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I. ABSTRACT

In heterogeneous cellular network, task scheduling for computation offloading is one of the biggest

challenges. Most works focus on alleviating heavy burden of macro base stations by moving the computation

tasks on macro-cell user equipment (MUE) to remote cloud or small-cell base stations. But the selfishness of

network users is seldom considered. Motivated by the cloud edge computing, this paper provides incentive

for task transfer from macro cell users to small cell base stations. The proposed incentive scheme utilizes

small cell user equipment to provide relay service. The problem of computation offloading is modelled as

a two-stage auction, in which the remote MUEs with common social character can form a group and then

buy the computation resource of small-cell base stations with the relay of small cell user equipment. A

two-stage auction scheme named TARCO is contributed to maximize utilities for both sellers and buyers

in the network. The truthful, individual rationality and budget balance of the TARCO are also proved in

this paper. In addition, two algorithms are proposed to further refine TARCO on the social welfare of the

network. Extensive simulation results demonstrate that, TARCO is better than random algorithm by about

104.90% in terms of average utility of MUEs, while the performance of TARCO is further improved up to

28.75% and 17.06% by the proposed two algorithms, respectively.
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II. INTRODUCTION

With the proliferation of wireless communication devices such as smartphones, tablets, laptop computers

and so on, both spectrum and data transmission rate demands are becoming much higher. According to

the latest Cisco visual networking index report, the global mobile data traffic will be about 30.6 exabytes
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per month by 2020 [1]. To accommodate such urging demands, deploying small cells underlaying macro

cells as well as device-to-device (D2D) communications are the dominant strategies for the emerging next

generation wireless communications (5G). By deploying low transmission power small cells overlaid macro

cells, network coverage and capacity can be improved [2]. Meanwhile, D2D communication in a small

cell can further enhance the spectrum utilization efficiency via spectrum reuse such that the interferences

between D2D transmission pairs as well as between D2D pair and small cell user are well controlled.

Therefore, D2D based heterogeneous networks (HetNets) have been a hot research topic in recent years.

The prior art in D2D based HetNet mainly focused on coverage expansion [3], power control [4],

interference management [5], resource allocation [6], [7] and so on. As an effective solution to handle

channel fading and increase transmission rate in wireless communications, relay aided communication has

been widely used, including two-hop or multi-hop relaying and two-phase cooperative transmission [8].

Therefore, relay aided communication in D2D based HetNet can also improve the network performance.

For example, by hiring a small cell user equipment (SUE), the macro cell base station (MCB) can reach

to the macro cell user equipment (MUE) in the downlink transmission, thus the coverage of the macro cell

can be extended [9]. Authors in [10], [11] optimized the system spectrum efficiency and energy efficiency

via D2D relay as well as modes selection. A load balancing scheme for D2D-based relay communications

in HetNet is proposed by [12]. A small cell user relay aided downlink communication from macro base

station to remote macro cell user is proposed via D2D communication [13]. In the D2D based HetNet

architecture, there are a few papers that address incentive mechanisms. Authors in [14] proposed a D2D

based content sharing game to maximize cellular offloading. Zhang et al. [15] came out with a contract

theory based scheme to attract user equipment delivering data for the cellular base station.

Recently, Mobile-Edge Computing (MEC) has been proposed and it is an emerging paradigm to improve

the quality of experience (QoS) of mobile devices at the edge of pervasive radio access networks [16]. In

[17], a computation offloading mechanism for mobile users was implemented by offloading computation

tasks to a common server in HetNet. It is noteworthy that, in real applications, mobile devices are carried

by human with limited budget. A single resource user may not afford to buy the computation resources

on a single SCB. For example, a mobile user may just want to offload the translation task consisting of a

single phrase, however, at that time the SCB may want to lease out a whole computation resources larger

than finishing the simple translation task. In this case, the charging price of SCB may be very high and

it may not be motivated to execute the task due to small monetary revenue. In real scenarios, although

different mobile user may have different application level computation tasks, people in the same area may

have the same level social relations [18] or perform similar tasks, they can form a small scale social group

[19] to buy the computation services offered by the SCB. Group based auction [20] has been proposed
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and is proved to be an effective mechanism to collect small bids and hiring a bid agent to buy resources

from resource owners. When more users are willing to participate in the group based resource sharing,

the benefits of resource owners will also increase and the resource utilization efficiency will be enhanced.

Meanwhile, the revenue of individual buyers can be enlarged due to price discount [21].

On the computation offloading problem in D2D based HetNet, it is noteworthy that, part of works [9]–

[13] are under the asumption that users are willing to cooperate, which is far from realistic. In this paper,

we employ auction theory to provide incentive for mobile users. Some works [14]–[17] do not take relay

influence into consideration. It should be noted that when mobile users are far from the target server, direct

communication may not ensure the communication consistency and user QoS may suffer. Motivated by the

recent work [22] for mobile computing where master device is chosen to offload the computation tasks of

mobile users via D2D communication in HetNet, in this paper, we provide incentive for idle SUEs within

small cells to act as relays by offloading computation tasks of MUEs to small cell base stations (SCBs), i.e.

the edge servers. Moreover, most of existing researches on HetNet focus on maximizing the revenue of the

network infrastructure to optimize the load of base stations, instead of mobile users. Note that computation

tasks and resource demands are generally heterogeneous in real application. Thus, it is difficult to guarantee

the efficiency of mobile users, only by optimizing the base station’s traffic burden. Therefore, it is significant

to investigate new network paradigm on the existing two-tier HetNet archietecture. Inspired by the above

mentioned group based auction, this paper tries to group the MUEs in low signal area or far from the MCB,

and helps to select proper idle SUEs for each MUE group. Different from [20] and [23], in this paper, we

design the scheme tailored for relay aided coputation offloading taking account of user’s demands, where

user’s demands are not properly addressed in [20] and [23].

