
ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 1

An Integrated Semantic Web Service Discovery
and Composition Framework

Pablo Rodriguez-Mier, Carlos Pedrinaci, Manuel Lama, and Manuel Mucientes

Abstract—In this paper we present a theoretical analysis of graph-based service composition in terms of its dependency with service
discovery. Driven by this analysis we define a composition framework by means of integration with fine-grained I/O service discovery
that enables the generation of a graph-based composition which contains the set of services that are semantically relevant for an
input-output request. The proposed framework also includes an optimal composition search algorithm to extract the best composition
from the graph minimising the length and the number of services, and different graph optimisations to improve the scalability of the
system. A practical implementation used for the empirical analysis is also provided. This analysis proves the scalability and flexibility of
our proposal and provides insights on how integrated composition systems can be designed in order to achieve good performance in
real scenarios for the Web.

Index Terms—Semantic Web Services; Service Discovery; Service Composition Framework; Service Composition Performance.

F

1 INTRODUCTION

S ERVICE discovery and composition are in general
complex tasks that require considerable effort, es-

pecially when vast amounts of services are available.
Service discovery solutions range from the initial UDDI
proposal that relied on the syntactic description of ser-
vices and a prefixed categorisation [1], to more advanced
generic solutions able to discover Web APIs and Web
services across domains exploiting rich user-provided
semantic service descriptions [2]. Similarly, a plethora
of service composition solutions have been produced
spanning from mere graphical support to completely
automated solutions [3]–[5]. Both discovery and com-
position engines essentially rely on the processing of
service descriptions, which increasingly go beyond syn-
tactic representations to include the semantics of the
service(s) to enable more advanced computations [6], [7].

An analysis of the service composition literature high-
lights that, regardless of the approach, a central task that
needs to be frequently performed throughout the com-
position activity, is the discovery of suitable services to
use. Whether one looks at fully automated composition
engines based on Artificial Intelligence (AI) planning
techniques [8]–[10], or at more constrained solutions
that rely on pre-defined skeletal plans [11], [12], or at
graph based approaches focused on semantic input-
output parameter matching [13]–[20], service discovery

• P. Rodriguez-Mier, M. Lama and M. Mucientes work at the Centro de
Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de
Santiago de Compostela, Spain.
E-mail: {pablo.rodriguez.mier,manuel.lama,manuel.mucientes}@usc.es

• Carlos Pedrinaci is with The Open University, Milton Keynes, UK.
E-mail: carlos.pedrinaci@open.ac.uk

c© 2015 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

is a central activity that needs to be carried out at every
main step during the generation of the composition. Yet,
despite the strong dependency between both activities,
research and development in both areas has evolved for
the most part independently.

On the one hand, service discovery has traditionally
been approached as a one-of activity to be sporadically
carried out by humans when looking for services. As a
consequence the interface exposed by discovery engines
assumes that requests are fully specified in terms of
a well-defined interface and categorisation. Moreover,
response times of discovery engines are orders of magni-
tude above what would be acceptable for a composition
engine that should it delegate the thousands discovery
requests it needs to issue at composition time [21]. These
limitations hamper the development of fast composition
systems where discovery and composition are two fun-
damental, interrelated activities.

On the other hand, partly due to the particularly
demanding computational needs of composition algo-
rithms, most composition engines reimplement locally
their own discovery methods instead of integrating ex-
isting components providing state of the art discovery
algorithms. Additionally, this approach relies on the
unnecessary and often unrealistic assumption that the
entire set of services should be locally available to
the composition engine. This assumption requires pre-
importing all services locally which is only viable for
those registries providing entire public dumps of the ser-
vice descriptions they hold. Furthermore, most compo-
sition engines do not introduce optimisation techniques
to improve the scalability by identifying equivalent or
dominant functionality that could appear when many
differents service registries are involved in the composi-
tion. This prevents the use of optimal search strategies
since the complexity usually grows exponentially with
the number of services.

ar
X

iv
:1

50
2.

02
84

0v
1

 [
cs

.A
I]

 1
0

Fe
b

20
15

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 2

In order to tackle the previous problems, a compo-
sition framework should consider the following char-
acteristics: 1) provide convenient fine-grained discovery
mechanisms that could help to discover services able
to consume or produce (a subset of) certain types of
data as usually required during composition; 2) improve
the response time of service discovery to process requests
very fast; 3) support the integration of third party service
registries as a key activity in the composition phase; 4)
incorporate optimizations to improve the scalability of the
overall composition process; and 5) find optimal service
compositions by minimizing different criteria such as the
number of services or the length of the composition to
avoid complex, unmanageable solutions.

In this paper we present a graph-based framework
focused on the semantic input-output parameter match-
ing of services’ interfaces that efficiently integrates the
automatic service composition and semantic service dis-
covery. The provided framework takes into account all
the characteristics indicated in the above paragraph.
Notably, the main contributions are:

1) A formal framework that presents a theoretical
analysis of graph-based service composition in
terms of its dependency with a service discovery
and we provide a fine-grained I/O discovery in-
terface which reduces the performance overhead
without having to assume the local availability and
in-memory preloading of service registries. The
framework also includes an optimal composition
search algorithm to extract the best composition
from the graph minimising the length and the num-
ber of services, and different graph optimisations to
improve the scalability of the system, which as far
as we now are not included in other frameworks.

2) A reference implementation of this formal frame-
work based on the adaptation of two inde-
pendently developed components, namely Com-
posIT [22] and iServe [2], respectively in charge of
service composition and discovery.

3) A detailed performance analysis of the integrated
system, highlighting both the unacceptable per-
formance achieved when using the typical out of
the box discovery implementations, as well as the
fact that top performance is achievable with the
adequate discovery granularity and corresponding
indexing optimisations.

The proposed framework is data-flow centric, focused
on the semantic I/O parameter matching of services’ in-
terfaces and leaving aside preconditions and effects. This
is essentially a pragmatic decision inline with the current
tendency towards lightweight data-driven approaches.
In fact, on the Web less than 5% of the semantic Web
services include preconditions and effects [23].

The rest of the paper is organized as follows. Sec. 2
discusses the state-of-the-art. Sec. 3 formalizes the web
service composition problem and Sec. 4 framework that
defines the composition in terms of service discovery

tasks. Sec. 5 describes our reference implementation. Sec.
6 explores the performance of the system for different
scenarios and finally Sec. 7 gives some final remarks.

2 RELATED WORK

Automatic composition of Web services is still an open
problem that involves multiple research areas [5]. Con-
cretely, lots of efforts have been devoted to automate the
discovery and composition using different approaches
and techniques [24]. However, most of the research in
both areas has been evolved independently of each other,
despite the significant overlap between these interrelated
tasks. This has lead to a lack of integrated approaches in
the field that consider the performance and the scalabil-
ity of the overall integrated system as well as the impact
of the discovery in terms of response time during the
automatic composition task.

From the discovery side, most of the work has been
focused on improving the retrieval performance (i.e.,
precision-recall curve) without much concern about the
response time requirements and/or the interface re-
quirements to provide an efficient fine-grained discov-
ery granularity for automatic composition. However,
the response time of the discovery systems is recently
gaining significant interest. A recent service discovery
competition [21] shows some of the newest advances in
the automatic discovery field. Most relevant examples
are OWLS-MX3 [25], iSem 1.1 [26] and XSSD [27]. The
main conclusions that can be drawn from this contest,
from the perspective of service composition, are twofold:
1) research efforts are focused on response time improve-
ment via caching and indexing, yet still not sufficient
for fast, automatic composition of services and 2) the
interface exposed by discovery engines assumes that
requests are fully specified in terms of a well-defined
interface and categorisation, i.e., discovery systems ex-
pect a precise description of the service in terms of
inputs and outputs, and/or other characteristics such as
preconditions and effects. However, these interfaces are
not adequate for service composition, since one of the
assumptions is that there is usually no single service that
fully matches a request and therefore several services
need to be combined instead. Indeed, during automatic
composition, an exploratory search is usually required
to guess which relevant services can be selected at each
step. This requires to launch many partial requests (fine-
grained queries), rather than fully specified requests, in
order to locate relevant services that match some partial
information available to the algorithm (e.g., services that
consume some inputs and/or produce some outputs).
Fine-grained requests are simpler and can be solved
faster than complex, fully specified requests. Thus they
are more suitable for automatic composition systems.

From the composition side, most approaches can be
categorized into: 1) classical AI planning approaches
[28], where the composition problem is translated into
the planning domain and solved using general planners,

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 3

and 2) graph-based I/O driven approaches that build a
graph with the services and their input/output seman-
tic relations (generally ommiting the preconditions and
effects), and apply graph search techniques to extract
(usually optimal) service compositions from the graph.

