner Selection,” in 15th International WWW Conf.,1112

697–706. ACM Press, 2006.1113

[11] D. Battré, M. Hovestadt, and O. Wäldrich, “Lessons learned from1114

implementing ws-agreement,” in Grids and Service-Oriented Archi-1115

tectures for Service Level Agreements.1116

[12] E. Tsang, Foundations of Constraint Satisfaction. A. Press, 1995.1117

[13] C. Müller, A. Durán, M. Resinas, A. Ruiz-Cortés, and O. Martín-1118

Díaz, “Experiences from Building a WS–Agreement Document1119

Analyzer Tool,” ISA Research Group, Tech. Rep., 2010.1120

[14] C. Müller, M. Oriol, M. Rodríguez, X. Franch, J. Marco, M. Resinas,1121

and A. Ruiz-Cortés, “SALMonADA: A platform for Monitoring and1122

Explaining Violations of WS–Agreement–compliant Documents,”1123

in 4th Workshop on Principles of Engineering Service–Oriented1124

Systems (PESOS’12), 2012.1125

[15] W3C, “Xml schema part 0: Primer second edition,” http://www.w3.1126

org/TR/xmlschema-0/.1127

[16] D. Harel and B. Rumpe, “Meaningful modeling: What’s the seman-1128

tics of "semantics"?” IEEE Computer, vol. 37, no. 10, 2004.1129

[17] J. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing1130

rule-based behavioral semantics of visual modeling languages with1131

Maude,” in Software Language Engineering 2008, ser. Lecture Notes1132

in Computer Science, vol. 5452/2009. Springer, 2009, pp. 54–73.1133

[18] K. Mahbub and G. Spanoudakis, “Monitoring ws-agreements: An1134

event calculus-based approach,” in Test and Analysis of Web Services,1135

Chapter 10, 2007, pp. 265–306.1136

[19] C. Müller, S. Segura, and A. Ruiz-Cortés, “A test suite for agreement1137

document analyser,” ISA Research Group, Tech. Rep., 2012.1138

[20] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro,1139

“Automated error analysis for the agilization of feature modeling,”1140

Journal of Systems and Software, vol. 81, no. 6, pp. 883–896, 2008.1141

[21] M. Montali, M. Pesic, W. M. P. v. d. Aalst, F. Chesani, P. Mello,1142

and S. Storari, “Declarative specification and verification of service1143

choreographiess,” ACM Trans. Web, vol. 4, pp. 3:1–3:62, 2010.1144

[22] J. M. A. Calero, J. M. M. Pérez, J. B. Bernabé, F. J. G. Clemente,1145

G. M. Pérez, and A. F. G. Skarmeta, “Detection of semantic conflicts1146

in ontology and rule-based information systems,” Data K. Eng.,1147

vol. 69, no. 11, pp. 1117 – 1137, 2010.1148

[23] M. Aiello, G. Frankova, and D. Malfatti, “What’s in an Agreement?1149

An Analysis and an Extension of WS-Agreement.” in ICSOC’05.1150

[24] G. D. Modica, O. Tomarchio, and L. Vita, “Dynamic SLAs Man-1151

agement in Service Oriented Environments,” Journal of Systems and1152

Software, vol. 82, pp. 759–771, 2009.1153

[25] F. Raimondi, J. Skene, and W. Emmerich, “Efficient Online Moni-1154

toring of Web-Service SLAs,” in 16th ACM SIGSOFT International1155

Symposium on Foundations of Software Engineering. Atlanta, GE:1156

ACM Press, Nov. 2009, pp. 170–180.1157

[26] J. Skene, D. Lamanna, and W. Emmerich, “Precise Service Level1158

Agreements,” in 26th Intl. Conf. on Software Engineering. IEEE1159

Computer Society Press, May 2004, pp. 179–188.1160

[27] S. Lamparter, S. Luckner, and S. Mutschler, “Formal Specification of1161

Web Service Contracts for Automated Contracting and Monitoring,”1162

in 40th Hawaii International Conference on System Sciences. IEEE1163

Computer Society Press, 2007.1164

[28] M. Oriol, X. Franch, J. Marco, and D. Ameller, “Monitoring adapt-1165

able soa-systems using salmon,” in Workshop on Service Monitoring,1166

Adaptation and Beyond (Mona+), 2008, pp. 19–28.1167

[29] C. Chen, L. Li, and J. Wei, “AOP Based Trustable SLA Compliance1168

Monitoring for Web Services,” in Seventh International Conference1169

on Quality Software, QSIC’07, Oct. 2007, pp. 225–230.1170

[30] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper,1171

“Adaptive quality of service management for enterprise services,”1172

ACM Trans. Web, vol. 2, pp. 8:1–8:46, March 2008.1173

[31] O. F. Rana, M. Warnier, T. B. Quillinan, F. Brazier, and D. Cojo-1174

carasu, “Managing violations in service level agreements,” in Grid1175

Middleware and Services Chapter Title - Managing Violations in1176

Service Level Agreements, 2008, pp. 349–358.1177

[32] M. Schäfer, P. Dolog, and W. Nejdl, “An environment for flexible1178

advanced compensations of web service transactions,” ACM Trans.1179

Web, vol. 2, pp. 14:1–14:36, May 2008.1180

[33] C. Müller, M. Resinas, and A. Ruiz-Cortés, “Explaining the Non-1181

Compliance between Templates and Agreement Offers in WS-1182

Agreement*,” in Proc. of the 7th ICSOC’09, ser. LNCS, vol. 5900.1183

[34] O. Martín-Díaz, A. Ruiz-Cortés, A. Durán, and C. Müller, “An 1184

approach to temporal-aware procurement of web services,” in Proc. 1185

of The 3rd International Conference on Service-Oriented Computing 1186

(ICSOC), 2005, pp. 170–184. 1187

[35] C. Müller, O. Martín-Díaz, A. Ruiz-Cortés, M. Resinas, and P. Fer- 1188

nández, “Improving Temporal-Awareness of WS-Agreement,” in 1189

Proc. of the 5th International Conference on Service-Oriented Com- 1190

puting (ICSOC). Springer Verlag, 2007, pp. 193–206. 1191

[36] O. F. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier, “Mon- 1192

itoring and reputation mechanisms for service level agreements,” in 1193

Grid Economics and Business Models (GECON), 2008, pp. 125–139. 1194

Carlos Müller is a Research Assistant and mem- 1195

ber of the Applied Software Engineering Group 1196

(ISA, www.isa.us.es) at University of Sevilla, 1197

Spain. His current research line includes service 1198

oriented computing, specifically the automated 1199

analysis of service level agreements and the 1200

application of such analysis at SLA design and 1201

monitoring. 1202

1203

Manuel Resinas is a Lecturer at the University 1204

of Sevilla, Spain. He obtained his PhD in Com- 1205

puter Science from this University. His current 1206

research lines include analysis and management 1207

of service level agreements, business process 1208

compliance, and process performance manage- 1209

ment. Previously, he worked on automated ne- 1210

gotiation of service level agreements. 1211

1212

Antonio Ruiz-Cortés is Associate Professor 1213

and Head of the Applied Software Engineer- 1214

ing Group (ISA, www.isa.us.es) at University 1215

of Sevilla, Spain. He obtained his PhD (with 1216

Honours) in Computer Science from this Uni- 1217

versity. His current research lines include ser- 1218

vice oriented computing, software product lines, 1219

and business process management. Previously, 1220

he worked on requirements engineering and mul- 1221

tiparty interaction. 1222

1223