To effectively offload computation tasks of MUEs and design new mechanisms, we have to solve the

following challenges: (i) Running applications on MUEs are heterogeneous, such as text translation, video

decoding, machine learning tasks etc. Therefore, the budget and demand for each MUE are different.

Meanwhile, based on the distances from MUEs to SCBs, the valuation of each MUE for the computation

capability of SCBs is various. How to determine winning prices to attract MUEs is a challenge. (ii) From

the SCB’s perspective, offloading MUEs’ tasks will consume its power and computation cycles. Meanwhile,

for idle SUEs, their service for relaying MUEs should also be motivated because of the selfishness nature.

Therefore, how to provide monetary compensation should be carefully designed for both SUEs and SCBs.

(iii) Auction should be truthful, budget balance, individual rational and efficient. How to ensure the above

characteristics at the same time in a two-stage auction is a challenge.

The main contribution of this paper can be summarized as follows:

• Different from traditional auctions, in this paper, the social relations among different MUEs and the
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similarity between tasks are considered where MUEs can form a group with similar tasks or level of

social ties to buy computation resources from SCBs.

• To handle the selfishness nature of entities in the network and provide incentive for them, a group

based two-stage auction for relay aided computation offloading in HetNet (TARCO) is proposed.

• We prove the proposed scheme guarantees three important economic properties: truthful, budget

balance and individual rationality.

• To enhance the performance of TARCO, we design MWD and VITA algorithms to improve the social

welfare of the network. Extensive simulation results demonstrate that TARCO is about 104.90% better

than RND algorithm on average utility of MUEs and VITA is 28.75% better than TARCO and MWD

outperforms TARCO for about 17.06%.

The remainder of this paper is organized as follows. Section III discusses related works on task offloading

in the HetNet, both non-incentive and incentive based works have been compared. Section IV presents the

system model. Section V shows the detail of two-stage auction scheme. In Section VI we prove the economic

properties of the auction scheme. Then we propose improved schems to enhance the social warefare of the

system in Section VII. Section VIII gives performance evaluation results and finally Section IX concludes

this paper.

III. RELATED WORK

Recently, there has been related work on user association, computation or traffic offloading in heteroge-

neous wireless networks. Both non-incentive based and incentive based schemes have been proposed. In

the following, we summarize and compare the related work on the above categories.

A. Non-incentive based schemes

Some works study D2D based user association in HetNet [11] [24]. Xiao et al. [11] proposed an energy

efficient mode selection and user association scheme. The MCB acts as a central controller to determine

which one of SCB and MCB that the mobile device should be attached to. Meanwhile, D2D relay mode

and direct communication mode selection is also considered. Liu et al. [24] adopted a D2D two-hop relay

to help mobile users get access to neighbouring base stations. In this paper, tasks on MUEs in the two-tier

HetNet are offloaded to SCBs instead of the far away MCB to conquer the high channel fading and low

signal obstacles of MUEs.

Rahman et al. [9] considered the downlink coverage extension from the MCB to MUEs via the D2D

cooperation between SUEs and MUEs in a single macro cell. In this paper, we focus on the uplink

transmission by offloading the computation task from MUEs to SCBs. The most recent work by Cao
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et al. [25] designed a hybrid traffic offloading scheme for HetNets where mobile users can get access to

SCBs with the help of mobile relays via D2D communication. Their objective is to maximize the number

of mobile users admitted into the whole network, through MCB or SCBs. The problem is formulated as an

integer linear programming and solved by dynamic programming. Different from [25], this paper mainly

focuses on MUE’s tasks offloading to the SCB with help of SUE relays. The benefits of both SUEs and SCBs

can be ensured by the Tarco scheme. In [26], a heuristic method was proposed to detour congested MCB

traffic to uncongested SCBs with the help of D2D relay nodes. However, only skeletal numerical analysis

is given by [26], which cannot be directly deployed. Thus we carry out with a distributed implementation.

B. Incentive based mechanisms

Recently, the incentive based schemes have been proposed. Hua et al. [27] proposed a truthful auction

framework for femtocell access between MUEs and femtocell base stations. A dynamic game is designed

by Zhu et al. [2] to offload traffic from the MCB to SCB service providers. However, both in [27] and [2],

relay is not used.

LeAnh et al. [28] came out with a Stackelberg game based offloading mechanism by transferring part

of MUE’s data to the SCB via SUE relay nodes. The MUE is the leader while candidate SUE relays are

followers. The optimal power allocation and relay selection is conducted via leader-follower pricing. Later,

Ho et al. [29] proposed a two-stage Stackelberg game for SCBs to admit MCB’s traffic from the perspective

of network fixed infrastructure, however, relay influence is not considered. Meanwhile, they do not consider

SCB’s heterogeneity.

Methods proposed by other literatures cannot be applied in this paper. Yang et al. [23] studied the

spectrum group auction in cognitive radio networks. Later, Wang et al. [30] came out with a scheme to

allocate both channels and cooperative relay nodes for cooperative cognitive radio networks with two-stage

group auction. However, in their work, the ask price at each spectrum owner is same for different buyers.

In computation offloading, the tasks are different and for each SCB, the ask price may not be constant for

all buyers due to different location and channel fading conditions. In mobile cloud computing, Jin et al.