Relevant approaches of the first group are [9], [10],
[29]. These approaches differ from our work in the
sense that they handle very expressive preconditions and
effects to generate composition plans but: 1) the concept
of external service registries is missing, services are
assumed to be locally available; 2) average response time
of these systems is usually high; and 3) optimizations to
reduce the number of services by identifying redundant
functionality are not considered.

On the other hand, graph-based I/O approaches are
gaining much attention since the Web Service Chal-
lenge [30]. Some notable works in this field are [14]–
[20]. Concretely, [14], [15], [20] are the top-3 algorithms of
the WSC’08. Although these approaches show generally
good performance and low response times, [14] and
[15] do not find optimal solutions and [20] fails to find
solutions in large data sets. Additionally, none of these
systems consider neither the integration with service
registries nor the use of service optimizations to deal
with potential scalability problems.

From the point of view of the integrated frameworks,
a very interesting approach was proposed by Kona et
al. in [13]. In this paper, the authors present an efficient
framework for Web service composition that supports
semantic Web service discovery. The composition is gen-
erated by performing a forward chaining of operators to
find a feasible composition. The authors also evaluated
the system with the datasets of the Web Service Chal-
lenge 2006 and presented a detailed experimentation.
Their results demonstrate the capabilities and the good
performance of this system which, however, exhibits
some limtations: 1) the notion of an external service
registry is missing, all the information required is pre-
processed and loaded in the main memory, which is
one of the main issues we set out to tackle with this
work since it is otherwise not possible to deal with large
and/or distributed datasets; 2) the framework does not
contemplate service optimisations to remove redundant
information and 3) the work does not perform an opti-
mal search to minimise the cost or the number of services
of the composition as all possible compositions with the
shortest length are captured in the composition graph
which should be further processed to extract the optimal
composition. Similarly, in [31], Lécué et al. develop an
integrated framework for dynamic Web service composi-
tion. The framework exploits the semantic input-output
matchmaking to discover relevant services and performs
automatic composition using a graph-based approach,
taking into account functional and non-functional prop-
erties. However, graph optimisations are not considered
and the composition search is non-optimal, since the
selection of the services is merely greedy-based.

In [32], Da Silva et al. present a framework that

effectively supports both automatic semantic discov-
ery and composition, among other relevant phases of
the composition life-cycle, such as service publication
and service selection, taking into account non-functional
properties. One of the limitations of the discovery phase
is that it does not support fine-grained requests. On
the other hand, the framework does not include neither
optimisations to reduce graph size nor an optimal search
to extract the best composition from the graph.

In light of the above analysis, we propose a graph-
based I/O framework that overcomes all of the analyzed
limitations. In this framework the discovery is defined
in terms of a fine-grained I/O interface which minimises
the performance overhead between both composition
and discovery without having to assume the local avail-
ability and in-memory preloading of service registries.
The proposed framework also includes an optimal com-
position search algorithm to extract the best composition
from the graph minimising the length and the number
of services, and different graph optimisations to improve
the scalability of the system.

3 WEB SERVICE COMPOSITION PROBLEM

Service composition aims to help construct composite
services that could fulfil a user request, e.g., booking
an entire holiday, when no known service can achieve
such a request on its own. A core activity for creating
service compositions is, indeed, the discovery of rele-
vant services. In this context, relevant services are those
that could be invoked and contribute to obtaining an
executable composition that would fulfil the needs set
out by the client. We herein formalise the composition
problem in close relationship with discovery as a means
to better study and approach the integration of discov-
ery and composition engines. The formalisation of the
problem is data-flow centric, focussed on the semantic
input-output parameter matching of services’ interfaces.

3.1 Semantic Web Service Discovery
The semantic Web service discovery problem consists of
locating appropriate services from one or more service
registries that are relevant to an input-output request.

Definition 1: A Semantic Web Service (SWS, hereafter
“service”) can be defined as a tuple w = {Inw, Outw} ∈
W where Inw is a set of inputs required to invoke
w, Outw is the set of outputs returned by w after its
execution, and W is the set of all services available in
the service registry. Each input and output is related to
a semantic concept from an ontology O (Inw, Outw ⊆ O).

Semantic inputs and outputs can be used to discover
relevant services as well as to compose the functional-
ity of multiple services by matching their inputs and
outputs together. In order to measure the quality of
the match, we need a matchmaking mechanism that
exploits the semantic I/O information of the services.
The different matchmaking degrees that are typically
contemplated in the literature are [33]:

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 4

• Exact (≡): An output ow1 ∈ Outw1 of a service
w1 matches an input iw2 ∈ Inw2 of a service w2
with a degree of exact match if both concepts are
equivalent.

• Plugin (v): An output ow1 ∈ Outw1 of a service w1
matches an input iw2 ∈ Inw2 of a service w2 with
a degree of plugin if ow1 is a sub-concept of iw2

(ow1 v iw2).
• Subsume (w): An output ow1 ∈ Outw1 of a service
w1 matches an input iw2 ∈ Inw2 of a service w2 with
a degree of subsume if ow1 is a super-concept of iw2

(ow1 w iw2).
• Fail (⊥): When none of the previous matches are

found, then both concepts are incompatible and the
match has a degree of fail (ow1 ⊥ iw2).

Note that, in order to discover relevant services to
generate data-flow compatible service compositions, the
only two valid degrees of match are exact and plugin.
On this basis, we define the cmatch (compatible match)
function that will be used to discover candidate services
during the composition phase:

Definition 2: Given a, b ∈ O, a compatible match
cmatch(a,b) holds if and only if a ≡ b (exact match) or
a v b (plug-in match).

Using the previous compatible match function be-
tween concepts, we can define the matchmaking oper-
ator “⊗” that given two sets of concepts C1, C2 ⊆ O, it
returns the concepts from C2 matched by C1.

Definition 3: Given C1, C2 ⊆ O, we define “⊗ : O ×
O → O” such that C1⊗C2 = {c2 ∈ C2|cmatch(c1, c2), c1 ∈
C1}. Note that this operator is not commutative.

We can use the previous operator to define the con-
cepts of full and partial matching between concepts.

Definition 4: Given C1, C2 ⊆ O, a full matching be-
tween C1 and C2 exists if C1⊗C2 = C2, whereas a partial
matching exists if C1 ⊗ C2 ⊂ C2.

Typically, a service w = {Inw, Outw} is relevant to
a request r = {Inr, Outr}, where Inr ⊆ O are the
provided inputs and Outr ⊆ O the expected outputs,
if Inr ⊗ Inw = Inw and Outw ⊗ Outr = Outr, that is,
there is a full match between the provided inputs and
the service inputs and a full match between the service
outputs and the expected outputs.

While this approach is reasonable for discovering the
services that best match an entire request (full match),
for composition one needs to locate services that are
relevant, that is, that match some inputs / outputs (par-
tial match). Thus, rather than approaching the discov-
ery problem based on a full input/output description,
we split this problem into two finer-grained discovery
problems that are more relevant for service composition:
input discovery and output discovery.

Definition 5: Given a set of concepts C ⊆ O, the
input discovery problem can be defined as finding a
set of relevant services W = {w1, ..., wn} where wi =
{Inwi

, Outwi
} such that ∀wi ∈W , C ⊗ Inwi

⊆ Inwi
, that

is, services that can consume some (partial match) of the
inputs or are directly invokable (full match) with C.

Definition 6: Given a set of concepts C ⊆ O, the
output discovery problem can be defined as finding a
set of relevant services W = {w1, ..., wn} where wi =
{Inwi

, Outwi
} such that ∀wi ∈ W , Outwi

⊗ C ⊆ C, that
is, services that produce some or all outputs.

Based on these definitions, we introduce the notion of
input and output relevance:

Definition 7: A service w = {Inw, Outw}, where
Inw, Outw ⊆ O, is input-relevant for a set of concepts
C ⊆ O if C ⊗ Inw 6= ∅, whereas the service w, is output-
relevant for a set of concepts C ⊆ O if Outw ⊗ C 6= ∅.

3.2 Semantic Web Service Composition
The semantic composition problem considered in this
work is as follows: Given a request r = {Inr, Outr},
where Inr is a set of available semantic input concepts
and Outr a set of requested semantic output concepts,
we can define the problem of the automatic construction
of a SWS composition as that of finding a composite
Web service wc = {Inwc

, Outwc
, P = {S,≤}} such that

Inr ⊗ Inwc
= Inwc

(the composite service is invokable
with the available inputs) and Outwc⊗Outr = Outr (the
composite service retrieves all the requested outputs).
This service consists of a partially ordered set P (a binary
relation “≤” over a set of services S ⊆ W). This partial
ordered set of services is esentially a Directed Acyclic
Graph (DAG) which models the implicit execution order
of the services driven by the input/output matches,
where nodes of the DAG are services and the arcs are
valid semantic matches. This type of composition has
many advantages: On one hand, mapping inputs and
outputs to semantic concepts does allow to reason about
data types to improve the matchmaking between service
parameters, which leads to more possible semantically
valid compositions. On the other hand, DAG represen-
tation formally captures the nature of a composition
where services may be executed in different orders, i.e.,
there are many different total (sequential) orderings of a
composition that lead to the same result. Moreover, since
our approach is data-flow centric, a DAG representation
is simpler than a general (possible cyclic) graph as cycles
do not produce new data types in the composition.

