
This is a repository copy of Reliable Computing Service in Massive-scale Systems
Through Rapid Low-cost Failover.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/97026/

Version: Accepted Version

Article:

Yang, R, Zhang, Y, Garraghan, PM et al. (5 more authors) (2017) Reliable Computing
Service in Massive-scale Systems Through Rapid Low-cost Failover. IEEE Transactions
on Services Computing, 10 (6). pp. 969-983. ISSN 1939-1374

https://doi.org/10.1109/TSC.2016.2544313

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 1

Reliable Computing Service in Massive-scale
Systems through Rapid Low-cost Failover

Renyu Yang, Member IEEE , Yang Zhang, Peter Garraghan, Yihui Feng, Jin Ouyang,
Jie Xu, Member IEEE , Zhuo Zhang, Chao Li

Abstract—Large-scale distributed systems deployed as Cloud datacenters are capable of provisioning service to consumers with

diverse business requirements. Providers face pressure to provision uninterrupted reliable services while reducing operational costs due

to significant software and hardware failures. A widely adopted means to achieve such a goal is using redundant system components to

implement user-transparent failover, yet its effectiveness must be balanced carefully without incurring heavy overhead when deployed

– an important practical consideration for complex large-scale systems. Failover techniques developed for Cloud systems often suffer

serious limitations, including mandatory restart leading to poor cost-effectiveness, as well as solely focusing on crash failures, omitting

other important types, such as timing failures and simultaneous failures. This paper addresses these limitations by presenting a new

approach to user-transparent failover for massive-scale systems. The approach uses soft-state inference to achieve rapid failure recovery

and avoid unnecessary restart, with minimal system resource overhead. It also copes with different failures, including correlated and

simultaneous events. The proposed approach was implemented, deployed and evaluated within Fuxi system, the underlying resource

management system used within Alibaba Cloud. Results demonstrate that our approach tolerates complex failure scenarios while

incurring at worst 228.5 microsecond instance overhead with 1.71% additional CPU usage.

Index Terms—Cloud Computing, Resource Management, Reliability, Services, Failover.

F

1 INTRODUCTION

LARGE-scale distributed systems deployed as Cloud
datacenters are composed of thousands of heteroge-

neous server nodes capable of provisioning a wide variety
of services to consumers with diverse business requirements
[1]. Datacenters continue to see increased uptake, represent-
ed by a 69% increase of Cloud datacenter traffic to over
5.3 Zettabytes, with over 118 million workloads deployed
in 2014 [2]. The core aspect of such system operation is
the resource manager, responsible for assigning available re-
sources to application requests. Modern resource managers
including those in Mesos [3], YARN [4] and Fuxi [5] are
used to provision and schedule tens of millions of services
daily and are critical for commercial, personal and research
pursuits.

Dependability is a key concern for Cloud resource man-
agers due to increasingly common failures which are now
the norm rather than the exception caused by the enlarged
system scale and complexity [6] [7] [8], different workload
characteristics, and plethora of faults types that can activate.
Failures within a resource manager have the potential to
cause significant economic consequences to Cloud providers
due to loss of service to consumers [9], and could affect
services provisioned to millions globally in the event of

• Renyu Yang is with Beihang University, Beijing, China (Email: yan-
gry@act.buaa.edu.cn).

• Peter Garraghan and Jie Xu are with University of Leeds (Email:
{p.m.garraghan,j.xu}@leeds.ac.uk).

• Yang Zhang, Yihui Feng, Jin Ouyang, Zhuo Zhang, and Chao Li are with
Alibaba Cloud Inc. (Email: {xingbao.zy, yihui.feng,jin.oyj, zhuo.zhang,
chao.li}@alibaba-inc.com)

• Peter Garraghan is the corresponding author.

Manuscript received Jun 10, 2015; revised Dec 31, 2015; accepted Mar 3,
2016.

catastrophic failures. In this context, fault tolerance is often
an effective means in enhancing the reliability of Cloud
systems. It can be implemented through a variety of tech-
niques, including diversity of data and design, recovery
blocks [10] and checkpointing [11]. Within the context of
Cloud resource managers, such techniques are required to
effectively scale to thousands of servers, with acceptable
overhead and impact to system performance. The latter is
achieved through user-transparent failover, which is de-
fined as a technique to recover a service without noticeable
changes to the provisioned service perceived by consumers
[12].

In practice, many resource managers for large-scale dis-
tributed systems follow a simple but costly approach that
terminates and restarts all the tasks and services related to
the failed component [3] [4] [13] even if some of them do
not exhibit faulty behaviour. However, this approach results
in extra resource costs, including additional requests for re-
source and the re-computation of tasks [5]. It is particularly
inefficient for long-running services, especially when they
are nearing completion. Yarn 2.6.0 has recently developed
a work-preserving mechanism for certain critical compo-
nents, e.g. the resource manager and the node manager
[14] [15]. However, there is no support for application-level
restarts that could handle more general and sophisticated
failure scenarios. In fact, failure coverage is an important
measure of the effectiveness of any fault-tolerant technique
[16]. Moreover, a large body of failover schemes in Cloud
systems focus primarily on crash-stop failures [16], with-
out specifically dealing with timing failures – another im-
portant consideration for failover for increasingly popular
time-sensitive services including video streaming, gaming,
and real-time analytics. Approaches that assume no failure

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 2

correlation among faulty components are obviously inap-
propriate for addressing simultaneous component failures.
Given the frequency of simultaneous component failures in
modern datacenters, as reported in [17] [18], there is an
urgent need for innovative methods specifically designed
for handling them. Finally, although many fault-tolerant
approaches are proposed by academic researchers, they are
often limited to small-scale experimentations [19] [20] [21]
and simulation [22] [23], resulting in difficulties in validat-
ing their effectiveness and understanding their operational
constraints and intricacies at scale.

This paper describes a novel autonomous fault-tolerant
technique for user-transparent failover in massive-scale
Cloud systems. Our approach is composed by a hybrid
checkpoint recovery technique that uses a combination of
light-weight hard-state and soft-state inference. Specifically,
failed components can leverage inferred states from inter-
acting components for recovery. This approach allows for
demonstrably low-cost checkpoint recovery of components
and services, capable of tolerating simultaneous failures of
system components, including both crash-stop and timing
failures. Through soft-state inference and resource reser-
vation, we can achieve minimized running worker evic-
tion and maximized fault coverage under different fail-
ure combinations. The experimental results show that only
microsecond- level additional overhead is imposed during
failover for task execution time with a minor increment
to system CPU utilization. Component recovery adds at
worst minute-level overhead under both single and simul-
taneous component failure scenarios. Our approach has
been integrated into Fuxi system [5]; a two-level resource
management and job scheduling system used in Alibaba
Cloud Inc. The technique is deployed within a production
Cloud datacenter comprising of over 5,000 servers and 42
millions submitted tasks, and is currently used by Alibaba
to handle Internet-scale workloads. The main contributions
of the paper can be summarized as follow:

• Design of soft-state inference for component recovery:
We present the philosophy and architecture of a novel
approach for component failure recovery that collects and
exploits states collected from neighbouring components
instead of solely relying on hard-state periodically col-
lected from dedicated backup systems.

• Comprehensive solutions to various failure scenarios in
modern large-scale systems: Our work investigates vari-
ous failure scenarios in detail which are typical in large-
scale distributed systems, as well as provides solutions to
practical failover for both single and simultaneous com-
ponent failures, such as crash-stop and timing failures, in
order to increase the failure coverage of the whole system.

• Reduced worker eviction based on state inference and
resource reservation: The failure in a master or an agent
does not result in automatically its fault-free workers
to be evicted. We use state-inference to identify late-
timing or inaccessible agents, reducing the overhead of
checkpointing, so as to reserve more assigned resources
for running workers.

The rest of this paper is organized as follows: Section
2 firstly introduces the challenges and motivation; Section
3 outlines our design philosophies based on the proposed

soft-state inference; Section 4 details the proposed com-
ponent failover mechanism and system implementation;
Section 5 presents the system evaluation; Section 6 discusses
related work; Section 7 discusses the conclusions of this
work and future research directions.

2 MOTIVATION

An important decision when constructing fault-tolerant sys-
tems is to define the fault and failure coverage required to
provide correct service. This allows for deployed techniques
to achieve the maximum effectiveness of fault tolerance, giv-
en the developmental and operational resources available.
Internet-scale systems are typically composed by hundreds
of thousands to millions of heterogeneous and interacting
components (e.g. the resource manager, service framework,
and computational applications), leading to the manifesta-
tion of different types of faults. Faults may occur simultane-
ously and in any aspect of system operations ranging from
application to hardware, and may have a wide variety of
causes, including insufficient memory (OOM), overweight
system utilization, performance interference, network con-
gestion, server faults (e.g. disk, middleware software), and
applications crash or hanging etc [8].

Crash-stop and timing failures are quite predominant in
Cloud datacenters [16], resulting in the loss of dependability
for provisioned services, as well as noticeable performance
degradation. Failures in the critical components, e.g. the
Cloud resource manager, significantly affect the reliability of
all the services running on the infrastructure. In recent years
such events have been reported to cost Cloud providers
within the realm of millions of dollars [24]. It is imperative to
identify susceptible components and deploy fault-tolerant
techniques in order to mitigate the negative impacts.