[31] carefully designed an incentive-compatible auction scheme between cloudlets and mobile users. The

cloudlets are edge servers to offload traffic of remote cloud. Similar to [31], the SCBs can be regarded as

cloudlets to admit computation tasks sent from mobile users.

Based on the observations, to offload the computation tasks of MUEs with relay SUEs and motivate both

SUEs and SCBs should be properly handled. New schemes should deal with heterogeneous computation

offloading tasks as well as SCB’s heterogeneity.
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IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, firstly we present the system model, then the computation offloading problem of MUEs

is formulated as a two-stage auction. At last, we introduce related economic properties that auction scheme

should follow. The basic notations are shown in table I.

A. Main Idea of TARCO Scheme

The main idea of our proposed TARCO scheme is to provide incentive and utilize D2D communications

to assist the computation offloading of MUEs to local SCBs, with the aim to maximize utilities of both SCBs

and MUEs. Take Fig. 1 as an example, when there are some MUEs in the high channel fading area or low

signal region, they cannot directly to offload their computation tasks to neighbour SCBs without the help of

SUE relays. The proposed TARCO scheme allows MUEs to access the SCBs by relaying the computation

data via SUE relays in the coverage of corresponding SCBs. Intuitively, TARCO can improve the system

performance by reducing the traffic flowed to MCB and reduce the MUE’s energy consumption with a

lower transmission power. It should be noted that for MUEs with high mobility and moving constantly, it

may get access to MCB to avoid frequent handover, which is out of the scope of this paper.

�
�

�

Fig. 1. Network Model

B. System Model

In our scenario, we assume all nodes stay static in a given auction period. In the network shown in Fig.

1, there is one MCB and M SCBs in the coverage of the MCB and neighbouring SCBs have orthogonal

frequency bands [32]. Meanwhile, MUEs are heterogeneous and need to perform different computation

tasks. Each offloading task contains a QoS requirement information such as bandwidth and CPU cycles.

Each MUE may have its own preference for the SCB based on its geological position, channel condition
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TABLE I

NOTATIONS FOR SYSTEM MODEL

Notations Meaning

s
j
i , Si The jth MUE in the ith SUE group, the ith

group

N , ni Number of SUEs and MUEs in the ith SUE

group

b
j
i (k), v

j
i (k) True bid and valuation of s

j
i for the kth SCB

d
j
i (k) Demand of s

j
i for the kth SCB

b̄
j
i (k), v̄

j
i (k) Bid and valuation of s

j
i for the kth SCB

p
j
i (k), Pi s

j
i (k)’s and the ith SUE’s payment for the kth

SCB

Bk
i The ith SUE’s bid for the kth SCB

Fi(k) The total payment of the ith SUE for the kth

SCB

Ak Ask or reserve price of the kth SCB

pc The clearing price

u
j
i The utility of MUE s

j
i

Ui The utility of the ith SUE ri
Uk The utility of the kth SCB ek
Ew, Rw Winning set of SCBs, Winning set of SUEs

Sw
i Winning set of MUEs for SUE ri

and distance from the SCB. Since MUEs within the same location may have similar relationships [18]

and sense of channel conditions, they may get-together and form a communication social group. In total,

there are N groups of MUEs. By adopting interference mitigation technologies [33], interferences between

adjacent groups can be properly handled. Thus in this model, we do not consider the interference between

small cells. Based on computation tasks, for the benefit of simplicity, we assume each MUE may require

different number of CPU cycles. In the ith social group Si, where i ∈ [1, N ], there are ni MUEs and

Si = {s
1

i , s
2

i , · · · , s
ni

i }. We use E = {e1, e2, · · · , eM} to denote the set of SCBs, i.e. the edge servers and

R = {r1, r2, · · · , rN} to denote the set of SUEs. The kth SCB is denoted by ek, k ∈ [1,M ]. For each SCB

ek, each MUE sji has a CPU cycle demand dji (k), its valuation vji (k) and the budget bji (k) for the maximum

payment. For the benefit to express the preference of MUE sji towards ek, we define

vji (k) = max{
CR(s

j
i , ri, ek)

CD(s
j
i , ek)

, 0}. (1)

It should be noted that the CPU cycle demand may be different for different SCBs because of the location

of SCBs and the traffic burden on them.

We design a two-stage hierarchical auction for the computation offloading. TARCO consists of two single

round sealed bid auctions, they are tier I auction and tier II auction accordingly. The tier I auction is between

each social group Si and SUE relay ri. Each SUE relay ri is in charge of all the members in Si. The tier II

auction is between SUE ri and SCB ek. Let Bk
i be the ri’s bid for SCB ek, i ∈ [1, N ], k ∈ [1,M ]. Then the

ask price of ek is Ak, which is the reserve price. We assume each social group can be served by one SCB
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at most because serving for multiple social groups will cause longer delays. Meanwhile, we also assume,

each members inside the group will choose only one SCB.

In tier I aucton, for SCB ek, each member of Si submits the bid βj
i (k) = {b

j
i (k), v

j
i (k), d

j
i (k)} to ri. Note

that sji may not be honest and report its true bid, therefore we have β̄j
i (k) = {b̄

j
i (k), v̄

j
i (k), d

j
i (k)} if it may

bring higher utility. For the SUE ri, after gathering the group member’s bids, the SUE ri will determine

winning MUEs in Si(k), which is denoted by Sw
i (k) and Sw

i ⊆ Si. If sji ∈ Sw
i (k), and ek is selected by

ri, then sji will be charged pji (k). For ri, the gathered bid is Fi(k). In tier II, ri submits its bid for SCB

ek as Bk
i , where i ∈ [1, N ], k ∈ [1,M ]. A double auction will be conducted to determine how many CPU

cycles to allocate to relay SUEs and the payments for winners. If the SUE fails to obtain resources from

the SCB, no transactions will happen and the utility of MUE members in the group will be zero.