However there are also some drawbacks. First, a DAG
representation could impose some restrictions in the
compositions that can be generated, i.e, due the absence
of cycles, a service could not explicitly be invoked
twice. Second, compositions at different semantic levels
rather than just concept matchmaking would deffinitely
improve the quality of the compositions by capturing
more possible cases. Furthermore, using input concepts
and output concepts to define a composition request is
not user friendly. A better way to specify a request would
be to define it with keywords. This, nonetheless, could
be achieved with a pre-processing step using automatic
semantic annotation tools to translate the request from
keywords to semantic concepts. Formally, we define a
valid composition as follows:

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 5

Graph-Based
Optimizations

Comp.
Request

Optimal
Composition

Search

Search
Optimizations

Input/Output
service composition

description

Service Registries

Concept
Matchmaking

Composition
Graph

Generation

Service
Discovery

Optimal
Composition

WorkflowOptimized composition graph

Semantic
Reasoner MATCHMAKING / DISCOVERY

Composition Graph

GRAPH-BASED COMPOSITION

Fig. 1. Overview of the proposed approach.

Definition 8: Let r = {Inr, Outr} and let wc =
{Inwc

, Outwc
, P = {S,≤}} be a composite service for

the request r, where P is a partial order over the set
of services S ⊆ W of the composite service wc. We say
wc is a valid composition for request r if and only if,
for any topological sort T = {w1, w2, ..., wN} of P , where
wj = {Inwj

, Outwj
} ∀j ∈ [1, N], the following expression

is satisfied:

(Inr ⊗ Inw1
= Inw1

) ∧ ((Inr ∪Outw1
)⊗ Inw2

= Inw2
)

∧ . . . ∧ ((Inr ∪Outw1
∪ ... ∪OutwN

)⊗Outr = Outr).

This definition implies that every service of the com-
position must be invokable to obtain an invokable ser-
vice composition. We say that a service w = {Inw, Outw}
is invokable with a set of concepts C ⊆ O if each required
input iw ∈ Inw is semantically matched by a set of
concepts C.

Definition 9: If C ⊆ O is the set of available input
concepts, then a service w = {Inw, Outw} is invokable
with C if C⊗Inw = Inw, i.e., there exists a full matching
between the available inputs and the service inputs.

Note that if a service w is invokable with a set of
concepts C, then it is also input-relevant for the same
set of concepts since invokable implies input-relevant, but
the inverse does not hold (see Def. 7). That is, the set of
invokable services is included in the set of the relevant
services.

The reader should note that we restrict the definition
of a compatible match to exact and plugin in order to
generate semantically complete compositions. However,
the framework also supports the use of other match
degrees (e.g., subsume) by relaxing the “cmatch” op-
erator, which in practice means obtaining potentially
more matched (but semantically weaker) concepts and
thus bigger composition graphs with more services and
match relations that could be semantically incomplete.
This is supported not only in theory, but also by the
reference implementation presented in Sec. 5.

4 COMPOSITION FRAMEWORK

On the basis of the formal definition of the problem,
in this section we present a graph-based framework
for automatic semantic Web service composition. Fig. 1

shows the overview of our approach with the different
steps involved. The process is triggered by a composition
request that specifies the user requirements in terms of
inputs and the expected outputs. This information is
used in the composition graph generation phase to build
a graph with all the relevant services and the semantic
relations between their inputs and outputs. In order to
find the relevant services, the composition graph phase
is interleaved with the discovery phase. The discovery
phase is responsible for retrieving the relevant services
given the data available at different stages during the
composition graph generation phase. The relationships be-
tween the inputs and outputs of services are computed
in the matchmaking phase, where the semantic matching
degree between inputs and outputs is computed using
a semantic reasoner. The service composition graph is
eventually generated on the basis of the relevant ser-
vices and the I/O matching information. This graph
contains all possible service compositions that satisfy the
composition request, in addition to a few others that,
although invokable, do not manage to entirely fulfil the
request. The service composition graph is then optimised
applying different techniques to group and reduce the
number of services and relations. Next, an optimal search
is performed over the graph to find the optimal compo-
sition. This phase is interleaved with a search optimisation
phase that analyses and reduces the search space. Finally,
the optimised composition workflow is returned.

In this section, we analyse each phase and we provide
generic strategies based on the problem description pre-
sented in the previous section.

4.1 Semantic Matchmaking
A fundamental functionality that needs to be available
for generating compositions and even for discovering
services, is the ability to analyse the compatibility be-
tween different semantic types. This functionality, which
we refer to as semantic matchmaking, is in charge of
assessing the level of semantic compatibility between
concepts, given an ontology (or set of ontologies). To do
so, semantic matchmaking relies on semantic reasoning
(notably subsumption reasoning) in order to be able to
determine the relationships between the concepts (e.g.,
Plugin match). This mechanism can be used for example,

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 6

to discover services that can consume or produce a con-
crete input/output by finding semantically compatible
types. Such a mechanism is also particularly relevant for
generating the service composition graph with all the
matches between services inputs and outputs.

The matchmaking system provides a match(C1, C2)
function which represents the concrete implementation
function of the ⊗ operator defined in Def. 3. The match
function tries to find a valid match between the source
concepts of C1 and the target concepts of C2 calling the
cmatch(ci, cj) function (Def. 2) for each pair (ci, cj) of
concepts where ci ∈ C1 and cj ∈ C2. The compatible
match function is calculated using a semantic reasoner
that returns the semantic relation between two concepts.
Then, it checks if the relation is considered a compatible
match (i.e., exact or plugin). Each time a compatible match
is found between ci and cj , cj is added to a set of
matched concepts and removed from C2. The reader
should note that the goal here is not to find the best
match for each element but rather to get all compatible
matches for each target element.

The best-case complexity (all C2 concepts matched by
the first element from C1) is O(m), whereas the worst-
case complexity (no compatible matches at all) is O(m·n)
where n = |C1|,m = |C2|. This implies that, in the worst
case, for two sets of elements, there will be at most m×n
calls to the cmatch function which is ultimately answered
by the semantic reasoner.

4.2 Semantic Service Discovery
In order to generate service compositions, it is necessary
to be able to discover appropriate services based on their
interface. The goal of a typical discovery system is to
find atomic services that match entirely a description
representing the ideal service sought, i.e., all the inputs
and outputs are compatible. However, from the view-
point of generating data-flow compatible compositions,
rather than looking for entire matches, we need to find
suitable combinations of services that combined would
satisfy a request. In this scenario, the ability to find
partially matching services very fast is paramount in
order to enable exploring efficiently the many possible
combinations of services that could lead to a suitable
composition. Therefore, in a nutshell, the type of service
discovery that is required for supporting service compo-
sition is a more relaxed and finer-grain version of that
typically provided by discovery engines whereby partial
matches can be obtained in a very fast manner. This can
be achieved by defining a simple fine-grained interface
that supports the discovery of services using only par-
tial information (some/any available inputs, some/any
expected outputs). Fig. 2 shows the pseudocode of this
simple interface to discover relevant services that can be
used as a starting point to obtain semantic input/output
relevant services, as defined in Def. 7 in Sec. 3.

The discovery algorithm sequentially scans all services
and calls the Match function of the Matchmaker to deter-
mine if a service is relevant for an input (the service has

1: function RELEVANTIO(C ⊆ O,W, type)
2: relevantServ := {}
3: for all wi = {Iwi , Owi} ∈W do
4: if type = In then
5: if match(C, Iwi) then
6: relevantServ := relevantServ ∪ wi

7: end if
8: else if type = Out then
9: if match(Owi , C) then

10: relevantServ := relevantServ ∪ wi

11: end if
12: end if
13: end for
14: return relevantServ
15: end function

Fig. 2. Pseudocode to obtain input-relevant and output-
relevant sets of services for a particular set of concepts

at least one input compatible with the inputs provided)
or for an output (the service has at least one output
compatible with the outputs provided) depending on
the Type selected. Therefore, the complexity of this type
of discovery is O(w) where w = |W | is the size of
the service repository. This implies at most |W | calls to
Match in the worst-case scenario or O(w · m · n) if we
consider the complexity of the Match method assuming
every service has at most m outputs and n inputs.