Apart from the simple re-start of tasks, there are some
established methods for software fault tolerance such as re-
covery blocks [10], N-version Programming (NVP) [25], N-
self checking programming [26]. Replication is also widely-
used, where identical copies of a component are deployed
within the system. A replica will become the primary
component in the event of component failure through hot,
warm, or cold standby [27] [28]. However, it is practical-
ly infeasible to apply a replication-based method to each
component within a system composed of millions of com-
ponents and jobs (each composed of thousands of executing
tasks). This is due to the significant resource cost incurred,
an issue which is further debilitating in periods of compute
resource scarcity within the system.

Checkpoint-based state recovery is another established
failover approach that saves runtime states into a disk per-
manently, often known as hard state. Although it imposes rel-
atively low recovery overhead, typically a few seconds, the
total overhead due to checkpointing is often extremely high,
which includes the costs of disk space, communications,
and checkpointing operations. This approach is not suitable
for latency-sensitive services and jobs. Figure 1 presents the
total state size recorded within a real production cluster over
24 hours of operations. It is observable that at most 1.7 GB
states (1.36 GB on average) are stored periodically for future
recovery. With the cost of network transmissions as well as
R/W locks and unlocks, reading or writing each checkpoint

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 3

time (hour)
0 3 6 9 12 15 18 21 24

F
u

x
i

M
a
s
te

r
H

a
rd

 S
ta

te
 S

iz
e
 (

G
B

)

1

1.2

1.4

1.6

(a) Hardstate Checkpoint Size

hard state size (GB)
1.25 1.35 1.45 1.55P

e
rc

e
n

ta
g

e
 o

f
h

a
rd

 s
ta

te
 s

iz
e

0

20

40

60

80

100

(b) Hardstate Size CDF

Fig. 1. Snapshot state size for hard state checkpointing over 24 hours in
a production cluster

takes on average 681ms. In particular, all checkpoints have
to be updated fully each time to avoid incorrect state restore
and execution, leading to a large number of frequent data
transmissions and writes to the permanent store. In fact,
although the recovery time from a snapshot is 3.89s on
average, the resource manager cannot handle any request
during the process of performing snapshots due to state
locking. This is unacceptable in practice because modern
large-scale distributed applications typically have a require-
ment for their requests to be handled within milliseconds
[5]. When a system operates in the absence of failures, this
approach is particularly inefficient and infeasible.

In order to address the issues we have discussed so far,
we present a novel approach in this paper that uses soft-
state inference to reduce the overhead of checkpointing,
i.e. saving only the minimum amount of hard states into a
disk. This is particularly desirable for large-scale distributed
systems. Component recovery takes time but our solution
offers reasonably rapid recovery with the options of cus-
tomisable operations of state inference when needed. Our
approach also addresses various failure scenarios in a large-
scale system, with the aim to increase its failure coverage
and overall dependability.

3 RELIABILITY DESIGN FOR MASSIVE SCALE

3.1 Massive-scale System Case: Fuxi System

Before presenting our proposed failover approach, it is
important to understand the types of components within a
large-scale distributed system. To facilitate this, we provide
a high-level discussion of the Fuxi system - a resource
management and job execution system deployed within
Alibaba. Fuxi follows a master-slave architecture composed
by three components: the central resource manager (Fuxi
Master), the node agent manager (FAgent) per node and
application manager (Application Master or AppMaster)
per application.

Similar to terminologies in Yarn [4], an application is
defined as a single job in the classical sense of Map-
Reduce, DAG (Directed Acyclic Graph) or Spark job etc.
The AppMaster is responsible for each application-specific
execution logic. Different computation frameworks can be
implemented on top of Fuxi system and such applications
are submitted into the cluster via a client (see step 1 in Figure
2). In Fuxi, FuxiJob (Job for short) is a typical application and
each job is composed of running tasks which constitute a
DAG. Each node within a DAG represents a task and the
edge depicts the pipeline and the data shuffle between two
consecutive tasks. A task is divided into parallel instances

where each individual task instance (the basic logic unit
of computation) is executed within an isolated container
worker. Tasks are under the control of the AppMaster, which
is responsible for application specific task division, resource
request and subsequent task execution.

Fuxi Master is responsible for negotiation between the
resource requests from AppMasters, and the available re-
sources within the infrastructure. Due to the dynamicity
of workload requirements and resource utilization levels
within the infrastructure, Fuxi has been implemented to
collect resource request and free resource reclaim informa-
tion incrementally in order to perform fair and efficient
resource allocation. In the occurrence of a specific resource
being no longer required by an AppMaster due to the
completion of the current execution phase, Fuxi Master is
responsible for revoking and rescheduling these resources
to another application in a timely manner. After resource
requests proposed by different AppMaster are decided, the
scheduling responses containing assigned resources will be
delivered to each AppMaster. AppMaster can use these
resources to determine the concrete computation plan with
the specified guaranteed resources. FAgent will then launch
requisite computation processes according to this plan.

The Fuxi Agent (FAgent) is an agent that runs on each
individual node, and serves two purposes: a) collect infor-
mation and status of both available and occupied resources
periodically and report them to the Fuxi Master for further
resource scheduling decisions; b) ensure that application
processes are executed normally within the nodes. The latter
is made possible through the aid of the process launch,
monitor, and isolation etc. It is noteworthy that for the
security control, FAgent launches a worker only when it
receives the same amount of granted resource from Fuxi
Master and the execution plan from AppMaster.

Figure 2 illustrates how the components above interact
with each other: (1) Application Submission: A consumer
first submits a request to the Fuxi Master to launch an
application (i.e. a MapReduce job) via a job description
containing data, detailing the application type, package lo-
cation and application-specific information; (2) AppMaster
Launching: Fuxi Master locates an FAgent with sufficient
resources for the AppMaster to launch on, and requests the
FAgent to start communication with the AppMaster. Once
this communication is established, the AppMaster retrieves
the application description and determines the resources
requires for the different stages of job execution, including
appropriate parallelism, the level of granularity required
for allocation and preferred locality of workers etc; (3)
Resource Request and Response: The AppMaster transmits
the requirement to Fuxi Master incrementally and waits for
resources to be granted or revoked; Meanwhile, Fuxi Master
will also notify corresponding FAgents with the granted
resource changes. (4) Execution Plan: Once the resources
have been assigned to the AppMaster, it sends its concrete
work plan to the corresponding FAgents. The execution
plan contains the required information in order to launch
a specific process such as the binary package location, limits
of resource usage and parameters for starting; (5) Execution:
Once FAgent has received the work plan and corresponding
permitted resource from Fuxi Master, it starts the application
workers. FAgent monitors the status of workers and will

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 4

Fuxi Master

FuxiAgent

Worker

FuxiAgent

App Master

Worker

FuxiAgent

App Master

Worker

Worker Worker

App Master

Client

Cluster node m1 Cluster node m2 Cluster node m3

submission

create an AM

launch AM

responds granted resources
to AM and FAgents

work plan to
FAgentList

start worker and
instance execution

resource
requests

start worker and
instance execution

Fig. 2. An overview of Fuxi components and the life-cycle of a job submission, resource request, request handling, and worker execution.

Fuxi Master

FAgent Application Master

Utilized and available
resources

Per
m

itt
ed

 re
so

ur
ce

s Requested resources for
applications

Allocated resources
Execution worker list

Instance status, planned worker
resource allocation

Fig. 3. Soft-state inference applied to Fuxi system components.

restart them in the event of crash failures. Once the worker
has finished execution or is no longer needed, the App-
Master makes an incremental request to return resources.
More details about Fuxi system (operational details and
scheduling performance evaluations) can be found in [5].

It is worth emphasizing that this described architecture
is applicable to most two-level schedulers. The Fuxi Master,
FAgent, AppMaster in our architecture can be implemented
as RM, NM and AM in Yarn, and also can be fulfilled
as Mesos Master, Mesos Slave, and Framework Scheduler
respectively. Therefore, the proposed techniques for compo-
nent failover in this paper can be directly applicable within
other systems.

3.2 Soft State Inference: Basic Concepts

In order to tackle the failover problem at scale, we leverage
a hybrid approach for state recovery in order to achieve low-
cost component failover. This includes using minimized hard
state such as meta-data and information persistently stored
within a node locally, distributed file system or distributed
coordination service [29] [30]. Furthermore, we present for
the first time the concept of recovering failed component
state via soft state inference where soft-state is defined as
state data that contains run-time component status, not
persistently or deliberately stored for purposes of periodical
checkpointing. The fundamental concept of soft-state infer-
ence (see Figure 3), is that failed components within the
system are capable of recovering their states by collecting
data which is currently being used by other components

within the system. In essence, we leverage the distributed
memory to store each component states which can constitute
the overall system states.

Consequently, this mechanism is able to reduce the
checkpointing overhead (discussed in Section 2) with min-
imal additional overhead from collecting distributed soft
states. For example, when Fuxi Master fails, it is able to re-
cover the allocated resources from Fuxi Agents whose main
function is to launch workers according to granted resource
while monitoring the resource status within a physical node.
Another aspect of resource soft states is waiting requests,
which can be obtained from running AppMasters. Recovery
of other components is similar to this process and the arrow
in Figure 3 represents the direction of main required states
collection of each component.

