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Abstract—We consider several Software as a Service (SaaS) providers that offer services using the Cloud resources provided

by an Infrastructure as a Service (IaaS) provider which adopts a pay-per-use scheme similar to the Amazon EC2 service,

comprising flat, on demand, and spot virtual machine instances. For this scenario, we study the virtual machine provisioning and

spot pricing strategies. We consider a two-stage provisioning scheme. In the first stage, the SaaS providers determine the optimal

number of required flat and on demand instances. Then, in the second stage, the IaaS provider sells its unused capacity as spot

instances for which the SaaS providers compete by submitting a bid. We study two different IaaS provider pricing strategies: the

first assumes the IaaS provider sets a unique price; in the second, instead, the IaaS provider can set different prices for different

customers. We model the resulting problem as a Stackelberg game. For each pricing scheme, we show the existence of the

game equilibrium and provide the solution algorithms. Through numerical evaluation we compare the provisioning and spot price

under the two different pricing strategies as function of the system parameters.

Index Terms—Cloud computing, pricing, resource provisioning, Stackelberg games
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1 INTRODUCTION

The burgeoning of Cloud-based services with their
promise of efficiency, elasticity and cost-effectiveness,
is before our eyes and the analysts predict that in
the next years Cloud services will grow at an even
fast rate1. Computing resources offered by Infrastruc-
ture as a Service (IaaS) providers are now used by
industrial and academic organizations to run their
applications, that can elastically scale out or in as
demand changes by provisioning virtual resources
almost instantaneously. In their turn, customers of
IaaS providers can rapidly offer their innovative ap-
plications, thus becoming Software as a Service (SaaS)
providers, but without the need to own and maintain
development or production infrastructures.

IaaS providers offer their computing resources in
the form of Virtual Machine (VM) instances to cus-
tomers, that generally rent the on demand resources
as needed on a pay-per-use basis, paying a fixed
price for a short time (typically one hour). When
resource utilization can be planned in advance, IaaS
customers can also reserve flat resources, paying a
long-term reservation fee plus a per-time unit price,
which depends on the effective resource usage and is
lower than the on demand price. To achieve high uti-
lization in data centers that are often under-utilized,
IaaS providers can also sell their spare capacity in
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form of spot instances by organizing an auction where
customers bid, providing a maximum per-time unit
price they are willing to pay. On the basis of the bids
and its spare capacity, the IaaS provider sets the spot
instances price. Amazon’s EC2 cloud [1] offers the
three types of VM instances and pricing models (i.e.,
flat, on demand, and spot instances) just described.

For IaaS customers spot instances represent an
attractive and cost-effective solution to deal with
unexpected load spikes and run compute-intensive
applications, but at the risk of a lower reliability than
flat and on demand instances, since the IaaS provider
can revoke spot VM instances without notice due to
price and demand fluctuations.

In this paper, we consider a Cloud scenario where
an IaaS provider sells its computing resources to
several SaaS providers, offering flat, on demand, and
spot VM instances. In their turn, SaaS providers of-
fer to their users services with Quality of Service
(QoS) guarantees, using the IaaS facilities to host and
run the provided services. Revenues and penalties of
each SaaS provider depend on the provisioning of
an adequate performance level, which is specified in
a Service Level Agreement (SLA) contract that each
SaaS provider stipulates with its users.

We assume that resource provisioning is carried
out as two-stage process. In the first stage, each SaaS
provider independently determines the number of
flat and on demand VM instances (which have a
fixed known price). Then, in the second stage, the IaaS
provider sells the unused capacity as spot instances
to the SaaS providers, which compete for this resid-
ual capacity: the goal of each SaaS provider is to
determine the number of spot instances to allocate
which maximizes a suitable utility function, given
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the number of flat and on demand instances bought
in the first stage. The goal of the IaaS provider is
to determine the price (or set of prices) of the spot
instances in order to maximize its profit.

For this two-stage scenario, we study the optimal
service provisioning and pricing strategy. The analysis
needs to focus on the second stage only, since, in the
first stage, the provisioning for each SaaS provider
reduces to a convex optimization problem which can
be solved by means of standard techniques. In the
second stage, instead, we analyze the competition
between the IaaS and SaaS providers, each attempting
to maximize its own revenue: the IaaS provider by
determining the spot instances price, and each SaaS
by determining the number of spot instances to buy.

We model the second stage on spot competition
as Stackelberg game [2]. In this class of games, one
player, the leader (in our case the IaaS provider),
moves first and commits its strategy to the remaining
players, the followers (for us the SaaS providers)
that consider the action chosen by the leader before
acting simultaneously to choose their own strategy in
a selfish way through a standard Nash game. In the
considered Cloud scenario, the adoption of a leader-
follower model well captures the interactions among
IaaS and SaaS providers, since the IaaS provider can
adjust the spot price (or prices) to maximize its rev-
enue and take advantage of the competition among
the SaaS providers for the limited resources.

We consider two different pricing models, namely,
Same Spot Price Model (SSPM) and Multiple Spot
Prices Model (MSPM). The former is characterized by
a single price which applies to all customers, while in
the latter model the IaaS provider can conveniently set
different spot instance prices for different customers.
Our contributions are as follows:

1) We prove the existence of the Stackelberg equi-
librium for both the SSPM and MSPM pricing models.

2) We compute the equilibria of the SaaS/IaaS
Stackelberg game on spot instances. We cast the
equilibrium computation as the solution of one (for
the MSPM pricing model) or more (for the SSPM
pricing model) suitable Mathematical Program with
Equilibrium Constraint (MPEC) problems, which we
solve using the solution proposed in [3].

3) We study the behavior of the proposed provi-
sioning and pricing strategies under different work-
load and bidding configurations through numerical
investigation. We show that the IaaS provider can
maximize its revenue by properly setting the spot
price (or prices) as function of customers demand and
bids. Our results show that when the demand exceeds
the supply, the SSPM with a single price for all
customers yields higher revenues to the IaaS provider.
Conversely, when the demand does not saturate the
supply, it is the MSPM pricing scheme which yields
higher revenues, thanks to the inherent flexibility in
the use of different prices for different customers.

Our work has been motivated and inspired by the
work by Ardagna et al. in [4], [5]. They considered
a one stage version of the provisioning and pricing
problem, proposing a MSPM pricing scheme, and
modeled the resulting conflicting situation as a Gen-
eralized Nash Equilibrium Problem (GNEP), which
can be shown to reduce to a potential game. Our
results complement and extend their analysis by con-
sidering the privileged position of the IaaS provider
in the competition among the different stakeholders.
To this end, we also provide a thorough discussion
and comparison of the two approaches. It is worth
observing that, despite the similar setting, the analysis
of the competition as a Stackelberg game has required
a complete new machinery, i.e., the solution of an
MPEC, for the equilibrium analysis.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss related works. Section 3 introduces
our system model. We define the two-stage resource
provisioning and pricing scheme in Section 4 and
discuss the solution method of the SSPM and MSPM
strategies in Section 5. In Section 6 we analyze through
numerical experiments the SSPM and MSPM strate-
gies; we also compare their results to those achieved
by the formulation in [4]. We conclude the paper and
present directions for future work in Section 7. The
paper is accompanied by a supplemental document
which contains the proof of Theorem 4.

2 RELATED WORK

Game-theoretical approaches have been widely ap-
plied in the Cloud computing context to tackle re-
source provisioning and pricing problems [4], [5], [6],
[7], [8], [9], [10], [11], [12].

From a user perspective, Teng and Magoulès [8]
studied, given a simple pricing mechanism, the re-
source allocation among multiple users and deter-
mined the Nash equilibrium. Wei et al. [9] presented
a QoS-constrained resource allocation, where Cloud
users submit intensive computation tasks; however,
they dealt only with on demand instances without
considering the pricing problem. The IaaS provider’s
viewpoint is pursued in [7] to determine the optimal
prices suggested by the IaaS provider and the user
demands through a Stackelberg game. Although the
authors consider the joint resource provisioning and
pricing problem, their model does not consider spot
instances and QoS constraints of SaaS providers.

