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Abstract—Performance and dependability levels of cloud-based computations are difficult to guarantee by-design due to segregation

of visibility and control between applications, data owners, and cloud providers. Lack of predictability increases users’ uncertainty about

the service levels they will actually achieve. Cloud tenants compete for shared resources/services at all layers of the cloud stack, and

pose heterogeneous and conflicting non-functional requirements over them. These requirements have implications for platform and

infrastructure layers, which have to be configured to satisfy inter-tenants requirements. We argue that adaptation techniques can play a

crucial role in providing a reliable cloud, supporting definite behavior of applications and stable quality of service. Existing adaptation

techniques however are unsuitable for cloud use, since they mostly focus on single tenancy, performance requirements, and are based

on unverifiable evidence, which is collected in an untrusted way. In this paper, we propose a multi-tenant, general-purpose adaptation

technique for the cloud, based on evidence collected by means of a trustworthy certification process. We depart from traditional heavy

and comprehensive certification processes, such as ISO/IEC 27017, and consider a flexible and lightweight certification process for the

cloud. It is based on authentic evidence and provides accountable validation on the compliance of a cloud-based system. Our

approach adapts the cloud at all layers to maintain stable non-functional properties in certificates over time, by continuously verifying

certificate validity. We assess the performance and quality of our adaptation approach in a wide range of settings.

Index Terms—Cloud, Adaptive Systems, Certification, Non-functional properties, Trust

F

1 INTRODUCTION

Monolithic system design has become inconceivable for
many of today’s applications, due to the heavy effort re-
quired in the management of software components. Low
scalability and tied dependencies are examples of limi-
tations due to the monolithic approach [1]. To guaran-
tee flexibility and scalability, software systems are increas-
ingly designed and deployed in a cloud environment as
composite services. One of the architectural advantages of
cloud computing is that it provides a dynamic environment
where multiple tenants share physical and virtual resources,
while guaranteeing isolation among them [2]. This benefit,
however, comes with some drawbacks: i) the higher the
flexibility in terms of resource sharing provided to the ten-
ants, the more the effort to manage non-functional aspects
(e.g., security) and configurations; ii) resource planning and
placement become more complex and less predictable [3].
Additionally, when dealing with shared resources, a special
attention needs to be given to inter-tenant effects, because
single-tenant actions may have an impact on the quality
of service perceived by other tenants. Cloud services are
affected by continuous context changes and (new and un-
expected) cloud events, potentially creating a gap between
the observed cloud service behavior and the expected one.
These changes are known to introduce a level of uncertainty
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and limit predictability of cloud-based applications’ behav-
ior, when compared to on-premises IT systems [4].

Adaptation techniques and autonomic models have been
proposed as foundations of a reliable cloud with consis-
tent behavior [5], capable of reacting to context changes
and events to preserve a stable quality of service for ten-
ants. Current approaches [6]–[8] mainly target performance
and availability properties, extending resource manage-
ment techniques with scalability, elasticity, and reliability
algorithms, without considering adaptation of other non-
functional properties like the Confidentiality, Authenticity
and Integrity (CIA) triad. This is clearly not acceptable in
dynamic cloud environments, where automatic adaptation
should support all major non-functional properties.

This paper presents a multi-tenant adaptation technique
driven by certified non-functional properties. Our approach
has the threefold advantage of: i) maintaining a stable qual-
ity of service based on trustworthy and verified evidence
(Section 2.2), ii) providing a user-informed and multi-tenant
adaptation by tuning cloud configurations over time (Sec-
tions 4 and 5), iii) taking into account interferences between
conflicting requirements and different non-functional prop-
erties in certificates. Changes affecting the certified proper-
ties and triggering adaptation are precisely pinpointed and
analyzed, using the VIKOR multi-criteria decision making
method, to find and enforce the best local optimum adap-
tation that balances requirements of all tenants. A thorough
evaluation of the proposed approach has been conducted on
a wide range of simulated settings (Section 6).

We claim that our technique enhances the adaptation
technique in [9] by providing a multi-tenant solution that
adapts the system to find the best balance between re-
quirements of all tenants, supports verification of any non-
functional properties, and manages interferences between
conflicting tenant requirements.
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TABLE 1
An example of non-functional properties and configuration constraints

Property p̂r
Level

l1 l2 l3
Isolation Shared Middle-

ware
Dedicated VM Dedicated server

Confidentiality
in Transit and
Rest

Weak encryption
(DES-CBC-SHA or
DES-CBC-MD5)

Medium encryption
(RC4-SHA or RC4-
MD5)

Strong encryption
(DHE-RSA-AES256-
SHA or AES256-SHA)

Integrity Checksum or AC
System

Signature algorithm Hardware key man-
agement for signature

Availability 50≤Uptime<95
(Redundancy<x or
Cold DR)

95≤Uptime<99
(x≤Redundancy<y
or Hot DR)

Uptime≥99
(Redundancy≥y
or Multi-Cloud HA)

2 BASIC CONCEPTS

2.1 Non-functional properties

Non-functional properties commonly refer to quality as-
pects of a system such as reliability and security. A non-
functional property pr is defined as a pair (p̂r,l), where p̂r

is the property class and l is the property level modeling
the strength of the supported property. Levels take values
in a discrete ordered domain (e.g., l1, l2, l3) and provide a
link to the general objectives to be supported by the system
under consideration. Each level is then associated with a set
of constraints on mechanisms mec supporting pr, includ-
ing constraints on their configurations. Clearly, the same
property level can be achieved by means of different mech-
anisms, each of which refers to a system component with
a specific configuration. For instance, authenticity can be
achieved by providing either password-based or biometric
authentication. In the literature, mechanisms are sometimes
considered as part of complex property definition [10]; in
this paper, we decouple property declaration (i.e., the prop-
erty to be evaluated – (p̂r,l)) from its procedural definition
(i.e., how to achieve property – mec) to better distinguish
the goal and target of our adaptation technique.

We consider different classes of properties such as secu-
rity (i.e., CIA), performance, anonymity, consistency. These
properties can be further classified in two main classes:
context-dependent and context-independent properties. Context-
dependent properties are strongly coupled with the hosting
environment and its configuration. For instance, perfor-
mance properties depend on the underlying computing
infrastructure (e.g., cluster of virtual machines) and its
configuration (e.g., number of virtual machines). Context-
independent properties are strongly coupled with the non-
functional mechanisms supporting them. Their support re-
quires corresponding mechanisms to be up and running
correctly. For instance, confidentiality of data in transit can
be achieved by implementing SSL/TLS. Table 1 presents
some examples of properties that can be used as targets for
adaptation techniques, giving for each property an example
of configuration constraints.

2.2 Continuous Certification process

The components of an autonomic system are aware of
changes to their state and environment, and appropriately
react to them, with little or no involvement of the users [11].
In this paper, we use the cloud certification process in [12]
to continuously check the status of the system and report
the collected data at the basis of system adaptation.

The certification process is managed by a certification
authority with the support of an accredited lab responsible
for all evaluation activities. It receives as input the Target
of Certification (ToC), representing the system under verifi-
cation, the non-functional property pr to be certified, and
the list of evaluation activities used to verify constraints
on mechanisms mec supporting pr. All this information is
specified in a machine-readable certification model [12], which
is executed on a specific ToC to collect evidence ev and
certify a property pr. In the following, we use a simplified
model that represents the execution paths of the ToC as the
concatenation of functional and non-functional mechanisms
deployed at different layers of the cloud stack as follows.

Definition 1 (Certification Model). A certification model M
is a direct acyclic graph GM(V,E,λ), where a vertex vi∈V
refers to a mechanism (e.g., access control, encryption,
functional mechanisms), an edge (vi ,vj )∈E is annotated
with a function call fi to the mechanism represented
by vj , and λ is a labeling function that associates a set
λ(vi )={c1 ,. . .,cn}∈C of alternative cloud configuration
constraints with each vi∈V.

