© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 1

Multi-Objective Optimization in Dynamic
Content Adaptation of Slide Documents

Habib Louafi, Member, IEEE, and Stéphane Coulombe, Senior Member, IEEE,
and Mohamed Cheriet, Senior Member, IEEE,

Abstract—In mobile Web conferencing, slide decks should be optimized before delivery to meet the constraints and environ-
ments of target mobile devices. To deliver optimally adapted slides, a trade-off between the visual aspect and delivery time must
be reached. Static adaptation methods are CPU-intensive, and require large storage space. The dynamic approach is attractive
as the optimal version is created on the fly when the actual slide is to be shared. Existing dynamic solutions are optimized for
the resolution of the target mobile device and use good visual quality settings. However, they do not control the resulting data
size, which creates serious usability issues, such as increasing the delivery time. Prediction-based methods require much less
memory and processing resources than static approaches while yielding an excellent user experience. In this paper, we propose
a multi-objective dynamic content adaptation framework, in which we maximize the visual quality and minimize the delivery time
simultaneously. We compare our solution with an ideal optimal point, called utopia, and with all the optimal solutions (Pareto
front) provided by a static exhaustive system. The obtained results show that our framework yields solutions very close to the
utopia and, for the majority of the documents tested, the obtained solutions are on the Pareto front.

Index Terms—Dynamic content adaptation, multi-objective, optimization, quality of experience, QoE, visual quality, delivery time,
JPEG, XHTML.
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1 INTRODUCTION won’t be synchronized with the host and lose track of
which slide is currently presented. The Web represents
a good alternative to facilitate synchronization via
Web browsers, which are already installed.

When mobile devices are involved in such applica-
tions, slides must be adapted before delivery in order
to meet their constraints (e.g., memory, supported for-
mats), network conditions (e.g., bitrate and latency),
but also to provide the mobile user with the best
experience possible [5]-[8]. Furthermore, in certain
situations, the adaptation must be achieved on the
fly, while the end-user is still waiting on the line. In
such a case, the problem of computing the optimal
transcoding parameters and using them to create the
optimal adapted slide becomes very challenging.

In this paper, we extend the work by Louafi et
al. [5], in which the problem of computing the optimal
adapted slide is formulated by a scalarization-based
optimization method (single-objective optimization).
They evaluated the quality of each adapted slide as
the product of its visual quality and delivery time.
However, the problem we are facing is, in its na-
ture, a multi-objective problem that can be solved by
various techniques, and the scalarization is only one
way in this domain. Therefore, we propose a general
framework, in which the problem of computing the

OBILE devices are ubiquitously used in many
Mcontexts and targeted by many applications,
ranging from sophisticated applications relying on
and taking advantage of powerful cloud resources,
to simple and standalone ones [1], [2]. Due to the
constrained nature of mobile devices (e.g., limited
memory, small resolution, limited connectivity), the
content they consume must be adapted to their char-
acteristics and environment [3]-[5]. Furthermore, for
certain types of applications, the adaptation itself
should be achieved in a timely manner, which could
be very challenging. For instance, in mobile Web
conferencing, a timely (or on-the-fly) adaptation is
sometimes required due, for example, to a lack of idle
time to perform the adaptation.

In Web conferencing, slide decks should be shared
synchronously between the host and all participants.
One may consider sending the entire presentation
(e.g., PowerPoint) to the mobile user before the meet-
ing. However, many mobile devices may not support
that format, or don’t have sufficient memory space to
store the whole presentation. More importantly, they
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are conflicting, that is, maximizing (minimizing) one
function simultaneously maximizes (minimizes) the
other one. This makes the problem very challenging.
More importantly, instead of providing the end-user
with a single optimal solution, with a multi-objective
formulation, a set of optimal solutions (those lying on
the Pareto-front) are generated, from which the end-
user can select the one that matches his preferences.

We compare our solution with an ultimate optimal
point, also called utopia, and with all the optimal so-
lutions (Pareto front) provided by a static exhaustive
system. Further, we compare the performance of our
framework with that proposed in [5]. The obtained
results show that the new proposed framework yields
optimal solutions much closer to utopia than those
provided by the framework of [5], and for the ma-
jority of the documents tested, the obtained optimal
solutions lie on the Pareto front.

The paper is organized as follows: In section 2, we
review several content adaptation methods proposed
in the literature. In section 3, we formulate the prob-
lem of computing the optimal adapted content. In
section 4, we review some notions from the multi-
objective optimization field and their application to
our problem. In sections 5 and 6, we show how we
propose to evaluate and estimate the visual quality
and delivery time, respectively. In sections 7 and 8, we
present the experimental setup used to validate the
proposed framework as well as the obtained results.
Lastly, section 9 concludes the paper.

2 RELATED WORK

To deliver the optimal adapted slide, the obvious
solution consists in creating multiple versions of each
slide before the meeting, and when a new slide is
to be presented on the host side, the system selects
and delivers the best one, evaluated under a certain
quality criterion. This technique is well-known as
static content adaptation [3], [9]. Fig. 1 illustrates the
process of delivering the optimal adapted content us-
ing a static strategy. It presents two major drawbacks.
First, it requires a large storage space to store all the
adapted versions of each slide of each presentation.
Depending on the nature of the connected mobile
devices, not all the created versions will likely be
used. Second, it is not always possible to have the
time required to create all these versions. Moreover,
the optimal version may not be part of the set of
created versions, and in this case a lower quality
version is delivered instead. This aspect is related to
the granularity level of the static content adaptation
method (how many versions are created). The higher
the number of versions, the better the solution but the
higher the storage and the computational complexity.
Note that human supervision may also be required
to filter the created versions in order to eliminate the
non usable ones.
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Fig. 1. Static content adaptation architecture. The
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Fig. 2. Dynamic content adaptation architecture. All
the operations are performed online (during the pre-
sentation).

