IOWA STATE UNIVERSITY

Digital Repository

Electrical and Computer Engineering

Publications Electrical and Computer Engineering

5-2019

EPICS: A Framework for Enforcing Security Policies in Composite
Web Services

Rohit Ranchal
IBM Watson Health

Bharat Bhargava
Purdue University

Pelin Angin
Purdue University

Lotfi ben Othmane
lowa State University, othmanel@iastate.edu

Follow this and additional works at: https://lib.dr.iastate.edu/ece_pubs

b Part of the Information Security Commons, and the Systems and Communications Commons

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/
ece_pubs/212. For information on how to cite this item, please visit http://lib.dr.iastate.edu/
howtocite.html.

This Article is brought to you for free and open access by the Electrical and Computer Engineering at lowa State
University Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering Publications
by an authorized administrator of lowa State University Digital Repository. For more information, please contact
digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/ece_pubs
https://lib.dr.iastate.edu/ece_pubs
https://lib.dr.iastate.edu/ece
https://lib.dr.iastate.edu/ece_pubs?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=lib.dr.iastate.edu%2Fece_pubs%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/ece_pubs/212
https://lib.dr.iastate.edu/ece_pubs/212
http://lib.dr.iastate.edu/howtocite.html
http://lib.dr.iastate.edu/howtocite.html
mailto:digirep@iastate.edu

EPICS: A Framework for Enforcing Security Policies in Composite Web Services

Abstract

With advances in cloud computing and the emergence of service marketplaces, the popularity of
composite services marks a paradigm shift from single-domain monolithic systems to cross-domain
distributed services, which raises important privacy and security concerns. Access control becomes a
challenge in such systems because authentication, authorization and data disclosure may take place
across endpoints that are not known to clients. The clients lack options for specifying policies to control
the sharing of their data and have to rely on service providers which provide limited selection of security
and privacy preferences. This lack of awareness and loss of control over data sharing increases threats to
a client's data and diminishes trust in these systems.

Keywords
Cloud computing, composite web services, active bundles, security, privacy, access control

Disciplines
Information Security | Systems and Communications

Comments

This is a manuscript of an article published as Ranchal, Rohit, Bharat Bhargava, Pelin Angin, and Lotfi ben
Othmane. "Epics: A framework for enforcing security policies in composite web services." IEEE
Transactions on Services Computing 12, no. 3 (2019): 415-428. DOI: 10.1109/TSC.2018.2797277. Posted
with permission.

This article is available at lowa State University Digital Repository: https://lib.dr.iastate.edu/ece_pubs/212

http://dx.doi.org/10.1109/TSC.2018.2797277
https://lib.dr.iastate.edu/ece_pubs/212

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

EPICS: A Framework for Enforcing Security
Policies in Composite Web Services

Rohit Ranchal, Bharat Bhargava, Pelin Angin, Lotfi ben Othmane

Abstract—With advances in cloud computing and the emergence of service marketplaces, the popularity of composite services marks
a paradigm shift from single-domain monolithic systems to cross-domain distributed services, which raises important privacy and
security concerns. Authorized data disclosure and access control become a challenge in such systems because authentication,
authorization and data disclosure may take place across endpoints that are not known to clients. The clients lack options for specifying
policies to control the sharing of their data and rely on service providers which provide limited security and privacy preferences. This
loss of control and lack of awareness increases threats to client’s data and diminishes trust in these systems.

We propose EPICS, an efficient and effective solution for enforcing security policies in composite Web services that protects data
privacy throughout the service interaction lifecycle. The solution ensures that the data are distributed along with the client policies that
dictate data access and an execution monitor that controls data disclosure. It empowers data owners with control of data disclosure
decisions outside their trust domains and reduces the risk of unauthorized access. The paper presents the design, implementation,

and evaluation of the EPICS framework.

Index Terms—Cloud computing, composite web services, active bundles, security, privacy, access control.