The inference is also embodied by information deduction
from multiple state provenance. Given the complexity of
interactions among components that each contains its local
information, there is overlapping information held by dif-
ferent components. In practice, each component contains a
fraction of the holistic soft states. As a result, the soft state
inference has to be conducted using redundant information.
Therefore, we assign each component type with a [C1:]
Degree of Confidence (DoC), making it possible to identify
and infer the required state dependent on the specific failure
scenario. In our design, we regulate the prioritized DoC
order: FuxiMaster>FAgent>Worker>AppMaster. Specifically,
Fuxi Master owns the highest priority and confidence level
because it is the dominator to match requests with system
resources, holding the global information of both resource
and running workloads. On the other end of the spec-
trum, we assume that information sent by AppMaster has
a higher probability of less accurate information due to
incorrect or malicious configuration. Consider an example
of asynchronous messaging among running components
in a distributed environment with discordance of message
arrivals. For instance, at the timepoint when Fuxi Master
begins to recover, the assigned resource amount from the
AppMaster is likely to be inequal to the granted resource
amount provisioned by a FAgent if FAgent has not yet
received a specific resource granting message on time. To
avoid issues incurred by inconsistent information during
state inference, we preferably adopt FAgent information, as

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 5

worker initialization and execution are directly controlled
by FAgent. These assumptions are widely utilized in all
inference-based fault-tolerant techniques.

3.3 Design Considerations for Effective Failover

To maximize service reliability whilst minimizing detri-
mental effects to service performance within large-scale
systems, we extend Fuxi with Fuxi-FT; containing several
fault-tolerant techniques in conjunction with inference to
illustrate a feasible design and implementation towards
reliable service execution for effective computing systems
at scale.

(1) Minimized Worker Eviction: From our experience
in massive-scale systems, resource overhead since eviction,
and re-computation of non-faulty workers produces a sub-
stantial amount of waste as studied in [18] [31]. In addition,
long-services are disproportionally affected due to restarting
worker execution, leading to suffered QoS. Such behavior
results in increased strain on the resource manager, which
has to handle more requests and reschedule workers onto
nodes, causing reduced component performance as well as
increased failure probability. As a result, the first considera-
tion and objective of our approach is [C2:] reduced worker
eviction by resource reservation. This is achieved through
loose-coupling master or agent behavior from its respective
workers during execution. Specifically, this entails that fail-
ure occurrence of a master or agent does not result in its non-
faulty workers to be automatically evicted. For example, to
tolerate timing failures, Fuxi Master will attempt to preserve
the assigned resource for running workers as if timing-
out FAgents or AppMasters are still executing rather than
directly evicting and re-scheduling them. In this manner,
such faults will have minimal interference with consumers
perceived reliability.

(2) Customized Recovery Time Cost with Degraded
Service Level: As mentioned previously, the additional
overhead cost is mainly dependent on the collection and re-
quired boundary of state information completeness. Incom-
plete information might appear due to timing-out compo-
nents unable to contribute their states in time. The collection
time also closely depends on cluster scale, application num-
ber, and application-specified configurations. For instance,
increased application number signifies a larger amount of
states to collect and the requisite time. On one hand, longer
waiting time can potentially lead to the mitigation of soft
states incompletion, but resulting in extra end-to-end re-
covery time. On the other hand, insufficient collection time
leads to incomplete states and subsequent degraded service
level (such as job extended running time due to worker
eviction). Thus, it is necessary for cluster administrators to
estimate and customize the information aggregation time,
[C3:] allowing possible tradeoffs between recovery cost
and various levels of degraded service.

(3) Comprehensive Coverage of Faults and Handling:
Components within the Cloud resource manager are likely
to experience different types of faults ranging from crash-
stop to late timing failure, as well as have different un-
derlying root causes. As multiple components tend to fail
simultaneously and also exhibit correlation, we intend to
achieve [C4:] maximized fault coverage from both faults

mode and fault handling coverage respectively. Firstly, our
approach must be designed to tolerate such occurrences due
to the significant detrimental impact to service reliability
and performance. This is achieved through expressing si-
multaneous component failures as unique failover scenarios
compared to single components. Secondly, we divide our
approach into separate subsections with the precise means
to do so dependent on a given failure scenario. For example,
within the context of Fuxi, the Fuxi Master is a more critical
component compared to that of AppMaster, requiring differ-
ent techniques and precise engineering practices compared
to other components when performing state recovery.

TABLE 1
Basic state terms when performing component failover.

Terms Descriptions

ResCap
The capacity or amount of resources that
has been admitted to a FAgent and can be
used to launch tasks.

FMFullAsgnedResToAM
Resources that have been assigned to
corresponding AppMasters.

FMFullResCapToFA All ResCaps to a specified FAgent

AMFullReqResFromFM
Resources that the application still requests
and waits for allocation from Fuxi Master.

AMFullAsgnedResFromFM
Assigned resource to a specific AppMaster
that it uses to execute tasks.

FAgentFullCapFromFM
Permitted resource to a specific FAgent
that it uses to launch tasks.

4 COMPONENT FAILOVER MECHANISM

4.1 Single Component Failover Mechanism

In this section we discuss in detail the failover process for
single component failure scenario.

4.1.1 Fuxi Master Failover

In the scenario of a failure within the central resource
manager Fuxi Master, a three-replica scheme is deployed
composed by a primary component and non-active replicas
on warm standby (i.e. the replica is deployed and connected
to the system, yet does not actively mirror operations per-
formed by the Fuxi Master). The primary and replica Fuxi
Master are typically deployed on separate physical nodes.
In the event of failure within the primary Fuxi Master, the
standby master will take over all its functionalities.

In addition, Fuxi Master loads hard state and performs
soft-state inference. Hard state includes the job description,
task topology, resource requirements and the location and
ID of applications (currently executing within the system).
Soft-state is inferred from information reported by the FA-
gents and AppMaster as shown in Figure 3. For FAgents,
this includes information pertaining to current resource
state of physical nodes, specifically the current granted
resources (FAgentFullCapFromFM) to run tasks and the avail-
able resources within nodes. For the AppMaster, this in-
cludes the remaining executing worker number and total
resources still required (AMFullReqResFromFM) in order to
complete application execution. With this information, Fuxi
Master is able to restore the application list and remain-
ing instances that require execution. It is noteworthy that
Fuxi Master does not need to recover the already assigned

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 6

resource bitmap from AppMasters by AMFullAsgnedRes-
FromFM, due to the equivalent information provisioned by
FAgentFullCapFromFM which has higher DoC [C1].

In summarization, the whole failover consists of two
phases – (1) information aggregation: Fuxi Master collects
the necessary information from both hard and soft state;
(2) recovery phase: it repopulates the global resource allo-
cation and utilized resources based on aggregated states.
According to [C3], we configure the time as 60 seconds for
cluster of thousands of machines according to our practical
experiences.

4.1.2 FAgent Failover

The FAgent has two different counterplans for performing
failover in the event of crash-stop and late timing failures
respectively. For crash-stop failures, the FAgent collects soft-
state from monitoring data of currently executing instances
in real-time and then requests a full worker list from each
corresponding AppMaster. This is particularly effective as
the FAgent itself does not need to contain any persistent
data pertaining to the current node and worker status.
FAgent then collects soft-state of permitted resources (FM-
FullResCapToFA) from Fuxi Master before finally completing
failover. Additionally, the granted resource is restored from
the local checkpoint when Fuxi Master could not provide
the information due to a simultaneous failover (see Section
4.2). Due to higher probability of a local checkpointing
containing invalid state, it it preferable restore state using
information contained within the Fuxi Master if possible.

When performing failover for late timing failures that
can cause large amounts non-faulty worker eviction, Fuxi
Master will hold the allocated resources for all workers
within the node where FAgent fails for a definitive period
of time. Meanwhile, the Fuxi Master will send a list of failed
FAgents to affected AppMasters, allowing them to reserve
the necessary resources until the FAgent recovers.

4.1.3 AppMaster Failover

In the event of crash-stop failures, the AppMaster will
restart on the same node, or will be rescheduled to another
node in the event of a hardware fault. It is worth noting
that failure of the AppMaster does not cause its related
workers to terminate (which is advantageous for long run-
ning workers that are nearing completion). The AppMaster
will recover the hard states from a snapshot including task
execution and internal data structures from the distributed
file system, enabling reconstruction of the task topology and
data shuffle and pipeline between tasks. Events such as task
instance terminations or failures recorded by application
logs are also leveraged as hard state. During its recovery,
soft-state is collected: Fuxi Master will concurrently syn-
chronize the allocated resources (FMFullAsgnedResToAM) to
the failed AppMaster whilst FAgents report current work-
ers’ status, as well as all worker computation plans sent
from the application before. If a worker has been completed
within the component recovery time period, the AppMaster
will identify the worker from the record logs and return
these resources to Fuxi Master.

For late timing failures, the AppMaster will be marked
as timed out by the Fuxi Master after a configured period of
time, resulting in rescheduling onto a new physical node

based on FMFullAsgnedResToAM information it holds. In
practice, the timeout upper bound could be set as infinite,
indicating that the Fuxi Master will wait until the App-
Master has recovered. All relevant terms used in the above
approaches are summarized in Table 1.

TABLE 2
Algorithm Variables

Variables in FuxiMaster Formalized Description

Total FAgent number n

Total AM number m

FAgents set with states A = {A1, A2 . . . , An}

Granted resource to FAgents Grt =









Grt11 . . . Grt1m

.

.

.
. . .

.

.