We note that each function call annotating an edge in
GM triggers a state transition and corresponding mecha-
nism execution. We also note that each mechanism at vertex
v must satisfy at least one constraint ci in λ(v) to behave cor-
rectly and support property pr. A single ci is a conjunctive
Boolean formula of expressions of the form op(attr,value),
where op∈{=,6=,<,>,≤,≥,∈}, attr is a configuration at-
tribute referring to a non-functional mechanism, and value
is a (set of) value for the given attribute. Configuration
constraints are dynamic, that is, they include context/time-
dependent attributes (e.g., performance evaluating response
time, availability evaluating uptime) and event-dependent
attributes (e.g., confidentiality based on encryption algo-
rithms where algorithm robustness may change according
to new vulnerabilities), and are associated with properties
as presented in Table 1.

After executing the certification model, the process re-
turns as output a certificate describing a set of evidence ev

proving the support of pr by ToC [12]. Upon certificate issu-
ing, additional evidence is continuously collected to verify
the validity of the certification process and corresponding
certificate in production, and in turn the consistency be-
tween the observed and expected ToC behavior at runtime.
Verification of certificate validity is a process that takes as
input the certification model and the collected evidence ev,
and produces as output either success (1), if the evidence
conforms to the certification model, or failure (0), otherwise,
with a description of the type of inconsistency found. A
failure returned by the verification process is triggered by i)
an inconsistency between the certification model and the
execution traces, or ii) a violation of configuration con-
straints. Scenario i) requires a system adaptation and has
been already tackled in our previous work in [13]. Scenario
ii) is the target of the adaptation approach in this paper.
Constraints on each vertex are evaluated by probes that
monitor the system configurations or by using methods
and test cases that are defined i) in standards (e.g., IETF
RFC 4231 for HMAC-SHA-*), ii) by the certification au-
thority according to existing regulations (e.g., EU Privacy
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Regulation GDPR), or iii) by the cloud provider. If the
configuration constraints do not match the in-production
system configurations, the corresponding vertices are added
to a list of misconfigured vertices, which then become the
target of adaptation activities (Section 4). As an example,
let us consider an application certified for property integrity
at level l2 (data signature) in Table 1. The probe checks
whether the storage supports signature mechanisms and all
stored documents are signed. Constraints can also specify
the expected signature algorithm and its configuration for a
successful property evaluation.

2.3 Motivational scenario

Our motivational scenario is a cloud, where services are
deployed at all layers of a public cloud stack.

Application layer (Software as a Service – SaaS). We con-
sider three RESTful applications, each providing a specific
service, owned by a different tenant as follows: i) Health
Application that provides services ranging from a normal
visit and medicine prescription, to planning a surgery op-
eration or a radiology appointment, ii) Finance Application
that provides services related to tax, insurance, and online
payments, and iii) Government Application that provides ser-
vices to interact with the public administration, including
payroll and digital documents management.

Platform layer (Platform as a Service – PaaS). The SaaS
applications build on two services provided by different
providers: i) CloudApplicationPlatform (CAP) supporting hor-
izontal functionalities such as auto-scaling, load balancing,
server management; ii) CloudCipher supporting the integra-
tion of encryption mechanisms used by SaaS applications to
secure data in transit and at rest.

Infrastructure layer (Infrastructure as a Service – IaaS).
IaaS layer provides IT resources (i.e., CPU, RAM), storage,
and network as a service to SaaS applications.

SaaS applications are the target of the adaptation so-
lution in this paper. Each application is certified for a
set of properties, possibly conflicting with properties of
other applications, and shares common services (non-
functional mechanisms) at platform and infrastructure lay-
ers. A change in the system, such as a new service joining the
cloud infrastructure, a new regulatory constraint impacting
on (a subset of) certified properties, new vulnerabilities
and/or failures on common services, can cause violations
of certified properties and trigger adaptation.

3 ADAPTATION GAPS

Traditional cloud adaptation approaches (e.g., [14]–[20]) are
affected by some gaps that need to be addressed.

G1: Traditional adaptation is mostly driven by performance
and availability properties, and based on resource man-
agement techniques implementing scalability, elasticity,
and reliability algorithms. Automatic reconfiguration of
cloud components for other properties, such as security
and privacy, is still immature.

G2: Traditional adaptation mainly focuses on the infras-
tructure layer and resource management. However, we

need end-to-end solutions adapting the cloud at all
layers of the cloud stack.

G3: Traditional adaptation is often driven by informal re-
quirements and untrusted/unverified evidence. Vali-
dating and planning end-to-end adaptation across mul-
tiple cloud layers and for many cloud tenants have
to rely on rigorous description of requirements and
accountable trustworthy evidence.

G4: Traditional adaptation is often provided as a black box,
where events triggering adaptation activities, as well as
monitoring results and adaptation activities themselves
are not available to end users for inspection. New tech-
niques need to provide an anchor of trust for adaptation
automation based on accountable evidence.

G5: Traditional adaptation relies on a continuous monitor-
ing based on Service Level Agreements (SLAs) with
fixed thresholds. This approach can result in adapta-
tion techniques affected by contextual fluctuations [21]
where: i) an observed event may require a new adapta-
tion, while another adaptation is ongoing (long adap-
tation), ii) frequent events that overcome adaptation
enactments result in continuous loops (oscillations).

We address the above gaps by proposing an adapta-
tion approach that is driven by the certification process
described in Section 2.2. Differently from existing adaptation
approaches, our approach aims to maintain stable proper-
ties over time by continuously verifying certificate validity,
according to evidence monitored and tested by probes at
all layers of the cloud stack. Collected evidence is used to
adapt component configurations to achieve the best local
optimum, in terms of certified properties, which balances
the requirements of all tenants and addresses dependencies
among them.

4 MULTI-CONSTRAINED ADAPTATION

Continuous certificate verification provides a list of miscon-
figurations that are used as the target of our adaptation
plan. We depart from the simplifying assumption that an
adaptation activity is self-contained and single tenant, and
define our adaptation process as a multi-constrained prob-
lem, where a single adaptation activity may affect several
services owned by one or more tenants and certified for
different conflicting properties.

4.1 System model

We consider a scenario where a cloud provider cp aims to
provide an autonomic cloud with stable quality of service,
maximizing the satisfaction of its tenants. Provider cp hosts
a set {s1,. . . ,sm} of services owned by different tenants,
which insist on horizontal services provided at all layers of
the cloud stack. For simplicity but with no lack of generality,
we assume that there is exactly one service for each tenant,
and use si to refer to both services and tenants. Each service
si comes with one or more certificates, one for each certified
property prij . Each service si also defines preferences on
each property prij reflecting its importance. First, it marks
as hard those properties that must be always supported;
then, it marks as soft those properties that can be weakened.
Hard properties are denoted as pr∗ij and are satisfied iff the
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same or a stronger property is guaranteed for the service.
Soft properties are denoted as prij and might be partially
affected by the adaptation process possibly resulting in the
support of weaker properties.

The requirements of each tenant si are then defined as
the set Ri={pri1 ,. . . ,prik ,pr∗ik+1,. . . ,pr∗in} of certified prop-
erties, where n is the number of existing properties. We note
that a service might not be certified for a given property
prij∈Ri; in this case, prij =null. Additionally, not all soft
properties prij∈Ri can be assumed to be equally important
to si. To rate their importance, each tenant specifies a vector
of fuzzy weights Wi[1,. . . ,n] (see Section 5), where Wi[j]
models the importance (e.g., low, medium, high) of a single
property for si. Fuzzy weights allow comparison between
tenant’s preferences. We can then define R=

⋃m
i=1Ri, where

Ri is the set of requirements of si, as the set of all tenants’
requirements driving cp in its adaptation plan.

Once certified properties start fluctuating and misconfig-
urations are observed (see Section 2.2), the cloud provider
needs to find an alternative adaptation that fits tenants’
requirements. The approach in this paper targets traditional
cloud environments, as defined by the NIST in [22], which
are multi-tenant, shared, and elastic. These environments
introduce some constraints on the design of our approach,
which guided its implementation.

C1: In a multi-tenant and shared environment, it is not
always possible to restore the original, certified con-
figuration or provide an alternative configuration that
satisfies all tenants in the same way, that is, guarantee
the same set R of properties supported before the
misconfigurations were observed. This is due to the fact
that properties have hidden dependencies, in terms of
their configurations.