1 INTRODUCTION

OMPOSITE Web services are an extension of the tra-

ditional Service Oriented Architecture (SOA) model,
which has evolved with the proliferation of cloud-hosted
solutions, mobile apps, and Application Programming In-
terface (API)-centric services. Composite Web services in-
tegrate disparate, distributed, and self-sufficient services
through a loose coupling to achieve a larger system with
more sophisticated functionality [1]. This model enables
the dynamic composition of service orchestrations: self-
contained, loosely-coupled, and dynamically composed so-
lutions to address the business requirements. It allows the
services to be independently developed and transparently
deployed while maintaining stable API [2]. This allows
concurrent use of services from different ownership do-
mains across various composite solutions without changes
to existing services.

Services computing is the backbone of many different
types of information systems such as online retail sites
like Amazon and eBay, enterprise business-to-business sys-
tems [3], pervasive healthcare systems [4], etc. Notwith-
standing the many advantages of services computing, en-
suring proper enforcement of access control policies and
preventing unwanted data leakage in composite Web ser-
vices is a challenge due to:

« Inability of the client on the selection of services in an
orchestration

¢ Vulnerabilities caused by improper implementation of
access control in Web services

« Insufficient options for the client to specify their access
control policies

e Improper communication of the client’s access control
policies by the services in an orchestration

Existing access control mechanisms for Web services
limit clients to high-level policies, generally specified as a
list of security and privacy preferences. These preferences

and their options are selected by the service providers
and do not allow clients with fine-grained control over the
disclosure of their data, such as associating different policies
to specific data items or changing access control behavior
based on the operational context. Even when the client is
able to specify fine-grain access control policies, existing
services infrastructures do not guarantee enforcement and
propagation of policies by the recipient services, which may
simply ignore the policies.

Despite the importance of proper access control in the
online world of growing security concerns, and an everyday
increasing number of regulations for access control to sen-
sitive data, Web services and applications still do not meet
the expected standards to mitigate data leakage problems.
According to the 2013 OWASP ranking of Web application
security risks [5], four out of the top ten risks are related to
incorrectly implemented access control checks. Information
leakage is the second most prevalent vulnerability in Web
applications, based on the 2014 Website Security Statistics
Report [6].

1.1 How do Data Leak in Service Interactions?

While Web services have been widely used by enterprises
since their inception, and the rise of cloud computing in the
past decade has given increased traction to online storage
and processing of huge amounts of data in many different
domains, data leakage attacks are still strong deterrents for
wider adoption of cloud and Web services. Examples of
recent massive data leaks include the Target Data Breach [7]
and Anthem Data Breach [8], where attackers were able to
get access to sensitive user information such as credit cards,
mailing addresses, email addresses, phone numbers, date
of births, medical IDs, social security numbers and employ-
ment information. Recent research has demonstrated that

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

many popular Web applications have semantic bugs in their
access control implementation, resulting in unauthorized
disclosure of data [9].

* Name
* Email
* Credit card type p J

« Credit card [)
* Shipping preference

* Mailing address order
4| request
+
data A
* Name v ‘
« Email verity . data A ”
+ Crediit card type Shopping ~ [@1° Seller o
* Credit card Service 2 Service .2
* Shipping preference
» Mailing address o
payment shipping
request request
4 + +
data Az data Az
-2 . . -2
. Payment Shipping |
.2 Service Service .2

Fig. 1: Composite Web service for online shopping.

Consider a composite Web service for online shopping
as shown in Figure 1. The user initially registers with the
shopping service and must disclose sensitive information
including name, email, credit card, mailing address, billing
address, phone number etc., while creating an account.
Next, the user sends an order request to the shopping
service, which communicates with the seller service to verify
the order (item availability in the specified quantities, sizes,
colors). The seller service then shares the information with
the shipping service to verify shipping eligibility. On verifi-
cation from the seller service, the shopping service applies
the tax, shipping charges and calculates the total amount
due for the order. User information is sent to the respective
payment service for verification. On payment approval, the
order is completed and the client and the seller service are
informed. In fact, the shopping service does not need all
the data of the user in order to provide its service. For
instance, the service can charge the user’s credit card for an
order without knowing the credit card details. This kind of
scenario is prone to data leakage mainly in following ways:
o Primary services often justify the collection of all client

data by arguing that the information they store is en-
crypted, but if the service (shopping here) is compromised
user information could be leaked to malicious parties.

o The user data is shared with the seller service, payment
service and shipping service but these interactions are not
visible to or approved by the user, i.e. the data shared
with each of these services may not include only the
data they require to provide service, but additional data
items as well. Normally, the shipping service only needs
the address of the user, the payment service only needs
payment credentials, and the shopping service only needs
to authenticate the user.

o If the service storing the data of the client does not
implement proper access control mechanisms, the private
data of one user could be disclosed to other users.