Given the above settings, we denote Ew ⊆ E as winning set of SCBs and Rw ⊆ R as the winning relay

set in tier II auction. Let Pi be the price the wining SUE ri needs to pay for the SCB. If SUE ri wins then

the payment of ri should not be greater than its gathered bid Fi(e
w
i ), where ewi ∈ {0, 1, 2, · · · ,M}.

C. Problem Formulation

Let uj
i denote the utility of MUE sji , for each MUE sji ∈ Sw

i , SUE ri computes the payment pji . Note

that the payment for the winning MUE sji should not be higher than the true budget bji . Hence the utility

of MUE sji is

uj
i =











vji (k)− pji (k), if sji ∈ Sw
i and pji (k) ≤ bji (k)

0, otherwise.
(2)

Where we have pji (k), which is defined as

pji (k) = pic(k)d
j
i (k), k = ewi if and only if sji ∈ Sw

i , (3)

where pic(k) is the clearing price. Accordingly, the utility of SUE ri is defined as

Ui =











Fi(k)− Pi, if ri ∈ Rw, ek ∈ Ew

0, otherwise.
(4)

Further more, the utility Uk of SCB ek should not be negative, which is
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Uk =











Pi −Ak, if ek ∈ Ew and ri wins ek

0, otherwise.
(5)

The first branch of (5) is the utility of ek when it wins the auction and gets enough payment from

auctioneer in the transaction. The utility of ek should not be negative when it offloads computation tasks

from MUEs.

D. Economic Properties

An auction will not be conducted until many economic properties are satisfied. In the following

paragraphs, several critical economic properties of the auction are listed which TARCO would like to

achieve.

Definition 1: (Truthful). An auction is truthful if any participant’s utility is maximized by submitting its

true valuation, regardless what others would like to behave. That is, no bidder can improve his utility by

misreporting his bids.

Definition 2: (Individual Rationality). The utility of each participant of the auction is non-negative. That

is, uj
i , Ui and Uk are non-negative in the TARCO auction scheme.

Definition 3: (Budget Balance). An auction is budget balanced if total payment from buyers are no less

than the sum paying paid to sellers. In TARCO scheme, this property is required in tier II auction to ensure

the auctioneer a non-negative utility, i.e.
∑

ri∈Rw
Pi ≤

∑

ek∈Ew
Pk.

Definition 4: (Computational Efficiency). An auction is computational efficiency if the scheme can

terminate in polynomial time in terms of the input.

In this paper, TARCO is designed to achieve truthful, individual rationality, budget balance and

computational efficiency. The mechanism is illustrated in detail in Section V followed by proves in Section

VI.

V. TWO-STAGE AUCTION MECHANISM

In this section, we propose a two stage based auction scheme for relay aided computation offloading

scheme in HetNet, which is called TARCO. TARCO satisfies properties such as truthful, individual

rationality, budget balance and computational efficiency proposed in Section IV-D.

Specifically, TARCO consists of two sub-auctions, the tier I auction and the tier II auction. In tier I

auction, all MUEs who need to offload their computation tasks, submit their bids consisting of valuation,

budget and demands to the corresponding SUE they attach to. The tier I auction is conducted virtually by

each SUE node ri ∈ R and will not be executed until ri wins the following procedures. In tier II auction,
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each SUE submits its bid to the MCB based on the collected payment paid by MUEs in tier I auction. If

the SUE ri wins a SCB, it will charge the winners in its group Si and relay the computation traffic to the

SCB.

A. Procedure 1: Tier 1 Auction

In the procedure, the relay SUE ri will conduct the auction virtually and decide winners. First, each SUE

obtains the characteristics of computation abilities from SCBs, such as the number of available CPU cycles,

remained energy, and geological information. These properties will be sent to MUEs with the help of SUE

relays aiming to assist the decision made by MUEs. The SUE relay will receive the three-dimension bids

for computation services for its MUEs which is demoted by {bji (k), v
j
i (k), d

j
i (k)}. Let OPT (b/d) be the

unit budget of the optimal single-price auction denoted by

OPT (b/d) = max
1≤i≤|b|

i
bi
di
, (6)

where |b| denotes the length of the array, bi denotes the ith budget and di denotes the ith demand.

In this stage, the designed algorithm should calculate the budget vector Fi(k) for SCB k. We compute

the budget for each SUE based on the random sampling profit extraction auction [34] and inspired by the

work in [35], we partition the MUE set Si into two sets, S1

i and S2

i uniformly for sampling purpose. Then

SUE i computes R1 = OPT (b1/d1) and R2 = OPT (b2/d2). Depending on the values of R1 and R2, the

budget of MUE is extracted from both vectors. The detail of the algorithm is shown in Algorithm 1 and 2.