The most related work to ours is those by Ardagna
et al. [4], [5]. They considered a one-stage game and
proposed a GNEP-based formulation. As we will see
in Section 6.2, where we present an exhaustive com-
parison of the two approaches, their solution results
in a substantially different provisioning and pricing
strategy and lower revenues for the IaaS provider.

Game-theoretical frameworks for modeling the
competition among a collection of IaaS providers have
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been recently proposed. Roh et al. [10] considered a
pricing problem for geographically distributed cloud
resources. They formulated a concave game for the
resource pricing of the IaaS providers and the re-
source competition among multiple SaaS providers
and characterized the Stackelberg equilibrium of the
game; however, pricing of spot resources is not taken
into account. Non cooperative price and QoS games
among multiple Cloud providers have been proposed
by Pal and Hui [11]. Differently from us, they consid-
ered a market of competing Cloud providers, each one
offering a given application type for which a price and
a QoS level has to be selected. Therefore, their work
takes a different perspective and is complementary
to ours. Tang and Chen [12] proposed a Stackelberg
game formulation for the joint pricing and capacity
allocation problem in a scenario with multiple IaaS
and SaaS providers. However, they considered a sim-
plified model, in particular without multiple pricing
plans and competition on VMs. Ardagna et al. [6]
recently proposed a game-theoretic approach to allo-
cate resources of multiple IaaS providers to multiple
competing SaaS providers. Similarly to their previous
works [4], [5], the authors proposed a GNEP-based
formulation and then devised a distributed algorithm
for identifying Generalized Nash equilibrium.

Actually, many state-of-the-art approaches focus
only on the pricing problem and propose solutions
based on auction theory [13], [14], [15], [16], [17],
[18], [19], [20], [21]. An m+ 1 price auction in which
the customers bid for multiple units of the same VM
type is proposed in [13], [14]. These works differ for
the mechanism adopted to compute the amount of
auctioned VMs. Combinatorial auctions are proposed
in [17], [21]. In these auctions a customer bids for
a bundle of items, i.e., for a combination of VMs
of different types. These works aim at maximizing
the social welfare and rely on heuristics to compute
the winning customers. Fujiwara et al. [16] proposed
a combinatorial double auction considering multiple
providers. In a double auction not only the cus-
tomers submit their bids for a bundle of services, but
also providers simultaneously submit their ask prices.
Bonacquisto et al. [19], [20] focused on a reverse
auction, which is similar to a double auction except
that customers do not submit bids. Multiple sellers
compete submitting their ask prices and, usually, the
customer selects the lowest one. Despite some sim-
ilarities with our approach, the works that rely on
auction theory mainly focus on the pricing problem.
The number of VMs each customer desires is com-
puted a priori and is basically assumed to be given.
Conversely, in our work we take into account the joint
VM provisioning and pricing problem.

Since the launch of Amazon EC2 spot instances
in late 2009, researchers have investigated spot pric-
ing and performance issues, applying a variety of
methodologies. Several works studied mechanisms,

such as checkpointing [22], [23] and resource pro-
visioning [24], to improve the reliability and cost
efficacy of spot instances, that are affected by volatility
due to market dynamics. While such studies focus on
helping customers to better exploit spot instances, our
goal is to maximize the IaaS provider revenue while
satisfying the QoS constraints of the SaaS providers.

Some works analyzed the Amazon spot instances
prices. Javadi et al. [25] performed a statistical analysis
of the Amazon spot instances price patterns using
traces of 2010-2011. A reverse engineering analysis on
how Amazon prices its spare capacity was conducted
by Agmon Ben-Yehuda et al. [26]; during the exam-
ined period (2011) Amazon prices were set most of the
times at random from within a tight price interval via
a dynamic hidden reserve price. However, as noted
in the epilogue of [26], Amazon radically changed
the spot pricing mechanism and the prices are no
longer random. Xu and Li in [27] reached the same
conclusion of [26] and considered a scenario where
the IaaS provider updates the spot price according to
marked demand and studied dynamic pricing from
a revenue maximization perspective, formulating a
stochastic dynamic program.

Spot instance usage is recommended in the industry
as an effective choice for batch processing, high per-
formance computing, and development/testing2, and
companies (e.g., Cloudyn and Flux7) offer services for
the spot market. On the IaaS side, Google recently
introduced preemptible instances, which may be re-
voked at any time but their price is deterministic.

3 SYSTEM MODEL
We consider a set U of SaaS providers that offer
services using the Cloud resources of an IaaS provider.
We assume that each SaaS provider u 2 U offers a
single service characterized by a SLA, which stipu-
lates the QoS levels, i.e., service response time and
the associated cost/penalty for its use3.

The services are hosted on virtual machines instan-
tiated by the IaaS provider. For the sake of simplicity,
we assume that the IaaS provider offers only one type
of VMs, i.e., all the VMs have the same compute,
memory and network capacity4. Each service can be
distributed on multiple VMs and in that case we
assume the workload to be evenly split among them.

The IaaS provider manages an infrastructure pro-
viding up to S VMs which are offered to customers as
flat, on demand, and/or spot instances. Flat instances
are characterized by one-time payment, e.g., every one
or three years, for each reserved VM regardless their
actual usage, plus a payment of ' per time unit of

2. http://tinyurl.com/j2jp5jc
3. We focus on a single service for ease of explanation, but our

model can be easily generalized to consider also SaaS providers
offering multiple services.

4. This is not a limiting assumption because Amazon, for exam-
ple, runs independent spot markets for each instance type [28].
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System parameters
S Total amount of VMs managed by IaaS provider
U Set of SaaS providers
f̂u Number of reserved flat instances for SaaS provider u

⇤u Predicted next hour arrival rate for SaaS provider u

µu Maximum service rate of VM executing the service of SaaS
provider u

U
max
u Maximum allowed utilization of VM executing the service

of SaaS provider u

' Time unit cost for one flat VM
� Time unit cost for one on demand VM
�
L Minimum time unit cost for one spot VM, set by

IaaS provider
�
U
u Maximum time unit cost for one spot VM that SaaS

provider u is willing to pay
Decision variables

fu Number of flat VMs acquired by SaaS provider u

du Number of on demand VMs acquired by SaaS provider u

su Number of spot VMs acquired by SaaS provider u

� Time unit cost for spot VM (SSPM)
�u Time unit cost for spot VM of SaaS provider u (MSPM)

TABLE 1: Main notation

actual use. On demand instances have no one-time
payment and are only charged at a per time unit
price �, which we assume to be strictly larger than
'. Spot instances are charged at a price � which is
dynamically set and depends on the customers’ bids
and competition for the unused resources and the IaaS
provider optimal pricing strategy. In this paper, we
also consider a more general spot pricing model, in
which the spot price �u varies from SaaS provider to
SaaS provider, as considered for example in [4], [5],
[29]. In the rest of this paper, we refer to the former
model as Same Spot Price Model (SSPM) and to the
latter as Multiple Spot Prices Model (MSPM).

In the general case of MSPM, given the spot prices
�u and the number of flat fu, on demand du, and
spot instances su allocated to each SaaS provider u,
the per-time unit IaaS revenue can be defines as:

⇥I =
X

u2U
'fu + �du + �usu (1)

Each SaaS provider determines for its service the
number of flat fu, on demand du, and spot su VMs to
be allocated which maximizes its profit. We assume
the utility function of each SaaS provider to take the
form ⇥u(fu, du, su,�u), where ⇥u represents the util-
ity arising from the service. In this paper, we assume
that neither ⇥u has a specific expression nor it is the
same for each SaaS provider. We just require ⇥u to
be strictly concave and of class C2 with respect to su,
with @

2⇥u/@s
2
u
< 0, to reflect the law of diminishing

marginal utility [30].
For ease of reference, we summarize in Table 1 the

main notation adopted in this paper.

4 RESOURCE PRICING AND PROVISIONING:
A STACKELBERG GAME APPROACH

In this paper we assume that SaaS providers pe-
riodically provision the VMs to run their services.
We propose a two-stage resource pricing and service
provisioning scheme. In the first stage, each SaaS

provider determines the number of flat and on de-
mand instances5 which guarantees the performance
level defined in the SLA agreed with its prospective
users and maximizes its profit. For the provisioning,
the SaaS provider uses a prediction of the workload
expected in the next time interval. We assume that the
IaaS provider has enough resources to always satisfy
the request for on demand instances.