4.3 Service Composition Graph Generation

When the system receives a request, the Service Com-
position Graph Generator computes a graph with all the
semantic relations between the relevant services for the
request. A request is basically a set of input concepts,
which represent the initial set of available inputs, and
a set of output concepts, which are the outputs that
the composite service should return. The service composi-
tion graph is basically a layered Directed Acyclic Graph
(DAG), G = (V,E), where:
• V = W ∪C is the set of vertices of the graph, where
W is the set of services and C the set of concepts
(inputs and outputs).

• E = CW ∪WC∪CC is the set of edges in the graph
where:

– CW ⊆ {(c, w) | c, w ∈ V ∧ c ∈ C ∧w ∈W} is the
set of input edges, i.e., edges connecting input
concepts to their services.

– WC ⊆ {(w, c) | w, c ∈ V ∧ w ∈ W ∧ c ∈ C} is
the set of output edges, i.e., edges connecting
services with their output concepts.

– CC ⊆ {(c, c′) | c, c′ ∈ V ∧c, c′ ∈ C∧cmatch(c, c′)}
is the set of edges that represent a semantic
match between concepts.

This graph contains all the known services that could
directly or indirectly be invoked given the provided
inputs. The graph is divided into N layers, whereby
each layer i has all those services whose inputs are
matched by the outputs produced in previous layers
and, therefore, are invokable at layer i. The graph is
augmented with two layers, namely L0 and LN+1. L0

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 7

contains the dummy service wO = {OR, ∅} whereas
LN+1 contains the dummy service wI = {∅, IR}. The
first one is a service that provides as outputs the inputs
of the request (IR) and the last one has the goal outputs
(OR) as inputs. An example of a graph for IR={BookTitle,
BookAuthor, CreditCard, Email, Address} and OR={Price,
Payment, BookingCode} is shown in Fig. 3.

Fig. 3. Composition graph example.

The first step of the composition graph construction
is the calculation of the relevant services. These services
can be easily calculated forwards, layer by layer, using
the discovery mechanism previously presented. Fig. 4
shows an implementation of the forward composition
graph generation algorithm for a request R. The algo-
rithm selects all those services from the set of all avail-
able services W that are input-relevant for the available
concepts (availCon) in each layer using the relevantIO
function (L. 8). Then, for each input-relevant service,
the algorithm performs a match between the available
concepts and the unmatched inputs of each service.
All the inputs that are matched are removed from the
unmatched set of inputs for the current service. If there
are no unmatched inputs, then the service is invokable
and thus is eligible for the current layer. For example,
the first eligible services for the request shown in Fig.
3 are the services in the layer L1, which correspond
with the services whose inputs are fully matched by IR
(the set of concepts in L0). The second eligible services
are those services (placed in L2) whose inputs are fully
matched by the outputs of the previous layers, and so on.
Note that instead of performing the invokability check
by finding a full match between C and the inputs of
each service, we save those inputs of each service that
have been matched before, and hence we only perform
the match between the new outputs generated in the
previous level (availCon) and the remaining unmatched
inputs of each service (Uset). Hence, the unmatched
inputs Uset of each service decreases monotonically with
each level (i.e., the unmatched inputs of each service
always decrease when a new match is found, and
the effect is propagated at each layer). The complexity
analysis for this algorithm (neglecting the optimisation

1: function FWDGRAPH(R = {IR, OR},W)
2: C := IR; i := 0; L0 := {wI}; L := L0

3: unmatchedIn := []; availCon := IR
4: W ′ := W ;
5: repeat
6: i := i+ 1
7: Li := ∅; Wselected = ∅
8: Wrelevant := relevantIO(availCon,W ′, In)
9: availCon := ∅

10: for all wi = {Iwi , Owi} ∈Wrelevant do
11: Uset := unmatchedIn[wi]
12: Mset := Match(availCon, Uset)
13: unmatchedIn[wi] := Uset \Mset

14: if Mset = ∅ ∧ wi /∈ L then
15: Wselected = Wselected ∪ wi

16: availCon := availCon ∪Owi

17: end if
18: end for
19: Li := Li ∪Wselected

20: W ′ := W ′ \Wselected

21: C := C ∪ availCon
22: until (Match(C,OR) = OR) ∨ Li = ∅
23: L := L ∪ {wO}
24: end function

Fig. 4. Algorithm for forward graph generation.

effect due to the propagation of the matched inputs for
simplification purposes) is O(l · w ·m · n + l · wk ·m · n)

which can be simplified to O(l ·m · n((k+1)w
k). The first

part corresponds with the complexity of the calls to the
relevantIO function which is invoked l times (one call
per layer), whereas the second part corresponds with
the complexity of the for loop to check the invokability
of each input-relevant service. We can expect that only
a small subset of the repository W is relevant for the
availCon generated in the previous layer. Thus, each call
to relevantIO function returns a small set of relevant
services w/k where k (k � 1) is a reduction factor
that depends on the number of relevant services for a
given set of concepts. This k factor is different for each
request and service registry. For example, if we assume
k = 100 for a given problem for a service registry of
1,000 services, then it means that each invokation of
relevantIO(availCon,W, In) will return only the 1% of
the services of the repository (w/k = 10). Consider the
following example of a composition over a repository
with 1,000 services (w = 1, 000), assuming that there
are m = 5 new output concepts generated and n = 5
unmatched concepts at each layer, the composition graph
has 10 layers (l = 10) and in each layer the relevantIO
function returns on average w/k = 10 services (that is,
k = 100). The complexity in this example is 10 ·1000 ·5 ·5
for the first part plus 10 · 1000100 · 5 · 5 for the second part,
which is ≈ 2.5 · 105 calls to the matchmaking system to
compute all the required matches at the concept level.

4.3.1 Index-Based Optimisations

Although these improvements can save search time,
one of the bottlenecks of the graph generation is still
the size of the repository w, which is usually some
orders of magnitude bigger than the other parameters
involved in the complexity. One effective way to reduce

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 8

the impact of the size of the repository is precalculating
and indexing the input-relevant set of services for each
concept of the ontology. The indexing of services can
be done independently of any composition request as it
only depends on the information available, such as the
services themselves and the ontologies.

The construction of an inverted index function to re-
cover input-relevant services or output-relevant services
can be done easily using the relevantIO function. The
main idea behind the inverted index is to build a key-
value hash map where the keys are the concepts of the
ontology and the values are those services that are input-
relevant (or output-relevant) for that concept. This map
allows to discovery relevant services in constant time
during the graph generation.

We define a new function relevantIO′ which is the
cached-version of the original function. Instead of com-
puting the relevance by using directly the matchmaking
system, it first checks if the concept is cached in the
inverted index. If the concept is in the index, then it
is immediately returned (constant time). If not, the call
is delegated to the relevantIO function. Assuming there
is enough memory to keep the entire index, the index
allows to provide relevant services at O(1) for each
concept during the forward graph generation. Thus, we
reduce the complexity associated to the parameter w.
Concretely, since we can obtain at constant time the
input-relevant services for each concept, the complexity
of relevantIO(availCon,W, In) now depends only on
the number of concepts in availCon (one access to the
index per concept). Having m = |availCon| (number of
new concepts at each layer) the complexity using indexes
is O(l ·m+ l · wk ·m · n), simplified to O(l ·m(1 + w

k · n)).
The use of indexes to discover relevant services during
the forward graph generation has a high impact on the
global performance. Using the same example as before,
with w = 1000, l = 10, m = 5, n = 5 and k = 100 we
have 10 ·5(1+ 1000

100 ·5) = 2.55 ·103, 2 orders of magnitude
lower than the non-indexed version.

4.4 Graph-Based Optimisations
Once the graph is generated, the next step is to apply
different optimisations to reduce the graph size in order
to improve the optimal composition search performance.
This part of the composition is independent of the
discovery phase. All the information required to search
for the optimal composition is in the graph, namely,
the relevant services and the semantic relations between
their inputs and outputs, so there is no need to com-
municate with the discovery/matchmaking systems. We
distinguish at least two different techniques [22], [34]:
backward pruning and interface dominance.