C2: An adaptation mechanism that solves misconfigura-
tions by changing the multi-tenancy model at runtime
could be not affordable on a large scale. The multi-
tenancy model can be changed by the cloud provider
either at application layer (i.e., by creating two in-
stances of a given service) or at hardware layer (i.e., by
migrating a service to a different hardware/infrastruc-
ture, possibly in isolation). In the first case, the multi-
tenant and shared nature of the cloud could make such
model changes ineffective, due to the co-existence of
different tenants with different conflicting requirements
on the same set of resources. In the second case, service
migration, which is computational and time intensive,
is a viable solution for elastic resource scaling (property
performance) only if some prediction models are im-
plemented [23]. The migration approach is even more
costly and less viable in our case due to the fact that
we consider conflicting non-functional properties. As
a last remark, service migration can easily bring to a
scenario where tenants are physically isolated to avoid
interferences, which clearly violates the foundation of
traditional public clouds.

C3: Cloud providers aim to maximize their profits, while
cloud tenants to maximize their benefits. We note that
a blind adaptation technique that simply maximizes
tenant satisfaction in a global way does not provide the
best approach for both cloud providers and users. In
fact, a solution targeting a global optimum would result

in scenarios where some tenants have all properties sat-
isfied, while other tenants all properties violated, with
a substantial impact on cloud providers’ reputation and
in turn on their profits.

Given the above model and constraints, we propose a
cooperative and conciliatory adaptation solution achieving
consensus between the different tenants in the satisfaction
of their requirements, while taking into account conflicting
properties. The goal for the adaptation plan selection in
Section 4.2 is to find the adaptation A∗={pra1 ,. . . ,pran }∈A,
where praj is a property and A is a set of possible cloud
adaptations that best addresses requirements of all tenants
in R, or in other words the best local optimum that satisfies
all properties marked as hard (i.e., pr∗j∈R), and minimizes
the distance between properties marked as soft supported
before adaptation (i.e., prj∈R) and corresponding proper-
ties supported after adaptation (i.e., praj ∈A). We note that,
in cases where tenants mark all their properties as hard,
the adaptation might fail since no consensus can be reached
between tenants, unless constraint C2 is relaxed.

4.2 Adaptation plan selection

Our cloud adaptation approach is modeled as a multi-
criteria decision making (MCDM) problem, to accomplish
the multi-tenant nature of the cloud. MCDM provides in-
formed decisions (e.g., selection, evaluation) over a set of
available alternatives, which are characterized by multiple
and often conflicting criteria [24]. Adaptation plan selection
is triggered upon identifying a (list of) misconfiguration and
follows two main goals i) the adaptation plan must satisfy
the hard properties for all tenants (valid adaptation plan), ii)
the adaptation plan should provide the best local optimum
that balances support for tenants’ soft properties.

All valid adaptation plans A={pra1 ,. . . ,pran } are first
generated according to the following definition.

Definition 2 (Valid adaptation plan A). Given R=
⋃m

i=1Ri

as the set of all tenants’ requirements, A={pra1 ,. . . ,pran }
is a valid adaptation plan iff ∀Ri∈R, ∀pr∗ij∈Ri, pr

a
j is

such that i) praj .p̂r=pr∗ij .p̂r and ii) praj .l≥pr∗ij .l.

A valid adaptation plan is a set {pra1 ,. . . ,pran } of proper-
ties such that all hard properties in R are satisfied.

Upon identifying the valid adaptation plans, we use a
MCDM method named VIKOR [25], which was introduced
by Opricovic in 1998, to model the multi-criteria optimiza-
tion of complex systems. VIKOR is a fuzzy-based approach
that fits the need of integrating heterogeneous properties
with different domains in a single solution. It receives as
input all valid adaptation plans A, previously rated on the
basis of tenants’ si requirements Ri∈R and corresponding
weights Wi[j] (see Step 0 below), and returns as output a
ranking of adaptation plans identifying the best local one
A∗. The best local adaptation provided by VIKOR repre-
sents a compromise solution among conflicting criteria [25].
VIKOR is a 5-step process, preceded by a preparation step,
that works as follows.

Step 0 (Preparation). It rates the suitability of each property
prakj∈Ak in fulfilling tenants’ requirements Ri∈R, weighted
according to Wi[j]. To this aim, for each Ri∈R, it measures
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the distance d between each property prj∈Ri and prakj
according to the following definition.

Definition 3 (Distance function d(pr1 , pr2 )). Distance func-
tion d(pr1 , pr2 ) takes as input two properties pr1 and
pr2 , such that pr1 .p̂r=pr2 .p̂r, and returns as output the
difference between the corresponding levels pr1 .l and
pr2 .l (i.e., pr1 .l−pr2 .l).

In the following, when clear from the context, we will
denote prakj both the j-th property of Ak and the corre-
sponding property rating to be given as input to VIKOR.
All preparation steps are discussed in detail in Section 5.

Step 1. It takes as input the properties prakj rated at Step 0,

and determines the positive-ideal (pra+j ) and the negative-

ideal (pra−j ) value for all of them as follows:

pra+j =







max
k=1,...,x

prakj , j ∈ cat(b)

min
k=1,...,x

prakj , j ∈ cat(c)
(1)

pra−j =







min
k=1,...,x

prakj , j ∈ cat(b)

max
k=1,...,x

prakj , j ∈ cat(c)
(2)

where, j=1,. . . ,n, x is the number of alternative adapta-
tions Ak, cat(b) is a criterion of type benefit, which means
that the goal is to maximize it, and cat(c) is a criterion of
type cost, which means that the goal is to minimize it. The
positive-ideal value represents the optimal solution, such as,
the one that satisfies all properties. The negative-ideal value
represents the worst solution, such as, the one that violates
the maximum number of properties.

Step 2. It calculates the group maximum utility Uk and the
minimum individual regret Zk of a given adaptation plan
Ak, using the following LP-metric aggregation function:

Lk(P ) =





n
∑

j=1

(

W[j]×
pra+j − prakj

pra+j − pra−j

)P




1/P

(3)

where 1≤P≤∞, prakj is the j-th property, with j=1,. . . ,n,
of the k-th adaptation plan Ak, and W[j] is the weighted
average fuzzy weight for property prj calculated as the
average of adaptation plans’ fuzzy weight Wk[j]. Lk(P) is
the distance between Ak and the positive-ideal solution.
Based on Lk(P), we calculate the group maximum utility
Uk (equation 4) and the minimum individual regret Zk

(equation 5) of the k-th adaptation plan Ak as follows:

Lk(1) = Uk =
n
∑

j=1

W[j]×
pra+j − prakj

pra+j − pra−j

(4)

Lk(∞) = Zk = max
j=1,...,n

[

W[j]×
pra+j − prakj

pra+j − pra−j

]

(5)

Step 3. It calculates the sorting index Qk, with k=1,. . . ,x,
using Equations 4 and 5:

Qk = v ×
(Uk − U+)

(U− − U+)
+ (1− v)×

(Zk − Z+)

(Z− − Z+)
(6)

where, U+= min
k=1,...,x

Uk, U−= max
k=1,...,x

Uk, Z+= min
k=1,...,x

Zk,

Z−= max
k=1,...,x

Zk. The parameter v is a decision threshold and

takes values in [0,1]. A value v>0.5 represents a voting by
majority, value v=0.5 represents consensus, and value v<0.5
represents a veto.

Step 4. It ranks the alternative plans by sorting them in
relation to values U , Z , and Q in ascending order.

Step 5. It selects the best-ranked adaptation plan (A∗=A1)
by the measure Q, if the following two conditions are met:

• Condition 1 aims to find whether Q(A1) provides
an acceptable advantage, meaning that, the difference
between Q(A2) and Q(A1) ≥ 1/(k − 1), where Q(A2)
is the second alternative in the ranking list and k is the
number of alternatives.

• Condition 2 aims to find whether Q(A1) has an accept-
able stability in decision making, meaning that Q(A1)
is ranked best also by U and Z .