In the second stage, the IaaS provider leases its
unused capacity as spot instances. Differently from
the first stage, each SaaS provider competes with the
others for these additional resources by submitting to
the IaaS provider a bid, which defines the maximum
per VM price it is willing to pay. The IaaS provider,
given the resource availability and the submitted bids,
determines the spot instances price so to maximize its
revenue. For the second stage, we study two different
pricing strategies, named SSPM and MSPM. With
SSPM the IaaS provider sets a single price which ap-
plies to all customers; customers whose submitted bid
is lower than the actual price will not get any instance;
with MSPM the IaaS provider can conveniently set
different spot instance prices for different customers.

4.1 First Stage: Flat and on Demand VMs Provi-
sioning
In the first stage, each SaaS provider determines in-
dependently from the others the optimal number of
flat and on demand VMs that allows to maximize its
profit, while sustaining the predicted arrival rate ⇤u

and satisfying the SLA agreed with its users.
For each SaaS provider u 2 U we have the following

optimization problem6:

max ⇥u (2)

subject to: fu  f̂u (3)
⇤u

µu(fu + du)
 U

max

u
(4)

fu, du � 0 (5)

Constraint (3) ensures that the actual number of flat
instances allocated to SaaS provider u is less than
or equal to the number of reserved flat instances f̂u.
Constraint (4) guarantees that the resources utilization
is less than a threshold U

max
u

to avoid resource over-
utilization and ensure adequate performance.

For the sake of simplicity, as in [4], [5], [29], we do
not impose that the decision variables for the numbers
of instances are integers. Nevertheless, our findings
apply to the actual problem as well. In particular,
in [5] the authors show in a quite similar setting

5. Observe that, in case of flat instances, this number represents
the number of allocated VMs among the reserved ones (a SaaS
provider does not pay the per unit of time cost for unused flat
instances).

6. Recall that we assume that the IaaS provider has always
enough resources to accommodate all flat and on demand instances
requests, otherwise we would have competition also at this stage.
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how the gap with the optimal integer solution that
can be achieved rounding the fractional allocation
is small, especially for large scale services. This is
a consequence of current cloud pricing models, that
make the weight of a single VM small.

4.2 Second Stage: Spot VMs Pricing
In the second stage, the SaaS providers compete for
the unused IaaS provider resources made available via
a bidding mechanism, in which each SaaS provider u

specifies �
U
u

, the maximum time unit cost per spot
VM it is willing to pay. The rationale is that the
SaaS providers can increase their revenues by using
additional resources bought at an affordable price,
while the IaaS provider can make profit from the
otherwise unsold resources. Without lack of general-
ity, we assume that the IaaS provider sets a public
minimum reserve bid �

L to account for the operative
cost to run a VM.

The goal of each SaaS provider is to determine
the number of spot instances in addition to the flat
and on demand instances already provisioned in the
first stage so to maximize its revenue. Since the spot
price is expected to be (much) lower than the flat/on
demand cost, the SaaS provider can increase its utility
if cheaper VMs are made available. As expected, the
formulation of the optimization problems of both the
SaaS providers and the IaaS provider strictly depends
on the adopted pricing model, i.e., SSPM or MSPM.
We analyze them in the following.

4.2.1 Same Spot Price Model (SSPM)
In the SSPM, the IaaS provider sets the same spot
price � for all its customers.

SaaS problem: Each SaaS provider u determines
the optimal number of spot instances to acquire su by
solving the following optimization problem:

Problem SSPM SaaSOPT

max ⇥u(f̄u, d̄u, su,�)

subject to:
X

u2U
su  s

U
, su � 0 (6)

yu 2 {0, 1} (7)
su  s

U
yu (8)

(�U

u
� �)  Myu  (�U

u
� �) +M (9)

where f̄u and d̄u represent respectively the number
of flat and on demand instances already allocated and
s
U = S �

P
u2U (f̄u + d̄u) the amount of unused IaaS

capacity, being S the total amount of VMs the IaaS
provider manages and

P
u2U (f̄u + d̄u) the amount of

VMs acquired by all the SaaS providers in the first
stage. Constraints (8)-(9), where M is a large constant,
impose that SaaS provider u will not get any spot
VM if its bid �

U
u

is lower than the spot price �. To
this end, we introduce the integer decision variable
yu equal to 1 if the bid of SaaS provider u is greater

than the actual spot price, 0 otherwise. Constraint (6)
guarantees that the total number of spot VMs leased
to the SaaS providers is less than or equal to that
available at the IaaS provider. Note that differently
from the first stage problem, we now have a constraint
which involves the decision variables of all the SaaS
providers and an utility function which depends on
the spot price �, the IaaS decision variable.

IaaS problem: The IaaS provider goal is to deter-
mine the spot price � in order to maximize its revenue.
The IaaS provider optimization problem is:

Problem SSPM IaaSOPT

max ⇥I(�) = max
X

u2U
su�

subject to: �L  � (10)

where �
L is the minimum spot price set by the IaaS

provider.

4.2.2 Multiple Spot Price Model (MSPM)

In the MSPM, the IaaS provider can conveniently set
different prices for different customers. The resulting
SaaS providers and IaaS provider problems are as
follows.

SaaS problem: Each SaaS provider determines
the optimal number of spot instances to acquire su by
means of the following optimization problem:

Problem MSPM SaaSOPT

max ⇥u(f̄u, d̄u, su,�u)

subject to:
X

u2U
su  s

U
, su � 0 (11)

where f̄u, d̄u, and s
U are defined as in Section 4.2.1.

As in the SSPM, constraint (11) ensures that the total
number of spot VMs acquired by the SaaS providers
is less than or equal to the spare capacity of the
IaaS provider and it involves the decision variables
of all the SaaS providers. We also observe that the
utility function depends on the multiple spot prices
�u, which are the IaaS decision variables.

IaaS problem: The goal of the IaaS provider is
to determine the spot price �u for each SaaS provider
u in order to maximize its revenue. The IaaS provider
optimization problem is:

Problem MSPM IaaSOPT

max ⇥I(�) = max
X

u2U
su�u

subject to: �L  �u  �
U

u
, 8u 2 U (12)

where �
U
u

is the maximum spot price each SaaS
provider u is willing to pay and �

L is the minimum
spot price imposed by the IaaS provider.
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4.2.3 Second Stage as Stackelberg Game
In the second stage, independently from the con-
sidered pricing model, the decisions of the SaaS
providers and the IaaS provider depend mutually on
each other. Indeed, the objective function of the IaaS
provider depends on su, the decision variables of the
SaaS providers, while the objective function of each
SaaS provider depends on the spot price(s), which
is(are) the decision variable(s) of the IaaS provider.
Moreover, the decision of each SaaS provider de-
pends also on what the other providers do, since
constraints (6) and (11) couple the variables of all the
SaaS providers.

We model such a conflicting situation as a Stack-
elberg game [2]. Stackelberg games are a particular
type of non-cooperative game whereby one player
(the leader) takes its decision before the other players
(the followers). Given the leader decision, the fol-
lowers then simultaneously take their own decision.
Assuming a rational behavior, the leader can take
advantage of the fact that the followers basically react
to its decisions, which leads to a follower subgame
equilibrium (if any exists), and drives the system to its
own equilibrium. In our model, the IaaS provider acts
as a leader by deciding the spot price(s) �(�u). The
SaaS providers act as followers which, given the spot
price(s), must decide the number su of spot instances
to lease, competing among themselves for the shared
pool of available instances s

U (the SaaS providers
subgame). This equilibrium is characterized by the
property that for the given set of prices, the SaaS
providers adopt a strategy such that none of them
could improve its profit by changing it unilaterally,
and the IaaS provider would not benefit by modifying
the chosen set of prices, since no other SaaS providers
equilibrium would improve its revenue.