.
Grtn1 . . . Grtnm









Resource on ith agent to jth app Grtij
All Resource to jth app Grt∗j
AppMasters set with states AM = {AM1, . . . , AMm}
AppMaster Requested res in FM Req = [Req1, . . . , Reqm]T

ReqRes on agents of ith app Reqi = [r1, . . . , rn]

AppMaster Assigned res in FM Asgn = [Asgn1, . . . , Asgnm]T

AssignedRes on agents of ith app Asgni = [a1, . . . , an]
ScheduleUnit (SU) of ith app SUi = (Asgni, Reqi, Config)

Algorithm 1 : Faulty FAgent Recovery, Inference-based De-
tection and Resource Reservation
1: Rebooting FAgents set A′ and A′ ⊂ A
2: for each A′

i in A′ do
3: Ai ← A′

i ∪ (FAFullCapFromFM + checkpoint ∆c)
4: end for
5: FuxiMaster starts failover()
6: for each AMi in AM do
7: Asgni ← updateAssignedRes(AMi)
8: Reqi ← updateRequestedRes(AMi)
9: SUi ← SUi ∪ (Asgni, Reqi, Config)

10: end for
11: D = AsgnT −Grt
12: Timeing-out FAgent set At ← ∅

13: for each D∗j in D do
14: if ||D∗j ||0 == 0 then
15: At ← Aj

16: end if
17: end for
18: FuxiMaster reserves resource on At

19: FuxiMaster sends the list At to each AMi in AM

4.2 Multiple Simultaneous Component Failover

With the increased complexity and scale of computing envi-
ronments, it will undoubtedly lead to more timing failures
and simultaneous fault conditions among multiple compo-
nents. Therefore, we design and implement an exception
handling mechanism to cope with these failures. We focus
on explaining the failure combinations in which Fuxi Master
fails, as the non-faulty Fuxi Master could be easily used
to facilitate the recovery of any other faulty components
rapidly and these can be deduced to single failover cases
discussed in Section 4.1.

4.2.1 Fuxi Master and FAgent Failures

If both Fuxi Master and FAgent fail and cannot recover in a
timely manner, the AppMaster will suppose all resources be
revoked, thereby evicting all running instances which vio-
lates [C2]. Specifically, FAgent failure can be categorized into
crash failure or a late timing failure. In this context, FAgent
is unable to perform failover due to missing key information
from the Fuxi Master, while Fuxi Master is also unable to

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 7

collect state provided by the FAgent. To solve this problem,
we perform a light snapshot of FAgentFullCapFromFM. The
incremental checkpointing(∆c) is performed once there is a
state change within the permitted resources. Consequently,
all FAgents are capable of recovering prior to the reboot of
Fuxi Master’s recovery phase.

As shown in Table 2 and Algorithm 1, once Fuxi
Master commences failover, it first differentiates between
inaccessible/timed-out agents and normal agents by ag-
gregating AMFullReqResFromFM from Applications Masters
and FAgentFullCapFromFM from non-faulty FAgents. This
process identifies FAgents which do not recover before
completing Fuxi Master failover (line 10-16). We use this
state-inference to identify late-timing FAgents instead of
frequent checkpoint. This is due to heartbeats and statuses
of thousands of agents often change dynamically, resulting
in large amount of updating overheads when conducting
snapshots. Afterwards, Fuxi Master will reserve the corre-
sponding resources for the running workers on the machine
experiencing faulty behavior in accordance to [C2] until the
FAgents reconnect to the cluster within a configured time
period. Meanwhile, a message containing a timeout agent
list is sent to all non-faulty AppMasters. The AppMaster
then reserves and retains the resource as if the agents are
non-faulty. If FAgents are unable to reconnect before a pre-
defined time threshold, the AppMaster can choose to re-
claim the resource from workers by evicting them. In reality,
different AppMasters have different policies. For example,
a long-running service master tends to wait for the faulty
agents to reconnect, attempting to keep workers running
as long as possible. However, the AppMaster for short jobs
might tend to reclaim the resource and evict workers more
rapidly. If FAgent recovers prior to the time threshold, it
sends a heartbeat message to the Fuxi Master to report the
resource availability.

Algorithm 2 : Faulty AM Resource Recovery and Inference-
based Resource Reservation in Multi-Component Failures

1: restarted AM set: AM ′ ⊂ AM
2: for each AM ′

i in AM ′ do
3: AMi ← its running workers
4: end for
5: metaAM ← AM lightweight checkpoint
6: T imeoutAM ← metaAM −AM
7: for each AMt′i in T imeoutAM do
8: FuxiMaster create a MockSU for resource reservation
9: MockSU ← synthesize(GrtT

∗i, DefaultReq)
10: SUi ← SUi ∪MockSU
11: end for
12: FuxiMaster starts failover() and collects AM runtime info
13: re-connected AM set: AM ′′ ⊂ AM
14: for each AM ′′

j in AM ′′ do
15: FuxiMaster removes MockSU and update states with AM ′′

j

16: Asgni ← updateAssignedRes(AM ′′

j)
17: Reqi ← updateRequestedRes(AM ′′

j)
18: SUi ← SUi ∪ (Asgni, Reqi, Config)
19: end for

4.2.2 Fuxi Master and AppMaster Failures

In general, AppMaster failover is much more light weight
and simplistic compared to the Fuxi Master. As a result, it
is typically possible to complete AppMaster failover prior
to the Fuxi Master commencing failover. As there is no
information provided from the Fuxi Master, the AppMaster

FM

Checkpoint

Identify
timeout AMs

Remove
mocked units

Detect
timeout Fagents

AM1

FA1

AM2

FA2

FA3

Fig. 4. Failover workflow for Fuxi Master crash, AppMaster timing failure,
and FAgent crash or timing failure. In this example, FAgent 1 (FA1)
crashes while FA3 experiences a timeout during Fuxi Master failover.

instead uses the status of related workers according to
[C1] in order to restore assigned resource state (see Algo-
rithm 2 line 2-4). After the collection phase, Fuxi Master
will compare the collected application information with the
checkpoint file recording the metadata of applications before
rebooting. Fuxi Master is thus able to identify applications
that have not reported back and then creates synthesized
Schedule Units (MockSU) according to the corresponding
granted resource amount from FAgents (line 8). Schedule
Unit(SU) is defined as a data tuple (Asgni, Reqi, config)
inside ith AppMaster representing requesting and assigned
resource, and other metadata such as priority, quota group
etc. SU synthesis could be done based on our pre-condition
that the resources granted to running workers on different
FAgents can act as surrogates to the amount of allocated
resources. Additionally, the MockSU is used to reserve the
allocated resource and can not be preempted by design.

Consequently, these SUs assist with synthesizing the o-
riginal states of the scheduler, minimizing the occurrence of
worker eviction due to application late-time failure caused
by timeout during Fuxi Master failover. Afterwards, if the
AppMaster reconnects to the system, the Fuxi Master will
substitute the MockSU with the real run-time values. If not,
Fuxi Master will remove all pertaining SUs and reclaim
allocated resources.

4.2.3 Full Component Failure Combinations

It is possible for all types of components to experience
failure within a failover period. In order to achieve full fault
coverage [C4], we characterize this type of faiure scenario as:
Fuxi Master crashes and reboots, with FAgent failing (crash
or timing failure) during which (1) AppMaster crashes; or
(2) AppMaster timing-out.

For the first case, AppMaster has to recover its states
from collecting meta-data of executing workers for recover-
ing its assigned resources. The reason is because the faulty
Fuxi Master cannot handle any request and not all FA-
gents can provide precise information due to a proportion
of components exhibit faulty behavior. According to [C1],
AppMaster can still restore most of the assigned resource
and computation intermediate results scattered across ma-
chines within the cluster from running workers instead. If
Fuxi Master is non-faulty, it has the highest DoC state and
does not need to rely on the workers to fetch the assigned

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 8

TABLE 3
Soft-state information required for each failure scenario. AR = After Reconnect, FC = From Checkpoint

No. Failure Combinations (StateMachineNode) FMFullAsgnedRes FMFullCap FAFullCap AMFullResReq AMFullAsgnedRes

1 FM Crash (S1) - -
√ √

-
2 FAgent Crash (S3) -

√
- - -

3 FAgent Timing (S3) -
√

- - -
4 AM Crash (S2)

√
- - - -

5 AM Timing (S2)
√

- - - -
6 AMCrash/Timing+FAgentCrash/Timing (S2S3)

√ √
- - -

7 FM Crash+AM Crash (S4) - -
√ √

-
8 FM Crash+AM Timing (S4) - -

√
AR -

9 FM Crash+FAgent Crash (S5) - - -
√ √

10 FM Crash+FAgent Timing (S5) - - -
√ √

11 FM Crash+AM Timing+FAgent Timing (S6) - - AR AR -
12 FM Crash+AM Timing+FAgent Crash (S6) - -

√
(FC) AR -

13 FM Crash+AM Crash+FAgent Timing (S6) - - -
√ √

14 FM Crash+AM Crash+FAgent Crash (S6) - -
√

(FC)
√

-

resource information. In reality, it is much more costly
compared to communicating with a non-faulty Fuxi Master
due to the additional network cost when communicating
to potentially thousands and tens of thousands of work-
ers scattered across the cluster. After faulty AppMasters’
recovery has completed, the details described in Algorithm
1 could be conducted. It is noteworthy that we do not rely
on the information from AppMaster to recover the agents as
assigned states could be distorted by invasive applications.

Furthermore, we describe the other scenario where App-
Master is experiencing timing failure as depicted in the
failover workflow Figure 4. Firstly, Algorithm 2 is per-
formed to deal with faulty AppMasters. Apparently, there
is a high dependency with the number of the active FA-
gents during these resource occupations as the synthesis is
conducted primarily based on FAgents’ FAFullCapFromFM.
Therefore, Fuxi Master will attempt to restore the granted
resource to ith application (Grt∗i) as much as possible.
For example, in Figure 4 the granted resource on FA3 will
be temporarily missing as no granted resource information
can be provided by the timing-out FAgents. Despite this,
workers are able to run as plan without any impact. At the
same time, steps described in Algorithm 1 will be conducted
to preserve the scheduling resources on faulty FAgents.