If Condition 1 is not satisfied, all alternative plans
A1,A2, . . . ,Am are the same compromise solution, and
therefore, there is no advantage in choosing A1. If Condition
2 is not satisfied, the stability in decision making is not
efficient; therefore, A1 and A2 have the same compromise
solution.

VIKOR finally returns a ranked list A1,A2, . . . ,Ax,
which is the starting point for adaptation plan enforcement.

4.3 Adaptation plan enforcement

The selected adaptation plan A∗ is enforced by adapting
configurations of all services si (Section 4.3.2), according to
the adaptation strategies in Section 4.3.1.

4.3.1 Adaptation strategies

Adaptation enforcement identifies alternative configura-
tions to successfully adapt a misconfigured system accord-
ing to the adaptation plan selected in Section 4.2. To this
aim, feature model, a formalism heavily used in software
product lines, has been adopted in this paper to model al-
ternative configurations [26]. Feature models can be applied
in any domain to represent commonalities and differences in
product/service configurations. They provide an overview
of the configuration domain of a product and enable auto-
mated reasoning about features of interest. A feature model
is formally defined as follows [27].

Definition 4 (Feature Model FM). A feature model FM is
a 6-tuple 〈G,Em, Grxor, Gror, Creq, Cex〉, where:

• G(F,E, r) is a rooted tree with F as a finite set of
features, E⊆F×F is a finite set of edges, r∈F is the
root feature;

• Em⊆E identifies the set of mandatory features;
• Grxor, Gror⊆PF×F represent alternative and optional

feature groups, respectively, where PF is the set of
parent features. Grxor and Gror are therefore sets of
pairs of parent and child features;

• Creq and Cex define finite sets of constraints specifying
required and excluded features, respectively.

Our feature model specifies configurations in terms of
properties pr and mechanisms mec supporting properties.
A configuration can be formally defined as follows.
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Fig. 1. An example of a feature model

Definition 5 (Configuration). Given a feature model FM, a
configuration Cf is a product in FM modeled as a set of
features of the form {F1,. . .,Fn}, where F1=r is the root
feature, Fn is a leaf feature, and ∀n−1

i=1 Fi, (Fi,Fi+1)∈E.

In other words, each configuration specifies a path from
root to leaf in FM including i) a property class p̂r, ii)
a property level l, and iii) a mechanism mec. In the fol-
lowing, we will denote a configuration Cf as [pr,mec],
where pr=(p̂r,l). Figure 1 presents an example of a fea-
ture model. For simplicity but with no lack of generality,
each property has always three levels, whose meanings
depend on the property itself. For instance, property (VM
Performance, P.l3) means higher performance compared to
P.l1 and P.l2; property (Confidentiality in transit, T.l3) means
that the mechanism used for preserving data confidentiality
is stronger than the one used at T.l1 and T.l2. Also, for
conciseness, some configurations in the feature model are
presented in a compressed form. For instance, confiden-
tiality mechanism AES256-SHA both contains a constraint
on the encryption algorithm (i.e., AES-SHA) and the key
length (i.e., 256bit). We note that different feature models
with different configurations and relations can be defined
on the basis of the considered domain, meaning that the
values in the feature model do not affect the soundness of
the proposed approach.

Our adaptation enforcement process queries the feature
model to find possible configurations that satisfy the prop-
erties in adaptation plan A∗. The query is executed using
the feature model analysis operations.

• Valid product: it takes as input a configuration Cf and
returns as output a Boolean value stating if the input
configuration exists in the feature model.

• Filter: it takes as input a pair (Fs,Fr), where Fs models
the set of features to be selected and Fr the set of
features to be disregarded, such that Fs∩Fr=∅, and
returns as output the set Cfi of configurations satisfying
the input criteria.

The query does not only consider the alternatives for
single configurations; it also considers cross-tree constraints
in FM, which represent both include and exclude dependen-
cies between different configurations of the same tenant. For
instance, it is possible to state that anonymity configurations
are not compatible with accuracy at level AC.l3. This means
that configurations including both will be considered as
invalid configurations.

Operations valid product and filter are used to implement
the three adaptation strategies at the basis of our approach.

Restore Configuration. Strategy restore configuration aims
to restore a configuration back to the state that reflects
the original certified configuration. This strategy has the
advantage of restoring only the needed configuration (the
misconfigured one in the certification model), rather than
instantiating the whole infrastructure and certification pro-
cess from scratch. The restore configuration strategy uses
the operation Valid product to check whether the certified
configuration exists in the feature model.

Example 1. Let us consider Health Application certified for
property Confidentiality in transit at level T.l3 (encryption
of data in transit). Now assume that a system mal-
functioning is forbidding the selected encryption mech-
anism (e.g., AES256-SHA) from performing the required
encryption activities. This misconfiguration triggers an
adaptation process that uses operation valid product to
check whether a certified configuration {Confidentiality,
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Transit, T.l3, AES256-SHA} still exists in the feature
model and can be restored.

Equivalent Configuration. Strategy equivalent configura-
tion suggests an alternative cloud configuration that is
equivalent to the certified one. Formally, a configuration
equivalence relation is defined as follows.

Definition 6 (Configuration equivalence relation ≡cf ). Con-
figuration Cf1=[pr1 ,mec1 ]∈FM is equivalent to con-
figuration Cf2=[pr2 ,mec2 ]∈FM, denoted Cf1≡cfCf2 ,
iff pr1=pr2 and mec1 6=mec2 .

Each level in the feature model can contain a set of
alternative mechanisms that satisfy the same property pr

for this specific level. Operation Filter is used to filter the set
of configurations that contain the alternative mechanisms.

Example 2. Following on Example 1, let us assume that
operation valid product returns false, that is, encryption
algorithm AES256-SHA is deprecated and not part of
the feature model. At this point, strategy equivalent con-
figuration is executed and an alternative configuration
is searched. Operation filter receives as input a pair
(Fs,Fr)=({Confidentiality, Transit, T.l3},{T.l1, T.l2}) and
returns as output the following alternative configuration:
{Confidentiality, Transit, T.l3, DHE-RSA-AES256-SHA}.

Restrictive Configuration. Strategy restrictive configuration
suggests a configuration more restrictive (or stronger) than
the certified one. Formally, a configuration restriction rela-
tion is defined as follows.

Definition 7 (Configuration restriction relation >cf ).
Configuration Cf1=[pr1 ,mec1 ]∈FM is more restric-
tive than configuration Cf2=[pr2 ,mec2 ]∈FM, denoted
Cf1>cfCf2 , iff pr1 .p̂r=pr2 .p̂r and pr1 .l>pr2 .l, that is,
pr1 .l is more restrictive or stronger than pr2 .l.

Operation Filter is used to find those configurations that
are more restrictive than the certified one.

Example 3. Following on Example 2, let us assume that
Health Application is also certified for property VM
Performance at level P.l2 using AWS T2.y > x and all
configurations (encryption algorithms) returned by strat-
egy equivalent configuration have a negative impact
on system performance. The intensive computation re-
quired by the selected encryption algorithm causes the
utilization of 100% of the CPU capacity triggering a new
adaptation on property performance. In this case, Oper-
ation Filter is used to search a configuration that is more
restrictive (high performance) than the certified con-
figuration. The pair (Fs,Fr)=({VM Performance},{P.l1,
P.l2, Authenticity, Confidentiality, Isolation, Data Storage
Performance, Integrity, Consistency, Availability}) is given
as input to operation Filter, which returns as outputs
configuration {VM Performance, P.l3, AWS T2.z > y}.

4.3.2 Adaptation plan enforcement process

The adaptation plan enforcement process identifies alter-
native configurations to successfully adapt a misconfig-
ured system according to the adaptation plan A∗ selected
in Section 4.2. It receives as input i) A∗={pra1 ,. . . ,pran }
and ii) for each si, the set of existing configurations
CFi={Cfi1 ,. . .,Cfin}, where Cfij∈CFi supports property

prij∈Ri. For each si, it then produces as output the new
set CF ∗

i of adapted configurations. The enforcement process
proceeds as follows.