5 STACKELBERG GAME ANALYSIS

The second stage requires the computation of the equi-
libria of the SaaS/IaaS spot instance Stackelberg game.
This is a challenging problem for which no general
solution exists. In this section we demonstrate the
existence of the Stackelberg equilibrium and how to
compute it in the case of the MSPM and SSPM. To this
end, we will proceed in two steps: first, in Section 5.1,
we will study the SaaS providers subgame, that is the
competition that arises among SaaS providers for a
given spot price(s); then, in Section 5.2 we will turn
to the Stackelberg game equilibrium computation,
that is, the IaaS (leader) problem of determining the
optimal pricing strategy.

Throughout the rest of this section, we denote by su

the strategy of a SaaS provider u 2 U . Furthermore,
we indicate with s = (su)Nu=1 the set of strategies of
all the SaaS providers and with s

�u the set of the
strategies of all the SaaS providers except the SaaS
provider u, where N = |U|. We denote by Ku =

{su � 0} the feasible strategies set for SaaS provider u.
Let ⌦ denote the compact set

�
s
��P

u2U su  s
U
 

. We
denote by K = (K1⇥K2 . . .KN )\⌦ the set of feasible
strategies of all the players. For convenience, we also
denote with g(s) = (gu(s))Nu=1 the vector function that
represents the compact set K.

5.1 SaaS Providers Subgame
We first consider the followers subgame, i.e., the
SaaS providers competition that arises once the IaaS
provider fixes its strategy, i.e., the spot price(s). With-
out loss of generality, we study the SaaS subgame that
arises from the MSPM. We will later show that the
SSPM subgame can be regarded as a particular case
of the MSPM subgame.

Since the SaaS providers act simultaneously, we
can model the SaaS subgame as a Generalized Nash
game [31]. Generalized Nash Equilibrium Problems
(GNEPs) differ from Nash Equilibrium Problems
(NEPs) in that, while in NEP only the players objective
functions depend on the other players strategies, in
GNEP both the objective functions and the strategy
sets depend on the other players strategies. In our
problem, the dependence of each player strategy set
on the other players strategies is represented by
constraints (11), which includes all SaaS providers
decision variables su. More specifically, our problem
is a Jointly Convex GNEP [31]. This property follows
from the fact that the objective function of each SaaS
provider is concave on its own decision variable, the
strategy space is convex, and the constraint involving
all players variables is the same for all the players.

Jointly Convex GNEPs are a particular class of
GNEP, whose solution can be computed by solv-
ing a proper variational inequality (VI)7. In partic-
ular, under the condition that the objective func-
tion of each player is continuously differentiable, ev-
ery solution of the V I(K,F (s;�)), where F (s;�) =
�(rs1⇥1(s;�),rs2⇥2(s;�), . . . ,rsN⇥N (s;�))0, is also
an equilibrium of the GNEP [31]. Such equilibrium is
known as variational equilibrium. In general, a GNEP
has multiple or even infinite equilibria, and not all
of them are also a solution of the VI. However, the
variational equilibrium is more “socially stable” than
the other equilibria of a GNEP. Roughly speaking, a
variational equilibrium can be considered as a local
equilibrium over larger neighborhoods than other
equilibria for the players. In this respect, it can be
regarded as a better equilibrium point and therefore
represents a valuable target for an algorithm [31].
Hence, in the remainder of this paper we focus
on variational equilibrium as solutions of the SaaS
subgame, instead of the set of all generalized Nash
equilibria.

7. Given a closed and convex subset K of <n and a function
F : K ! <n, the VI problem, denoted by V I(K,F ), consists in
finding a point s⇤ 2 K such that (s� s⇤)TF (x⇤) � 0 8s 2 K.
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We have shown that the problem of finding a varia-
tional equilibrium of the SaaS providers subgame for a
given IaaS strategy can be formulated as the problem
of finding the solution of a proper VI. We now estab-
lish two key properties of the V I(K,F (s;�)), namely
that the function F is strongly monotone8 and the
existence of the generalized Nash equilibrium for the
followers subgame.

Theorem 1: The function F (s;�) =
�(rs1⇥1(s;�), . . . , rsN⇥N (s;�))0 is strongly
monotone.

Proof: The Jacobian of function F takes the fol-
lowing form:

JF (s;�) =

2

64
a1 · · · 0
...

. . .
...

0 · · · aN

3

75

JF is a diagonal matrix whose generic entry au =
�@

2⇥u/@s
2
u

is, by assumption, a strictly positive con-
tinuous function. The Weierstrass theorem ensures
that the minimum âu = minsu2[0,sU ] au exists in the
interval [0, sU ] for each au. If we choose a constant
0 < ↵ < minu2U âu then the matrix JF (s;�) � ↵I is
still diagonal with each term strictly greater than 0,
for all s 2 K. Hence the function F (s;�) is strongly
monotone.

Theorem 2: There exists exactly one variational equi-
librium of the followers subgame.

Proof: The existence of exactly one variational
equilibrium of the followers subgame is a direct con-
sequence of the strong monotonicity of the function
F (s;�) [32].

We now turn our attention to the the SSPM sub-
game. For any given spot price �, we can consider the
SaaS subgame restricted to the SaaS providers whose
bids are greater or equal than the spot price (for each
SaaS provider u with �

U
u
< � the only feasible strategy

is to play su = 0, regardless the others do). Once �

is fixed, the problem SSPM SaaSOPT in Section 4.2.1
reduces to the following optimization problem:

Problem Redux SSPMSaaSOPT

max ⇥u(f̄u, d̄u, su,�)

subject to:
X

u2U
su  s

U
, su � 0 (13)

It is easy to realize that this optimization problem is
a particular case of MSPM SaaSOPT in which �u =
�, 8u 2 U . Hence, Theorem 1 and 2 hold for the SSPM
subgame as well.

5.2 Stackelberg Game Equilibrium
We now turn our attention to the IaaS (leader) prob-
lem of determining the optimal pricing strategy. We
will deal with the MSPM and SSPM separately.

8. F is strongly monotone on K if there exists a constant c > 0
such that for all pairs s, y 2 K, (s�y)T (F (s)�F (y)) � ck s�yk2
holds.

5.2.1 MSPM Game Equilibrium
As a first step, we demonstrate the existence of the
Stackelberg equilibrium of the game.

Theorem 3: There exists at least one Stackelberg
equilibrium of the MSPM game.

Proof: In the case of the MSPM, as shown below,
we can map the Stackelberg game to a Mathematical
Program with Equilibrium Constraint (MPEC) [3]. Under
the assumption that: (i) function F (s;�) is strongly
monotone, (ii) the set of IaaS provider feasible strate-
gies is a compact set, (iii) K is a compact set, Corollary
2 in [3] ensures the existence of the MPEC solution
and, in turn, of the Stackelberg equilibrium.

In order to compute the optimal IaaS pricing strat-
egy, we have to solve the IaaSOPT problem with the
additional (and non trivial) constraint that the SaaS
providers strategy s is a solution of the SaaS subgame.
The resulting problem takes the following form:

Problem IaaSMPEC

max
X

u2U
f̄u'+ d̄u� + su�u

subject to: �L  �u  �
U

u
, 8u (14)

s 2 SOL(�) (15)

where SOL(�) is the solution of the SaaS subgame.
As shown in Section 5.1 SOL(�) is a singleton and
can be computed by solving the variational inequality
V I(K,F (s;�)).

The problem IaaSMPEC is a Mathematical Program
with Equilibrium Constraint (MPEC) [3], that is, an op-
timization problem whose constraints include varia-
tional inequalities. Because of (15) we cannot solve the
MPEC directly. We thus follow the approach proposed
in [3] that, under the assumption that function F (s;�)
is strongly monotone, allows us to compute stationary
points of the MPEC.