4.4.1 Backward pruning
As explained earlier, the generation of the composition
graph with the relevant services is done forwards, layer
by layer. During this forward expansion of the graph, we

are not interested in invoking services that have no ex-
plicit effects on the composition, that is, services that are
not contributing to the output goals. When the graph is
completed and the goal outputs are reached, a backward
pruning is performed to remove all non-contributing ser-
vices. A non-contributing service is essentially a service
that is not contained in the transitive closure set of the
output-relevant services. A service w′ = {Inw′ , Outw′}
is output-relevant for a service w = {Inw, Outw} if
Outw′ ⊗ Inw 6= ∅ (def. 7). Thus, the set of all output-
relevant services for a service w can be defined as:

X(w) = {w′ ∈W | Outw′ ⊗ Inw 6= ∅} (1)

Recursively, we can define the set of X2(w) =
X(X(w)) as the set of output-relevant services at the
distance two. Extending this, the transitive closure of the
output-relevant services can be defined as:

X̂(w) = X(w) ∪X2(w) ∪X3(w) ∪ · · · (2)

Therefore, we can say that all those services of the
graph that are not in the transitive closure of the output-
relevant services X̂ are not contributing to the composi-
tion goals, directly nor indirectly, and can therefore be
removed from the graph.

An example of this can be seen in Fig. 3. Starting from
the last layer, we compute the transitive closure of the
service wO, which is a dummy service that represents
the goal outputs. The output relevant services for wO at
distance one are X(wO) = {w6, w7, w8, w9}, since Outw6

⊗
InwO

6= ∅ and the same for w7, w8 and w9. We calculate
now the output-relevant services at distance two, which
is X(X(wO)) = X({w6, w7, w8, w9}). X({w6, w7, w8, w9})
can be simply computed as the union of X(w6)∪X(w7)∪
X(w8)∪X(w9) which is {w1, w2, w3}. Repeating this, we
finally have X̂ = {w6, w7, w8, w9} ∪ {w1, w2, w3} ∪ {wI},
where wI is the dummy service ommited in Fig. 3 that
provides the input concepts of the request (concepts in
L0). Since w4, w5, w8 /∈ X̂ , these services (w4=MoviesDB
Service, w5=GeoLoc WS, w8=Zip Search) are not contribut-
ing to the goals and can be removed from the graph.

4.4.2 Interface Dominance
Another strategy to reduce the graph size is to analyse
the equivalence and dominance of some services over
others in terms of the interface they offer. It is very fre-
quent to find services from different providers that offer
similar services with overlapping interfaces. In scenarios
like this, it is easy to end up with large composition
graphs that make very hard to find optimal compositions
in reasonable time. One way to attack this problem is to
analyse the interface dominance between services in order
to find those that are equivalent or better than others in
terms of the interface they provide.

Definition 10: Given a concept in a composition graph
G (c ∈ G), we denote Φ(c) as a function that returns the
set of output-relevant services for concept c:

Φ(c) = {w = {Inw, Outw} ∈ G | Outw ⊗ {c} = {c}} (3)

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 9

For instance, Φ(Payment) in Fig. 3 is {w8, w9} since
Outw8 ⊗ {Payment} = {Payment} and Outw9 ⊗
{Payment} = {Payment}, that is, concept Payment is
matched by an output from w8 (PaymentID) and for an
output from w9 (PayNum).

Definition 11: A service wi = {Inwi
, Outwi

} ∈ G is
input-equivalent (Inwi

≡ Inwj
) with respect to a service

wj = {Inwj
, Outwj

} ∈ G in the composition graph G if:⋃
ci∈Inwi

{Φ(ci)} =
⋃

cj∈Inwj

{Φ(cj)} (4)

That is, the set of sets defined by the union of Φ(c) for
each input concept c of each service must be equal. This
definition formalises the idea of input equivalence of two
services of the composition graph regarding the relation
between their inputs and the services that match those
inputs. That means that two services wi and wj of the
graph are input equivalent if the services that provide
the inputs of both services are the same.

Definition 12: A service wi = {Inwi
, Outwi

} ∈ G is
input-dominant (Inwi

� Inwj
) with respect to a service

wj = {Inwj , Outwj} ∈ G in the composition graph G if:⋃
ci∈Inwi

{Φ(ci)} ⊂
⋃

cj∈Inwj

{Φ(cj)} (5)

Thus, informally, a service is input-dominant if it
only needs a subset of the information required by the
dominated service to be invoked. For example, in Fig. 3,
w7 is input-dominant respect to w6, since {{w1, w2}} ⊂
{{w1, w2}, {wI}, {w3}}.

Definition 13: Given a concept in a composition graph
G (c ∈ G), we denote Ψ(c) as the function that returns a
set of input concepts in G that are matched by c, that is,
there exists an arc from c to c′ in G.

Ψ(c) = {c′ | (c, c′) ∈ G} (6)

Definition 14: A service wi = {Inwi , Outwi} ∈ G is
output-equivalent (Outwi ≡ Outwj) respect to a service
wj = {Inwj

, Outwj
} ∈ G in the composition graph G if:⋃

ci∈Outwi

Ψ(ci) =
⋃

cj∈Outwj

Ψ(cj) (7)

That is, two services are output-equivalent if their
outputs are matched to the same input concepts in the
graph, which means that their outputs can be consumed
in the same way by the same services in G.

Definition 15: A service wi = {Inwi
, Outwi

} ∈ G is
output-dominant (Outwi

� Outwj
) respect to a service

wj = {Inwj
, Outwj

} ∈ G if:⋃
ci∈Outwi

Ψ(ci) ⊃
⋃

cj∈Outwj

Ψ(cj) (8)

Therefore, one service is output-dominant with respect
to another service of the graph G if their outputs match
the same inputs of the same services in the composition
graph but the dominant service also provides additional
outputs to the same or different services.

Definition 16: a service wi = {Inwi , Outwi} is interface-
equivalent to a service wj = {Inwj

, Outwj
} (wi ≡ wj) if

Inwi
≡ Inwj

and Outwi
≡ Outwj

, that is, both are input-
equivalent and output-equivalent.

Definition 17: A service wi interface-dominates a service
wj (wi � wj) if the first dominates the second in at least
one aspect (input-dominant or output-dominant) and is
at least equivalent in the other aspect. Formally, wi � wj

if (Inwi � Inwj ∧ Outwi � Outwj) ∨ (Inwi ≡ Inwj ∧
Outwi

� Outwj
) ∨ (Inwi

� Inwj
∧Outwi

≡ Outwj
).

This dominance definition can be generalised to in-
clude more features, such as preconditions, effects, or
non-functional properties like QoS:

Definition 18: A service with multiple properties wi =
{P 1

wi
, P 2

wi
, . . . , Pn

wi
} where P 1

wi
are the inputs, P 2

wi
the

outputs and the rest of parameters are different proper-
ties, dominates another service wj (wi � wj) with param-
eters Pwj

= {P 1
wj
, P 2

wj
, . . . , Pn

wj
}, if ∀ k ∈ {1, ..., n} P k

wi
�

P k
wj
∧ ∃ k ∈ {1, ..., n}, P k

wi
� P k

wj
.

The interface dominance optimisation allows to reduce
the size of the composition graph by substituting the
original services of the graph by abstract interfaces that
capture the functionality of the dominant or equivalent
services. By minimising the graph size we improve the
performance of the search algorithms since they only
explore a reduced search space. Once the search is per-
formed and the optimal composition workflow is gener-
ated, a post-processing step can be used to replace the
abstract service interfaces with specific implementations
using the original dominant / equivalent services or by
combinations of dominated services that satisfy the same
functionality of the dominant service.

4.5 Optimal Composition Search
The previous optimisations are intended to reduce the
composition graph but keeping the same functionality.
The next step is to perform a search over the graph
to find the best composition among all the possible
compositions that satisfy the input/output request. The
search can be designed to optimise different criteria, such
as the number of services, the execution path length or
QoS properties. Typically, the search over the graph can
be done forwards or backwards. In the first case, the
composition starts from the inputs of the request (first
layer), selecting invokable services until the goal outputs
are obtained, whereas the second case starts with the
goal outputs (last layer), selecting relevant services for
the outputs until a composition that can be invoked with
the initial inputs is found.

Formally, the composition search can be modelled as
a state-transition system, where the problem is divided
into a set of states and transitions between states [35].
A state transition system is defined as a 3-tuple Σ =
(S,A, γ), where:
• S = {s1, s2, . . . } is a finite set of states.
• A = {a1, a2, . . . } is a finite set of actions.
• γ : S ×A→ S is a state-transition function.

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 10

Using the concept of the state-transition system, the
state space search problem can be defined as P =
{Σ, s0, G}, where s0 ∈ S is the initial state and G ⊆ S is
a set of goal states.

The state-transition system Σ allows the search to
navigate through the set of states applying different
actions, where each action may be associated to a cost
that we want to minimise. The state representation may
vary depending on the strategy used. Typically, in the
case of the backward search, the state will contain the
information of the unsatisfied concepts at each state,
starting with the goal outputs. The goal then is to find a
succession of actions 〈a1, a2, . . . , an〉 with the minimum
cost that leads from the initial state, where unsatisfied
concepts = goal outputs, to the goal state, where un-
satisfied concepts = ∅, that is, there are no unsatisfied
concepts and the composition is invokable. The available
transitions between states are given by the applicable
actions to each state, i.e., the output relevant services that
can be selected to resolve all the unsatisfied concepts.