Algorithm 1 ComptBgt (b/d, R, (vji (k))
ni

j=1
)

Input: Sorted vector of b/d, potential budget R and valuation vector (vji (k))
ni

j=1

Output: Budget with given valuation

1: Search for the maximum j in b/d such that jbj/dj ≥ R
2: pc ←

R
j

3: Sw
i (k)← ∅

4: Fi(k)← ∅
5: for j ← 1 to ni do

6: pji (k)← pc · d
j
i (k)

7: if pji (k) < bji (k) and pji (k) < vji (k) then

8: Sw
i (k)← Sw

i (k) ∪ sji
9: Fi(k)← Fi(k) + pji (k)

10: end if

11: end for

12: return Fi(k)

From the view of relay ri, s
j
i can be regarded as the buyer with dji (k) computation resource to buy on

budget bji (k). According to Algorithm 1, the clearing price of sji for the kth SCB should not be greater than
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Algorithm 2 Phase I of TARCO for SUE ri
1: for k ← 1 to K do

2: Let b/d denote the sorted aray of (bji (k)/d
j
i (k)) in non-increasing order

3: Divide b/d uniformly at random into two arrays b1/d1 and b2/d2

4: R1 ← OPT (b1/d1), R2 ← OPT (b2/d2)
5: if R1 < R2 then

6: Fi(k)← ComptBgt(b2/d2, R1, (vji (k))
ni

j=1
)

7: else

8: if R1 > R2 then

9: Fi(k)← ComptBgt(b1/d1, R2, (vji (k))
ni

j=1
)

10: else

11: Fi(k)← [ComptBgt(b2/d2, R1, (vji (k))
ni

j=1
)+

ComptBgt(b1/d1, R2, (vji (k))
ni

j=1
)]/2

12: end if

13: end if

14: end for

the unit budget bji (k)/d
j
i (k). Note that the value R is extracted from smaller value group in the partition

procedure of Algorithm 2 to ensure truthfulness. The decision process for winner set Sj
i (k) and the gathering

of Fi(k) is regarded as the start for ri to bid SCB k in the second phase, i.e. phase II. The winners in Si(k)

will get the desired CPU cycles if and only if SUE ri wins SCB ek in phase II.

To illustrate how Algorithm 2 works, we propose a simple example as follows. There are 5 MUEs

with their bids for SCB ek as (30, 4, 35), (20, 3, 26), (18, 6, 9), (13, 2, 16), (8, 3, 14), where in each pair

the first number is the bid, the second item is number of demand and the third item is the valuation,

hence b/d = {7.5, 6.67, 3, 6.5, 2.67}. Assume that b1/d1 = {7.5, 6.5, 2.67}, b2/d2 = {6.67, 3} and we have

R1 = 13, R2 = 6.67. Since R2 < R1, we then extract R2 from b2/d2. The mapping between the sorted value

b/d and valuation is illustrated in Fig. 2. Obviously, it is shown that in Fig. 2, for MUEs in group i, the

clearing price pic(k) for SCB k, which is pic(k) = 6.67/3 = 2.223. Since the value p1i (k) = pic(k)× d1i (k) =

2.223× 4 = 8.892 < b1i (k) = 30 and p1i (k) < v1i (k) = 35. Therefore, s1i is added to the winner set Sw
i (k)

for the kth SCB. Similarly, s2i , s4i , s5i are all winners. Therefore, the total budget of ri obtained from group

Si for SCB ek is 26.676.

Fig. 2. Example of Algorithm 2, where the dashed lines belong to b2/d2 and the remaining lines belong to b1/d1
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B. Procedure 2: Tier 2 Auction

After the previous procedure, i.e. phase I of auction which is conducted between MUEs and relay SUEs,

the budget for SUE ri bids for SCB ek can be obtained and denoted as Fi(k). Fi(k) will be gathered

when the SUE ri wins SCB ek. In procedure 2 of the auction, there are multiple sellers and multiple

buyer with heterogeneous items to bid since each SUE has different budgets for the corresponding SCBs.

In this research, VCG auction is not adopted because of the high computational cost and the failure to

ensure budget balance property. Meanwhile, the McAfee auction cannot be utilized since it only suits for

the scenario where there are homogeneous goods to trade [36]. Therefore, new auction mechanism should

be invented in this procedure. Here, we propose a Random Matching based Efficient Allocation algorithm

RMEA to trade the computation resource between SUEs and SCBs.

The detail of RMEA is shown in Algorithm 3. The SCB assigns CPU cycles to each SUE relay node in

a greedy manner. For each SUE relay ri, the auctioneer try to maximize Bk
i −Ak. Note that the auctioneer

always choose the minimum index of k when there are multiple choices. The procedure resembles fixed

price auction, which is proved to be truthful [35]. RMEA charges each winning SUE ri the amount of Pi

and pays each winning SCB ek the payment Pi.

Algorithm 3 Phase II of TARCO, the RMEA algorithm

Input: Bk
i , for ∀1 ≤ i ≤ N and 1 ≤ k ≤M

Output: Rw, Ew, Pi

1: E ← {e1, e2, · · · , eM}, Ew ← ∅, Rw ← ∅
2: for i← 1 to N do

3: ek ← argmaxek∈E(B
k
i −Ak)

4: if Bk
i −Ak ≥ 0 then

5: Rw ← Rw ∪ {ri}
6: Ew ← Ew ∪ {ek}
7: Pi ← Bk

i

8: E ← E \ {ek}
9: end if

10: end for

C. Charge for MUEs

As mentioned in previous subsection, the phase I of TARCO is conducted virtually by each SUE node

and the auction results will not be executed unless the SUE wins the phase II auction. Next, we give a

simple example to illustrate the charging procedure.

Assume there are 3 SCBs and 3 SUEs. At the end of phase I, we may have F1(k) = 3, F2(k) = 5,

F3(k) = 7, for ∀k ∈ [1, 3]. In phase II, Bk
1
= 2, Bk

2
= 5, Bk

3
= 4 and accordingly the ask price of SCBs

are A1 = 1, A2 = 3, A3 = 5. After the execution of algorithm 3, the winning SUE relays are r1 and r2,
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accrodingly, the winning SCBs are e1 and e2. Therefore, the utilities of SUEs are U1 = F1(k) − Bk
1
=

3 − 2 = 1, U2 = F2(k) − Bk
2
= 5 − 5 = 0 and the utilities of SCBs are U1 = P1 − A1 = 2 − 1 = 1,

U2 = P2 −A2 = 5− 3 = 2. Note that, the bid value of Bk
i may be lower than Fi(k).