As a first step, we replace (15) with its Karush Kuhn
Tucker (KKT) conditions [33]. We obtain the following
non linear programming problem:

max
X

u2U
f̄u'+ d̄u� + su�u

subject to: �L  �u  �
U

u
, 8u (16)

F (s,�)�rsg(s)� = 0 (17)
g(s)  0 (18)

�
T
g(s) = 0, � � 0 (19)

where � 2 <l is the vector of Lagrangian multipliers,
with l the number of constraints that define K. Such
problem cannot be directly solved because the con-
straints do not satisfy any standard constraint quali-
fication and the complementary-type constraints (19)
are very complicated and difficult to handle. Again,
following the general framework presented in [3], we
consider a sequence of smooth and regular problems,
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obtained by perturbing the original problem, the so-
lutions of which converge to a solution of the original
problem, i.e., to a stationary point of the MPEC.
Specifically, we consider the perturbed problem P(µ)
with parameter µ:

Problem P(µ)

max
X

u2U
f̄u'+ d̄u� + su�u

subject to: �L  �u  �
U

u
, 8u (20)

F (s,�)�rsg(s)� = 0 (21)
g(s) + z = 0 (22)

p
(zi � �i)2 + 4µ2 � (zi + �i) = 0, 8i 2 {1, . . . , l} (23)

where z 2 <l is an auxiliary variable. In P(µ),
constraint (22) replaces constraint (18), while con-
straint (23) replaces (19). It can be shown that P(µ)
corresponds to the original problem when µ = 09. We
refer the reader to [3] for further details.

Problem P(µ), µ 6= 0, is a smooth regular problem
which can be solved using standard optimization
tools. Let �

⇤(µ) denote a solution of P(µ). From [3],
we have that �⇤(µ) converges to a stationary point of
the IaaSMPEC as µ ! 0. To compute a solution we
use Algorithm S presented in [3] (see Algorithm 1),
which solves a sequence of problems P(µ). The al-
gorithm stops when the Euclidean distance between
two successive iterations is lower than a suitable
threshold ✏. We verified that in practice the algorithm
converges very quickly. In the experiments described
in Section 6, the algorithm converged in no more than
3 iterations using ✏ = 10�4.

Algorithm 1 Algorithm S [3]

Let {µk} be any sequence of nonzero numbers with
limk!1 µk = 0. Choose w0 = (�0, x0, z0,�0) 2 <3N+l+l,
and set k = 1
while ||e|| > ✏ do

Find a stationary point wk of P (µk)
e = wk � wk�1

k = k + 1
end while

5.2.2 SSPM Game Equilibrium
The analysis of the SSPM game is complicated by the
presence of integer variables in the SaaS providers
problem SSPM SaaSOPT

10. As a result, the IaaS rev-
enue ⇥I is in general not continuous and thus the
assumptions of Corollary 2 [3] are not satisfied. Dis-
continuity may arise in correspondence of spot prices
equal to the SaaS provider bids, since, when the price
exceeds a bid, the corresponding SaaS provider gets

9. Observe that for µ = 0,
p

(zi � �i)2 � (zi + �i) =
�2min(zi,�i) and, making �2min(zi,�i) = 0, 8i, implies z� = 0
and satisfaction of constraints (19).

10. We remark that we do not impose any integer constraint on
the number of VMs purchased by the SaaS providers. The integer
variables in SSPM SaaSOPT are just auxiliary variables.

no spot VM at all, which might result in a jump of
the IaaS provider revenue.

For the SSPM game we resort to the following
approach. The basic idea is to divide the original
SSPM game in multiple Stackelberg games, so that the
following properties hold: (i) the collection of these
games is equivalent to the original game SSPM, (ii)
the equilibrium of each game can be computed using
an MPEC, and (iii) one of these equilibria corresponds
to the original SSPM game equilibrium.

Let us assume that all SaaS providers’ bids are dif-
ferent and let SaaS providers u = 1, . . . , N be labeled
in increasing bid order, i.e., �

U
1 < �

U
2 < . . . < �

U

N
.

The result can be easily generalized to the case where
multiple SaaS providers bid the same value. Denote
by Ik = (�U

k
,�

U

k+1], k = 1, . . . , N�1 and I0 = [�U
0 ,�

U
1 ],

where �
U
0 = �

L, the non-overlapping intervals delim-
ited by the successive increasing bid values. If we
restrict the SSPM problem to any such interval, we
obtain a Stackelberg game, denoted by SSPMk, which
is basically SSPM with the spot price � limited to the
interval Ik and the set of SaaS providers restricted
to Uk = {u 2 U |�U

u
> �

U

k
} = {k + 1, . . . , N}. By con-

struction, the collection of these games is equivalent to
the original game SSPM. Consider a slightly modified
version of each problem denoted by SSPMc

k
, where the

interval Ik is replaced by its closure I
c

k
= [�U

k
,�

U

k+1].
Each such a problem has the same structural prop-
erties of the MSPM problem, and Corollary 2 in [3]
ensures the existence of a Stackelberg equilibrium.
The following key result holds.

Theorem 4: There exists at least one Stackelberg
equilibrium of the SSPM game. Let (�⇤

k
, s

⇤
k
) be

the Stackelberg equilibrium of the subproblem
SSPMc

k
, 8k 2 {0, 1, . . . , N � 1}, and let �

⇤ de-
note the price corresponding to the largest revenue
⇥⇤ = maxk=0,...,N�1

P
u2U s

⇤
u,k

�
⇤
k
. The equilibrium

point (�⇤
, s

⇤) is a Stackelberg equilibrium for SSPM.
For its length, the proof is presented in the supple-

mental file to this paper.
Theorem 4 ensures the existence of an equilibrium

and indicates a simple approach to compute it which
involves the solution of (at most) N MPECs: we
compute the Stackelberg equilibrium (�⇤

k
, s

⇤
k
) of each

SSPMc

k
, k = 0, . . . , N �1, using Algorithm S, and then

we take the spot price �
⇤ corresponding to the largest

⇥⇤ = maxk=0,...,N�1
P

u2U s
⇤
u,k

�
⇤
k
. The pair (�⇤

, s
⇤)

is the problem equilibrium.

6 EXPERIMENTAL RESULTS

In this section we investigate through numerical ex-
periments the behavior of the proposed provisioning
and pricing strategies. We start in Section 6.1 with
a comparison between the SSPM and the MSPM
strategies: we compute the system equilibria in dif-
ferent scenarios, and study how flat, on demand,
and spot VMs are allocated among the competing
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SaaS providers and the associated spot prices under
different workload and bidding configurations. Then,
in Section 6.2 we compare our strategies with the
service provisioning and pricing policy studied in [4].

For the sake of comparison, in our experiments
we consider the SaaS providers utility function pro-
posed in that work, which satisfies our assumptions
in Section 3 (we omit the proof for space reason). The
authors of [4] assume that, for each SaaS provider,
the SLA takes the form of an upper bound on the
service response time R

max
u

. The SLA also specifies
the user per-request cost Cu = Cu(1� Ru

Rmax
u

), which is
assumed to be a linear function of the service response
time Ru. We note that Cu is a decreasing function of
the response time and becomes negative (hence, the
SaaS provider incurs into a penalty) when Ru > R

max
u

.
This model allows to consider a soft constraint on
the response time, which enables the SaaS provider
to trade-off revenues and infrastructural costs, and to
model the SaaS providers gain to let them buy more
VMs than the bare essential so to satisfy the SLA,
increase the service reliability and performance and,
in turn, their reputation.

Each service hosted on a VM is modeled as an
M/G/1/PS queue with an application dependent ser-
vice rate µu. Assuming a perfect load sharing among
multiple VMs assigned to the service, the service
average response time is given by:

E[Ru] =
fu + du + su

µu(fu + du + su)� ⇤u

provided the stability condition ⇤u
µu(fu+du+su)

< 1
holds. Taking into account the infrastructural per-time
unit cost for the provisioned VMs (where �u = � in
case of SSPM), the per-time unit SaaS profit is:

⇥u = ⇤uCu

✓
1� 1

Rmax
u

fu + du + su

µu(fu + du + su)� ⇤u

◆

� 'fu � �du � �usu (24)

where the first term is the average per service rev-
enues ⇤uCu = ⇤uCu(1 � E[Ru]

Rmax
u

) and the remaining
terms the VMs costs.