Given a composition graph G = (V,E) as defined
previously, where V = W ∪C is the set of vertices which
are the services and the concepts (inputs/outputs) of the
graph, the state-transition system Σ for the (backward)
composition problem is defined as follows:
• S ⊆ 2|C| where C is the set of all concepts in the

composition graph, i.e., a state is a set of concepts
of the graph, s = {c1, . . . , cn}.

• A ⊆ 2|W | where W is the set of services in the
composition graph, i.e., an action is a set of services
from the graph, a = {w1, . . . , wn}.

• γ(a, s) = (s −
⋃

(Ψ(ci) | ci ∈ Out(a)) ∪ In(a)),
i.e., the application of an action a = {w1, . . . , wn}
to a state s = {c1, . . . , cn} generates a new state
where all concepts that are matched by the outputs
of the services of the actions are removed, and the
inputs of the services of the actions are added as
the new unsatisfied concepts. Functions In(a) and
Out(a) return the union of the input concepts and
the union of the output concepts of the services in
a respectively.

The initial state s0 of the backward composition prob-
lem P = (Σ, s0, G) is defined as s0 = InwO

, i.e., the input
concepts of the output dummy service. For example, in
Fig. 3, the initial state is s0 = {i18, i19}. On the other
hand, there is just one goal state G = {sg = ∅}, i.e.,
the goal state is reached when there are no unsatisfied
concepts in the composition.

The efficiency of the search can also be improved using
search optimisations depending on the search strategy
followed. These optimisations can be applied to the
available actions for each state by pruning actions that
lead to dead-ends, actions that are equivalent, or actions
that are dominated (cannot lead to a better solution).

5 REFERENCE IMPLEMENTATION
We developed a reference implementation of the inte-
grated graph-based composition framework that is based

on two main components: iServe [2], a service warehouse
with advanced discovery support which provides the
service registry and takes care of the matchmaking and
service discovery activities, and ComposIT [22], which
is in charge of the graph-based composition part.

Fig. 5 depicts the architecture of the system. In a
nutshell the composition process is carried out as fol-
lows. When a composition request is sent to the system
through the Web UI, ComposIT starts computing the
composition graph with all the relevant services for
the request. To this end, all the relevant services are
discovered layer by layer using the fine-grained I/O
logic-based discovery support provided by the Semantic
Discovery Engine of iServe. This engine relies on the
Service Manager and the KB Manager to retrieve the
relevant services using semantic reasoning capabilities.
During the composition graph generation, ComposIT
also makes intensive use of the KB Manager in order
to carry out concept level matching and consequently
figure out how the inputs and outputs of the services
obtained can be connected. Once the composition graph
is generated, ComposIT applies the backward pruning
and the interface dominance optimisations to reduce the
graph size. These optimisations are applicable using only
the information contained in the graph, and thus there
is no need to interact with the discovery component.
Finally, an optimal search is performed over the graph
using a backward A* algorithm that extracts the optimal
composition from the graph.

In the next sections we shall cover in more detail the
inner workings of iServe and ComposIT respectively.

5.1 iServe

iServe [2], see right hand-side of Fig. 5, is a service
warehouse whose functionality includes the core service
registry anchored on Linked Data principles, seman-
tic reasoning support, advanced discovery functional-
ity, and further analysis components able to assist in
automatically locating and generating semantic service
descriptions out of Web resources. For the purposes of
this work we have essentially exploited the registry and
discovery functionality.

The service discovery functionality builds on top of
the Storage Access Layer, which is in charge of managing
the registry’s data that includes Service descriptions, re-
lated documents and the corresponding Ontologies. This
layer essentially provides a RDF/S and OWL storage
and reasoning support, document storage, as well as
basic crawling facilities to automatically obtain refer-
enced Ontologies. RDF/S and OWL storage and rea-
soning support is delegated to dedicated engines which
are accessed by means of the SPARQL 1.1 standard.
Therefore, the reasoning capabilities depend largely on
the actual configuration of the store. Concretely, the
discovery infrastructure contacts the Service Manager
to list services given basic criteria such as the input
and output types provided, and the KB Manager to

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 11

Fig. 5. ComposIT / iServe architecture

obtain concepts, properties, and their sub or super con-
cepts. Depending on their implementation Service and
KB Managers combine internal indexes with SPARQL
queries issued to the triple store by means of Jena.

Services are imported to iServe using a range of trans-
formation engines able to import service descriptions in
a variety of formalisms including SAWSDL, WSMO-Lite,
OWL-S, and MicroWSMO. These plugins generate de-
scriptions expressed in terms of a simple RDF/S model,
Minimal Service Model (MSM) [2], which essentially
captures the intersection of existing service description
formalisms. By means of these transformations iServe
provides an homogeneous description for services that
were orginally annotated using heterogeneous means.

Given that, as we saw in Section 4, the response
time of the overall composition is highly dependent on
the performance of the service discovery and concept
matchmaking tasks, we extended iServe with various
implementations of the Service and Knowledge Base
Managers. We tested different configurations to study
their individual performance and the overall impact on
composition response times. In particular, we used the
following configurations:

1) SPARQL D/M: pure SPARQL Discovery / Match-
making where all interactions with the Service
and Knowledge Base managers are directly im-
plemented as SPARQL queries. This is the typical
approach of discovery engines and was the original
implementation of iServe.

2) Index. D/SPARQL+Cache M: I/O service discovery
is based on an index. We additionally used herein
an intermediate cache at the level of the con-
cept matcher in order to avoid issuing recurrent
SPARQL queries.

3) Full Indexed D/M: both service discovery and con-
cept matchmaking relied on local indexes pre-
populated at load time (and updated with writes).
In this configuration, service discovery and concept
matchmaking do not need to issue any SPARQL
query to the backed.

5.2 ComposIT

ComposIT [22], depicted in the left hand-side of Fig. 5, is
the semantic Web service composition engine we rely on.
It implements all the different graph-based composition
phases of the framework described in Sec. 4. The se-
mantic service discovery and matchmaking mechanisms,
which originally were directly implemented internally,
are delegated to iServe by means of integration adapters
implemented for the purposes of this work. ComposIT
nonetheless uses an internal cache and an index to
efficiently recover the information of the generated com-
position graph. It is worth to note that the architecture
supports the deployment of multiple, distributed iServe
instances to provide different endpoints that can be used
by ComposIT in the composition phase by aggregating
the results of the registries at the ComposIT API level.
Indeed, since the services to contemplate at composition
time are identified by the remote registry and we just
use them directly, composing this set of services out of
just one API call or several calls in parallel (one per
registry) is a trivial change. The overall response time
analysis would still remain unchanged, and would have
an upper-bound determined by the slowest registry. This
also applies to other third-party discovery engines as
long as they support fine-grained I/O discovery queries
as described in Sec. 4.2. The integration of these third-
party registries could be achieved by developing inter-
face adapters (with capabilities to retrieve input and
output relevant services) which could be plugged in to
the system, keeping the generation of the composition
graph isolated from the concrete registries used.

The generated composition graph can contain different
compositions with the same or different length (number
of layers) and with different number of services depend-
ing on the services that have been selected to generate
the needed data. Among the different combinations that
can be obtained, the goal of ComposIT is to find the
shortest service composition with the minimum number
of services. For this purpose, ComposIT searches for the
optimal composition by carrying out a heuristic search

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 12

based on the A* algorithm [36]. This search was imple-
mented using Hipster4j [37] to identify a minimal subset
of the services from the graph that satisfy the request
(in terms of inputs and outputs). Note that multiple
compositions can be extracted from the composition
graph since there may be different services that generate
outputs of the same concept.

6 EVALUATION

In this section we present a quantitative evaluation
of our approach. The purposes of the evaluation are:
1) measure the scalability of the approach with many
services; 2) study the impact of the discovery on the
overall composition performance and 3) compare the
performance with different optimisations.

In order to perform a standard and comparable eval-
uation, we selected the Web Service Challenge 2008
(WSC’08) service datasets. These datasets allow us to
measure the scalability with an increasingly large set
of services (from 158 to 8,119 services). Services were
imported to iServe using an specific transformer plugin
which translates each service description in the WSC’08
XML format into MSM, and the XML concept taxon-
omy into an equivalent OWL representation. iServe is
responsible of identifying, loading and reasoning with
the ontologies used in the service descriptions. Data
types of the input and outputs of service descriptions are
linked to their corresponding semantic concepts through
the modelReference property of the MSM, which points
to the concepts defined in the transformed OWL model.