1.2 Threat Model

In order to explain the threat model, we first define the ad-
versary. An adversary is a service that receives data and the

2

associated policies using an existing policy communication
standard such as WS-Policy [10], but ignores the enforce-
ment of policies. The services are generally trusted because
a client would not want to use untrusted services to share
its data with. However, these services can be interested in
knowing more information than they are authorized to re-
ceive, but they would not generally attack client’s protected
data in order to discover this information. So they are only
capable of making queries and receiving data if they are
authorized. For instance, services store client information to
provide value-added services, analyze client data to fine-
tune their marketing strategies, etc.

1.3 Contributions & Paper Organization

In this paper, we propose EPICS, a framework for enforcing
security policies in composite Web services. The framework
is based on active data entities that are bundled with access
control policies and a mechanism for ensuring proper policy
enforcement in external service domains. The following are
examples of policies that can be enforced with the proposed
framework in the online shopping scenario:

e Privacy policy stating that the “address” information of the
user should not be shared with “advertising” services.

o Confidentiality policy stating that the “credit card” informa-
tion of the user should not be shared with services below
a certain rating.

« Operational policy stating that the “credit card” information
of the user should be disclosed only if the charges are less
than the available credit.

The main contributions of the paper are as follows:

e We present the design and implementation of a frame-
work for dynamic specification and enforcement of
client’s access control policies in composite Web service
interactions. The presented framework is compatible with
existing Web services infrastructures.

o We present an access control mechanism that limits data
shared with services in a composition to the minimum
essential data they need to accomplish their task, based on
client-specified policies. The mechanism is independent
of third party software or services, obviating the need to
rely on proper enforcement/communication of policies in
external service domains.

e We demonstrate through experiments with a real-world
scenario that the framework is able to achieve satisfactory
performance to meet real-time constraints of Web services.

The rest of the paper is organized as follows: Section 2
provides a brief background on policy enforcement ap-

proaches and Web service composition patterns. Section 3

describes the proposed EPICS framework and its operation

on a sample Web services scenario. Section 4 presents the
implementation details of the framework. Section 5 provides

a security and performance evaluation of the framework.

Section 6 discusses related work and Section 7 concludes

the paper.

2 PRELIMINARIES
2.1 Enforceable Security Policies

As Schneider states [11], the applicability of any security
policy in practice is dependent on the enforceability of that

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

Policy enforcement

Policy enforcement

Policy enforcement

[w;]

by the source Data by the mediator Data by the receiver ——» Data !
Receiver Receiver Receiver

Data Data Data Trusted Data Data Data
Owner Receiver Owner Third Party Receiver Owner Receiver

Data \ Data Data
Receiver Receiver Receiver

Fig. 2: Policy enforcement at owner.

security policy. A common way to enforce security poli-
cies is to utilize an Execution Monitor (EM) (enforcement
mechanism), where the EM runs in parallel with the target
system, observes its behavior, and terminates the system
if an action leads to a violation of the policies [11]. Basin
et al. extended the role of Schneider’s EM by proposing
to distinguish between controllable actions, i.e. actions that
could be stopped, and observable actions, i.e. actions that
EM cannot prevent [12]. Enforceable security policies in
distributed systems can be modeled using the concept of
security automata as proposed by Schneider [11], described
by:

o A finite set of states ()

« A finite set of initial states Qg € Q

« A finite set of input symbols I

o A transition function d: (Q x I) — 29

Here Q) represents the set of valid states of the system in
question, i.e. the states in which the set of security policies
(predicates) defined on the system hold. The set of inputs
consist of the events that are observable by the EM and have
an effect on the state transitions. When modeling data access
policy enforcement, the inputs can include events such as
authentication success or failure, as well as the results of
checking conditions such as whether a data item or policy
has expired, the integrity of policies has been preserved,
etc. Access control policies that are representable using
security automata can be enforced by feeding the automata
into a simulator running in parallel with the service under
monitoring, and denying access when an input is rejected
by the defined automata. At each step of execution, the
simulator receives the input before the system and allows
execution of the step if the automaton is able to make a
transition on the input symbol given its current state. If no
transition is allowed, access is denied.