Preparation. For each property praj ∈A
∗, a set CF e

j of equiv-
alent configurations supporting praj are pre-calculated using
the feature model and operation Filter (see Definition 6).

Plan enforcement. For each service si, for each configu-
ration Cfij∈CFi , one of the following three enforcement
approaches is executed.

• No operation or restore configuration. It applies
when

[(

∃Cfe∈CF
e
j : Cfe=Cfij ∨ Cfe>cfCfij

)

∧
valid product(Cfij )=true

]

, meaning that either Cfij or
a configuration more restrictive than Cfij belongs to
CF e

j , and Cfij exists in the feature model. In this case,
no operation is done or at least a restore activity is
executed in case configuration Cfij is among the ones
misbehaving. We note that the choice of maintaining
the original configuration when a more restrictive one is
suggested aims to minimize the number of adaptations
done at each enforcement. This guarantees that each
tenant’s certified configurations will be kept stable as
much as possible.

• Downgrade configuration. It applies when ∃Cfe∈CF
e
j :

Cfij>cfCfe , meaning that it exists at least a configu-
ration Cfe in CF e

j that is less restrictive than Cfij . A
configuration adaptation is executed decreasing config-
uration Cfj to configuration Cfe . If multiple Cfe exists,
a random one among the most restrictive is picked. We
note that different approaches can be used in place of
a random selection, for instance considering the cost
of adaptation, the type of property, and the number
of interferences involving the property. This topic is
outside of the scope of this paper.

• Equivalent configuration. It applies when
valid product(Cfij )=false, meaning that Cfij does
not exist in the feature model. In this case, a random
configuration in CF e

j is chosen.

We note that the practical applicability of our approach
does not only depend on the ability to find an alternative
configuration, but also on the overhead required to deploy
such a configuration, while keeping the system consistent.
For instance, what happens if a given encryption algorithm
is deprecated? Should the provider decrypt and encrypt
all data? Our approach to configuration enforcement aims
to reduce such overhead by integrating as much as possi-
ble with cloud functionalities and normal cloud provider
activities. This is straightforward for context-dependent
properties, which are strongly coupled with the hosting
environment and can use it for configuration enforcement.
For instance, an adaptation of property performance that
requires to move a service from a virtual machine (AWS
T2.X) to a bigger one (AWS T2.Y) can be enforced by using
either i) cloud elasticity features treating the adaptation
enforcement as any other scaling operation or ii) cloud
migration services. Configuration enforcement is instead
more complex for context-independent properties, each hav-
ing specific peculiarities that need to be managed. In this
case, configuration enforcement must resemble to normal
cloud activities thus reducing the adaptation overhead. For
instance, when an encryption algorithm for confidentiality
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of data at rest becomes deprecated, new storing activities
will use the new selected algorithm, while ongoing storing
activities will be first stopped and then restarted using the
new algorithm. The treatment of the data already encrypted
with the deprecated algorithm depends on the provider
guidelines: data can be all decrypted and re-encrypted with
the new algorithm (when a vulnerability is found in the
original algorithm), or can be re-encrypted with the new
algorithm when the user requires a decryption-encryption
activity (when the algorithm is simply removed from the set
of offered algorithms).

Plan verification. Each generated CF ∗
i is checked for con-

sistency against cross-dependencies in the feature model.
In particular, the whole set of configurations is given
as input to operation valid product. If, for each CF ∗

i ,
valid product(CF ∗

i )=true, the enforcement is successful;
otherwise, the reasons causing a failure in operation
valid product (i.e., valid product(CF ∗

i )=false) are pinpointed,
and the corresponding configurations further adapted, until
either a solution is found or all possible configurations are
tried. In the latter case, the adaptation process fails and the
next adaptation plan ranked by VIKOR is enforced.

Plan monitoring. Upon all services si have been adapted, a
predefined time window is specified to check misconfigura-
tions caused by the enforced adaptation and due to hidden
dependencies between properties. This check is carried out
using the monitoring capabilities of our certification process
(Section 2.2). In case a misconfiguration is raised within the
predefined time window, the next adaptation plan ranked
by VIKOR is enforced. Otherwise, the adaptation plan pro-
cess is executed from scratch. This approach guarantees that,
if a plan addressing all hidden dependencies exists, it is
found by our approach; recurrent hidden dependencies can
then be added to the feature model to reduce adaptation
costs. Additionally, there are cases where none of the adap-
tation plans ranked by VIKOR is a valid solution due to
hidden dependencies; in such cases, the cloud provider can
implement an approach based on spillover, where part of
the services are moved to cloud infrastructures owned by
different providers.

Once the adaptation is found to be consistent, the issued
certificates are updated to reflect the new adapted mech-
anisms and the continuous certificate verification restarts.
Certificate update is based on our approach to incremental
certification presented in [28]. We note that, in case new and
multiple adaptations are needed, we always consider the
original certificates, not the adapted ones, as the starting
point for our VIKOR-based approach. This choice is due to
the fact that, otherwise, incremental adaptations could keep
diverging from the original configurations.

5 WALKTHROUGH EXAMPLE

We propose a walkthrough example of our approach, con-
sidering Health Application (s1), Finance Application (s2),
and Government Application (s3) in our motivational sce-
nario. We assume the three tenants to be certified for prop-
erty classes i) ˆpr1 : Confidentiality in transit (C), ii) ˆpr2 :
Availability (A), iii) ˆpr3 : Data storage performance (DS).
Each tenant si then comes with three certified properties

pri1 , pri2 , and pri3 , which become tenants’ requirements as
shown in Table 2. For instance tenant s1 has been certified
for property confidentiality in transit with level 3 (pr11 ). Re-
quirements are mapped onto the feature model in Figure 1.

TABLE 2
Tenants’ requirements for property classes Confidentiality in transit (C),

Availability (A), Data storage performance (DS). Hard properties are
denoted in bold characters.

pr1 pr2 pr3
s1 (C, T.l3) (A, A.l2) (DS, DS.l3)
s2 (C, T.l2) (A, A.l2) (DS, DS.l1)
s3 (C, T.l2) (A, A.l3) (DS, DS.l1)

5.1 Adaptation plan selection

We first present an example of the adaptation plan selection
process based on VIKOR in Section 4.2.

Preparation activities. Each valid adaptation plan Ak is
rated according to the tenants’ requirements Ri∈R. To this
aim, tenants use three linguistic variables (Table 3(a)) to
assign importance weights to each of their service properties
(Table 3(b)). For instance, Health Application (s1) specifies
weight Medium (M ) for property pr12=(Availability, A.l3),
which is defined by a triangular fuzzy number (0.25, 0.5,
0.75), as presented in Table 3(a).

TABLE 3
Linguistic variables for weights (a) and weights on

services’ properties (b)

Low (L) (0, 0, 0.25)
Medium (M) (0.25, 0.5, 0.75)
High (H) (0.75, 1, 1)

pr1 pr2 pr3
s1 L M H
s2 L H M
s3 M M H

(a) (b)

TABLE 4
Adaptation plans

pr1 pr2 pr3
A1 (C, C.l2) (A, A.l2) (DS, DS.l3)
A2 (C, C.l2) (A, A.l3) (DS, DS.l1)
A3 (C, C.l3) (A, A.l2) (DS, DS.l1)
A4 (C, C.l2) (A, A.l3) (DS, DS.l3)

TABLE 5
Linguistic variables for ratings

Poor (P) (0, 0, 0.25)
Fair (F) (0.25, 0.5, 0.75)
Good (G) (0.75, 1, 1)

Once the set of possible valid adaptations that satisfy
all the hard constraints are generated according to Defini-
tion 2 and requirements in Table 2, they are rated using the
distance function in Definition 3. For simplicity, we only
consider four alternative adaptations (Table 4). In particular,
the distance between a certified property prij in Table 2 and
the corresponding property prakj∈Ak in Table 4 is calculated
and then mapped onto the three linguistic variables in
Table 5 as follows:
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map(prakjprij ) =











G, d(prakj , prij ) ≥ 0

F, d(prakj , prij ) = −1

P, d(prakj , prij ) = −2

(7)

where prij is the j-th certified property of ser-
vice si and prakj is the j-th property in the adapta-
tion plan Ak. For instance, if a service is certified for
prij=(Confidentiality in transit, T.l1) and adaptation plan
Ak proposes prakj=(Confidentiality in transit,T.l2), distance
d(prakj , prij )=T.l2−T.l1=1 is mapped onto linguistic vari-
able Good (G). We note that the mapping in Equation 7 de-
pends on the specific scenario and cannot be fixed a priori.
Table 6 summarizes the evaluation of valid adaptation plans
according to the tenants’ requirements in Table 2. Each cell
in the table is calculated as the distance between require-
ments and corresponding properties in the adaptation plan,
and mapped onto linguistic variables G, F, P.