Table 3 summarizes the necessary message and required
soft-state during the synchronization under different ex-
ception scenarios. To capture and characterize all types of
simultaneous failures, we leverage the Finite-State Machine
(FSM) to describe each failure type and the relationship
among different types. In particular, each combination cor-
responds to a state in FSM. For the description clarification,
we merge analogous states together and the state transitions
are illustrated in Figure 5.

4.2.4 System Implementation Using FSM

To apply the proposed mechanism into a production re-
source manager, we have developed a fault-tolerant man-
agement layer (Fuxi-FT) within Fuxi System and modified
the corresponding module to support the proposed failover
approach and component interaction message protocol.
Components collect and propagate required information
collaboratively and suitably by message delivery and re-
sponse to perform inference-based resource reservation and
rapid component failover.

In Fuxi-FT, EventSensor can identify which type of event
currently is active, based on the combined information of

0 400 800 1.2k
0

20

40

60

80

100

Instance Number

C
D

F

(a) Instance number per job

0 20 40 60 80 100 120
0

20

40

60

80

100

Instance Running Time (s)

C
D

F

(b) Instance running time per job

Fig. 6. Workload profiling from one of Alibaba production systems

heartbeat, system status, health checker etc. The incoming
event will be registered into a global bulletin board and
instantly enqueued into EventDispatcher, waiting for fault
handling. In fact, the dispatcher is responsible for identify-
ing the fault type of the state, and routing the fault handling
request to relevant handlers. In Fuxi-FT, each handler is im-
plemented and applied in hot-plugging manner. The tech-
niques discussed above are used to handle different scenar-
ios accordingly. For example, once the ceasing of periodical
FAgent heartbeat is detected, FAgentTimingFailure event will
be generated. The dispatcher will trigger the corresponding
FAgent recovery process (discussed in Section 4.2.1) upon
receiving the event. After the failover process completes,
the current state will be transit into the subsequent state
according to the FSM depicted in Figure 5.

The proposed approach can be easily integrated into
other two-level scheduler such as Mesos and Yarn system
etc. In reality, there are no fundamental difference between
basic concepts, architectural design etc., resulting in a direct
mapping relationship among them. For example, Fuxi Mas-
ter and FAgent correspond to the RM and the NM in Yarn.
Therefore, soft states could be interchanged and propagated
by suitably piggy-backing on the RM and NM heartbeats.
The RM could also be changed adaptively to satisfy the AM
transparent failover functionalities.

5 SYSTEM EVALUATION

5.1 Evaluation Setup

To determine the effectiveness of our proposed failover
technique described in Section 4, it is necessary to evalu-
ate its impact on task execution performance and resource
overhead in the presence of failures. To investigate this, we
conducted a number of experiments submitting jobs onto

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 9

S0 S1FM Faults

S2AM Faults

S3

FA Faults

S6

S4

FA Failover
S5

AM Failover FA Faults
AM Failover

FM Failover

AM FaultsFA Failover

FM Failover

FM Failover

AM Faults

FA Faults

AM Failover

FM Faults

FA Failover

FM Faults

Fig. 5. Fuxi-FT Finite-state machine (FSM): Nodes represent simplified system failure states. S0 is the normal system state and S6 describes a
system state where multiple and simultaneous failures occur. Each edge represents a failure event in solid line or a failover process in dashed line.

a large-scale cluster under a number of different failure
scenarios and deployed failover techniques.

Before presenting experiments, we conduct workload
profiling from a production system which consists of over
2,400 machines. According to Figure 6, roughly 20%, 45%
and 35% of all jobs contains 10, 100 and 1,000 instances, re-
spectively. In addition, the average running time is approx-
imately 50 seconds. Thus, we submit these small, medium
and large jobs according to the above proportion with each
instance executing for 50 seconds and requesting 0.5 CPU
cores and 1 GB memory. 4,000 jobs were submitted onto a
cluster comprising 300 nodes, while keeping the number
of active jobs approximately 2,000 (i.e. Once a job has
completed execution, an additional job is submitted onto
a node). Each physical node contains 82GB memory, and
23 cores for CPU, and each AppMaster process consumes
100MB memory. Additionally, the types of fault-injection
selected for the experiments are crash faults of software
and interrupt faults (transient time-out). Each of these
experiments are separated into two categories for single
component and multiple component failure scenarios. For
the former, for every fault injection, either the Fuxi Master,
or 5% of the total AppMasters, or 5% of FAgents will be
stochastically selected to fail. For the latter, the Fuxi Master
and 5% of other components(AppMasters or FAgents) will
experience simultaneous failure. In reality, as studied in [17],
failures occur much less frequently than specified injection
interval, and also affect less component that the specified
component failure proportion. Each experiment case also
included a different deployment for failover for both Fuxi
Master(FM) and AppMaster(AM) as shown in Table 4. They
were divided into no failover technique deployed (NoFO),
FM failover with no AM failover (FMFO), AM failover with
no FM failover (AMFO) and finally our approach which
allows all components to failover (Fuxi–FT).

Faults were injected every 300s by sending a light-weight
command to terminate/interrupt the execution of specific
components. Each experiment observation period is defined
as the completion of all submitted jobs into the cluster, and
the following metrics of interest were collected for study:
(1) Job Performance: impact on job execution, job end to end
span-time, instance eviction etc; (2) Component Recovery
Time: time required to perform failover; (3) Cluster Resource

Utilization: entire cluster utilization and scheduling perfor-
mance.

TABLE 4
Experiment cases for failover effectiveness

No Faults (Baseline) Our approach(Fuxi-FT)

Fault Injection (single
component & concurrent
multiple component faults)

Our approach(Fuxi-FT)
FM failover; no AM failover (FMFO)
no FM failover, AM failover (AMFO)
no FM failover; no AM failover (NoFO)

5.2 Fuxi-FT Component Failover Evaluation

5.2.1 Job Execution Results

Table 5 shows the number of jobs submitted and the to-
tal number of unique instances for each experiment. It is
observable that all jobs are able to successfully complete
and that 2,115 and 2,101 instances (approximately 0.13%
of all tasks) are re-scheduled under single component and
simultaneous failure injection, respectively. Furthermore,
we can observe a minimal increment in the instance exe-
cution overhead, increasing by 7.79 microseconds (6.4%) on
average between the baseline and the single fault-injection
job execution. In contrast, the overhead of instance execu-
tion for simultaneous fault-injection is substantially larger,
increasing by 228.5 microseconds (200.5%).

The overhead within the baseline experiment of 113.97
microseconds is due to process initialization and network
communication establishment with FAgent and correspond-
ing AppMasters, while the enlarged overhead in the fault-
injection experiments is due to the failed components re-
quiring to perform state recovery, occupying more handling
and scheduling time for routine instance management. In
addition, updating instance status can be delayed due to
the extra CPU cycles that are required to finish the holistic
computation. The phenomenon is aggravated when simulta-
neous faults are injected. Despite this, it is worth noting that
this additional overhead is substantially smaller compared
to an instance’s execution time.

5.2.2 Cluster Utilization

We have also studied the system overhead in terms of
resource utilization at the cluster level as shown in Figure
7 and Table 6. We observe that there is a lack of statistical
significance between resource utilization of memory, disk

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 10

TABLE 5
Statistical properties of job and task execution for Fuxi-FT under different failure scenarios.

No Faults (baseline)
Fuxi-FT with single component

fault injection
Fuxi-FT with simultaneous

multiple component fault injection
Job Category Job Category Job Category

Small Medium Large Total Small Medium Large Total Small Medium Large Total
Submitted 807 1789 1404 4000 812 1806 1382 4000 803 1807 1390 4000
Completed 807 1789 1404 4000 812 1806 1382 4000 803 1807 1390 4000

Failed 0 0 0 0 0 0 0 0 0 0 0 0
Instance Category Instance Category Instance Category

Submitted 8070 178900 1404000 1590970 8120 180600 1382000 1570720 8030 180700 1390000 1578730
Completed 8070 178900 1404000 1590970 8120 180600 1382000 1570720 8030 180700 1390000 1578730

Rescheduled 0 0 0 0 10 258 1847 2115 17 148 1936 2101
Resched Ratio 0 0 0 0 0.12% 0.14% 0.13% 0.13% 0.21% 0.08% 0.14% 0.13%
Overhead (us) 119.91 112.96 113.42 113.97 121.53 121.72 121.58 121.76 341.49 341.93 341.44 342.37

Execution time(s)

C
P

U
 U

ti
li

za
ti

o
n

 (
%

)

(a) CPU usr

Execution time(s)

M
e

m
 U

ti
li

za
ti

o
n

 (
k

b
s)

(b) Mem utilization

Execution time(s)

D
is

k
 U

ti
li

za
ti

o
n

 (
%

)

(c) Disk utilization

Execution time(s)

T
C

P
 E

st
a

b
li

s
h

m
e

n
t

(d) Network utilization

Fig. 7. Average cluster resource utilization of no fault and fault-injection
with Fuxi-FT. (a) CPU utilization, (b) memory utilization, (c) disk utiliza-
tion, (d) network utilization.

utilization and TCP Establishment between the two experi-
ments demonstrated statistically at less than 1% difference,
and presented visually in Figure 7(b-d). This is because
when component failover commences, the transmitted soft-
state amount to required component is approximately e-
quivalent to routine message communication amongst dis-
tributed components. In fact, these components send heart-
beats to each other, and synchronize the full knowledge and
information periodically in typical operation. The periodic
synchronization is the fundamental safeguard for the pro-
posed failover mechanism. Moreover, we observe that in the
presence of faults, the cluster utilization of CPU increases by
1.71% representing an average disparity of 46.56% between
the baseline and fault-injection experiments. This is because
the failover mechanisms are required to perform computa-
tion to collect and transmit states in order to perform state
inference recovery. We also observe from Table 6 that the
request handling performance is not negatively impacted
by our proposed approach and the average scheduling per-
formance can be maintained during the soft-state inference.
This is a significant improvement compared to the pure
hard-state recovery we discussed in Section 2.