Figure 5 shows a sample security automaton for a policy
requiring authentication of a data receiver before authoriza-
tion takes place, and denying access to data after three au-
thentication failures or a single authorization failure. Here,
the automaton states indicate whether authentication/au-
thorization has already taken place, or authentication has
failed one or more times. The input fed into the automaton
consists of the authentication/authorization request results,
and no other event in the system is monitored.

2.2 Policy Enforcement Mechanisms

In case of policy-protected data disclosure in a distributed
environment, such as Web service interactions, a policy
enforcement mechanism needs to be present at the owner

Fig. 3: Policy enforcement at mediator.

Fig. 4: Policy enforcement at receiver.

Not authentication Notauthentication Not authentication
failure or success failure or success failure or success

Not authorization
failure

U3

tication
failure

7 tication
failure

success

authentication
success

Fig. 5: Security automaton example.

of the data, at the receiver of the data, or at a mediator.
Below we provide descriptions of these three cases.

2.2.1 Policy enforcement at owner

Figure 2 shows a typical scenario of policy enforcement at
the data owner. Data owner has an application on their host,
which is responsible for the enforcement of their policies.
This is the traditional and most commonly used approach
for data sharing in the client-server paradigm. The main
issue with such solutions is that they require the data owner
to be visible and accessible to all hosts and continuously
available to serve requests.

2.2.2 Policy enforcement at mediator

Figure 3 shows a typical scenario of policy enforcement at a
mediator. Such approaches use a Trusted Third Party (TTP)
as a broker between data owners and data recipients. The
owner sends data and policies to the TTP, which is respon-
sible for enforcing policies and allowing authorized data
access requests. For instance, a Publish/Subscribe model is
based on this approach. There are various problems with
this approach, including trust issues with the TTP, and loss
of control over information published to the TTP. A TTP is
a single point of failure and can leak information in case of
hacking attacks or insider abuse. Furthermore, a TTP can
aggregate private information and release it to interested
parties for profit or under subpoenas, court orders, search
warrants, etc.

2.2.3 Policy enforcement at recipient

Figure 4 shows a typical scenario of policy enforcement at
the recipient. In such approaches, there is a trusted hard-
ware or software component on the receiving host, which
is responsible for policy enforcement. The security policies
associated with the data are either predefined or are defined
during data dissemination. The policies are enforced by the

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

.
-
<

S3

8 - =
' '
it !

Fig. 7: Chain of Web services.

Fig. 6: Composite Web

service.

trusted component at the host after the data is received.
The main problem with this approach is that it requires
advance knowledge of the recipient hosts and the presence
of a trusted component on the hosts.

EPICS, as will be described in section 3, is based on
this last method of policy enforcement, with an enforcement
mechanism integrated into data itself, obviating the need to
trust the data receiver or rely on a trusted component at the
receiver.

2.3 Web Service Composition Patterns

Web services can be composed using one of the many SOA
composition patterns to allow reusability and high cohesion.
Some of the most widely used composition patterns include
the proxy, chain and facade patterns. Figure 6 shows a com-
posite Web service consisting of three service components.
This is the most basic service composition style, where the
client individually invokes all services and provides its data
to them separately in every invocation, composing the end
result itself. In terms of data access control, this type of
composition style is how EPICS operates when enforcing
access control policies.

Figure 7 shows a chain service composition pattern,
where the client invokes the first service S1 in the chain,
which invokes 52, which further invokes S3 to complete
the request. In such a chain of service requests, each service
in the chain requests the data item it needs to accomplish
its task from the client, as marked with the dashed arrows.
In a service chain consisting of n services, this results in
n — 1 extra interactions between the client and the services
for data sharing, incurring delays in response.