TABLE 6
Evaluation of valid adaptation plans

pr1 pr2 pr3

s1

A1

A2

A3

A4

F
F
G
F

G
G
G
G

G
P
P
G

s2

A1

A2

A3

A4

G
G
G
G

G
G
G
G

G
G
G
G

s3

A1

A2

A3

A4

G
G
G
G

G
G
F
F

G
G
G
G

Fuzzy weights (Table 7) are then generated by merging
fuzzy representation of linguistic variables in Table 3(a)
within linguistic weights in Table 3(b). Similarly, fuzzy rat-
ings (Table 8) are generated by merging fuzzy representation
of linguistic variables in Table 5 within linguistic ratings in
Table 6. Tables 7 and 8 are the starting point to build a fuzzy
decision matrix (Table 9) as follows.

TABLE 7
Fuzzy weights ŵij for weights in Table 3(b).

pr1 pr2 pr3
s1 (0, 0, 0.25) (0.25, 0.5, 0.75) (0.75,1.00,1.00)
s2 (0, 0, 0.25) (0.75,1.00,1.00) (0.25, 0.5, 0.75)
s3 (0.25, 0.5, 0.75) (0.25, 0.5, 0.75) (0.75,1.00,1.00)

The matrix takes the tenants’ requirements as input to
find the aggregated fuzzy weight for each property, and the
aggregated fuzzy rating for each adaptation plan. Let m be
the number of services, the aggregated fuzzy weight ŵj for
each property prj can be calculated as [29]:

ŵj =
1

m
[ŵ1j ⊕ ŵ2j ⊕ · · · ⊕ ŵmj ] (8)

and the aggregated fuzzy rating x̂kj for each adaptation
Ak and property prj can be calculated as:

x̂kj =
1

m
[x̂k1j ⊕ x̂k2j ⊕ · · · ⊕ x̂kmj ] (9)

TABLE 8
Adaptation plan ratings x̂kij for evaluation in Table 6.

Adaptation plan A1

pr1 pr2 pr3
s1 (0.25, 0.5, 0.75) (0.75,1.00,1.00) (0.75,1.00,1.00)
s2 (0.75,1.00,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00)
s3 (0.75,1.00,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00)

Adaptation plan A2

s1 (0.75,1.00,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00)
s2 (0.75,1.00,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00)
s3 (0.75,1.00,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00)

Adaptation plan A3

s1 (0.75,1.00,1.00) (0.75,1.00,1.00) (0, 0, 0.25)
s2 (0.75,1.00,1.00) (0.75,1.00,1.00) (0.75,1.00,1.00)
s3 (0.75,1.00,1.00) (0.25, 0.5, 0.75) (0.75,1.00,1.00)

Adaptation plan A4

s1 (0.25, 0.5, 0.75) (0.75,1.00,1.00) (0.75,1.00,1.00)
s2 (0.75,1.00,1.00) (0.25, 0.5, 0.75) (0.75,1.00,1.00)
s3 (0.75,1.00,1.00) (0.25, 0.5, 0.75) (0.75,1.00,1.00)

TABLE 9
Fuzzy decision matrix

pr1 pr2 pr3
A1 (0.58, 0.83, 0.92) (0.75, 1.0, 1.0) (0.75, 1.0, 1.0)
A2 (0.75, 0.92, 0.92) (0.75, 1.0, 1.0) (0.75, 1.0, 1.0)
A3 (0.75, 1.00, 1.00) (0.58, 0.83, 0.92) (0.50, 0.67, 0.75)
A4 (0.58, 0.83, 0.92) (0.42, 0.67, 0.83) (0.75, 1.00, 1.00)

Weight (0.08, 0,17, 0.42) (0.42, 0.67, 0.83) (0.58, 0.83, 0.92)

where ŵij and x̂kij are fuzzy numbers of the
form (a1, a2, a3) and ⊕ is a sum operator such that
ŵ1j ⊕ ŵ2j (x̂k1j ⊕ x̂k2j , resp.) is equal to (a1+a′1, a2+a′2,
a3+a′3). For instance, in Table 7, the weights of the first
property are (0,0,0.25), (0,0,0.25), and (0.25,0.5,0.75). The
corresponding aggregated fuzzy weight is calculated as ŵ1
(

(0+0+0.25)/3,(0+0+0.25)/3,(0.25+0.5+0.75)/3
)

=(0.08,0.17,0.42)
(weight of the first property in Table 9). The same reasoning
applies to the calculation of the aggregated fuzzy rating.

Once the decision matrix in Table 9 is built, we choose
a representative crisp value for each weight and property,
as the average of the three corresponding fuzzy numbers
(a, b, c) of linguistic variables. For instance, in Table 9, the
weight ŵ1 of the first property is (0.08,0.17,0.42). The corre-
sponding crisp value is (0.08+0.17+0.42)/3=0.22 (weight of
the first property in Table 10).

TABLE 10
Crisp values for the decision matrix and property weights

pr1 pr2 pr3
A1 0.78 0.92 0.92
A2 0.86 0.92 0.92
A3 0.92 0.78 0.64
A4 0.78 0.64 0.92

Weights 0.22 0.64 0.78

The VIKOR approach can now be applied following the
five steps in Section 4.2.

Step 1. Find positive-ideal and negative-ideal for all prop-
erties based on crisp values in Table 10 as described in
equations (1) and (2).

pra+1 =0.92, pra+2 =0.92, pra+3 =0.92
pra−1 =0.78, pra−2 =0.64, pra−3 =0.64
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Steps 2 and 3. Compute values U (group maximum util-
ity), Z (minimum individual regret) and Q (sorting index)
(Table 11) as described in equations (4), (5), and (6).

TABLE 11
The values of U, Z and Q for all alternative adaptations

A1 A2 A3 A4

U 0.22 0.09 1.10 0.86
Z 0.22 0.09 0.78 0.64
Q 0.16 0.00 1.00 0.78

Step 4. Rank the alternative adaptations by U, Z, and
Q in ascending order (Table 12). The ranking permits to
understand whether there is an advantage in choosing one
adaptation plan over the others, or if they are similar.

TABLE 12
The ranking of adaptation plans according to U, Z, and Q

1 2 3 4
U A3 A4 A1 A2

Z A3 A4 A1 A2

Q A3 A4 A1 A2

Step 5. Table 12 shows that adaptation plan A3 is best
ranked by Q. Additionally, both conditions 1 and 2 are
satisfied, which means that A3 is also best ranked by U and
Z. Therefore, A∗=A3. This means that A3 has an acceptable
advantage over the other adaptation plans.

5.2 Adaptation enforcement

The best adaptation plan A∗={(C,C.l3),(A,A.l2),(DS,DS.l1)}
(adaptation A3 in Table 4) returned by VIKOR is enforced
according to the tenants’ certificates. We recall that each
certificate awarded to a tenant si specifies a complete con-
figuration [prij ,mec], where prij is the certified property
and mec is a (set of) mechanism supporting the property.
The goal here is to enforce the selected adaptation in a
way that minimizes changes to the certified configurations.
The first step identifies the equivalent configurations (see
Definition 6) compatible with A∗ according to the feature
model in Figure 1. Table 13 presents the retrieved equivalent
configurations.

TABLE 13
Equivalent configurations for A∗.