In the experiments, we consider one IaaS provider
which leases its resources to 10 SaaS providers. If
not differently stated, we set S = 160, ' = 0.24$,
� = 1.24$, f̂u = 4, µu = 10 req/s, U

max
u

= 0.9,
�
L = 0.1$, �

U
u

= 0.5$, Cu = 1$, R
max
u

= 1 s for
all u 2 {1, . . . , 10} and 1 hour as time unit. We also
assume all SaaS providers are characterized by the
same value of predicted load ⇤u. Such parameters
setting corresponds to that adopted in [4] for the sake
of comparison. For the analysis, we implemented in
MATLAB the algorithms presented in Section 5 as
well as those in [4]. For the solution of the MPEC
problem via Algorithm 1, µ is initially set to 10�4 and
reduced by a factor of 100 at each iteration and the
stopping parameter ✏ is set to 10�4.

6.1 SSPM versus MSPM

In this section we compare the SSPM and MSPM
strategies. We first consider a homogeneous scenario
in which all SaaS providers are characterized by the
same parameters. In this scenario the behavior of the
two policies coincides, but it is useful to understand
the general features of the two strategies. We then
consider three heterogenous scenarios to better assess
the differences of the two pricing strategies.

In the homogeneous scenario, where all SaaS
providers are characterized by the parameters setting
described above, by symmetry all SaaS providers
acquire the same number of VMs. The results are
shown in Figures 1a, 1b, and 1c, for different val-
ues of the predicted load ⇤u ranging from 20 to
80 req/s. Figure 1a shows that, independently from
the predicted load, each SaaS provider uses all the
reserved flat instances (f̂u = 4). The number of on
demand VMs bought by each SaaS provider, instead,
grows from 0 to 11.18. This is no surprise since, the
higher the predicted load, the greater the number
of VM instances needed to ensure the SLA. As a
consequence, the number of resources unsold by the
IaaS provider after the first stage decreases as the
load increases (see Figure 1b). This directly affects
the optimal spot price (see Figure 1c) and, in turn,
the number of spot VMs each SaaS provider can buy
during the second stage. At high loads, only few
resources are left and the IaaS provider can set the
spot price to its maximum value �

⇤ = 0.5$ at which
all VMs are sold. For intermediate level of load, more
resources remain unsold after the first stage. The IaaS
provider decreases the spot price, thus incentivizing
the SaaS providers to buy more VMs. In this scenario,
the lower per spot VM revenue is compensated by the
higher volume of spot instances sold. Eventually, for
loads below ⇤u = 57 req/s the IaaS provider does not
further reduce the spot price, as the additional spot
VMs sold would not compensate the lower per VM
revenue. As a consequence, as the load decreases, the
spot price remains fixed at 0.31$ and some capacity
unsold (see Figure 1b).

We now turn our attention to the heterogeneous
scenario. In the next set of experiments we consider a
scenario with only two classes with 5 SaaS providers
each. We fix to 0.5$ the bid of the SaaS providers
belonging to Class 1 and we study the IaaS provider
behavior when the bid of Class 2 SaaS providers
varies in the interval [0.1, 0.5]. This scenario can be
regarded as a simple variation of the homogeneous
one, which was characterized by one class of 10 SaaS
providers with a maximum bid equal to �u = 0.5$.
It is also worth observing that for both classes of
SaaS providers the number of flat and on demand
VMs bought does not change with respect to the ho-
mogeneous scenario shown in Figure 1a. This simply
follows from the fact that the amount of flat and on
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Fig. 1: Behavior of SSPM and MSPM strategies in the homogeneous scenario

demand instances depends neither on the spot pricing
strategy nor on the bids, but only on the SaaS provider
parameters which assume the same values as in the
homogeneous experiments.

In Figures 2-4 we show the optimal spot price
and the IaaS provider revenue achieved under the
SSPM and MSPM strategies, for increasing value of
predicted load ⇤ = 40, 60 and 80 req/s, respectively.
Differently from the homogeneous scenario, we can
observe that the spot price under SSPM and MSPM
exhibits significantly different behaviors as the load
varies, as also does the IaaS provider revenue. We
analyze the strategies in detail below.

Figure 2 shows the optimal spot price and IaaS
revenue under the SSPM and MSPM strategies for
a predicted load of ⇤u = 40 req/s. To analyze the
policies behavior, let us first observe that in the ho-
mogeneous scenario the optimal IaaS spot price for
a predicted load of ⇤u = 40 req/s was 0.31$ (see
Figure 1c). It is then no surprise that when Class 2
provider bid lies in the interval [0.31,0.5]$ the optimal
spot price is 0.31$ under both policies (and in the case
of MSPM for both classes) as, due to the relative high
bid of Class 2 providers, the scenario is practically
equivalent to the homogeneous one, despite the dif-
ferent bids. Conversely, the two policies differ when
Class 2 providers bids are lower than 0.31$: under
the SSPM policy, the IaaS provider needs to decrease
the spot price to match the lower Class 2 providers
bid (Class 2 providers would otherwise be cut off
with a negative effect on the IaaS revenue); differently,
under the MSPM policy, the IaaS provider can dif-
ferentiate the price and keep Class 1 providers spot
price equal to 0.31$ while setting Class 2 providers
spot prices equal to their (lower) bid. The difference is
reflected in the IaaS revenues under the two policies,
with MSPM yielding higher values than SSPM when
Class 2 providers bids are lower than 0.31$.

Figure 3 shows the results for a predicted load
of ⇤u = 60 req/s. For this value of the predicted
load, the optimal IaaS spot price in the homogeneous
scenario is 0.36$ (up from 0.31$). Following the same
arguments as above, it is then clear that when the bid
of Class 2 SaaS providers is in the interval [0.36,0.5]$,
the optimal spot price is 0.36$ under both policies.

The policies behavior changes significantly for lower
values of the bids, however. Under the SSPM policy,
the IaaS provider decreases the spot price to match the
lower Class 2 customers’ bid, till the bids decrease to
0.19$. For lower values of Class 2 providers’ bids, the
IaaS provider maximizes its revenue by increasing the
price to 0.31$, therefore cutting off Class 2 customers
and selling spot instances to Class 1 customers only
(observe that 0.31$ is the optimal spot price when
resources are not saturated, which is the case, despite
the higher load, because only half of the customers re-
ceives spot instances). The behavior under the MSPM
policy is quite different; as Class 2 bid decreases, as
before, the IaaS provider sets the spot price of Class 2
customers equal to their bid; at the same time, the IaaS
provider instead increases the spot price for Class 1
providers, exploiting their willingness to pay up to
0.5$ per spot instance. Also in this scenario, the price
differentiation under the MSPM strategy yields higher
revenue to the IaaS provider, as shown in Figure 3c.

The results for a predicted load of ⇤u = 80 req/s
are shown in Figures 4a, 4b and 4c. Given the high
load, this scenario is characterized by the availability
of only few spot instances which, in the homogeneous
case, are sold by the IaaS provider at the maximum
price of 0.5$. In the heterogeneous case, under the
SSPM policy, the IaaS provider sells all the spot VMs
to Class 1 SaaS providers at the maximum price.
Under the MSPM policy the behavior is again quite
different. The IaaS provider, as in the previous case
sets Class 2 providers spot price equal to their bid;
the spot price assigned to Class 1 providers is kept
equal to their bid of 0.5$ only when the bid of
Class 2 providers is higher than 0.31$, otherwise it is
decreased as well. Indeed, at equilibrium, to increase
its revenue, the IaaS provider needs to reduce the
number of VMs assigned to SaaS providers with lower
bids. Since these players cannot be excluded as in
SSPM, the IaaS strategy is to decrease the spot price
of Class 1 SaaS providers so that they are willing to
buy more VMs. As shown in Figure 4c, in this high
load scenario, differently from the previous two cases,
it is the SSPM strategy to yield higher revenues.