Experiments were run under Ubuntu 10.04 64-bit on
a PC with an Intel Core 2 Duo E6550 at 2.33GHz and 4
GB of RAM. OWLIM-Lite 5.3 with OWL Horst reasoning
was chosen in iServe as the RDF triple store for the
semantic registries and deployed within Tomcat 7.

TABLE 1
Characteristics of the WSC’08 datasets.

Dataset #Serv. #Con. #Serv.Sol. Length

WSC’08 01 158 1,540 10 3

WSC’08 02 558 1,565 5 3

WSC’08 03 604 3,089 40 23

WSC’08 04 1,041 3,135 10 5

WSC’08 05 1,090 3,067 20 8

WSC’08 06 2,198 12,468 40 9

WSC’08 07 4,113 3,075 20 12

WSC’08 08 8,119 12,337 30 20

Table 1 shows the characteristics of each WSC’08
dataset. The number of services and concepts in the
ontology of each dataset are shown in columns #Serv.
and #Con. respectively. The quality of the solutions is
based on the number of services and the length (i.e.,
number of layers) of the composition. The optimal qual-
ity of solution for each dataset (according to the WSC’08
competition) are shown in columns #Serv.Sol. and Length.

Experimentation was done using the configurations
explained in Sec. 5 with one instance of iServe in order to

measure the effect of the Discovery/Matchmaking over
the whole composition process. Results with each config-
uration are shown in Table 2. The second column shows
the size (number of services) of the resulting composition
graph for each dataset. The next columns show the time
taken to generate the composition graph (G. time) in
seconds and the number of SPARQL queries generated
during that process. The last three columns show the
size of the graph after the graph-based optimisations, the
time of the composition search (graph optimisations +
optimal A* backward search) and the number of services
and length of the optimal composition found. Note that
the backward optimal search does not depend on the
configuration selected since it only uses the information
in the composition graph.

Fig. 6. Graph generation time vs Search time for the Full
Indexed Discovery/Matchmaking configuration.

The analysis of these results reveals that the discovery
and matchmaking phases take most of the time of the
composition, even using the optimal configuration (Full
Indexed D/M) to avoid the latency of the SPARQL queries.
This is graphically represented in Fig. 6. This figure
shows the overall composition time for each dataset
including the relative time of the Full Indexed D/M
(blue bar) and the Composition Search (red bar). The Full
Indexed D/M takes 77% of the total composition time
on average. This percentage is even higher (about 99%)
if the discovery and matchmaking are not optimised
using indexes and cache. In other words, as anticipated
by the complexity analysis presented earlier, discovery
and matchmaking are responsible for the majority of
the computation that needs to be performed to compose
services. Optimising both phases is thus fundamental.

The comparison of the scalability of the three con-
figurations with respect to the number of services is
shown in Fig. 7. As can be seen, directly querying the
backend (see SPARQL D/M), which is the approach
followed by most discovery engines, rapidly becomes
prohibitively slow taking 1,656 seconds (i.e., 27.6 min) in
the largest dataset. Indeed, the generation of the compo-
sition graph requires computing every semantic match
between all inputs and outputs as well as discovering
relevant services at each layer. Doing so leads to issuing
thousands of SPARQL queries. This can be dramatically
improved using a discovery index and a local cache for
the matchmaking system as can be seen in the second

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 13

TABLE 2
Evaluation results with different Discovery/Matchmaking (D/M) configurations with the WSC’08 datasets

Discovery/Matchmaking (D/M) Composition

1) SPARQL D/M 2) Index. D/SPARQL+Cache M 3) Full Indexed D/M

Dataset G. size G. time (s) #SPARQL G. time (s) #SPARQL G. time (s) #SPARQL G. size (opt) Comp. time (s) Sol. (serv./length)

WSC’08-01 35 28.52 3256 5.67 624 0,18 0 13 (-37%) 0.08 10/5

WSC’08-02 35 63.30 7349 11.76 1830 0,38 0 13 (-37%) 0.07 5/3

WSC’08-03 105 262.80 36619 20.05 3184 0.69 0 40 (-38%) 0.21 40/23

WSC’08-04 44 136.20 13828 21.12 3481 0.60 0 25 (-57%) 0.12 10/5

WSC’08-05 97 333.60 41148 26.05 4417 0.74 0 52 (-54%) 0.18 20/8

WSC’08-06 189 1051.20 93682 48.21 8511 1.12 0 75 (-40%) 1.05 42/7

WSC’08-07 124 1183.20 120881 35.76 6376 1.33 0 70 (-56%) 0.23 20/12

WSC’08-08 121 1656.00 89518 78.00 15844 1.48 0 58 (-48%) 0.34 30/20

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0.10

1.00

10.00

100.00

1,000.00

10,000.00

SPARQLD/M Index. D / SPARQL+Cache M Full Indexed D/M

Number of services in the dataset

G
ra
p
h
g
e
n
e
ra
tio
n
tim

e
(s
)

Fig. 7. Composition time for different configurations.

configuration. In this case, almost every composition is
calculated in less than a minute. The generated SPARQL
queries in this case are reduced by up to 91% (for the
WSC’08-3 dataset) leading to a significant performance
improvement. Although such an improvement can be
enough to solve the smaller datasets in a few seconds,
the latency of the SPARQL queries still remains a bot-
tleneck for bigger datasets like the WSC’08-08 dataset
that still require evaluating 15,844 SPARQL queries for
generating the composition graph in 78 seconds. Our
tests show, however, that the full indexed configuration
allows solving the largest problems very fast by avoiding
the evaluation of SPARQL queries at composition time.
This configuration entails the derived need for service
registries to additionally calculate and maintain the in-
dexes. Doing so, nonetheless, enables performing very
efficient composition over remote 3rd party controlled
service registries akin to what can be obtained by the
fastest composition engines in the unrealistic scenarios
where all services are available and pre-loaded in mem-
ory. Additionally, indeed, using those indexes allows
service registries to provide highly efficient discovery for
a controlled set of queries, while retaining the ability to
offer fully flexible yet less efficient discovery support.

We have also evaluated our framework with the
WSC’09-10 datasets. Results show a similar scalability

behaviour with the number of services for each con-
figuration. Moreover, our approach is able to solve all
the datasets with optimal results, which are shown at
https://wiki.citius.usc.es/composit:wsc09.

7 CONCLUSIONS

In this paper we have presented a theoretical analysis of
service composition in terms of its dependency with ser-
vice discovery. Driven by this analysis we have defined
a formal integrated graph-based composition framework
anchored on the integration of service discovery and
matchmaking within the composition process. We have
devised a reference implementation of this framework
on the basis of two pre-existing separate components,
namely iServe and ComposIT. This reference implemen-
tation has been used to empirically study the impact of
discovery and matchmaking on service composition, and
we have provided three different configurations with
varying performance. Our empirical analysis shows that,
indeed, typical approaches followed by discovery en-
gines cannot serve as a suitable basis to support efficient
service composition as they lead to prohibitive execu-
tion times. We have also shown, though, that with the
adequate interface granularity and indexing, discovery
engines can support highly efficient composition akin to
that obtained by the fastest composition engines without
having to assume to local availability and in-memory
preloading of service registries.

This work proves the scalability and flexibility of
our proposal and provides insights on how integrated
composition systems can be designed in order to achieve
good performance in real scenarios, where service reg-
istries and composition frameworks are likely to be
distributed and controlled by diverse organisations.

ACKNOWLEDGMENT

This work was partly supported by the Spanish Ministry
of Economy and Competitiveness (MEC) under grant
TIN2011-22935, and by the COMPOSE European Project
(FP7-ICT-317862). Pablo Rodrı́guez-Mier is supported by
an FPU Grant from the MEC (ref. AP2010-1078) and
was also partially funded by Pedro Barrié de la Maza
Foundation (2013).

ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON SERVICES COMPUTING 2015, DOI 10.1109/TSC.2015.2402679 14

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services, ser.
Data-Centric Systems and Applications. Springer, 2004.

[2] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and
J. Domingue, “iServe: a linked services publishing platform,” in
CEUR Workshop Proceedings, vol. 596, 2010.

[3] B. Srivastava and J. Koehler, “Web Service Composition - Cur-
rent Solutions and Open Problems,” in ICAPS 2003 workshop on
Planning for Web Services, 2003, pp. 28–35.

[4] J. Rao and X. Su, “A Survey of Automated Web Service Com-
position Methods,” in Semantic Web Services and Web Process
Composition, vol. 3387, 2004, pp. 43–54.

[5] S. Dustdar and W. Schreiner, “A survey on web services com-
position,” Int. J. of Web and Grid Services, vol. 1, no. 1, pp. 1–30,
2005.