VI. THEORETICAL ANALYSIS

In this section, we focus on proving the economic properties of proposed TARCO scheme. It is shown

that TARCO satisfies all the following properties mentioned in previous section, which is given in theorems

below.

Theorem 1: TARCO is truthful for MUEs in the network.

Proof: We will prove that the dominant strategy for the MUE sji (k), whose bid vector is

{bji (k), v
j
i (k), d

j
i (k)}, is to submit its bid as its true bid, which is bji (k) = b̄ji (k), vji (k) = v̄ji (k) and

dji (k) = d̄ji (k). It should be noted that the demand value dji (k) is truthful because it reflects the true

demand of the MUE sji (k).

Assume that sji is in the subset S1

i , then the proof for sji in subset S2

i is similar. From the first branch

of equation (2), we can see that sji can improve its utility by manipulating its reported valuation vji (k) and

budget bji (k). However, on the hand, we can see that the clearing price pic(k) is determined independently

of sji ’s budget bji (k) and valuation vji (k) in Algorithm 1 and Algorithm 2. Since the clearing price is based

on random sampling auction [34], the truthfulness for procedure 1 auction is guaranteed by the sampling

based scheme. Therefore, to prove the truthfulness of TARCO is to prove the truthfulness of procedure 2

auction. For the SUE ri ∈ Rw, it can obtain the maximum utility maxek∈E(B
k
i −Ak). If it bids Bk

i = Fi(k),

it can get the true utility as it bids. For SUE ri /∈ Rw, it will lose the auction although it bids truthfully

because maxek∈E(B
k
i −Ak) < 0. If SUE ri bids untruthfully, there are two sub-cases. If Bk

i < Fi(k), then

the auction result will not change since SUE can only win the auction when Bk
i > Fi(k). Even If ri wins

the auction, its utility Ui = Fi(k)−Pi = Fi(k)−Bk
i ≤ maxek∈E(B

k
i −Bk

i ) = 0. Therefore, the SUE cannot

improve its utility by trading untruthfully and this theorem holds.

Theorem 2: TARCO is individual rational and budget balance.

Proof: Firstly, we prove that the MUE sji is individual rational. Then we prove the SUE ri is also

individual rational. According to Line 7 of Algorithm 1, we know that vji (k) > pji (k) for ∀sji ∈ Sw. Then

uj
i = vji (k) − pji (k) > 0 and we have proved the individual rationality of MUEs. To prove the rationality

of SUEs, we only need to consider that the SUE ri wins in the procedure 2 auction because in other

cases the utility of ri is zero. For ri, B
k
i ≤ Fi(k), and the winning SUE ri has to pay for the asks of the

corresponding SCB ek, i.e. Pi = Ak for ∀ri ∈ Rw and ∀ek ∈ Ew. According to Line 3 of Algorithm 3,

for winning buyers and sellers in tier 2 Auction, we choose the maximum value of Bk
i − Ak. Therefore,
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Ui = Fi(k) − Pi ≥ Bk
i − Ak > 0. In TARCO, the auctioneer is always willing to help to coordinate the

auction scheme, thus the utility of the auctioneer is always set to zero. Hence the proposed TARCO scheme

is individual rational and budget balance.

Theorem 3: TARCO is computational efficient. The time complexity of phase I auction is O(ni log ni)

and the time complexity of phase II auction is O(MN).

Proof: For TARCO, in Algorithm 2, the sorting process has a time complexity of O(ni log ni). The

random splitting procedure takes O(n) time. Algorithm 1 takes O(ni log ni) time. Therefore, the time

complexity of Algorithm 2 is O(ni log ni). In Algorithm 3, the outer ‘for’ circulation takes time O(N) and

to acquire the winning SCB ek, k ∈ Ew takes O(M) time. Therefore, the time complexity of Algorithm 3

is O(MN).

Thus, TARCO has the property of computational efficiency.

VII. IMPROVED SCHEMES VITA

In phase II of TARCO, the algorithm assigns SCB resources to the relay SUEs in a greedy manner, which

may result in low utilities for both parties. Therefore, the SCBs may be reluctant to sell their computation

resources and system performance may suffer. In this section, we propose a VCG based utility improved

truthful auction (VITA) scheme to improve the utilities of both SUEs and SCBs. In VITA, phase II of

TARCO is replaced by a VCG based auction shown in Algorithm 4 while phase I of TARCO remains

unchanged in the new scheme VITA. In VITA, to devise VCG based payment, we utilize a max weighted

matching graph to determin winners. In this way, the total utility of SUEs and SCBs, which is expressed as
∑M

k=1
(Bk

i −Ak) can be maximized. Different from the stage II of TASG presented in [20] where a random

maximum matching is adopted, we try to maximize the total utility of service prodivers in the two stages

of TARCO and at the same time enrue the truthfulness of VITA. Since max weighted matching has a high

computation complexity, in VITA, we utilise a 2-approximation ratio [37] of maximal weighted matching

algorithm to determine winners.

Theorem 4: VITA satisfies the economic properties such as truthful, individual rational and computational

efficient.

Proof: Firstly, we prove that VITA is truthful. For each SUE relay node ri, its bid is Bk
i , ∀k ∈ [1,M ].