The variety of behavior under the two different
policies is well summarized in Figure 5, which plots
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Fig. 2: Behavior of SSPM and MSPM strategies with two classes of SaaS providers (predicted load 40 req/s)
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Fig. 3: Behavior of SSPM and MSPM strategies with two classes of SaaS providers (predicted load 60 req/s)
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Fig. 4: Behavior of SSPM and MSPM strategies with two classes of SaaS providers (predicted load 80 req/s)
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Fig. 5: Difference in the IaaS provider revenue using
the MSPM and SSPM strategies with two classes of
SaaS providers and an increasing predicted load.

the difference �R between the IaaS provider revenue
under the MSPM and SSPM strategies for different
values of the predicted load and Class 2 providers
bids. At lower load rates, when there is a higher
amount of available spot VMs, the flexibility of the
MSPM strategy ensures higher revenues (�R > 0)
over SSPM. Conversely, at higher load rates, and less
resource available, the IaaS provider revenue is higher
under SSPM (�R < 0). Moreover, the revenue gap in-
creases as the scenario becomes more heterogeneous,

i.e., when Class 2 SaaS providers bid is close to 0.1$.

We conclude the analysis by considering a het-
erogeneous scenario where all SaaS providers’
bids are different, taking distinct values in the
set {0.1, 0.14, 0.18, 0.22, 0.26, 0.30, 0.34, 0.38, 0.42, 0.46}
(one for each SaaS provider). The corresponding re-
sults are illustrated in Figure 6. As shown in Figure 6a,
under the SSPM policy the IaaS provider sets the
spot price to 0.1$ (corresponding to the lowest SaaS
providers bid, that is �

U
1 = 0.1$) for values of the

predicted load lower than 40 req/s. In this interval,
the resources demand is low and the IaaS provider
finds more convenient to set a low price to incentivate
all the SaaS providers to buy (more) VMs. As the
predicted load increases above 40 req/s, so does the
spot price. This is expected since, as the predicted
load increases, the SaaS providers become more ag-
gressive in resource demand, which in turn allows the
IaaS provider to sell the unsold resources at higher
and higher prices. It is worth observing that in this
example the spot price is piecewise constant, taking
values in a discrete set corresponding to the different
SaaS providers’ bids (0.1$, 0.14$, . . .): basically, the
IaaS provider sets the price equal to the lowest bid
among the SaaS providers still buying spot VMs (this
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(c) Difference in the IaaS provider
revenue using the MSPM and
SSPM strategies

Fig. 6: Strategies behavior in a heterogeneous scenario with different bids as function of the predicted load

is exactly the highest price to which all the remaining
SaaS providers buy spot VMs). As the load increases,
the IaaS provider can increase the price, cutting off
each time one IaaS provider, and setting the new price
to the lowest bid of the remaining set of customers.
Eventually, at high load, the price equal the highest
bid of 0.46$, which means that all the spot VMs are
sold to the SaaS provider with the highest bid.

Under the MSPM policy, the IaaS behavior sig-
nificantly differs from the previous case. For those
SaaS providers with a bid lower than 0.34$, the IaaS
always sets the spot price up to the maximum value
(the curves for those providers are not shown in
the figure). Conversely, for those SaaS providers with
higher bids, the behavior varies with the predicted
load. When the predicted load is lower than 50 req/s,
the spot prices are constant and equal to 0.31$ (again
the price which maximizes the IaaS revenue at low
load previously observed in Figures 1(c)). For higher
values, the IaaS provider sets the spot prices for
those customers up to their bid, thus exploiting their
willingness to pay more. When the predicted load
is greater than 75 req/s, the spot prices decrease
again. In this case, as we have already discussed
(previous experiment, Figure 4b), the SaaS providers
with lower bids cannot be excluded as in SSPM, and
the IaaS strategy is to decrease the spot price of SaaS
providers with higher bids, so that they are willing
to buy more VMs. In Figure 6c we plot the difference
between the revenue under the two policies, which
shows that the SSPM strategy yields higher revenue
at higher load than MSPM, while at lower load it is
the flexibility of the MSPM strategy to ensure higher
revenues (�R > 0).

These experiments clearly indicate that, when there
are few spot VMs and demand is greater than supply,
it is more profitable to sell spot VMs only to those
SaaS providers that are willing to pay more. The SSPM
policy, which uses a single spot VM selling price thus
cutting off SaaS providers who bid less, does exactly
that. Conversely, when the demand is smaller than
the supply, it is more profitable to sell resources to all
customers regardless of their bid, possibly adopting
different spot prices. This is somehow expected, and

MSPM yields indeed higher revenues to the IaaS
provider.

6.2 Comparison with the Strategy in [4]

We now compare the SSPM and MSPM strategies with
the one presented in [4]. Ardagna et al. studied a
provisioning and pricing problem which is similar to
the MSPM strategy presented in this paper. Differently
from our two-stage strategy, they consider a one-stage
scheme, where, at the same time: the SaaS providers
determine the number of flat, on demand, and spot
instances to buy as to maximize their profit given
the SLA of the offered service; and, the IaaS provider
determines the spot price �u as to maximize its rev-
enue, taking into account that each SaaS provider is
characterized by a maximum price �

U
u

it is willing to
pay for spot instance per hour. The conflicting situa-
tion is modeled as a GNEP and the provisioning and
pricing policy is derived from the game equilibrium.
In particular, given the specific problem structure,
they showed that the dominant IaaS provider strategy
consists in setting �u = �

U
u

, i.e., in charging each SaaS
provider always the maximum price.

Despite the similarities, our pricing and provision-
ing strategies are substantially different: in our two-
stage approach, the SaaS providers first buy only flat
and on demand instances, while the spot instances
are provisioned only in the second stage, with the
IaaS provider determining their price(s) so to maxi-
mize its revenue. The resulting conflicting situation
is modeled as a Stackelberg game, where the IaaS
provider takes the role of the leader. Comparing the
GNEP and Stackelberg-based approaches, we expect
that under our strategies the SaaS providers are more
likely to buy a higher number of flat and especially
of on demand instances, which are more expensive
(but also more reliable, as the IaaS provider can-
not terminate them), because they are provisioned
in the first stage. This should result in higher cost
for the SaaS providers and higher revenue for the
IaaS provider. Moreover, in the second stage, since
the competition for the spot instances is modeled as
a Stackelberg game, we expect the IaaS provider to
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experience higher revenues from the spot instances
auction.

For the sake of comparison, we simulated a dy-
namic scenario using the three different strategies to
study how they affect the IaaS provider revenue in the
long run. We considered 10 SaaS providers, each of-
fering a single service. Every hour each SaaS provider,
given the forecasted load for the next hour, determines
the number and type of VMs to allocate, while the
IaaS provider determines the spot price. The predicted
load ⇤u of each SaaS provider is uniformly generated
in the interval [20, 80] req/s for every hour. For all
the SaaS providers we set R

max
u

= 2s, Cu = 2$, and
U

max
u

= 0.9. The remaining parameters are randomly
generated in the following sets: µu = {5, . . . , 15}
req/s, f̂u = {3, 4, 5} and �

U
u

= [0.1, 0.5]$. Since in [4]
the variable s

U is fixed a priori and is independent
from the amount of sold flat and on demand in-
stances, we fixed s

U = 30 for the whole simulation for
all the strategies. We run a simulation corresponding
to a period of one week (168 hours).

TABLE 2: Total number of VMs sold and relative
revenue for the IaaS provider

flat on demand spot total
SSPM 6961.75 8706.31 4981.84 20649.9
MSPM 6961.75 8706.31 5040 20708.06
GNEP 6961.75 3910.19 5040 15911.94
SSPM 1670.82$ 10795.82$ 1551.05$ 14017.69$
MSPM 1670.82$ 10795.82$ 1734.65$ 14201.29$
GNEP 1670.82$ 4848.63$ 1575.48$ 8094.93$

Table 2 shows the breakdown of the number of
allocated VMs and IaaS revenue per type of instance.
As anticipated, our strategies result in a higher num-
ber of on demand instances (more than twice as
much). The number of spot instances is the same,
except for the SSPM strategy, but this is actually a
consequence of having a fixed �

U 11. Nevertheless, the
MSPM strategy yields higher spot VMs revenues. This
follows from the fact that the IaaS provider can choose
for each SaaS provider the optimal price (from the
IaaS perspective point of view), i.e., the price which
maximizes the amount that each SaaS provider invests
on spot instances, and which does not necessarily
correspond to the SaaS provider maximal bid. Note
that, in this experiment, even the approach from [4]
yields a greater revenue from spot instances than
the SSPM. This stems from the fact that in [4] the
authors consider a single stage provisioning where
the number of flat, on demand and spot instances is
determined all at once. In such a case, it is no surprise
that spot instances, which are cheaper, are preferred to
the on demand ones. We remark this approach results
in a higher fraction of sold spot instances, which being

11. For a more detailed comparison we should have modified
the model in [4] to reflect our approach, where the number of
available spot instances depends on the number of allocated flat
and on demand instances.

not a reliable type of instances, can result in a overall
degraded services offered to the SaaS users. In our
two stage approach, instead, we guarantee the QoS
using only flat and on demand, and use spot instances
only to further improve performance.