The dynamic content adaptation strategy is very
attractive, as the content is adapted on the fly, without
creating any version in advance or requiring storage.
In the mobile Web conferencing context, when a new
slide is to be shared, an adapted version is created for
each mobile device. Fig. 2 shows how the content can
be optimized and delivered with a dynamic strategy.
Existing dynamic solutions create an adapted version
that fits the resolution of the target mobile device
and has good visual quality [10]. For instance, JPEG
images could be transcoded using the resolution of
the target mobile device and a quality factor value
of around 80. However, there is no control over the
resulting data size of the adapted content, which cre-
ates serious usability problems. The adapted content
could therefore be rejected by the mobile device due to
a lack of memory [11], [12]. Even when the adapted
content satisfies the memory constraint, there is no
guarantee that it will provide an adequate end-user
experience, which is affected, among other things, by
the visual aspect of the content, as well as the time
required to deliver it. The prediction-based dynamic
content adaptation approach is even more attractive,
as it allows the estimation of various aspects of the
transcoded content (e.g., data size and visual qual-
ity) prior to any transcoding operation. Numerous
solutions have been proposed to estimate the visual
quality, data size or transcoding time of transcoded
JPEG or GIF images. Han et al. [6] proposed methods
to estimate the data size of transcoded JPEG and GIF
images as well as the transcoding time. However,
these methods do not consider the visual aspect as
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they concentrate only on the transmission time, which
is based mainly on the data size and transcoding time
of the adapted content. Other research studies have
been proposed to predict the transcoded JPEG image
data size and visual quality [13]-[15]. The obtained
results are very reliable and take into account the
scaling and quality parameter changes. However, in
practical applications, these two pieces of information
(visual quality and data size) need to be combined
in order to quantify the adapted content quality or
user experience, thus allowing the computation of the
optimal version. Existing solutions usually set one pa-
rameter and optimize for the other one. For instance,
in [15], the authors optimize the visual quality of
transcoded JPEG images for a given data size value
used as a constraint.

Louafi et al. [5] proposed a prediction-based dy-
namic content adaptation framework that estimates
near-optimal transcoding parameters used to create
the best adapted content possible for each mobile
device. The framework exploits the predicted visual
quality and data size of transcoded JPEG images [13]-
[15], and applies them to the adaptation of enterprise
documents such as Microsoft PowerPoint slides or
Open Office Impress files. In their paper, to evaluate
the adapted content quality, they propose a quality of
experience (QoE) measure expressed as the product of
the visual quality and transport quality of the adapted
content. The former was evaluated using the SSIM
index metric [16], mapped to its corresponding MOS
values to estimate the real human perception [17]. The
transport quality was modeled with a Zmf member-
ship function [18], whose parameters are the delivery
time and the user’s preferences with respect to tol-
erable waiting time. The obtained results were quite
good, but sensitive to the Zmf curve used in modeling
the transport quality.

The choice of the cost function is crucial in content
adaptation, and numerous approaches are possible
for making this choice. Content adaptation methods
proposed in the literature often use weighted additive
functions (SAW: simple additive weighting), in which
the adapted content characteristics and the network
parameters are weighted and summed to evaluate the
adapted content quality [9], [19], [20]. This approach
is not really accurate as not all the parameters are
compensatory to be summed [21], [22]. Instead, the
authors of [5] proposed to use the weighted product
method (WP), which consists in multiplying two high-
level computed functions: visual quality and transport
quality. In fact, both WP and SAW belong to a spe-
cial branch of the multi-objective optimization field,
namely scalarization, which consists in combining the
objective functions into one representative function.
Still, it is not always clear which scalarization function
handles what problem best [23]. Therefore, it is more
natural to formulate the problem at hand as a multi-
objective optimization problem, in which the objective
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Fig. 3. Zmf-based transport quality modeling. Ex-

tracted from [5]

functions are the visual quality and the delivery time.

In [5], in order to evaluate the transport quality,
the authors used the Zmf membership function that
takes into account the delivery time and the user’s
preferences in terms of tolerable waiting time. Though
the Zmf function represents a powerful tool for mod-
elling the behavior of the delivery time, it acts as a
sophisticated threshold, that is, from a certain delivery
time value, the transport quality falls to zero, and
thus eliminates all the contents having a delivery
time higher than that value (see Fig. 3). Furthermore,
within a certain waiting time interval, the Zmf func-
tion falls rather aggressively, and thus amplifies the
effect of the adapted content data size prediction error
used in the transport quality evaluation. This was
adjusted in [5] by introducing a file size ratio that
acts as a safety parameter. Nonetheless dealing with
the actual delivery time instead of the Zmf-based
transport quality would be desirable.

Regarding the user’s preferences, instead of merely
applying a tolerable waiting time on the transport
quality, it would be better to articulate the user’s
preferences in both objective functions, i.e., the visual
quality and the delivery time. This would be more
adequate than applying the user’s preferences only
on the transport quality, as used in [5]. For instance,
the user could weight the visual quality and delivery
time to express the relative importance between them.

3 PROBLEM STATEMENT

Let C be an enterprise document (e.g., PowerPoint)
comprised of n pages denoted c. This can be formu-
lated as follows: C = {cx}}_,. For each page cy, let
W(cr) and H(cy) be its width and height, in pixels,
respectively.

To reach a vast variety of mobile devices, which
have different features (resolution, memory size, etc.),
and to provide the mobile user with the best experi-
ence possible, enterprise documents must be adapted.
To that end, an optimal transcoding parameter com-
bination should be computed to be used in adapting
each enterprise document page cj.

In the following, we focus on adapting slide decks
into JPEG- and XHTML-based Web pages to be visu-
alized by mobile Web browsers, which are commonly



IEEE TRANSACTIONS ON SERVICES COMPUTING, MANUSCRIPT ID

installed on mobile devices. In the case of JPEG-based
Web pages, the whole slide is adapted to a JPEG image
and wrapped into a Web page skeleton. In the case of
XHTML-based Web pages, the enterprise document
components are adapted separately and wrapped into
a Web page skeleton. In the latter case, the XHTML-
based Web page produced will be comprised of the
same number of components as the enterprise docu-
ment. For the transcoding parameters, we propose to
use a target format (f), a scaling parameter (z), and
a quality factor (QF). Let P be the set of transcoding
parameter combinations possible:

P=A{(f,2QF)} D
where:

o f € {JPEG,XHTML} is the target format into
which each page ¢ is adapted.

e 2z €]0,1] is a scaling factor used to scale down ¢y,
to obtain the desired resolution.

e QF €]0,100] is the quality factor used to control
the quality of the JPEG image.

These parameters are applied as follows:

o If f = JPEG, the JPEG-based Web page created
will be comprised of one JPEG image adapted
from c; using z and QF.

o If f = XHTML, the XHTML-based Web page
created will be comprised of image and text
components. The same value of z is used to scale
down the image and text components, and the
same value of QF is used to change the quality
of images.

Let T be the transcoding operation that adapts each
page c into JPEG- and XHTML-based Web pages
using the transcoding parameters f, z, and QF. It is
given by:

T:Cx P —chH=eF

e x (f,2,QF) s cf =97 @

where C/#@F represents the set of adapted Web pages
created by T' from all pages of C using all parameter
combinations of P, and ¢/*“" is the adapted Web
page created from ¢; using f, z and QF.

Let D be the target mobile device and W(D)xH(D),
S(D), and F(D) be its screen maximum resolution
(width and height), permissible file size, and set of
supported formats, respectively.