Property Equivalent configuration

pr1
[(C, T.l3),DHE-RSA-AES256-SHA]
[(C,T.l3),AES256-SHA]

pr2
[(A, A.l2),x≤Redundancy<y]
[(A,A.l2),Hot DR]

pr3 [(DS, DS.l1),Cold SSD]

The second step executes all adaptation activities.
For conciseness, we discuss adaptation enforcement for
tenant s3 only, supporting the following configura-
tions: {[(C,T.l2),RC4-MD5],[(A,A.l3),Multi-Cloud HA],[(DS,
DS.l1),Cold SSD]}.

• Configuration Cf11=[(C,T.l2),RC4-MD5]: two more
restrictive configurations exist for Cf11 in Ta-
ble 13, namely [(C,T.l3),DHE-RSA-AES256-SHA] and
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Evidence
collector
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Actuator

WS

Actuator

Evidence
collector
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Fig. 2. A simplified view of the framework architecture

[(C,T.l3),AES256-SHA]. As discussed in Section 4.3, to
minimize the number of adaptations done at each en-
forcement process and to guarantee stable quality of
service, original configuration Cf11 is either restored
or kept as is. If Cf11 is not working correctly, a new
configuration is randomly selected among the two more
restrictive configurations.

• Configuration Cf12=[(A,A.l3),Multi-Cloud HA]: no
equivalent or more restrictive configurations exist for
Cf12 in Table 13. Cf12 is downgraded to either
[(A,A.l2),x≤Redundancy<y] or [(A,A.l2),Hot DR].

• Configuration Cf13=[(DS,DS.l1),Cold SSD]: Cf13 is
the only possible configuration according to Ta-
ble tab:possiblemechanisms. Adaptation enforcement
either restores Cf13 or no operation is done.

Before executing the above activities, the selected con-
figurations are checked for consistency against the feature
model in Figure 1. Since no inconsistencies are found, the
adaptation activities are executed, and the enforced plan is
monitored against hidden dependencies.

6 EXPERIMENTAL EVALUATION AND SIMULATION

We experimentally evaluated the performance and quality
of our adaptation approach in a simulated environment
with a wide range of settings.

6.1 Adaptation framework architecture and simulation

environment

Our adaptation framework has the main responsibility of
supporting the provisioning of an autonomic cloud with
definite behavior of its applications and stable quality
of service. To this aim, its architecture and components
(Figure 2) support three main functionalities: i) evidence
collection at the basis of certificate validity verification,
ii) non-functional property verification and adaptation plan
selection, iii) adaptation plan enforcement.

The framework is built around evidence collectors, which
are responsible for collecting the evidence needed to either
award a certificate or verify its validity. The collectors ex-
ercise the mechanisms in the ToC supporting the proper-
ties, at all layers of the cloud stack. This is achieved by
executing test cases or monitoring events to evaluate the
behavior of the system under certification. Data streams
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from the collectors are connected to the adaptation manager,
which implements the multi-constrained adaptation process
in Section 4. In particular, it analyzes the collected data
to uncover misconfigurations and trigger new adaptation
processes. Upon misbehavior identification, the adaptation
manager selects the best adaptation plan using VIKOR. It
then i) configures and deploys actuators and ii) connects
them to the mechanisms in the ToC to enforce the selected
plan. Each actuator is responsible for enforcing a portion
of the selected adaptation plan, by reconfiguring/replacing
one or more mechanisms in ToC. In particular, it receives as
input the mechanism(s) to be adapted and the adaptation
activities to be executed, and returns as output the adapta-
tion results. Once all actuators complete their activities, the
adaptation plan enforcement is verified by the adaptation
manager.

All our experiments have been run on a virtual worksta-
tion hosted at cloudlab (www.cloudlab.us) equipped with
16 CPUs Intel(R) Xeon(R) CPU D-1548 @ 2.00GHz and 512 GB
of RAM, and running Ubuntu 16 OS. Our simulation envi-
ronment includes a set of tools at the basis of the architecture
in Figure 2: i) a custom tool we developed to find the valid
adaptations, ii) FaMa tool for feature model management,1

and iii) R with the MCDM package to support VIKOR
method computation.2 To avoid biased results due to the
specific selection of the adaptation parameters, experiments
have been run on a diverse range of parameters.

6.2 Performance

We evaluated the performance of our adaptation approach
by measuring the execution time for adaptation plan se-
lection. We considered a cloud environment consisting of
a number |s| of tenants varying between 10 and 60, and
competing for resources at PaaS/IaaS layers. We defined
the feature model with a number |p̂r| of property classes
varying between 10 and 60, a number |l| of levels varying
between 10 and 60, and a number |Cf| of configurations for
each level varying between 1000 and 20000. Each tenant was
certified for all property classes p̂r in the feature model. We
executed a total of 15000 adaptation plan selection processes
and the results shown here are the average over them.
Each run of the experiments generated a new setting and a
new adaptation plan without enforcing it. The performance
of the enforcement process in fact can substantially vary
depending on the selected environment and therefore is not
a good estimator of the overall performance. We note that
we also did not consider the time needed to generate the
initial set of possible configurations (before applying the
hard constraints filter), since this process is usually executed
once, offline, before the adaptation process.

Figures 3(a)-3(c) show the execution time when the num-
ber of tenants, property classes, and levels is varied between
10 to 60 (step 10), respectively. Each scenario has then been
evaluated in 4 settings varying the remaining two param-
eters in (3,3), (3,20), (20,3), (20,20). Figure 3(d)-3(f) shows
the execution time when two parameters among number
of tenants, property classes, and levels, are selected and
varied between (10,10) and (60,60) (step 10). Each scenario

1. http://www.isa.us.es/fama/?FaMa Framework
2. https://cran.r-project.org/web/packages/MCDM/index.html

TABLE 14
Summary of quality evaluation

Avg(Θ(A∗)) σ2(A∗) σ2(A)
0.78 0.33 0.51

has then been evaluated in 4 settings varying the remaining
parameter in 3, 5, 10, 20. The black line with triangular tics
in Figures 3(a)-3(f) presents our worst case scenario in which
the number of property classes, levels, and tenants vary
between (10,10,10) and (60,60,60) (step 10). The execution
time of the adaptation algorithm is linear when varying each
single parameter alone (tenants, properties and levels), or a
pair thereof; the overall complexity increases exponentially
when all variables increase at the same time.

6.3 Quality

We evaluated the quality of our VIKOR-based adaptation
process on a subset of 1000 adaptation plans A∗ selected to
cover the different settings in Section 6.2. Our goal was to
compare our approach and the optimum adaptation with
best quality selected without balancing the requirements of
each tenant. To this aim, we have defined a penalty metric
Pk, which indicates the degree to which requirements of all
tenants diverge from an adaptation plan Ak, as follows.

Definition 8 (Penalty Pk). Penalty Pk introduced by an
adaptation plan Ak with reference to tenants’ require-
ments Ri∈R is calculated as

Pk =
m
∑

i=1

n
∑

j=1







wij ×
d(prij ,pr

a
kj )

d(max(prj ),pra
kj
) , prij > prakj

0, otherwise
(10)

where: i) prij∈Ri is the j-th property certified for the i-th
tenant, ii) prakj∈Ak is the j-th property of adaptation plan
Ak, iii) max(prj ) is the property of class p̂rj in the feature
model with maximum level, and iv) wij is the crisp value
corresponding to the fuzzy weight ŵij defined by tenant
si on property prij and calculated as the average of the
three corresponding fuzzy numbers.

We note that penalty Pk is calculated as the sum of
penalties observed by each single tenant Pk(i), formally,
Pk=

∑m
i=1Pk(i). Quality Θ of the selected adaptation pro-

cess A∗ is then calculated as:

Θ = 1−
P ∗ −min(Pk)

max(Pk)−min(Pk)
with k = 1, ..,m (11)

where, i) max(Pk) and min(Pk) are the maximum and
minimum penalty among all adaptations Ak and ii) P ∗ is the
penalty of A∗. Θ=0 is retrieved when the valid adaptation
with lowest quality is selected, Θ=1 is retrieved when the
valid adaptation with highest quality (A) is selected.