The average per hour SaaS provider profit using
the SSPM, MSPM, and the GNEP approach in [4]
is 72.62$, 72.61$ and 74.43$, respectively. As already
shown in Table 2, our approach results in a higher
number of VMs bought by the SaaS providers and a
corresponding higher cost. For space reasons, we do
not show the profit of each SaaS provider. However,
the SaaS profits decrease only by a small fraction
and in some cases they even increase. This is not
completely unexpected: since the number of VMs per
service increases, the service response time decreases,
which, in turn, given the SaaS utility function, yields
higher revenues.

7 CONCLUSIONS

In this paper we proposed service provisioning and
pricing strategies for a Cloud system using a game
theoretical approach. We considered several SaaS
providers which offer services with QoS guarantees
by acquiring flat, on demand and spot VMs provided
by an IaaS provider and aim at maximizing their
revenue. We modeled the resource provisioning as a
two-stage process: in the first stage, the SaaS providers
buy flat and on demand VMs at a fixed price; in
the second stage, they bid to buy spot VMs the IaaS
provider offers using its spare capacity. Given the
bids, the IaaS provider determines the spot price so
to maximize its revenue. We proposed the SSPM and
MSPM pricing strategies for the IaaS provider, which
differ for either using a single spot price or multiple
ones.

We modeled the second stage as a Stackelberg game
where the IaaS provider plays the game leader role
by setting the price(s) and the SaaS providers play
as followers and compete for the spot resources. We
proved the existence of the game equilibrium for
both the MSPM and the SSPM and we casted the
equilibrium computation as the solution of one (for
the MSPM) or more (for the SSPM) suitable MPECs.
The results show that when the customer demand
exceeds the supply, the SSPM yields higher revenues
to the IaaS provider. Conversely, when the demand
does not saturate the supply, it is the MSPM pricing
scheme which yields higher revenues, thanks to its
flexibility in the use of different prices for different
customers.

As future work, we will study distributed algo-
rithms and suitable protocols to compute the game
equilibrium in a real implementation. We will also ex-
tend and generalize the results of this paper towards
two directions: by considering more general pricing
schemes and by studying a scenario with multiple
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IaaS providers from whom the SaaS providers can
acquire resources.
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PROOF OF THEOREM 4
Proof: For the sake of readability, here we sum-

marize the assumptions and the notations used in the
proof of Theorem 4. For the sake of simplicity, in the
proof let us assume that all SaaS providers’ bids are
different and let SaaS providers u = 1, . . . , N be la-
beled in increasing bid order, i.e., �U

1 < �
U
2 < . . . < �

U

N
.

The result can be easily generalized to the case where
multiple SaaS providers bid the same value.

Denote by Ik = (�U

k
,�

U

k+1], k = 1, . . . , N � 1 and
I0 = [�U

0 ,�
U
1 ], where �

U
0 = �

L, the non-overlapping
intervals delimited by the successive increasing bid
values. If we restrict the SSPM problem to any such
interval, we obtain a Stackelberg game, denoted by
SSPMk, which is basically SSPM with the spot price �

limited to the interval Ik and the set of SaaS providers
restricted to Uk = {u 2 U |�U

u
> �

U

k
} = {k + 1, . . . , N}.

By construction, the collection of these games is equiv-
alent to the original SSPM game.

To establish the main results, we need to consider a
slightly modified version of each problem denoted by
SSPMc

k
, where the interval Ik is replaced by its closure

I
c

k
= [�U

k
,�

U

k+1].
We first demonstrate the following two auxiliary

results.
Lemma 1: There exists at least one Stackelberg equi-

librium for the SSPMc

k
game, k = 0, . . . , N � 1.

Proof: For SSPMc

k
, the IaaS problem is a restricted

version of SSPM IaaSOPT with the additional con-
straint � 2 I

c

k
and a limited subset of providers

u 2 Uk, while the associated followers optimization
problem is Redux SSPMSaaSOPT . This problem
has the same structural properties of the MSPM prob-
lem, and Corollary 2 in [3] ensures the existence of a
Stackelberg equilibrium.

Denote by ⇥c

i,k
(�) the value of the SSPMc

k
objective

function, i.e., the IaaS revenue, for a spot price � 2 I
c

k
,

k = 0, . . . , N � 1. The following holds:
Lemma 2: ⇥c

i,k�1(�
U

k
) � ⇥c

i,k
(�U

k
), k = 1, . . . , N � 1.

Proof: It suffices to observe that the SSPMc

k
has

one less SaaS provider than SSPMc

k�1 (SaaS provider
k, to be specific). Intuitively, for � = �

U

k
, the amount

of resources sold by the IaaS provider to the {k +
1, . . . , N} SaaS providers can never be larger than the
amount sold to the {k, . . . , N} SaaS providers.

More formally, in the case of SSPMc

k
the overall

amount sIc
k

of spot VMs sold at �U

k
is:

sIc
k
= min

(
s
U
,

X

u2Uk

s̄u

)
,

where s̄u represents the amount of spot VMs that each
SaaS provider would need at �U

k
, i.e., it is the solution

of Redux SSPMSaaSOPT replacing constraint (13)
with su  s

U . Note that if
P

u2Uk
s̄u � s

U any
allocation of spot VMs s

0
Ic
k

< s
U would not be an

equilibrium for the players, since there is at least one
SaaS provider that can increase its revenue buying

some of the remaining VMs (this is essentially because
⇥u is a strictly concave function).

In the case of SSPMc

k�1 the overall amount sIc
k�1

of
spot VMs sold at �U

k
is:

sIc
k�1

= min

8
<

:s
U
,

X

u2Uk�1

s̄u

9
=

; .

Since in the SSPMc

k�1 game there is one more SaaS
provider, it is clear that SIc

k�1
� SIc

k
, from which

⇥c

i,k�1(�
U

k
) � ⇥c

i,k
(�U

k
) directly follows. This ends our

proof.
Lemma 2 guarantees that for any interval I

c

k
, k =

1, . . . , N � 1, the objective function at the left-hand
extreme for problem SSPMc

k
is not larger than the

objective function of problem SSPMc

k�1 at the right-
hand extreme of interval Ic

k�1.
We are now ready to establish the main results, i.e.

that there exists at least one Stackelberg equilibrium of
the SSPM game. Let (�⇤

k
, s

⇤
k
) be the Stackelberg equi-

librium of the subproblem SSPMc

k
, k = 0, 1, . . . , N � 1

and let �
⇤ denote the price corresponding to the

largest revenue ⇥⇤ = maxk=0,...,N�1
P

u2U s
⇤
u,k

�
⇤
k
. We

now show that (�⇤
, s

⇤) is a Stackelberg equilibrium
for SSPM. To this end, it suffices to show that the
maximum ⇥⇤ is attained in points other than the left-
extremes of the intervals Ic

k
, k > 0, which are not solu-

tions of the original SSPM problem. We prove this by
contradiction. Assume that the maximum value ⇥⇤ is
attained exclusively in correspondence of left-extreme
�
U

k
of the interval Ic

k
= [�U

k
,�

U

k+1], k > 0 (observe that
indeed, this is not a valid solution for SSPM, as SSPMc

k

has one less SaaS provider than SSPM for � = �
U

k
).

Lemma 2 then ensures that (at least) the same value
⇥⇤ is also achieved in correspondence of �

U

k
at the

right-extreme of the interval Ik�1 = [�U

k�1,�
U

k
], which

contradicts the hypothesis that ⇥⇤ is attained only at
the left extreme of the interval Ic

k
. This ends our proof.