Note that for a given page ¢, only a subset of its
adapted versions C'k’z’QF are feasible (can be rendered)
on D. Formally, we say that ci’Z’QF is feasible on D
if it satisfies the following constraints:

S(e[=9") < S(D)
W(ef*9") < W(D)
H(c[ =9 <H(D)

f € F(D)

®)

From these feasible versions, we are interested in
computing the optimal one(s), i.e., those that maxi-
mize the user’s quality of experience (QoE).

Generally, in QoE evaluation, different factors
should be taken into account, such as the content,
the end-user (who pays for the service, who uses
the service), the service provider, cost, etc. [24], [25].
However, according to Kuipers et al. [26], in the adap-
tation of audio-visual content, the following three
parameters should be considered in designing a QoE
framework.

1) The audio-visual quality of the content before

delivery (at the source).

2) The content quality of service QoS, affected by

the conditions of the network in use.

3) The human perception (how the content is ap-

preciated audio-visually).
In the case of adaptation and delivery of slide doc-
uments, from these three requirements, we conclude
that the QoE of the delivered content can be expressed
by two factors: its visual quality, Q,, (ci’Z’QF, D), and
delivery time, 7'D(c£’Z’QF ,D). The first one expresses
how the content is appreciated visually before deliv-
ery, whereas the second one interprets the impact of
the delivery time on the appreciation of the content.

The problem can be formulated as maximizing Q,,
with respect to a given 7, threshold. However, it not
obvious to establish a 7, threshold, as this depends
greatly on each user. That is, we may have users
sensitive to the visual aspect and ready to sacrifice the
delivery time to obtain good visual quality, and vice-
versa. Therefore, based on these two factors, we for-
mulate the problem of computing the optimal adapted
content as a multi-objective optimization problem, in
which we want to maximize Q, and minimize 7,
with respect to the constraints cited in (3). That is:

MOPT max Q, (¢/*%F, D)
min 7, (c/*%", D) (4)
s.t. C‘k’Z’QF is feasible on D (see (3))

We want to optimize the two objectives Q,, and 7,
simultaneously, and thus, compute a set of optimal
solutions that present the different compromises be-
tween these two objectives. In such problems, it is not
straightforward to decide on the optimal solution, as
the objective functions are conflicting. For instance, to
minimize the delivery time, we should aggressively
transcode the content, and thus reduce the visual
quality. Conversely, to maximize the visual quality
of the content, we should increase the content data
size (up to a saturation point from which no visual
quality improvement can be noticed), which increases
the delivery time. Therefore, the first goal is to provide
the end-user with a set of optimal solutions, and
then propose to use an on-the-shelf mechanism (goal
attainment) to select the preferred one by involving
the end-user. This will be discussed in section 4.2.
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4 MULTI-OBJECTIVE OPTIMIZATION

For a given page c; and a target mobile device D,
we define U/ as the function between the set of fea-
sible solutions (transcoding parameter combinations
satisfying the constraints of (3)), denoted A, and its
corresponding objective space (denoted A). The latter,
also called the criteria space, is comprised of a set of
(Q,,T,) combinations. U is given by:

U:A— A

5
(f,2,QF) = (Q, (e[ 47, D), T, (¢ 9", D) ®

For a given page ¢y, let z; = (fi, 2, QF;) € A and
xj = (fj,2;,QF;) € A be two feasible solutions, and
yi = (9, (ciz Fi,D),?;(ci“zi’QFi D))/E A and y; =
(Qv(cij’zj’QFj, D),TD(ci-”Zj’QFj,D)) € A their images
by U.

We say that y; dominates y; (formally: y; > y;) if
either:

Q, ([ Dy > Q, (cij’z”QFj,D) and

e OF . OF (6)
TD(C?’Z“QE,D) < 7;(611;;7%7@1“3’ D)

or
Q, (CiiazinFi,D) > Qv(cij’zj’QFj,D) and

()
i,2i,QF; 3125,QF}
T, (cfo*% D) < T,, (9%, D)

It is clear that solution z; is better than solution
xj. Therefore, we want first to identify the set of
feasible solutions that cannot be dominated by any
other solution. In such a set of solutions, any im-
provement in one objective will be compensated by
a deterioration in the other one. In multi-objective
optimization, such solutions are called Pareto-optimal
solutions (which we denote by A,) and their images
in the objective space are called Pareto-optimal set
(denoted A,). These solutions satisfy the following

property.
Vo, €N, Br e Ay =1y, (8)

where z and z, are two solutions in the feasible and
the Pareto-optimal spaces respectively, and y and y,
their images in the objective and Pareto-optimal set
spaces respectively.

From A,, the transcoding system can select an
optimal solution and use it to create and deliver an
optimal adapted content to the end-user. However,
each Pareto-optimal solution presents a trade-off be-
tween the visual quality and the delivery time. Fig. 4,
for instance, shows all possible solutions of a slide
and its Pareto-optimal solutions. Therefore, we need
a mechanism that helps us to favor one solution over
the others. In this paper, we propose to involve the
end-user in discriminating the solutions and selecting
the one that expresses his needs; better visual quality
versus shorter delivery time.
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Fig. 4. Example of all valid transcoding solutions for a
slide and its Pareto-optimal ones

4.1 User preference articulation

Different methods have been proposed to articulate
preferences in order to compute the optimal solution
that represents the perception of the end-user (called
the decision maker in some fields) [23], [27], [28].
These methods are classified into two categories: a
priori and a posteriori. In a priori articulation, the
preferences are applied to the solution space and then
the Pareto-optimal set is evaluated, from which the
optimal point can be computed. In this case, the user
preferences are applied to all the feasible solutions,
which changes the objective function values, and
consequently the Pareto-optimal set. In other words,
different preference combinations may result in differ-
ent optimal-Pareto sets. Conversely, with a posteriori
articulation, the Pareto-optimal set is first computed,
and then, the optimal one is identified using the user
preferences.

In fact, the preference articulation is tied to the
optimization method it uses. For instance, Marler
and Arora [23] presented an interesting review of
the various optimization methods classified into two
groups: methods with a priori or a posteriori prefer-
ence articulation.

Technically, preferences can be articulated using
linguistic expressions (e.g., less important, important,
and very important) or ranking weights supplied
by the end-user to express the relative importance
between the objectives. When linguistic expressions
are used, they should be converted, using fuzzy
membership functions for instance, into scores, which
can be incorporated into the optimization process.
For simplicity, we propose to use ranking weights to
articulate preferences in this paper.