We evaluated the fairness of our VIKOR-based ap-
proach against the one producing the adaptation with
maximum quality (global optimum). Table 14 shows our
results. We first calculated the average quality Avg(Θ(A∗))
of the 1000 adaptations A∗ retrieved with our approach.
Our approach captures 78% of the quality of the optimum
approach on average (i.e., Avg(Θ(A∗))=78%), with each
single adaptation quality Θ(A∗) between 70% and 85%.
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Fig. 3. Execution times based on varying numbers of tenants, classes of properties, levels

We then compared, for each single adaptation process, the
variance σ2(A∗)=Var({Pk(i)}) and σ2(A)=Var({Pk(i)}) of
the penalties observed by each tenant i with our approach
and the optimum approach, respectively. In 90% of the cases
σ2(A∗) is lower than σ2(A), whereas in the remaining 10%
of the cases they are the same. We note that the aver-
age variance Avg(σ2(A∗)) of penalties over all adaptation
processes is 0.33 with our approach, which increases to
0.51 with the optimum approach (i.e., Avg(σ2(A))=0.51).
Finally, another important aspect is the distribution of the
penalties among tenants or, in other words, the contribu-
tion each single tenant provides to the overall penalty in
equation 10. This aspect is fundamental to avoid scenarios
in which the penalty of the adaptation process observed
by each tenant substantially varies, resulting in a random
adaptation quality for the tenants. To this aim, for each
adaptation process, we retrieved the highest normalized

penalty
max(Pk(i))

Pk

among all tenants and calculated the
average for both our and the global optimum solutions.
Figure 4 shows that in our approach the highest normalized
penalty for a tenant is around 0.2, while, in the global
optimum, it raised to around 0.6.

7 DISCUSSION AND RELATED WORK

We summarize the main characteristics and limitations of
our approach, and compare it with the state of the art.

7.1 Discussion on practical usability and usefulness

We validated our adaptation approach in an environment
designed to be more critical than the ones observed in the
field at British Telecommunication and Huawei. Namely, we
considered a worst-case scenario of 60 tenants sharing a
single set of resources and 60 properties, each with 60 levels,
a far greater number than the ones observed in practice. We
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Fig. 4. Comparison between VIKOR and optimum approaches

then validated our approach along two lines, performance
and quality, to measure its responsiveness in a fast and dy-
namic environment and its usefulness in addressing tenants’
requirements, respectively. Performance evaluation showed
that our approach computes and enforces an adaptation
plan in a very short time. In particular, adaptation time
is linear when two out of three parameters (i.e., tenants,
properties, levels) are increased, while it becomes non-
linear when all parameters are varied together. Even in the
worst case, execution time is still bound by a reasonable
upper limit of 600s. An average standard deviation of 7%
(1.63s) has been observed, with 80% of the experiments
below 10%. For the remaining 20%, the average standard
deviation is 15% (0.97s) with the worst case achieving 21%
(0.57s). We note that adaptation performance is not affected
by adaptation plan enforcement that has been designed
to integrate with cloud services and normal operations of
the cloud provider, keeping interference with them at the
minimum. Quality evaluation finally shows the usefulness
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TABLE 15
Comparison with existing state of the art approaches

Legend: PA: Property Agnostic, CLA: Cross Layer Adaptation, TAP: Transparent

Adaptation Process, TEC: Trusted Evidence Collection, DT: Dynamic Thresholds,

DAC: Driven by Adaptation Costs, CA: Conciliatory Approach

PA CLA TAP TEC DT DAC CA
Our X X X X X × X

[14] X × X × × X ×

[15] × × X × × × ×

[16] X × X × X × ×

[17] X × X × X × X

[18] × × × × X × X

[19] X × X × X × ×

[20] X × X × X X ×

of the approach when compared with traditional solutions
aiming to find the global optimum (see Table 15 in Sec-
tion 7.2 for more details). Our technique finds a compromise
solution among the requirements of all tenants, satisfying as
much as possible their expectations in terms of hard and
soft constraints; the global optimum solution can instead
be perceived by tenants as acting randomly, as it may fully
satisfy some of them while penalizing others, depending on
the specific execution. Our compromise solution promises
benefits for both cloud users and providers. Cloud users
observe a substantial dampening of oscillations of property
values within their SLAs; cloud providers can increase
average user satisfaction balancing the observed penalty
among users, and improve resource utilization addressing
tenants’ requirements with shared plans. We remark that,
according to our experiments in Section 6.3, the highest
penalty observed in a global optimum approach is reduced
by 66% with the approach proposed in this paper.

Our VIKOR-based approach has some room for im-
provement in terms of cost management, the lack of which
represents its main limitation. Our approach, in fact, selects
the locally optimal adaptation plan regardless of its cost
(e.g., in term of resource usage) and overhead (e.g., in term
of delay due to service migration). Let us consider two
adaptation plans A1 and A2, where i) A1 is ranked first by
VIKOR, though the difference in quality with A2 is very
small, ii) A2 has substantially lower enforcement cost and
overhead with respect to A1. In this case, our approach
selects A1 as the best adaptation plan, while it could be
better to select A2. Our future work will target scenarios
where costs and overheads should subvert VIKOR ranking.

7.2 Comparison with the state of the art

We compared our approach against the most relevant adap-
tation approaches for (cloud) services, which are briefly
summarized in the following. Nallur and Bashoon [14]
propose an adaptation approach for composite services,
triggered by the Quality of Service (QoS) violations, which
focuses on requirements of single tenants. Sliem et al. [15]
present an approach for cloud self-adaptation, based on a
reduction method and a model of the system as Stochastic
Petri Nets, to find the best balance between performance
and resource consumption. Calinescu et al. [16] present
QoSMOS, a framework for adaptive service-based systems
that focuses on QoS modeling to optimize resource alloca-
tion. Schroeter et al. [17] use an extended feature model

(EFM) to represent variability of functionality and service
quality, and handle runtime self-adaptive configurations.
Arman et al. [18] propose a multi-objective, constraint-based
adaptation for the cloud, implementing a consensus-based
process and supporting multiple applications with different
requirements. Alferez et al. [19] present a variability model
to enable self-adaptation of service compositions, by activat-
ing or deactivating portions of the model. Leitner et al. [20]
model the problem of finding the optimal adaptation plan
with the lowest cost as a complex optimization problem and
present a deterministic heuristic to prevent SLA violations
in a cost-effective manner.

Table 15 summarizes the results of our comparison
across several dimensions, inspired by the gaps identified
in Section 3. Most of the existing adaptation solutions
monitor a limited number of pre-defined properties, target
a global optimum, and, in many cases, require manual
intervention. Our adaptation approach supports any class
of non-functional properties (G1) at all layers of the cloud
stack (G2). Adaptation is a transparent and trustworthy
end-to-end process, whose activities are triggered by trust-
worthy evidence based on certification (G3) that can be
fully inspected and verified by any (trusted) party (G4).
Our approach can cope with cloud contextual fluctuations
(G5) thanks to a collaborative and conciliatory approach
based on VIKOR, to reach an agreement that provides a
maximum utility of the majority and a minimum individual
regret. Finally, addressing a novel problem, our work is
complementary to existing solutions for cloud adaptation
and can be applied in conjunction with them. In particular,
our solution can be applied in conjunction with both aca-
demic [6], [7] and industrial approaches [30], [31], provid-
ing a methodology for cloud configuration adaptation, to
maintain stable non-functional properties in a multi-tenant
environment.

8 CONCLUSIONS

We presented a certification-based adaptation technique for
cloud services, which maintains stable non-functional be-
havior and quality of service of cloud-based systems across
all tenants. Our approach relies on the VIKOR multi-criteria
decision making method to find the best local optimum
adaptation, which balances conflicting requirements of all
tenants. It provides a multi-tenant, multi-layer, transpar-
ent, and user-informed adaptation based on trustworthy
evidence coming from certification activities. Being based
on a certification process, our adaptation technique i) can
be applied to any non-functional properties, ii) considers
all layers of the cloud stack, thus supporting cross-layer
adaptations, iii) provides an increased transparency on
adaptation techniques based on trustworthy and verified
evidence, and iv) manages cloud fluctuations counteracting
phenomena like oscillations.
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