Figure 8 shows a proxy service composition pattern. A
proxy adds an additional level of indirection between the
client and the invoked service. The invoked service in the
composition requests the data item from the client resulting
in the extra interaction.

Figure 9 shows an example of the facade service com-
position pattern with three services. A facade acts as a
gateway to a set of services. As before, each service in the
composition requests the data item from the client resulting
in n — 1 extra interactions for a composition consisting of n
services.

3 EPICS DESIGN

EPICS is a distributed data dissemination framework for
enforcing data access and security policies in Web services
possibly consisting of multiple components beyond the
client’s interaction zone. Data access in EPICS is based on

Ea

Fig. 8: Proxy Web service =
pattern.

Fig. 9: Facade pattern.

an application of the Principle of Least Privilege [13] to the
services domain, which limits data shared with each service
in a service composition to what they actually need to
accomplish their task and nothing more. The main building
blocks of EPICS are active bundles, which are data packets
augmented with self-protection capability, and a policy en-
forcement mechanism integrated into active bundles to en-
sure compliance with client-specified access control policies
at every hop in service interactions. Below we describe the
main components of EPICS and the operation of the frame-
work to prevent data leakage in Web service interactions.

3.1 Active Bundles

Traditionally, solutions for protecting data against unautho-
rized access have considered data as passive entities that
are unable to protect themselves. Such solutions require
another active and trusted entity—a trusted processor, a
trusted memory module, a trusted application or a trusted
third party—to enforce data access authorization policies. We
challenge this assumption and propose a framework based
on the Active Bundle (AB) construct that transforms passive
data into an active entity. An AB [14], [15], [16] is a self-
protecting data encapsulation mechanism composed of:

e Sensitive Data is the information that needs to be protected.
It can include any digital content such as documents,
images, audio, etc. The content can have several data
items, each with different protection requirements and
applicable policies to ascertain their secure distribution
and usage.

o Metadata includes policies that control the AB behavior
and govern data dissemination. Policies can be opera-
tional constraints such as expiration time, active time,
maximum number of requests, life duration etc., or data
constraints that address privacy and access control.

e Engine is a specific-purpose program used to operate the
AB, protect its content and enforce policies to guarantee
access control of sensitive data in the bundle, e.g. disclos-
ing to a service only the portion of data that it requires to
accomplish its task.

In this work, we extend active bundles with the fol-
lowing capabilities to utilize them for policy-based data
dissemination in composite Web service interactions:

o Authentication to verify the identity of the service re-
questing access to data. It can be based on standard au-
thentication mechanisms, such as passwords, certificates,
biometrics, etc.

o Authorization to validate the data access request of the
service. It allows or denies access based on the evaluation
of the applicable policies.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

o Integrity Verification to dynamically verify the correctness
of the AB’s execution. If any modification is detected in
the AB’s data, policies, or code, the data access request is
denied.

e Data Disclosure to decrypt the requested data and disclose
to the service only if the service is authenticated and its
request is authorized. It identifies the encrypted data item
and determines the appropriate key to decrypt it.

3.2 Policy Enforcement in EPICS
3.2.1 Access control model

In EPICS, the data owner (client) needs to share data con-
sisting of multiple items with a set of services, where each
service is only authorized to access specific data items. The
owner can directly interact only with a subset of those
services and relies on them to disseminate data to other
services. Note that in order to ensure the correct delivery
of appropriate data to each service, it is necessary that each
service shares the entire data even though the services are
only authorized for a certain subset of the data. The owner
may not know all the services in advance, but can use
access control policies to authorize services dynamically.
Therefore any service that satisfies the conditions defined
in the policies for a data item is authorized to receive the
data item.

Let D be a set of data items d; owned by U that need
to be shared with authorized services involved in a Web
service invocation. Each data item d; is a key-value tuple
of the form < k;,v; >. We assume that each host S; is
already aware of the set of item keys kg, of items dg,,
which it may be authorized to access. For instance, the email
data item is organized as < email, abcQxyz.com >, where
email is the key element already known to the interested
services, and abcQzyz.com is the value element that should
be disseminated only to the authorized services. P is the set
of access control policies defined on D. An item d; in data D
may have several applicable policies. AP; is the subset of P,
which represents the policies applicable to item d;. Note that
AP; can be (). U encrypts each data item value v; separately
and gets the corresponding ciphertext c¢;. C' represents the
set of ciphertexts corresponding to all data item values. U
and each service .S; shares the encrypted data C with other
services instead of sharing the actual data D.