For a user with a mobile device D, let w, (D)
and w, (D) be the weights associated with Q, and
7,, respectively. To express the relative importance
between the objective functions, w, (D) and w, (D)
should respect the following properties:

wy (D) +w, (D) =1

w,, (D) >0, w,(D)>0 ©)
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4.2 Optimal solution evaluation

To solve multi-objective optimization problems, nu-
merous optimization methods have been proposed in
the literature [23]. In this paper, we propose to use the
Goal attainment method [27], which tries to identify,
from the Pareto-optimal set, the closest point to a goal
point (also called utopia). The latter represents an ideal
point, which is generally not attainable. This method
is formulated as follows:

Minimize A

zeX (10)
st. Fi(z) —w A< FY?, i=1,2,...,1

where X represents the solution space. F;(x) are the
objective functions, and w; and F? are their associ-
ated weights and utopia points, respectively. A is an
unrestricted scalar to minimize and [ is the number
of objective functions.

In other words, we want to minimize the distance
between each objective function and its utopia point,
and so the problem can be formulated by:

Fy(x) — FY?

Minimize ——, i=1,2,...,1
reX w;

(11)

The utopia point can be a point, not necessar-
ily in the feasible solution space, with the highest
value of Q and the lowest value of 7,. Let y°
(9, (f = QF,D),n(cf =5QF° DY) be this utopla
point and z° = (f°(ck, D), 2° (ck,D)7QF°(ck,D)) its
image by U1

For a content ¢;, and a target mobile device D, let
x* = (f*(cx, D), z*(ck, D), QF*(ck, D)) be the optimal
solution, whose image in the objective space is the
closest to the utopia point. It is given by:

*

x* = argmin dev (y,y°)

zEN, y=U(x) (12)

where, dev (y,y°) is the weighted deviation between
y and y°.

In our problem, to be able to use deviation, or
any distance measure, such as the Euclidean one, the
objective functions should be dimensionless, ideally
normalized (values confined between 0 and 1) [23].
As it is presented in section 5, the two objective
functions, Q, and 7,, are normalized. This prevents
one function from being shadowed by the other one
with a higher scale of values.

Using the weight values introduced in section 4.1,
dev (y,y°) is given by:

/#QF p £°,2°,QF°
dev(y,yo): QV(Ck; ) Q ( 7D)
wy (D) 13)
| To(™ D) =Ty (e 9", D)
wr (D)

5 VISUAL QUALITY AND DELIVERY TIME
EVALUATION

To solve equation (12) and compute the optimal
solution dynamically, we need first to evaluate Q,
and 7, and then show how these functions can be
predicted. For completeness and to make the paper
self-contained, Q, and 7,, evaluation and estimation
are presented in this section and in the next one
respectively.

5.1

For a page ¢, and its adapted version c¢;
ki and ¢/ 7" be their components, respectlvely

Formally, we have:

Visual Quality evaluation
F2QF ot

e = {ep P
2QF _ {szQF}m(k’f) (14)
k k,i i1

where m(k) and m(k, f) are the total number of com-
f,2,QF . .
ponents of ¢; and ¢, , respectively. Ignoring the
XHTML wrapper, which has no impact on quality in
both the JPEG and XHTML transcoded format cases,

we have:
ik, f) = {m(kz) if f = XHTML

1 if f = JPEG (15)

As proposed in [5], the visual quality of adapted
content can be evaluated as a weighted sum of the
visual qualities of its components, with the weights
being the areas they occupy. That is, the larger the
area, the larger the weight that should be applied.
Thus, we have:

m(k,f)
Z»A szF

m(k,f)

Z A(e f%QF

D) and A(c}:’f @F) are the visual
f z ,QF

,2,QF
Q, (cf7°", D)

Q, (c[*°F, D) = (16)

where Q, (cif @D
quality of the adapted component c;,
it occupies, respectively.

Slide documents are generally comprised of text
and images. The visual quality of images can be
evaluatec% using any well-known full reference image
quality metric, such as PSNR or SSIM [16]. Con-
versely to 1ma§es, text is only affected by the scalin
parameter, and so its visual quality is not affected.
Therefore, without loss of generality, we assume that
adapted text components can be rendered perfectly,
and preserve their visual quality. Thus, we propose
to evaluate Q,, of each component as follows:

£,2,QF Q (CifQF,D) lf szQF
Q (kz 7D) 1 lfcszF

and the area

is an image
is text
17)

where Q, is the image visual quality, which can be
evaluated using, for example, the SSIM index mea-
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sure. SSIM is a full reference metric that requires both
the original image and its transcoded version. That
is, to evaluate the quality of an adapted image, the
SSIM index measures the resulting image fidelity of
the adapted image compared to that of the original
one [16].

Note that when the values of Q,, are already con-
fined between 0 and 1, such as when SSIM is used,
there is no need for normalization.

5.2 Delivery time evaluation

The delivery time is comprised of the time required
to perform the adaptation operation, plus the time
taken by the adapted content to reach its recipient. For
adapted content ck’z’QF and a target mobile device D,
the delivery time can be computed by:

(e~

7-D (CZIZ"Z’QFL D): N (D)

+S, (DHT, (c]*@F) (18)

where:

o S(c]*9F) is the data size of ¢/ 9",

e N, (D) and N, (D) are the bitrate and latency of
the network used by D, respectively.

e S, (D) is the server latency. It evaluates the time
spent by the request, made by D, on the server
(i.e., in the queue) waiting to be processed. It
depends on the server performance and on the
number of requests in the queue. For a given
server, this value may be different for each device.

e T, (ci’Z’QF) is the transcoding latency. It evaluates
the time required by the adaptation operation
to complete. It depends on the original content,
¢k, and the actual transcoding parameters f,
z, and QF. It can be estimated based on past
transcoding operations. On high-end computers,
this value can be small.

To normalize the delivery time, numerous methods
have been proposed [23], some of which use the
utopia point, which is not always known. In this
paper, we propose to use a function that does not
change the delivery time behavior, as was the case
with the Zmf function. Therefore, we propose to use
the following normalization function:

'T’I'LO?'VYL — 7-D
D - T maz
D
where 77°"™ and 7"** are the normalized and max-
imum delivery time values, respectively. 7 "** can

be obtained from experimental results from previous
transcodings, or using a sufficient maximum value.