TABLE 6
Statistical properties of cluster resource utilization and scheduling

performance to handle resource requests.

Baseline Fault-Injection Difference

Resource Avg St. Dev Avg St. Dev Avg Diff
CPU(%) 3.67 0.59 5.38 2.15 46.56%

Mem(KB) 99168 15.18 99179 16.70 0.01%
Disk(%) 14.07 3.03 14.20 2.30 0.96%

TCP est(times) 401747 83453.04 411846 70529.68 2.51%
ReqHandle(ms) 0.884 0.56 0.886 0.571 0.23%

5.2.3 Component Recovery Time

As illustrated in Table 7, Fuxi components exhibit different
recovery times. In single fault injection experiments, Fuxi
Master and FAgent recover on average within 66.9 seconds
and 5.6 seconds, respectively, as well as exhibit stable re-
covery times indicated by a Coefficient of Variation(CoV)
smaller than 0.1. FAgent recovery time is relatively short, as
it requires minimal soft-state collection from other compo-
nents within the cluster as described in Section 4.1, and up-
on recovery will collect monitoring data from the physical
node it is executing. On the other hand, the recovery time
of Fuxi Master is considerably longer, which is due to its
pre-configuration within the cluster. In our experiment, Fuxi
Master is configured with a waiting period of 60 seconds,
with best efforts for all FAgents and AppMasters to report
their status and collated data, indicating that the active
Fuxi Master is capable of failover within 7 seconds. This
result indicates that the recovery time could be reduced
considerably if alterations are made to the waiting time for
information aggregation phase, and the detailed customized
configurations are disucussed in Section 3.3. Furthermore,
we also observe that simultaneous fault injection scenarios
share a similar recovery time with single fault behavior,
at 68.81 seconds and 5.71 seconds on average for Fuxi
Master and FAgent respectively. It demonstrates that our
approach will not incur extra overhead while providing
transparent fault handling in terms of component recovery
time. Compared to the pure hard-state recovery, soft state
inference does take time. Nevertheless, the recovery could
still complete within seconds-level with the same failover
effects, thereby being soundly accepted.

AppMaster recovery time exhibits the most diversity.
For example, Figure 8(a) depicts the average recovery time
just under 46.2 seconds with a standard deviation of 27.9
seconds in single component injection scenarios. The reason
for this diversity in recovery time is due to the distribu-
tion of workers across physical nodes and the incurred

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 11

TABLE 7
Component recovery time under different failure scenarios and the

comparison between Fuxi-FT and Yarn

Fuxi Component
Single Fault Concurrent Faults

avg(s) stddev(s) avg(s) stddev(s)
Fuxi Master 66.94 1.08 68.81 2.4

FAgent 5.57 0.50 5.73 0.48
AppMaster 46.63 27.90 43.43 17.6

Yarn Component
Single Fault RM+NM Concurrent Faults

avg(s) stddev(s) avg(s) stddev(s)
RM 57.13 35.32 61.78 39.67
NM 5.59 0.43 5.88 0.77

AppMaster × × × ×

1 10 20 30R
e
c
o

v
e
ry

 t
im

e
 (

s
e
c
.)

0

50

100

150

(ID)

(a) AppMaster recovery time

150

0

50

100
R

e
c
o

v
e
ry

 T
im

e
 R

a
n

g
e
 (

s
e
c
.)

300 nodes
10 nodes

300 nodes 10 nodes

(b) Recovery comparison

Fig. 8. (a) AppMaster recovery time under single component fault in-
jection experiments; (b) Recovery time comparison using box-plot with
25th,75th percentile, min, max

additional complexity in synchronizing those worker data.
This behavior is exemplified when comparing AppMaster
recovery time within a smaller cluster consisting of 10 nodes
and 400 jobs as shown in Figure 8(b), resulting in an average
recovery time of 33.4 seconds (19.7% increase) under fault-
injection. Such a result indicates that the locality of workers
within physical nodes contributes to the extra recovery time.

5.3 Recovery Effects Using Yarn

To make a more comprehensive comparison, we conduc-
t similar experiments using Yarn with same cluster and
same job submission configurations. The experimental re-
sults show that all jobs will fail if AppMaster and other
components fail at the same time. In fact, Yarn does not
support the case that AppMaster failovers during Resource-
Manager(RM) and NodeManager(NM) fail simultaneously.
The recovery effects are shown in Table 7. The NM recovery
time in single fault injection is 5.59 seconds on average
and will have a slight increase to 5.88 seconds if RM fails
simultaneously, reflecting similar recovery times compared
to FAgent. It is worth mentioning that we find drastic fluctu-
ation in recovery performance for RM between 21.4 seconds
to 91.6 seconds. This huge variation is attributed to not using
a configurable wait-time to collect states at the begining of
RM recovery. In some scenarios where an active AM states
fail to re-sync with RM, RM has to wait for a relatively
long time, resulting in a very slow component recovery. This
design is also strongly related to the submitted job number.
The more jobs submitted, the higher probability of recovery
extension will be. In fact, we regard the Yarn’s strategy
as a more common mechanism that does not support AM
failover, and will have a more detailed comparisons in next
subsection.

5.4 Comparison among Different Failover Mechanisms

In this section, we inject simultaneous faults under four
system failover techniques described in Table 4 in order to

study and compare job executions, end-to-end job comple-
tion time (JCT) under simultaneous fault injection scenario.

As shown in Table 8, Fuxi-FT can guarantee comple-
tion of all jobs under both single and simultaneous fault
injections. During job executions, all task instances can
obtain the requested resource and finally finish computa-
tion despite a small proportion of re-scheduled instances.
Moreover, there is merely a negligible change of resched-
uled instances between the single and multiple injection
experiments. This is because in our approach, Fuxi Master
attempts to retain already assigned resources by preserving
temporarily resources from failed components. A number
of AppMasters with a pre-defined upper-bound for timeout
will hold respective resources without evicting any running
workers. Beyond the threshold, AppMasters will reclaim
the resources to Fuxi Master, and then request for new
resources re-scheduling when facing with timing failures
mentioned in Section 4. Such results demonstrate that all
jobs will complete execution using our proposed approach
in Fuxi-FT. In reality, faults which cause 5% of components
to fail occur much more infrequently than every 300 sec-
onds as observed in [17], as specified in the fault-injection
experiment. The conducted experiments demonstrate that
even under aggressive fault-injection, it is still possible to
provision reliable services to consumers.

Additionally, it is also observable that if AppMaster is
unable to automatically failover, a large number of running
jobs fail, causing a significant amount of computation waste
and extension to job completion time holistically within the
system. In fact, 8.33% jobs eventually fail while only 92.16%
task instances finish as plan. Although the rescheduled
instance ratio appears to be reduced due to many direct
interruptions after job failure, the large proportion of killed
job is a severe threat to reliable services provisioning.

We also conduct experiments to switch off the capability
for the central scheduler (Fuxi Master) for fault recovery
but allow AppMasters to failover independently. In this
scenario, the crash-stop failure on Fuxi Master will lead to
eviction of all running non-faulty workers. Consequently,
all running task instances have to be resubmitted and wait
for rescheduling. The AppMaster will also be rescheduled to
another location after the Fuxi Master revives. As illustrated
from Table 8, the rescheduled instance number are approx-
imately 3x greater times than Fuxi-FT. Indeed, over 4,000
extra rescheduled instances are just incurred by the absence
of Fuxi Master effective failover. All comparable results
are demonstrated in Figure 9 in terms of completed job
number, instance completion ratio and the corresponding
rescheduled instance proportion discussed above.

The job completion time is shown in Figure 10. The end-
to-end time starts from the launch of the AppMaster and
consists of waiting time for the requested resource being
satisfied and the completion of parallel task executions. Due
to the total requested resource from all jobs surpass the
overall cluster capacity, many jobs have to remain within
the waiting queue. From the CDF in Figure 10, roughly 40%
job completion times are no greater than 300 seconds and
different scenarios share a very similar phenomenon despite
some marginal discrepancies. This is due to concurrent
submitted jobs can obtain the required resource in this time
period according to the adopted scheduling policies (e.g.,

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 12

TABLE 8
Statistical properties of job and task execution within failover approaches for different failure scenarios

Single Component Fault Simultaneous Component Fault
Fuxi-FT Fuxi-FT FMFO AMFO NoFO

Job Category

Submitted 4000 4000 4000 4000 4000
Completed 4000 4000 3667 3978 0
Failed(%) 0 0 333(8.33%) 22(0.55%) 4000(100%)

Instance Category
Submitted 1570720 1578730 1575400 1589170 1572450

Completed(in submitted %) 1570720(100%) 1578730(100%) 1451830(92.16%) 1580490(99.45%) 0
Rescheduled(in Completed%) 2115(0.135%) 2121(0.134%) 757(0.052%) 6678(0.423%) 1572450(100%)

Fuxi-FT Fuxi-FT FMFO AMFO

C
o

m
p

le
te

d
 j

o
b

 n
u

m
b

e
r

0

2000

4000

(a) Completed job number

Fuxi-FT Fuxi-FT FMFO AMFO

C
o

m
p

le
te

d
 i

n
s
ta

n
c
e
 r

a
ti

o

0

0.2

0.4

0.6

0.8

1.0

(b) Completed instance ratio

Fuxi-FT Fuxi-FT FMFO AMFOR
e
s
c
h

e
d

u
le

d
 i

n
s
ta

n
c
e
 r

a
ti

o

0

0.2

0.4

0.6

0.8

1.0
Single fault
Multiple faults

(c) Rescheduled instance ratio (unit: %)

Fig. 9. Under the multiple concurrent component fault injections, (a) completed job number comparison (b) completed instance ratio within the
submitted instances. (c) rescheduled instance ratio within the completed instances.

fair scheduling). Other jobs have to wait for resources until
the resource is reclaimed from running tasks.