Common access control models that could be utilized for
this data dissemination problem follow.

Role-based access control (RBAC) is based on assignment
of specific roles to entities and proof of possession of a
specific role entitles the receiver access to data items their
role allows [17]. Although RBAC has been fairly popular in
many domains including Web services, it has disadvantages
for the data dissemination problem here, as it would require
assignment of roles to all services that might be invoked in
a composition, exhibiting the problem of pre-knowledge of
possible services. It also does not allow specification of more
fine-grained policies specific to the individual services and
the operation context.

Attribute-based access control (ABAC) defines access con-
trol based on values of specific attributes of the data re-
ceiver [18]. The policies in ABAC define rules by combin-
ing the attributes of subjects (entities requesting access to

5

resources), resources (objects to which access is requested),
actions (type of access, e.g. read or write), and environment
(context of the request, e.g. time of the access request). Un-
der this model, an entity is granted access only if it satisfies
the attributes defined in the policies for the requested re-
source. The use of attributes allows to express more complex
access control policies and enables fine-grained policy-based
authorization. Access control in EPICS is modeled based on
ABAC due to its flexibility and richness of expression when
specifying policies.
The access control mecha-
U nism we propose for EPICS
is based on a set of functions

D,CPF

F, such that, given ciphertext
C.PRF set C, access control policies P
and an item key k; as input, it
S L Sz outputs the corresponding item

FC. P, ki) = di F(C. P, ko) = d2 : ’
value v; if the service request-
C.RF lc p.F Ing access to the value v; is au-
thorized to get it based on ac-
cess control policies AP; asso-

F(C, P, ko) = ds FIC. P ke) = ds

ciated with d;. I is constructed

by U and sent to each service

S; with which it can interact

along with C' and P (as shown

in Figure 10). When a service .S;

receives I, C' and P, it forwards them to the set of services

Sg, involved in its service orchestration. Access control

policies can include attribute-based policies such as the

service type being a payment service or the service location
being in the US, as well as operational policies based on the
execution context, service interaction parameters etc. In the
proposed framework, F'is integrated into the AB engine.

F includes functions for:

o Verification of a receiving service (authentication, autho-
rization and checking of operational constraints such as
data expiration time)

o Integrity checking of the functions in F'

o Derivation of the encryption/decryption key for the dif-
ferent data items

o Decryption of the ciphertexts for the different data items
using the derived keys

For the encryption of the data items in an AB, EPICS
uses symmetric-key encryption with secret keys generated
from the execution flow of the AB’s engine (as described
in section) instead of an approach like Ciphertext-Policy

Attribute-based Encryption (CP-ABE) [19], where a service’s

private key is associated with a set of attributes and a TTP is

needed to manage attributes and issue keys. The proposed
method offers the following advantages over existing ap-
proaches:

o There is no need for distribution of decryption keys to
services in advance, which is infeasible especially in case
of cloud-based services unknown to the client.

e Attribute revocation, which happens to be very costly in
the case of an approach like CP-ABE, is not an issue due
to the dynamic generation of keys, which provides both
forward and backward security.

e Dynamic integrity checks on AB policies, data and code
can be integrated into the key generation process, prevent-
ing disclosure of data in case of tampering. EPICS makes

Fig. 10: Distributed data
dissemination in EPICS.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

it possible to integrate contextual parameters into data
disclosure decisions as opposed to CP-ABE.

« Policy definitions in CP-ABE are limited to boolean and
threshold operations over the defined set of attributes, so
the type of access control is restricted compared to EPICS.

3.2.2 Policy enforcement mechanism

The policy enforcement mechanism in EPICS is based on
the idea of execution monitoring [11] of the data access
requests (described in section 2.1). The EM receives requests
from services for data access and permits them to access
the data only if the applicable policies allow it. It uses the
history of execution steps and their outputs, such as a step
for authentication of service and a step for authorization
of data access request based on the evaluation of applicable
policies, to decide whether the action is authorized, in which
case execution is allowed, or the action is unauthorized (i.e.
violates the applicable policies), in which case execution is
terminated. The execution steps such as authentication and
authorization are controllable actions and, therefore, their
execution can be terminated by the EM [12].