Its utility is calculated as Ui = Fi(k)−Pi = Fi(k)−(w(E
∗
−i)−(w(E

∗)−w(ri, ek))+Ak) = w(E∗)−w(E∗
−i).

It should be noted that w(E∗
−i) is independent of SUE relay ri, the maximum utility of ri can be obtained

when ri bids Bk
i = Fi(k), no ri can improve its utility if bidding Bk

i 6= Fi(k). Therefore, VITA is truthful.

Next, for any SUE ri, its utility Ui = Fi(k) − Pi = Fi(k) − (w(E∗
−i) − (w(E∗) − w(ri, ek)) + Ak) =

w(E∗)− w(E∗
−i) ≥ 0, therefore, VITA is individual rational for the SUEs.
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Algorithm 4 Phase II of VITA

Input: Bk
i , for ∀1 ≤ i ≤ N and 1 ≤ k ≤M

Output: Rw, Ew, Pi

1: Λ← ∅, E∗ ← ∅ // Λ is the edge set in the matching graph

2: Pi ← 0
3: Construct a bipartite graph G = (R, E ,Λ, w) and the weight of Λ(ri, ek) = Bk

i − Ak if Bk
i ≥ Ak

/* R is the relay SUEs, E is set of SCBs, Λ is the edge in the matching graph, ∀(ri, ek) ∈ Λ*/

4: E∗ ← Λ // Note that w(E∗) is the sum weight

5: while E∗ 6= ∅ do

6: Find an edge (a, b) ∈ G with the highest weight

7: Add (a, b) to the matching E∗ and delete all edges that incident to a or b in G
8: end while

9: for each (ri, ek) ∈ E∗ do

10: Rw ←Rw ∪ {ri}, Ew ← Ew ∪ {ek}
11: Λ′ ← Λ\(ri, ek), R

′ ←R\{ri}
12: G−i ← (R′, E ,Λ′, w)
13: E∗

−i ← ∅
14: while Λ′ 6= ∅ do

15: Find an edge (c, d) ∈ G−i with the highest weight

16: Add (c, d) to the matching E∗
−i and delete all edges that incident to c or d in G−i

17: end while

18: Pi ← w(E∗
−i)− (w(E∗)− w(ri, ek)) + Ak

19: end for

20: Return Rw, Ew, Pi

Finally, based on the observation that, in VITA, phase I is just as same as that in TARCO, we only need

to prove VITA is computational rational in phase II. The time complexity of the 2-approximation ratio

algorithm of the maximum weighted matching is O(Nlog(N +M)) [37], and the outer ‘for’ circulation in

Algorithm 4 takes time O(N), thus the total time complexity is of Algorithm 4 is O(N2log(N +M)).

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of TARCO and make some comparisons between TARCO

and random method. Meanwhile, we also derive the upper bound for TARCO since there is no existing

algorithms to directly compare with. Then we investigate the performance of VITA with the method that

use max weighted matching to determin winners. The simulation is executed on MATLAB simulator.

A. Simulation environment

We consider a heterogeneous network structure shown in Fig. 1, whose nodes are randomly distributed

in a 100× 100 area. The parameters for cooperative communications are adopted from [38].

By default, we set M = 10, N = 10. We vary ni from 10 to 100 with an increment of 10 for any

i ∈ {1, 2, · · · , N}. We assume that MUE sji ’s budget bji (k) is randomly distributed in (0, vji ) , where vji is
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computed as described in Section IV-B. In phase II of TARCO, the ask price Ak is randomly distributed

in (0, 1]. The results are averaged for 100 repetitions.

To the best of authors’ knowledge, this is the first incentive scheme proposed for cooperative computation

offloading in heterogeneous network and there are no existing auction schemes to compare with. Instead, in

this paper, we compare TARCO with the following two schemes, i.e. the upper bound and random schemes.

To derive the upper bound, we choose the maximum pji (k) as bji (k) to replace that of Line 9 in Algorithm

1. Note that through this change, we do not change the economic properties of TARCO. For the random

scheme, it replace the phase I of TARCO by fistly choosing a MUE sti, if the valuation of another SU sji

is larger than sti, where j 6= t and j ∈ [1, ni], SUE will allocate the computation resource to it. Then we

examine the performance of utility enhanced sceme VITA with the above mentioned schemes as well as

the max weighted matching based winner determination scheme (MWD).

B. Simulation analysis

Firstly, we investigate the running time of TARCO with different network settings shown in Fig. 3. In

all simulations, the number of SUEs is set as same as that of SCBs’ number, that is N = M . From Fig.

3, we observe that the running time is no more than 25s when ni is lower than 80. When ni is constant,

the running time grows fast with the increasing of the SCB’s number M and meanwhile, when M stays

unchaged, the running time increases when ni becomes higher.
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Fig. 3. TARCO’s running time with number of SUEs and number of SCBs (See digital or online version for color)

Next, we compare the running time performance between TARCO and VITA with different number of
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Fig. 4. Running time comparisons between TARCO and VITA with number of SCBs
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Fig. 5. Running time comparisons between TARCO and VITA with number of SUEs

SCBs and SUEs respectively. The results are shown in Fig. 4 and Fig. 5. We can see the running time

performance of VITA is as similar as that of TARCO. In Fig. 4, we set the number of SUEs as ni = 20

while we set the number of SCBs as M = 4. It is obvious that when network size becomes larger, the

running time of VITA is slightly higher than TARCO on average. That’s because VITA tries to maximize

the total utility which consumes much more time than TARCO.