In general, the job execution time in AMFO is greater
than FMFO and the proposed Fuxi-FT as a large number
of task evictions and re-schedulings occur after the Fuxi
Master crash-stop failure. All these computations have to
be restarted from the very beginning, resulting in serious
execution delays. As for jobs in FMFO, the completion time
distribution of approximately 80% jobs almost coincides
with Fuxi-FT jobs. However, waiting jobs could obtain the
resource much faster than Fuxi-FT jobs. The reason for this
observation is due to the large amount of resource revoked
from the failed jobs and these resources could be instantly
utilized by the waiting instances, thereby shortening the
holistic completion time.

Without autonomous failure recovery techniques, no
jobs and its tasks can tolerate and recover from component
failure. As shown in Table 8, any running worker will be
killed upon any master failure. Even more debilitating, the
worker which runs the master will also be killed, resulting in
all instance eventual failures. In general, these catastrophes
are very atypical as the adopted fault injection scenario is
so harsh that few probabilities exist in real-life systems.
However, increasingly complicated scenarios and urgen-
t problems in Internet-scale systems substantially inspire
both engineering and academic aspects to impel the rapid
improvement of fault-tolerance techniques.

6 RELATED WORK

Fault-tolerance in resource management has been studied
for many years within different distributed systems and
could be coarsely divided into categories: forward-based
recovery and backward-based recovery [16], both of which
adopt the redundancy to mask residual design faults of soft-
ware programs. Forward recovery produces correct results
through continuation of normal processing and a classical
approach is the N-version programming scheme (NVP) [25]

Job end to end time (sec.)

0 1000 2000 3000 4000 5000 6000 7000 8000

P
e
rc

e
n

ta
g

e
 o

f
jo

b
s

0

20

40

60

80

100

Fuxi-FT

FMFO
AMFO

Fig. 10. CDF of job completion time under different failover techniques.

which is actually a n-modular redundancy. However, the
main limitation is that it is highly application dependent. In
comparison, backward recovery make the process restarted
according to the last saved states upon failures. In fact, in
order to achieve this, checkpointing involves occasionally
saving the state of a process in stable storage during normal
execution. This can thus reduce the amount of lost work.
Checkpointing and recovery is mainly intended to tolerate
transient hardware failures, where the application is restart-
ed upon repair of a hardware unit after failure and is also
used as a backward error recovery technique for handling
intermittent software faults.

More specifically, these dynamic redundancy approach-
es such as Recovery Blocks (RB) [10], checkpointing [32],
snapshot had been widely-used in the failure recovery and
high availability assurance scenarios in HPC [33], web ser-
vices [34] and Grid [35] and VM-based virtual computing
environments [36]. However, as identified in [37], the re-
quirements of scale, heterogeneous workload characteristics
and fault-tolerance are substantially different. For example,
the periodical multi-level checkpointing and rolling-back
techniques [38] are suitable for long-running MPI tasks but
cannot be properly applied in short tasks or time-sensitive

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 13

tasks. In fact, the resource requests and allocations of these
tasks are determined in advance and will not change during
its life-cycle. The number of tasks is also not large com-
pared with available resources, making sufficient resources
to conduct redundant checkpointing. VM-based snapshot
[36] [39] [40] focuses on the de-duplication and recovery for
the large amount of memory and disk states in runtime. In
general, above systems achieve effective resource schedul-
ing and management by large backlogs of pending work –
an assumption which cannot be adhere to the on-demand
access required for Cloud computing. Considering the large
cost for millions of running tasks, it is infeasible to conduct
them in Internet-scale systems.

Furthermore, we mainly focus on the most relevant
approaches within the context of large-scale distributed
systems. There have been a number of studies that analyze
Cloud datacenters tracelogs [41] [42] [43] [44] exemplifying
the degree of inherit heterogeneity of workload and server
architectures within the system environment. Furthermore,
[17] demonstrates the frequency and manifestation of fail-
ures, while [45] studies task re-computation waste per serv-
er and [31] quantifies produced energy waste.

YARN [4] adopts a request-based resource allocation
scheme. Similar to Fuxi, Yarn has the similar component:
Resource Manager(RM), Application Master(AM) and Node
Manager(NM). RM only recently becomes fault-tolerant s-
ince Hadoop 2.6 [14] [15]. In particular, the works could be
preserved when the RM and NM restarts. RM repopulates
running states by taking advantage of the container statuses
sent from all NMs and pending requests resent from AMs.
As for the NM, the NM currently stores all necessary states
to a local state-store as it processes container-management
requests. When the NM restarts, it recovers by loading state
for various subsystems. However, even though the contin-
uation of containers without restart, the current protocol in
RM does not support AM failover. In fact, although the NM
reports real-time failure statuses of AMs to RM, RM revokes
the pertaining resources without reserving the allocated
resources to affected AMs. Moreover, containers on timing-
out NM which comes in late during the RM restart will also
be killed. Due to these limitations, only RM and NM crash
simultaneous failure could be covered by Yarn. In com-
parison, this paper systematically describes comprehensive
solutions and achieve a full coverage of simultaneous failure
scenarios of all components, and they could be applied into
any massive-scale resource management system.

Mesos [3] provides an offer-based mechanism in which
the primary master is responsible for assigning resources
to each computing framework. Of relevance to this work,
while the mechanism deploys a warm-standby failover
mechanism, the architecture does not include fault-tolerant
schemes that can be applied to applications running within
system nodes, leaving such responsibility to individual con-
sumers. Our approach provides a full-components failover
solution for all sorts of fault combinations.

Borg [37] is the cluster management system with-
in Google. The central Borgmaster gathers resource-
availability information from nodes, accepts applications
resource requests, and matches one to the other. Borg uses
techniques such as replication and persistent state storing to
deal with faults including task preemption and reallocation,

machine failure or shutdown etc. In order to improve the
availability, Borg primarily focuses on how to cope with
machine-level hardware breakdowns. However, the infor-
mation on failure treatment is extremely limited, with only
brief examples of practical experience described. Addition-
ally, the scarcity of any experimental evaluation make it
difficult for researcher to analyze and compare with their
methods. Borg might take occasional (full state) checkpoints
when appropriate. By contrast, we present an approach for
rapidly low-cost failover, in which light-weighted check-
points ensure much lower overheads of hard state storing
(than full state saving) and soft-state inference facilitates the
state re-construction. We also describe how to avoid running
workers suffering from simultaneous faults combinations
with a comprehensive faults coverage. In terms of recovery
efficiency, Borg briefly states the failing-over takes about
10s, but can takes up to a minute in a big cluster. In our
paper, our approach is able to complete a recovery (using
re-constructed full state) within seconds but less than a
minute. Fuxi-FT can also perform much quicker failover
(using incomplete state) when a degraded service level is
acceptable.

Sparrow [46] adopts randomized-sampling based decen-
tralized schedulers and aims to process short jobs. Frame-
works that use the failed scheduler have to detect the failure
and connect to a backup scheduler themselves. Due to no
state persisted to disks, the in-progress jobs have to be
restarted. Apollo [13] uses distributed schedulers to achieve
scheduling scalability. However, it marks the job failed and
all running tasks in the queue will be evicted once the
node agent failovers. All these motivates us to design and
implement full component failures recovery approaches.

7 CONCLUSIONS

In this paper, we have presented a novel approach for imple-
menting fault tolerance in large-scale Cloud datacenters by
means of rapid user-transparent failover. Effective recovery
of system components is achieved through a combination of
hard state backup and soft-state inference, thereby reducing
the recovery overhead significantly. Our design and archi-
tecture also take into account the scale and complexity of
a Cloud datacenter and cope with different types of failure
and failover scenarios. The method has been deployed and
validated by Alibaba in their live production environment
under different failure scenarios. The main conclusions from
our research are summarized as follows:

State-based failure recovery is typically expensive and costly in
large-scale distributed systems. We have demonstrated that the
combined use of hard state and soft-state inference is in fact
an effective and efficient means to achieve failover in such
systems. The recovery overhead to instance execution time
in our system is limited within 7 microseconds and 228.5
microseconds in the presence of single and simultaneous
component failures respectively, with a minimal increment
to system CPU utilization.

Large-scale distributed systems such as Cloud datacenters
may run millions of instances concurrently, with an increased
probability of frequent and simultaneous failures. These failures
have to be understood properly and addressed appropriate-
ly together with a correct scheduling strategy for instances.

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 14

Inappropriate scheduling of instances has the potential to
dramatically affect the whole system reliability due to the
complex co-relation between rescheduling and communi-
cation caused by application failures. Our technique has
also attempted to tolerate timing failures, an increasingly
dominating failure type for modern service applications.