(19)

For clarity, in the following, we will use the term
T, to represent normalized delivery time, instead of
using 717",

TABLE 1
Predicted SSIM values computed for QF;,, = 80 and
zy, = 0.4 (adapted from [14])

QF|[01 |02 |03 |04 |05 |06 |07 ]08]09]1

10 | 025| 043 | 0.55| 0.62| 0.69| 0.73| 0.76 | 0.79| 0.80| 0.82
20 | 0.30| 0.52| 0.65| 0.73| 0.79| 0.82| 0.85| 0.87| 0.88| 0.89
30 | 033| 056 | 0.69| 0.77| 083 | 0.86| 0.89| 0.90 | 091| 0.92
40 | 0.35| 058| 0.72| 0.80| 0.85| 0.88| 090 | 0.92 | 0.92| 0.94
50 | 0.36| 0.61| 0.74| 0.82| 0.87| 090| 092 | 093 | 0.94| 0.95
60 | 038] 063| 076 0.84| 0.89| 092| 093 | 094 | 0.95| 0.96
70 | 039] 0.65| 0.78| 0.86| 090 | 093 | 094 | 095| 0.95| 0.97
80 | 042| 0.68| 0.81| 0.89 | 093| 095| 0.96| 096 | 0.97| 1.00
90 | 045| 0.72| 0.85| 092 | 095| 096 | 097 | 0.97 | 098 | 0.99
100 | 0.49| 0.78| 091 | 097 | 098 | 0.98| 0.99| 0.99| 0.99 | 1.00

6 VISUAL QUALITY AND DELIVERY TIME
ESTIMATION

In this section, we review how the visual quality (Q, )
and the delivery time ( 7,,) can be estimated. For more
details, we refer the reader to [5].

6.1 Visual quality estimation

When the target format f = JPEG, the ade}gted con-
tent will comprise only one JPEG image, ck,lEG’Z’QF,
transcoded at z and QF. Let ¢} 7”%"® be an image
created using z = 1 and QF' = 80, which will be used
as a reference image. Actually, each slide is converted
into a reference image CZ,I; @180 from which the
various images can be created. This reference image
is needed for predicting the visual quality and data
size of transcoded images.

Using the SSIM index, the visual quality of the
adapted content (16) becomes:

\2Z, PEG,z,
Q, (cf*%", D) = Q, (1¢*°", D)

— SSIM((JPEG=QF JPEG.150)

(20)

This visual quality can be estimated using predicted
SSIM values computed for QF;,, z,, and various
values of z and QF’, and tabulated in [14]. QF;,, and z,
are, respectively, the original (reference) image quality
factor and a scaling parameter, derived from the
viewing conditions, at which the two images (original
and transcoded) should be scaled to compute their
SSIM. Table 1, for instance, shows predicted SSIM
values computed for QF;,, = 80, z, = 0.4, and various
combinations of z and QF'. In this case, the estimated
visual quality of the adapted content becomes:

0, (9", D) = SSIM(QF, (¢} 1 F9 1), 2, 2, QF)

= SSIM(80, 2,, 2, QF)
(21)

where @(QFin, 2y, 2, QF) is the estimated SSIM
value that can be extracted from [14] using z,, QFi, =
8&\2, and QF'. For example, using Table 1, we obtain:
SSIM(80, 0.4,0.5, 70) = 0.90.

When f = XHTML, the content and its adapted
version will comprise the same number of compo-
nents. Using the SSIM index, the visual quality of the
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adapted content’s components (17) becomes:
12,QF
Q, (cﬁf QF D)=

SSIM(cy; M9 o)
1 if ¢y, is text

if c;,; is an image (22)

where c),;}iITML’Z"QF is the XHTML adapted version of
Ck,i-

Similarly, using predicted SSIM values, tabulated
in [14], we can estimate the visual quality of each
adapted component as follows:

) 2,QF
Qv(ci,fQ D) =

S/SIT/[(QFM(c;w»)7 Zv, 2, QF) if ¢, is an image
1 if ¢y, is text
(23)

where QF;,(cy ;) is the quality factor of ¢ ;, and
@/I(QFM(CM),ZU,Z,QF) its estimated SSIM value
after adaptation, which can be extracted from [14]
using QF;(ck,i), zv, 2z, and QF. Thus, the Q, of the
adapted content can be estimated using (16).

6.2 Delivery time estimation

To estimate the total delivery time (18), the adapted
content data size, network bitrate and latency should
be estimated at runtime if they are not available.
For instance, the network bitrate can be estimated
at runtime, using one of the various proposed algo-
rithms [29], and the network latency can be estimated
by pinging the mobile device, or using a mean value
of probings that could have been performed when
the user registered to the application [30]. Based on
research proposed in [13], it is possible to estimate
the data size of transcoded JPEG images subject to
changing their scaling and quality factors.

For a JPEG image ¢ ; and its transcoded version

chP EG’Z’QF, the relative data size between them is given
by:
S(CJPEG,z,QF)
PEG,z,QF k,
P(dPECQF o = Tk 2 (g

S(ck,q)

These predicted relative data sizes are tabulated
in [13], from which an example is extracted and
presented in Table 2. This table presents predicted
relative data sizes computed for QF;, = 80 (QF of
the original image) and various values of z and QF.

After estimating the relative data size between
each component and its transcoded version, we can
estimate the data size of the adapted content, and
consequently, the delivery time 7. The process is as
follows:

When f = JPEG, using the reference JPEG image
created before CLPIIEG’LSO, the adapted content data size
can be formulated as follows:

S(CLPEG,Z,QF) _

25
T(CJkIj];G,z,QF7CJkIjI;:G,1,80) % S(C,LIj]iG,l,80) o (25)

TABLE 2
Predicted relative data sizes computed for QF;,, = 80
(adapted from [13])

QF| 01 |02 |03 |04 ]05 |06 |07 ]08]09]1

10 | 0.03| 0.04| 0.05| 0.07| 0.08| 0.10| 0.12| 0.15| 0.17| 0.20
20 | 0.03| 0.05| 0.07| 0.09| 0.12| 0.15| 0.19| 022 | 0.26 | 0.32
30 | 0.04| 005| 0.08| 011 | 0.15| 0.19| 0.24| 0.21 | 0.34 | 041
40 | 0.04| 0.06| 0.09| 013 | 0.17| 022| 0.28| 0.34| 040 | 0.50
50 | 0.04| 006| 010| 0.14| 0.19| 025| 032 | 0.39| 046 | 0.54
60 | 0.04| 007| 011| 0.16| 022 | 028 | 0.36| 0.44| 0.53 | 0.71
70 | 0.04| 0.08| 0.13| 0.18| 0.25| 0.33 | 0.42| 0.52| 0.63 | 0.85
80 | 0.05| 0.09| 015| 022 031| 0.41| 0.52| 0.65| 0.78| 0.95
90 | 0.06| 0.12| 021| 031 | 044 | 059| 0.75| 093 | 1.12| 1.12
100 | 0.10| 0.24| 047 | 0.75| 1.05| 146| 1.89| 234 | 2.86| 2.22

where ¢ is the data size of the XHTML wrapper of
the Web page.