In the third experiment, we examine the utilities of network users for proposed schemes with M = 5 and
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Fig. 6. Average Utility of MUEs with the number of MUEs
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Fig. 7. Average Utility of SUEs with the number of MUEs

we vary ni from 50 to 100. As shown in Fig. 6, we compre the average utility of MUEs with the increasing

numnber of MUEs. As shown in Fig. 6, with the increasing number of MUEs, the average utility of MUEs

increases accordingly for MWD and VITA algorithms. For TARCO and OPTB, the average utility of MUEs

varies around 2.0 and 1.0 respectively. Of all the algorithms, the random algorithm RND achieves the lowest

utility in all situations. For MWD and VITA, the utility of MUEs grows fast when the number of MUEs

is below 70. That’s because the competition for SUEs is not fierce since there are abundant resources.
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Fig. 8. Social Welfare with the number of MUEs

However, the utility gain decreases when the number of MUEs is above 70 for MWD and VITA. That’s

because the CPU computation cycles obtained has reached to the limit and they cannot improve the utilities

any longer. The utility of MUEs decreases with the increasing number of MUEs for the RND algorithm.

That’s because the RND algorithm tends to select inefficient MUEs. On average, OPTB achieves 46.90%

higher utility of MUEs than RND algorithm while TARCO is 104.90% better than RND algorithm. What’s

more, VITA and MWD algorithms are the best two algorithms to enhance the utility of MUEs. VITA is

28.75% better than TARCO and MWD outperforms TARCO for about 17.06%. That’s because the two

algorithms are based on max-weighted matching which greatly reduces the cost for MUEs.

Fig. 7 shows the relationship between the average utility of SUEs and the number of MUEs. Generally,

with the increasing number of MUEs, the average utility of SUEs grows accordingly. Different from Fig. 6,

the OPTB and MWD algorithms are among the best two algorithms. With the increasing number of MUEs,

the utility gains of SUEs decrease for VITA, TARCO and RND algorithms when the number of MUEs is

greater than 80. For OPTB, it acquires the maximal Fi(i) of all algorithms because pji (k) = bji (k) for OPTB

while for the other algorithms, P j
i (k) < bji (k). Even though the utility gains of SUEs do not increase, the

valuation of MUE sji is defined as (1), the SUE relay may select the MUEs with larger valuation and low

capacity for direct communication, which result in the increase of utility of SUEs. On average, OPTB is

about 317.65% better than RND algorithm and TARCO achieves about 33.90% utility gain than the RND

algorithm on the utility of SUEs. Although VITA achieves almost the same utility of SUEs as TARCO, it

outperforms TARCO by about 5.11% whereas MWD outperforms TARCO by about 28.94%.
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Fig. 9. Average Utility of SCBs with the number of MUEs

Fig. 8 demonstrate almost the same trends as that of Fig. 7. Although OPTB achieves the best total social

welfare, it cannot be achieved and it cannot fully guarantee the economic properties. Except for OPTB,

MWD and VITA are among the best two algorithms that obtain the maximal utility. That’s because the two

algorithms try to maximize the sum utility of SCBs and SUEs, i.e.
N
∑

i=1

M
∑

k=1

(Fi(k)−Ak), (7)

based on max weighted matching. In conclusion, the OPTB algorithm achieves higher social utility than

RND algorithm for about 188.04% and TARCO is about 12.05% better than RND. Compared with RND,

MWD and VITA outperform RND by 63.14% and 28.01% respectively.

Finally, Fig. 9 depicts the average utility of SCBs with the varying number of MUEs. It is obvious

that the three algorithms, i.e. TARCO, MWD and RND, produce similar average utility of SCBs. That’s

because under the simulation setting, the budget acquired by the SUE from MUEs is close to Ak for the

three algorithms. In gerneraly, OPTB can ensure a higher utility of SCBs, which is 143.67% higher than

RND algorithm whereas VITA is about 12.42% better than RND.

From the above experiments, we can see that VITA suits for the situation where all network participants’

utility should be maximized at the same time. When the SCB is energy abundant and the cost can be

neglected, TARCO, MWD and VITA demonstrate good qualities to ensure higher social welfare than

the RND algorithm. In real situations, the SCB is a fixed network infrastructure, and is always full of

computation resources as well as energy abundant. Therefore, TARCO, MWD and VITA can be deployed

to motivate SUEs leasing resources to assist the computation offloading of MUEs.
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IX. CONCLUSION

In this paper, we have investigated the auction mechanism to jointly allocate the computation resources of

SCBs and SUE relay nodes efectively in HetNet. We model the joint resource allocation problem as a two-

stage auction where in the first stage, each remote MUE node submits its valuation and demand to bid SUE

relay and the SCB. The SUE relay node collects bids from the social group within its range and conducts

a virtual auction between MUEs and SUEs. Then the macro cell base station will perform a double auction

between SUEs and SCBs to allocate the computation resources, i.e. the CPU cycles. Finally, the winning

SUE relays will execute the auction result of previous stage. Based on the proposed scheme, we have

proposed three schemes TARCO, MWD and VITA. We prove that TARCO is truthful, individual rational,

budget balance and computational efficient. We also prove that MWD and VITA schemes are truthful,

individual rational and computational efficient. Extensive numerical analysis demonstrate that for social

welfare, TARCO is about 12.05% better than RND and Compared with RND, MWD and VITA outperform

RND by 63.14% and 28.01% respectively. Note that in this work we assume SCBs have abundant resources

and each SUE social group may only be served by one SCB and the auction is executed for one time.

In the future, we would like to consider the auction with resource constraint SCBs and from a long time

multi-round perspective.
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