Future research directions of this work include further
investigation of the patterns of AppMaster failover at differ-
ent system scales, and in diverse operational environments.
Reducing further recovery time would be another interest-
ing challenge with more adaptive customization of time for
soft-state collection. Furthermore, apart from node crashes,
other dominating types of failure need to be re-examined,
in particular those contributing to the long tail straggler
[47] [48] identified from production workload execution
analysis.

ACKNOWLEDGMENTS

Special thanks must go to the overall Fuxi distributed
resource scheduling team in Alibaba Cloud Inc. and the
SIGRS group from Beihang University for their support-
s and collaborative contributions. We would also like to
extend our sincere thanks to the anonymous reviewers
for their valuable comments and help in improving this
paper. This work is supported by China 973 Program (No.
2011CB302602), China 863 Program (No. 2015AA01A202),
UK EPSRC WRG Platform Project (No. EP/F0577644/1),
HGJ Program (No. 2013ZX01039-002-001-001), and NSFC
Program (No. 61202424, 91118008, and 61170294).

REFERENCES

[1] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in Algorithms and architectures for parallel
processing. Springer, 2010.

[2] C. G. C. Index, “Forecast and methodology, 2012–2017, white
paper,” 2013.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center.” in USENIX NSDI,
2011.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans et al., “Apache hadoop yarn: Yet another resource nego-
tiator,” in ACM SoCC, 2013.

[5] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a
fault-tolerant resource management and job scheduling system at
internet scale,” in VLDB, 2014.

[6] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as
a computer: An introduction to the design of warehouse-scale
machines.” Morgan & Claypool Publishers, 2013.

[7] J. Li, M. Humphrey, Y.-W. Cheah, Y. Ryu, D. Agarwal, K. Jackson,
and C. van Ingen, “Fault tolerance and scaling in e-science cloud
applications: Observations from the continuing development of
modisazure,” in IEEE e-Science, 2010.

[8] R. Yang and J. Xu, “Computing at massive scale: Scalability and
dependability challenges,” in IEEE SOSE, 2016.

[9] (2008) Amazon suffers u.s. outage on friday internet. [Online].
Available: http://news.cnet.com/

[10] B. Randell and J. Xu, “The evolution of the recovery block concep-
t,” Software Fault Tolerance, 1995.

[11] P. Jalote and P. Jalote, Fault tolerance in distributed systems. PTR
Prentice Hall Englewood Cliffs, 1994.

[12] N. Aghdaie and Y. Tamir, “Fast transparent failover for reliable
web service,” in IEEE PDCS, 2003.

[13] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: scalable and coordinated scheduling for
cloud-scale computing,” in USENIX OSDI, 2014.

[14] https://issues.apache.org/jira/browse/YARN-556.

[15] https://issues.apache.org/jira/browse/YARN-1336.
[16] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic

concepts and taxonomy of dependable and secure computing,” in
IEEE TDSC, 2004.

[17] P. Garraghan, P. Townend, and J. Xu, “An empirical failure-
analysis of a large-scale cloud computing environment,” in IEEE
HASE, 2014.

[18] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in ACM SoCC, 2012.

[19] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A
cost-effective dynamic replication management scheme for cloud
storage cluster,” in IEEE CLUSTER, 2010.

[20] S. Malik and F. Huet, “Adaptive fault tolerance in real time cloud
computing,” in IEEE SERVICES, 2011.

[21] R. Yang, T. Wo, C. Hu, J. Xu, and M. Zhang, “D2ps: a dependable
data provisioning service in multi-tenants cloud environments,”
in IEEE HASE, 2016.

[22] Q. Zheng, “Improving mapreduce fault tolerance in the cloud,” in
IEEE IPDPS, 2010.

[23] S. Fu, “Failure-aware resource management for high-availability
computing clusters with distributed virtual machines,” 2010.

[24] (2013) Amazon web services suffers outage. [Online].
Available: http://www.zdnet.com/article/amazon-web-services-
suffers-outage-takes-down-vine-instagram-others-with-it/

[25] A. Avizienis, “The methodology of n-version programming,” Soft-
ware fault tolerance, 1995.

[26] M. R. Lyu et al., Handbook of software reliability engineering, 1996.
[27] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable

availability model for infrastructure-as-a-service cloud,” in IEEE
DSN, 2011.

[28] R. Subramanian and V. Anantharaman, “Reliability analysis of a
complex standby redundant systems,” in Elsevier Reliability Engi-
neering & System Safety, 1995.

[29] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-
free coordination for internet-scale systems.” in USENIX ATC,
2010.

[30] M. Burrows, “The chubby lock service for loosely-coupled dis-
tributed systems,” in USENIX OSDI, 2006.

[31] P. Garraghan, I. S. Moreno, P. Townend, and J. Xu, “An analysis of
failure-related energy waste in a large-scale cloud environment,”
in IEEE TETC, 2014.

[32] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for
distributed systems,” IEEE TSE, 1987.

[33] G. Staples, “Torque resource manager,” in ACM SC, 2006.
[34] M. P. Papazoglou, “Service-oriented computing: Concepts, charac-

teristics and directions,” in IEEE WISE, 2003.
[35] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid services

for distributed system integration,” in IEEE Computer, 2002.
[36] L. Cui, J. Li, T. Wo, B. Li, R. Yang, Y. Cao, and J. Huai, “Hotrestore:

a fast restore system for virtual machine cluster,” in USENIX LISA,
2014.

[37] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,”
in ACM EuroSys, 2015.

[38] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski,
“Design, modeling, and evaluation of a scalable multi-level check-
pointing system,” in IEEE SC, 2010.

[39] Y. Huang, R. Yang, L. Cui, T. Wo, C. Hu, and B. Li, “Vmcsnap:
Taking snapshots of virtual machine cluster with memory dedu-
plication,” in IEEE SOSE, 2014, pp. 314–319.

[40] J. Li, J. Zheng, L. Cui, and R. Yang, “Consnap: Taking continuous
snapshots for running state protection of virtual machines,” in
IEEE ICPADS, 2014, pp. 677–684.

[41] Y. Chen, S. Alspaugh, and R. H. Katz, “Design insights for mapre-
duce from diverse production workloads,” Tech. Rep., 2012.

[42] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis
of traces from a production mapreduce cluster,” in CCGrid 2010.
IEEE.

[43] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google
compute clusters,” in ACM SIGMETRICS, 2010.

[44] I. Solis Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis,
modeling and simulation of workload patterns in a large-scale
utility cloud,” in IEEE TCC, 2014.

TRANSACTIONS ON SERVICE COMPUTING, VOL. X, NO. X, X 2016 15

[45] P. Garraghan, P. Townend, and J. Xu, “An analysis of the server
characteristics and resource utilization in google cloud,” in IEEE
IC2E, 2013.

[46] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
distributed, low latency scheduling,” in ACM SOSP, 2013.

[47] J. Dean and L. A. Barroso, “The tail at scale,” in ACM Communica-
tion, 2013.

[48] P. Garraghan, X. Ouyang, P. Townend, and J. Xu, “Timely long
tail identification through agent based monitoring and analytics,”
IEEE ISORC, 2015.

Renyu Yang is a Ph.D. candidate at Beihang
University, and a Research and Development
intern at Alibaba Cloud Computing Inc. He re-
ceived his B.Sc degree from Beihang University
in 2011, and was a visiting researcher at Univer-
sity of Leeds, UK in 2012 and 2013 respectively.
His research interests include resource man-
agement in massive-scale distributed systems,
Cloud computing, system dependability etc.

Yang Zhang is currently a software engineer in
Alibaba Cloud Computing Inc. He received his
M.Sc and B.Sc degree both from Beijing Univer-
sity of Posts and Telecommunications(BUPT) in
2014 and 2011 respectively. His research inter-
est is large-scale distributed systems.

Peter Garraghan is a Research Fellow in the
School of Computing, University of Leeds and
a visiting researcher at Beihang University, Chi-
na. He has industrial experience building large-
scale systems and his research interests include
distributed systems, large-scale simulation, de-
pendability, data analytics and energy-efficient
Cloud datacenters.

Yihui Feng is currently a senior expert in Al-
ibaba Cloud Computing Inc and he received his
M.Sc degree from school of computing in Bei-
hang University in 2007. His research interest is
large-scale distributed systems.

Jin Ouyang is currently a senior software en-
gineer in Alibaba Cloud Computing Inc. He
received his M.Sc degree from University of
Science and Technology of China(USTC) in
2014 and his research interests are large scale
distributed systems, resource scheduling tech-
niques and performance optimization.

Jie Xu is Chair Professor of Computing at U-
niversity of Leeds and Director of UK EPSRC
WRG e-Science Centre. He has industrial ex-
perience in building large-scale networked sys-
tems and has worked in the field of depend-
able distributed computing for over 30 years. He
is a Steering/Executive Committee member for
numerous IEEE conferences including SRDS,
ISORC, HASE, SOSE and is a co-founder for
IEEE IC2E. He has led or co-led many research
projects to the value of over $30M, and published

in excess of 300 academic papers, book chapters and edited books.

Zhuo Zhang is a Senior Staff Manager at Aliba-
ba Cloud Computing Inc. and leads the teams of
Cloud resource management and job schedul-
ing. He previously worked at IBM China Re-
search & Development Lab in DB2 performance
monitor/optimization. His current research inter-
ests include distributed systems, Cloud comput-
ing etc.

Chao Li is a Senior Staff Manager at Alibaba
Cloud Computing Inc. and leads the teams of
Cloud resource management and job schedul-
ing. His research interest is distributed systems
and large scale data processing techniques.