Using the predicted relative data size tabulated
in [13], the adapted content data size can be estimated
as follows:

g(CLPEG,z,QF) _

~/ JPEG,2,QF JPEG,1, PEG, 1,
T(Cjk,l =@ >CL-,1 50) % S(Cjk,l B 4y

—~, JPEG,z,QF JPEG,1,80 ~ PEG,1,80
T(le,l ? ’c]k:,l ) = TI(QFin(CL,l ! )7ZvQF)
=7,(80,z,QF)

(26)

(27)
where:
o QF;, is the QF of the reference JPEG image.
e 7,(80,2,QF) is the estimated relative data size,
which can be extracted, for example, from Table 2.

When f = XHTML, the data size of the adapted
content can be formulated as follows:

m(k)

S(pTME2) =N " (gl ™M 6 5) X S(exq) +
=1

(28)

where S(cg,;) is the data size of the component ¢y ;
and (¢ T™ME=QF ) 1) the relative data size between
¢k, and its XHTML transcoded version. As before, 9
represents the XHTML wrapper data size.

Similarly, using the predicted relative data size of
transcoded JPEG images [13], we can estimate the

adapted content data size. Thus, we have:

S OF) 3 FQIEST 0 ) S(ey) +
i=1

(29)
?(CE?TML’Z’QF, Chi) =
7 (QFin(ck,i), 2, QF) if ¢k, is an image (30)
1 if ¢y, is text
where:

. QFin(Ck,i) is the QF of Ck,i-
o 7 (QFin(cky), 2, QF) is the estimated relative data
size between the image c;; and its transcoded

. XHTML,z,QF :
version cp , which can be extracted

from [13] (e.g., Table 2).
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We have shown how the adapted content data size
can be estimated in both cases, JPEG and XHTML.
Thus, using (18), we can estimate 7.

Now, having the possibility to estimate Q, and
T, of each adapted content without performing any
transcoding operation, we can estimate the optimal
adapted content version by solving (4).

7 EXPERIMENTAL SETUP

To validate the proposed framework, we created a cor-
pus of OpenOffice Impress presentation documents.
They were created with a Java application we de-
veloped that uses OpenOffice APIs [31] to create,
analyze, and parse documents, and to extract the
important information required in computing Q,, and
T,. Besides creating the documents automatically,
it parses each one, identifies the embedded images
and text boxes, extracts their dimensions (height and
width), evaluates the images’ SSIM-index as well as
their corresponding mapping to MOS scores, and
computes their data sizes. For simplicity, each doc-
ument comprises one slide composed of one text box
and one image, and its position on the slide is set
randomly. These text boxes and images were collected
from various websites. To span a wide variety of
slides, the areas occupied by text boxes and images
in the slide are as follows:

image size : 0%, 10%, 20%, . .
text size : 0%, 10%, 20%, . .

.,100%

1
.,100% 1)

It is allowed that text boxes and images to be over-
lapped (partially or totally). Let V be this set of
OpenOffice Impress documents.

Let D be a target mobile device that has a resolution
of 640x 360, and is connected to a 3-G network with
a bitrate BR(D) = 50 kbps and network latency
NL(D) = 488 ms [30]. For comparison with the
solution proposed by [5], we use the same weight
values for both Q, and Q, objectives, as follows:

w,(D)=05 , w,(D)=05 (32)

Note that each weight value in (13) is the divisor of a
deviation between a point and its utopia. Therefore, a
higher value reduces the importance of the deviation
to which it is applied. For instance, a higher w,, (D)
value will make the visual quality less important.
Conversely, a lower weight value increases the impor-
tance of the deviation to which it is applied. When
we refer to weights as penalties, this relationship is
implied.

It is clear that the utopia point represents the ulti-
mate optimal point. Although unreachable, it repre-
sents a good target, with which we compare our pro-
posed dynamic system (how far we are from utopia).
Thus, we propose to use the following point as utopia:

(0. 75) =(1,0) (33)

It is also important to compare our framework with
the one presented in [5], which we denote as SCADS
(scalarization-based dynamic system). We also want to
compare both systems (ours and SCADS) with an ex-
haustive static system, which creates a set of adapted
contents, evaluate their Q, and 7,, and generate a
set of optimally adapted contents representing the
Pareto-optimal set. This system adapts each document
¢, € V into JPEG- and XHTML-based Web pages
using OpenOffice XHTML and JPEG filters, using the
following transcoding parameter values:

f € {JPEG, XHTML}
2 €{0.1,0.2,0.3,...1}
QF € {10,20,30, ...100}

Note that the native OpenOffice XHML-based filter
is very limited and contains numerous bugs that we
have fixed, and that the integration of the improved
version of the filter is under process [32].
Thus, the systems to be compared are:
o The scalarization-based  dynamic system
(SCADS): the dynamic system proposed in [5].
o The multi-objective-based dynamic system
(MODS): our new proposed dynamic system.
o The exhaustive static system (EXSS): the exhaus-
tive static system.

(34)

Regarding the SCADS dynamic system, we collect,
from [5], the optimal estimated transcoding param-
eters f*(cp, D), *(ck, D) and C/ﬁ“*(ck,D), and their
resulting (not estimated) @, and 7,, (normalized 7,
called Q).

Regarding our MODS dynamic system, for each
c, € V,its Q, and T, are estimated using the
same set of transcoding parameter combinations of
(34). By solving (4) on the estimated Q, and 7,
solution spaces, we identify the optimal transcoding
parameters (f*(ck, D), (¢, D), QUF*(C]C, D)), and use
them to obtain their actual (not estimated) optimal Q,,
and 7,.

Regarding the EXSS static system, for each ¢, € V,
200 adapted slides are created using the same set of
transcoding parameter combinations of (34). Then, for
each adapted version, its Q, and 7, are computed,
which constitutes the computed (not estimated) so-
lution space. We solve (4) on this computed solu-
tion spaces and identify the optimal transcoding pa-
rameters (f*(ck, D), 2*(ck, D), QF*(ck, D)) and their
corresponding computed optimal Q, and 7,. Also,
we use (6) and (7) to extract the Pareto set from the
computed solution space.

The objective is to show how much our proposed
solution is far from the utopia (optimal, but unreach-
able), and how it compares with the scalarization-
based dynamic system developed earlier.

Although MODS provides a set of optimal solutions
(Pareto-optimal set), we also want to see where the
optimal solutions obtained by both dynamic systems,
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MODS (computed using the goal-attainment method)
and SCADS, are located on the Pareto set generated by
the EXSS system (computed, not estimated, solutions).
The latter represent the different optimal trade-offs
between the visual quality and delivery time.