The access policies that we consider in this system are
enforceable by execution monitoring as they satisfy the
enforceability conditions [12]: (a) inspecting the execution
steps of the service interaction is sufficient to determine
whether it is policy-compliant; and (b) the execution steps
of previous interactions are independent and do not affect
the policy compliance of the current interaction. In relation
to standard access control architectures such as eXtensible
Access Control Markup Language (XACML) [20], the EM
acts as both a policy decision point (PDP) that is used to
evaluate data access requests against applicable policies,
and a policy enforcement point (PEP) that is used to in-
tercept access requests and enforce policies by approving or
denying them based on the evaluation results of the PDP.

In a composite service environment, the client request
(including the client’s data) is disseminated to external
service domains, which are hidden and possibly unknown
to the client. This adds a restriction on the placement of
the EM because the EM needs to be available in every
domain, where data is disseminated and access is requested,
to ensure the enforcement of policies. The existing policy
enforcement mechanisms place EM either at the source,
the destination, or a mediator as discussed in 2.2. Since
the component services in the composition are dynamically
decided and hidden from the client, the placement of the EM
at the source or a mediator is not possible. A pre-defined
placement of EM at all possible destinations (component
services) is not feasible, especially in a cross-domain multi-
provider environment with real-time constraints.

In this work, we propose a mobile EM that can be dy-
namically placed on the component services that participate
in an interaction to control data disclosure at each endpoint
and ensure end-to-end policy enforcement. The solution
utilizes active bundles, which include the sensitive data, the
related policies as metadata, and the EM as the engine. In
this way, the EM travels along with the data and the policies
as part of the AB.

Figure 11 demonstrates the operation of the EM using
a security automaton in the case of an access request for
the value of the data item credit card in the online shopping

Not Not
authentication authorization
success failure

{ \

i % vjau!hen—wautheﬂr!q_ypavmem@\ocatmn Aa

S’ tication tication policy policy
integrity success integrity integrity

check check check
successful successful successful

Fig. 11: EPICS policy enforcement security automaton
example.

scenario. In this simple case, there are two policies associ-
ated with credit card—a payment policy and a location policy
related to the payment processing service. The first action
taken by the engine is to check the integrity of the service
authentication code and proceed with running authentica-
tion only if the code is intact. This is followed by checking
the integrity of the two policies and evaluating the policies
only if their integrity has been preserved. Finally, data access
is authorized only if the authorization does not fail based on
the supplied access control policies. Notice that this automa-
ton allows multiple authentication failures, but no autho-
rization/integrity check failure and can easily be modified
to terminate execution in case of any authentication failure.
The ability to specify such operational constraints provides
increased control to the client over handling their data under
different contexts. Typically a digest of the policies (part of
the AB metadata) calculated using a secure hash function
are used for the integrity checks.

3.2.3 Key derivation

The symmetric keys for AB data items are derived based
on unique information generated from the execution control
flow path of the AB. The main control flow steps include au-
thentication and authorization. These steps generate unique
information during interaction with a service only if the
service is authentic and its request is authorized based on
service attribute values (as proven by a certificate authority).
A Key Derivation Function (KDF)! is used to derive the key
based on the information. In order to ensure proper entropy
in the key, the information is transformed into a secret (hash
of the information) first and the secret is used to derive the
key (using methods such as SecretKeyFactory, PBEKeySpec
and SecretKeySpec provided by javax.crypto?®). During AB
creation, each data item is encrypted using a unique key
derived by running the AB engine with valid attribute
values that would result in providing access to the data item
according to the associated policies. The distinct information
for each key comes from the authentication token (such
as a password or PKI issued token), authorization policies
applicable to the associated data items, and the mobile code
executed by the AB, as described in section 3.3. During
interaction with an authenticated-authorized service, the AB
execution control flow steps generate the same information,
which is used to derive the appropriate key and decrypt the
data item.