[6] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 46–53, 2001.

[7] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38–45, 2007.

[8] M. Carman, L. Serafini, and P. Traverso, “Web Service Compo-
sition as Planning,” in ICAPS 2003 Workshop on planning for web
services, 2003, pp. 1636–1642.

[9] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN plan-
ning for Web Service composition using SHOP2,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no. 4,
pp. 377–396, 2004.

[10] M. Klusch, A. Gerber, and M. Schmidt, “Semantic Web Service
Composition Planning with OWLS-Xplan,” in Proceedings of the
AAAI Fall Symposium on Semantic Web and Agents, 2005.

[11] S. A. McIlraith and T. C. Son, “Adapting golog for composition
of semantic web services,” in Proceedings of the Eights Int. Conf.
on Principles and Knowledge Representation and Reasoning (KR-02),
2002, pp. 482–496.

[12] E. Sirin, B. Parsia, and J. Hendler, “Template-based composition
of semantic web services,” in In AAAI Fall Symposium on agents
and the semantic web, 2005, pp. 85–92.

[13] S. Kona, A. Bansal, M. B. Blake, and G. Gupta, “Generalized
Semantics-Based Service Composition,” IEEE Int. Conf. on Web
Services, pp. 219–227, 2008.

[14] Y. Yan, B. Xu, and Z. Gu, “Automatic Service Composition Using
AND/OR Graph,” in 10th IEEE Conf. on E-Commerce Technology
and the Fifth IEEE Conf. on Enterprise Computing, E-Commerce and
E-Services, 2008, pp. 335–338.

[15] M. Aiello, N. Benthem, and E. Khoury, “Visualizing Composi-
tions of Services from Large Repositories,” in 10th IEEE Conf.
on E-Commerce Technology and the Fifth IEEE Conf. on Enterprise
Computing, E-Commerce and E-Services. IEEE, 2008, pp. 359–362.

[16] W. Nam, H. Kil, and D. Lee, “Type-Aware Web Service Compo-
sition Using Boolean Satisfiability Solver,” 2008 10th IEEE Conf.
on E-Commerce Technology and the Fifth IEEE Conf. on Enterprise
Computing, E-Commerce and E-Services, vol. 1, pp. 331–334, 2008.

[17] K. Raman, Y. Z. Y. Zhang, M. Panahi, and K.-J. L. K.-J. Lin,
“Customizable Business Process Composition with Query Op-
timization,” 2008 10th IEEE Conf. on E-Commerce Technology and
the Fifth IEEE Conf. on Enterprise Computing, E-Commerce and E-
Services, 2008.

[18] M. Shiaa, J. Fladmark, and B. Thiell, “An Incremental Graph-
based Approach to Automatic Service Composition,” in 2008 IEEE
Int. Conf. on Services Computing. IEEE, 2008, pp. 397–404.

[19] P. Hennig and W.-T. Balke, “Highly Scalable Web Service Com-
position Using Binary Tree-Based Parallelization,” 2010 IEEE Int.
Conf. on Web Services, pp. 123–130, 2010.

[20] S. Oh, D. Lee, and S. Kumara, “Web service planner (WSPR): an
effective and scalable web service composition algorithm,” Int.
Journal of Web Services Research, vol. 4, no. 1, pp. 1–22, 2007.

[21] M. Klusch, “Overview of the S3 Contest: Performance Evaluation
of Semantic Service Matchmakers,” in Semantic Web Services.
Springer, 2012, pp. 17–34.

[22] P. Rodriguez-Mier, M. Mucientes, J. Vidal, and M. Lama, “An
Optimal and Complete Algorithm for Automatic Web Service
Composition,” Int. J. of Web Services Research (IJWSR), vol. 9, no. 2,
pp. 1–20, 2012.

[23] C. Pedrinaci and J. Domingue, “Toward the Next Wave of Ser-
vices: Linked Services for the Web of Data,” Journal of Universal
Computer Science, vol. 16, no. 13, pp. 1694–1719, 2010.

[24] C. Pedrinaci, J. Domingue, and A. P. Sheth, “Semantic web
services,” in Handbook of semantic web technologies. Springer, 2011,
pp. 977–1035.

[25] M. Klusch and P. Kapahnke, “OWLS-MX3: an adaptive hybrid
semantic service matchmaker for OWL-S,” in Proceedings of 3rd
Int. Workshop on Semantic Matchmaking and Resource Retrieval, 2009.

[26] M. Klusch and P. Kapahnke, “iSem: Approximated reasoning for
adaptive hybrid selection of semantic services,” in The semantic
web: Research and applications. Springer, 2010, pp. 30–44.

[27] D. Chu, J. Han, J. Li, and Y. Zhao, “XSSD: A Fast Hybrid Seman-
tic Web Services Discovery Method,” in Int. Conf. on Computer
Technology and Development, 3rd (ICCTD 2011), 2011.

[28] J. Peer, “Web Service Composition as AI Planning – a Survey,”
University of St. Gallen, Switzerland, Tech. Rep. March, 2005.

[29] O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anag-
nostopoulos, and I. Vlahavas, “An Integrated Approach to Au-
tomated Semantic Web Service Composition through Planning,”
Transactions on Services Computing, pp. 1–14, 2011.

[30] A. Bansal, M. B. Blake, S. Kona, S. Bleul, T. Weise, and M. C.
Jaeger, “WSC-08: Continuing the Web Services Challenge,” in 10th
IEEE Conf. on E-Commerce Technology and the Fifth IEEE Conf. on
Enterprise Computing, E-Commerce and E-Services. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 351–354.

[31] F. Lécué, E. Silva, L. F. Pires, and F. Lecue, “A framework for
dynamic web services composition,” 2nd ECOWS Workshop on
Emerging Web Services Technology, pp. 59–75, 2007.

[32] E. G. da Silva, L. F. Pires, and M. van Sinderen, “Towards run-
time discovery, selection and composition of semantic services,”
Computer Communications, vol. 34, no. 2, pp. 159–168, Feb. 2011.

[33] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic
Matching of Web Services Capabilities,” in The Semantic Web -
ISWC 2002, 2002, pp. 333–347.

[34] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic Web
Service Composition with a Heuristic-Based Search Algorithm,”
in IEEE Int. Conf. on Web Services (ICWS), 2011, pp. 81–88.

[35] M. Ghallab, D. Nau, and P. Traverso, Automated planning: theory
& practice. Elsevier, 2004.

[36] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths,” IEEE
Transactions of Systems Science and Cybernetics, vol. 4, no. 2, pp.
100–107, 1968.

[37] P. Rodriguez-Mier, A. Gonzalez-Sieira, M. Mucientes, M. Lama,
and A. Bugarin, “Hipster: An Open Source Java Library for
Heuristic Search,” in 9th Iberian Conf. on Information Systems and
Technologies, 2014.

Pablo Rodrı́guez-Mier is a PhD student at CiTIUS, Universidade de
Santiago de Compostela, Spain. His research interests include heuristic
search and automatic Web service composition.

Dr. Carlos Pedrinaci Dr. Carlos Pedrinaci is a Research Fellow of the
Knowledge Media Institute at The Open University, UK. He holds a
PhD in Artificial Intelligence from the University of the Basque Country
(Spain). His research interests include Web Science, Semantic Web,
and Service Science. Carlos has been actively involved in the stan-
dardization of Semantic Web Services technologies as part of the W3C
SAWSDL Working Group and, recently, the Linked USDL initiative.

Dr. Manuel Lama is Associate Professor at CiTIUS, Universidade de
Santiago de Compostela. His research interests focuses on discovery
and composition of Web services, semantic annotation, and process
mining.

Dr. Manuel Mucientes is Associate Professor in Computer Science
and Artificial Intelligence within the CiTIUS of the Universidade de
Santiago de Compostela. His current research interests are evolutionary
computation, robotics, and Web services.

	1 Introduction
	2 Related Work
	3 Web Service Composition Problem
	3.1 Semantic Web Service Discovery
	3.2 Semantic Web Service Composition

	4 Composition Framework
	4.1 Semantic Matchmaking
	4.2 Semantic Service Discovery
	4.3 Service Composition Graph Generation
	4.3.1 Index-Based Optimisations

	4.4 Graph-Based Optimisations
	4.4.1 Backward pruning
	4.4.2 Interface Dominance

	4.5 Optimal Composition Search

	5 Reference Implementation
	5.1 iServe
	5.2 ComposIT

	6 Evaluation
	7 Conclusions
	References
	Biographies
	Pablo Rodríguez-Mier
	Dr. Carlos Pedrinaci
	Dr. Manuel Lama
	Dr. Manuel Mucientes