The optimal solutions obtained by the SCADS and
MODS dynamic systems, as well as all the possible
solutions generated by the EXSS system, were stored
in data structures as follows:

SCADS; =[en, [177,QF Q, (ef 797, D), T, (of 79, )]
EXSS,=[cx, f,2,QF, Q, (c[*°F, D), Tp (<" D)]

EXSS;=[ex, 525, QF%Q,, (] 29" D), T, (] 279", D)]
( ﬁp 2P, QFP’ D)J

[ex

MODSZ_[ck f*“*,QF Q, (el Q" Dy T (el 9T Dy
[
[

EXSS?=[cy, f227,QF? Q,, (eI 27" D), T,

where SCADS}, MODS; are two vectors storing the
best transcoding parameter combinations and their
Q, and 7, obtained with the SCA and our MOPT
dynamic systems, respectively. The EXSS}, is a table
that contains all the solutions provided by the static
exhaustive system, from which the Pareto set of each
document is extracted (EXSSY), and the computed
optimal solution (EXSS}).

8 EXPERIMENTAL RESULTS

8.1 Comparison of SCADS, MODS and EXSS op-
timal solutions

Unlike the SCADS system, which provides a single
optimal solution, the MODS method we propose pro-
vides a set of optimal solutions. While the SCADS
solutions are based on a QoE measure defined as
a product of the visual and transport qualities, the
MODS solutions represent the various trade-offs be-
tween the visual quality and the delivery time. To
show this aspect graphically, we present, in Figs. 5
and 6, for a selected document, the SCADS optimal
solution and the MODS optimal solutions obtained,
with different weight combinations, as well as the
EXSS solutions and their Pareto-optimal set. We can
observe that the MODS solutions in the figures are
located at different positions on the Pareto front, and
represent different visual quality and delivery times
compromises. What is somewhat unexpected is that
both solutions for weight combinations (0.5,0.5) and
(0.2,0.8) overlap. This is due to the imprecision in the
quality and estimation models of [14].

Besides the flexibility of providing a set of optimal
solutions offered by the MODS system compared
to SCADS, we go further bellow, and compare the
performance of the two systems against two targets:

o Utopia: how much the optimal solutions obtained

are close to utopia.

o EXSS Pareto-optimal set: how much they are close

to the EXSS Pareto-optimal set.
The first target is more stable and widely used in
the literature, but is unreachable. The second target
represents a reasonable set of comparison points.

45
o EXSS all solutions
40— EXSS Pareto-optimal solutions
+EXSS optimal solution with wv(D)=0.5 and wT(D)=0.5

35/ 3¢ SCADS optimal solution
MODS optimal solution with wv(D)=0.2 and wT(D)=0.B

; @ MODS optimal solution with w, (D)=0.5 and w_(D)=0.5
.E 25/ @ MODS optimal solution with w, (D)=0.9 and wT(D)=0.1
as 20

3

al

0.6 0.7
Visual quality

Fig. 5. JPEG optimal solution obtained by SCADS
and those obtained by MODS with different weight
combinations versus the EXSS Pareto-optimal set

o EXSS all solutions
—o—EXSS Pareto-optimal solutions
4 +EXSS optimal solution with w, (D)-O 5 and wT(D)-O 5

XSCADS optimal solution
MODS optimal solution with wv(D)=0.2 and wT(D)=0.8

@ MODS optimal solution with wV(D)=0.5 and wT(D)=0.5
3 @ MODS optimal solution with w,(D)=0.9 and w_(D)=0.1

had
@

Delivery time (s)
N
o

N

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Visual quality
Fig. 6. XHTML optimal solution obtained by SCADS
and those obtained by MODS with different weight
combinations versus the EXSS Pareto-optimal set

8.2 Relative absolute deviation from utopia

For each document ¢, from V, we compute the abso-
lute deviation of the optimal solutions obtained by the
SCADS, MODS and EXSS systems from utopia, using
w, (D) = 0.5 and w, (D) = 0.5. We then go on to
compute the relative absolute deviation from utopia
to a negative ideal, which corresponds to the farthest
point: y~ = (Q;,7.) = (0,1) (i.e., zero visual quality
with longest time to arrive). For a point y, the relative
absolute deviation from utopia to y~ is given by:

dev (y,4°)

dev (y~,y°)
where y°, y~ are the utopia point (1,0) and the
farthest point from utopia (0, 1), respectively (bottom-
right and top-left corners of Fig. 5). dev is the absolute
deviation, which is evaluated using (13).

The results are presented in Figs. 7 and 8, for JPEG
and XHTML, respectively. Since utopia cannot be
reached, the relative error value itself is not sufficient.
We must also consider how close a method is to
EXSS. Clearly, the optimal solutions obtained by our
proposed MODS dynamic system exhibit less variance
than those obtained by the SCADS dynamic system,
although on average, they may appear to perform
comparably. In the case of XHTML, the optimal so-
lutions obtained by the MODS dynamic system are
much closer to EXSS and exhibit less variance than

(35)
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0.35
SCADS dynamic system

—e—MODS dynamic system
—e—EXSS Exhaustive static system
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Relative abs. deviation from utopia

0.1D

Document number
Fig. 7. JPEG relative absolute deviation from utopia
to y— computed for the optimal solutions obtained by
SCADS, MODS and EXSS systems, using w, (D) =
0.5and w, (D) =0.5

TABLE 3
Average relative absolute deviation from utopia to y—
and their variances

Average relative Variance

absolute deviation (x1073)
Systems JPEG XHTML JPEG XHTML
SCADS 0.214 0.112 2619  3.504
MODS  0.211 0.100 0296  3.200
EXSS 0.144 0.095 0376  3.329

those obtained by the SCADS dynamic system, except
for the first ten documents, in which there is no
image, but only text of different sizes (see (31)). In
fact, for the first ten documents, the solution space is
comprised of one point (all the points overlap) with a
Q, = 1 and 7, being the same for all the adapted
contents. This is quite reasonable, as both Q, and
7T, are not sensitive to scaling and quality changes
for documents comprised of only text components.
However, for the three systems (SCADS, MODS and
EXSS), the estimated solutions are still very close to
each other. Note that, the curves follow a certain
periodicity due to the order of the documents used.
In each ten documents, the area of images is fixed
(but increases by 10% for each ten documents) and
the areas of text vary from 10% to 100%.

From a statistical point of view, Table 3 presents the
average absolute relative deviations from utopia to y~
and their variances. The averaged results confirm that
the optimal solutions obtained by the MODS dynamic
system are slightly closer to utopia than those ob-
tained by the SCADS dynamic system. However, the
variances confirm the high variability of the SCADS
optimal solutions for JPEG as compared to those
obtained by MODS (2.62x 1073 vs. 0.29x 10~3). On the
other hand, the MODS method does not perform as
well as EXSS for JPEG (0.21 vs. 0.14), but is very close
for XHTML (0.10 vs. 0.09). As expected, the XHTML
format is more accurate than the JPEG one, since in
XHTML, only embedded components are estimated,
and not the entire slide, which is the case of JPEG.

0.35

SCADS dynamic system
—e—MODS dynamic system
0.3 —e—EXSS exhaustive static system!

Relative abs. deviation from utopia

Document number
Fig. 8. XHTML relative absolute deviation from utopia
to y— computed for the optimal solutions obtained by
SCADS, MODS and EXSS systems, using w, (D) =
0.5and w,. (D) =0.5

8.3 Minimum deviation from the Pareto front

Another very important aspect is to show where the
solutions obtained by both the SCADS and MODS
dynamic systems are located on the Pareto front. We
intend to show how much the SCADS and MODS
optimal solutions are far from (or close to) the dif-
ferent trade-offs between visual quality and delivery
time (the non-dominated solutions). First, for each
document, we compute the Pareto optimal set from
the set of solutions provided by the EXSS system.
Then, we compute the absolute deviation between
the SCADS and MODS optimal solutions and all
the solutions that are on the EXSS Pareto front, and
we identify the minimal ones. For each point y, the
minimum absolute deviation is computed as follows:

mindev (y) = arg mindev (y, y;)

yi EAEXSS

(36)

where AEXS is the EXSS Pareto optimal set.
Similarly, using the farthest point, y~ = (Q, 7)) =
(0,1), we compute the relative minimum absolute
deviations as follows:

mindev (y)

dev (y~,y°)
where dev is the absolute deviation, which is evalu-
ated using (13).
Figs. 9 and 10 show the relative minimum absolute
deviation between the optimal solutions obtained by
the SCADS and MODS dynamic systems and their
closest points from the EXSS Pareto optimal front, for
JPEG and XHTML, respectively.

These figures show that the MODS optimal so-
lutions (obtained with the goal attainment method)
are closer to the EXSS Pareto-optimal solutions than
are the SCADS optimal solutions. In this scenario,
for JPEG all the MODS optimal solutions are on the
Pareto front, whereas for XHTML, the majority is.

Statistically, Table 4 shows the averages of the rel-
ative minimum absolute deviations from the EXSS
Pareto optimal front as well as their variances. This
gives a global view of the distance between the

(37)
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optimal solutions obtained by both the SCADS and
MODS dynamic systems and the EXSS Pareto optimal
front. Globally, both methods provide solutions that
are close to the Pareto front, but the MODS ones are
significantly closer.

On a final note, although the dynamic system pre-
sented in [5] provides good solutions, the method we
propose in this paper provides many advantages:

o The solutions are closer to the EXSS Pareto op-
timal front, compared to those of the SCADS
system. Furthermore, our method exhibits much
smaller deviation variances from the EXSS Pareto
optimal front as well as from the utopia.

o It is more flexible, as it provides the decision
maker (or end-user) with all the possible optimal
solutions (trade-offs), and allows him to select the
one that satisfies his preferences (higher visual
quality vs. shorter delivery time).

This paper also allowed us to once again validate
the performance of the dynamic system by [5]. The
authors of [5] validated the performance of their pro-
posed framework against a static exhaustive system,
which is quite reasonable. However, in this paper,
we compared their framework with two important
information: the utopia point (ultimate optimal) and
the Pareto front.

TABLE 4
Average relative minimum absolute deviation from the
EXSS Pareto optimal set, and their variances

Average relative min.  Variance

abs. dev. (x1071) (x1073)
Systems JPEG XHTML JPEG XHTML
SCADS 0.040 0.013 0.024 0.006
MODS 0 0.003 0 0.001

8.4 Examples of optimal solutions for selected
documents

In this section, we select three examples of both
JPEG and XHTML to show the EXSS Pareto optimal
solutions, and where the optimal ones obtained by the
SCADS and MODS systems are located in compari-
son. Figs. 11 and 12 show the selected examples for
JPEG and XHTML, respectively. The documents are
selected to show different behaviors of the three sys-
tems: MODS, SCADS and EXSS. For JPEG and in this
scenario, all the MODS optimal solutions obtained
with the weight combinations (0.5,0.5) and (0.2, 0.8)
overlap. In other words, with a weight combination
of (0.5,0.5), the MODS system reached its maximum
Q. . We tested the system with different weight com-
binations, such as (0.1,0.9), (0.05,0.95), (0.01,0.99), to
obtain higher Q,,, and the results were the same.

Note that all the SCADS optimal solutions are
within the delivery time range of [0,10] because they
are constrained by the Zmf membership function used
to normalize the delivery time. In the MODS dynamic
system, we do not have this restriction, but the end-
user can use his preferences to favor one objective
over the other. Alternatively, in the optimization prob-
lem (4), it is also possible to add a constraint on the
delivery time, such as discarding all solutions whose
delivery times are higher than 7 seconds (retaining
only 7'D(c£’Z’QF, D) < 7s).

9 CONCLUSION

In mobile Web conferencing, slide documents should
be adapted to satisfy the end-user’s mobile constraints
and environment. To that end, a compromise should
be sought between the visual aspect of the adapted
content and its delivery time in order to provide the
end-user with the optimal quality of experience.

In this paper, we formulated the problem of com-
puting the optimal adapted content as a multi-
objective optimization problem, with the objectives
being the visual quality and the delivery time. We
compared the performance of the proposed solution
with two important references. First, we used an
utopia point, which represents the ultimate optimal. It
represents a desirable target with which we compared
our dynamic system. Second, we used the Pareto
front, which is a set of optimal solutions representing
the different trade-offs between the visual quality
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Fig. 11. JPEG results obtained for three selected Fig. 12. XHTML results obtained for three selected

documents with different weight combinations

and delivery time. Furthermore, we compared our
solution with that proposed in [5].

The experiments showed that the results obtained
by our system exhibit, for JPEG, less variance than
those presented in [5], and are comparable on average.
In the case of XHTML, the optimal solutions obtained
were much closer to utopia, and had less variance
than those obtained by [5]. Although the solutions of
both the proposed system and those of [5] were close
to the Pareto optimal front, those of the proposed sys-
tem were much closer. Furthermore, for the majority
of documents tested, it reached a value on the Pareto
optimal front.

The proposed dynamic system was designed to
be generic and flexible, and as a result, future re-
search can be carried out to show its applicability
to other content types, such as enterprise documents
and video. It is also important to investigate, in future
work, the relationship between the adapted slides and

documents with different weight combinations

their corresponding energy consumption. Once such
a relationship is established, the framework can be
extended easily by adding a third objective function,
called for example energy consumption.
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