1. A KDF is a deterministic algorithm to derive cryptographically
strong secret keys from some secret value [21].

2. https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-

summary.html

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

Let us consider a toy example of key generation for the
case of the security automaton in section 3.2.2. We extend the
automaton with outputs generated at each state transition
to demonstrate the process of key derivation as seen in
figure 12. Let us assume for simplicity that the output at
each state transition i, denoted by H, is the hash of the
function code run before the transition takes place (e.g.
authentication code), and Hy is an XOR of the required
attribute values specified in the two policies to grant access.
Let us further assume that the key aggregation function
generating the secret key for encryption of the credit card
information from the outputs of the automaton is XOR.
Given a collision-resistant hash function, the key generated
during a complete run of the AB will only match the key
generated during AB generation if (a) the integrity of all
code during the run has been preserved and (b) the attribute
values of the service requesting access match those specified
in the policies.

Not Not
authentication authorization
success failure
/ \
L Yo »,,-‘authen—wgulhen—\q_z/bayment@\acauon U4
N tication tication policy policy
integrity success integrity integrity
check check check
successful successful successful l
S BN N EX

Fig. 12: Security automaton extended with outputs for key
derivation.

3.3 Tamper Resistance

The correctness of access control policy enforcement in
EPICS depends on the correct execution of AB control
flow steps. Since the service domain in which the AB is
running may not be trusted, we need to check that the
integrity of all elements of the AB including its engine
is preserved throughout its execution. The approach we
propose for tamper-resistant execution of ABs is based on
augmenting the AB engine with integrity checkpoints dis-
tributed throughout the engine code using aspect-oriented
programming (AOP) [22] as proposed by Angin et al. [23]
to ensure timely detection of tamper. Tamper resistance
checks the integrity of the AB execution to ensure that it
has no difference from the original code. Each time an AB
step is executed, the tamper resistance module calculates
its digest and the digest of the resources used by it (e.g.
authorization module and the policies that it evaluates)
through a secure one-way hash function (such as SHA-2).
These digests are combined with the information used for
key derivation. Therefore, if there is any modification to any
step or its resources, the digests change, making the derived
key invalid.

In a Java-based implementation of the proposed tam-
per resistance model, integrity checkpoints can be inserted
around every method call using the Aspect/*> AOP frame-

3. https:/ /eclipse.org/aspectj

7

work. The code snippet in listing 1 shows how to imple-
ment tamper resistance using Aspect] for the methods of
an policy enforcement engine class file Authentication. As
clearly demonstrated by the code snippet, the whole process
of adding integrity checking functionality is completely
transparent to the actual engine code.

public aspect Guard { 1
pointcut methodCalls (): 2
execution (x Authentication.*(..)); 3

4

Object around (): methodCalls() { 5
ClassPool clPool=ClassPool.getDefault (); 6

7

byte[] initHash = 8
(byte[])codeHash. get(” Authentication”); 9
byte[] hash; 10
try { 11
CtClass cls = 12
clPool.get(”Authentication”); 13
byte[] bytecode = cls.toBytecode(); 14
MessageDigest messageDigest = 15
MessageDigest. getInstance ("SHA-256"); 16
messageDigest.update (bytecode); 17
hash = messageDigest. digest (); 18
return proceed (); 19
} 20
finally { 21
if (java.util.Arrays.equals 22
(hash,initHash)) { 23
System.out. println (”true._hash.value”); 24

25
else { 26
reportTamper (); 27
} 28

} 29
} 30

Listing 1: AOP example using Aspect]

3.4 EPICS Operation

Figure 13 depicts the operation of EPICS for policy-based
dissemination of data to Web services. A client (data owner)
uses the framework as follows to interact with the service
providers. He provides his data, applicable access policies,
and the target service to the AB Generator application,
which uses the information to generate an AB and sends the
AB to the target service. The composite service forwards the
AB to its component services to transmit the client’s data,
policies, and the EM. The services interact with the AB to
send requests for data access. All data access requests are
intercepted by the AB’s engine (EM), which is responsible
for enforcing the policies and allowing access to the data.

Figure 14 shows the UML activity diagram of AB steps
in response to a request. The main steps follow.

Service Authentication is based on the use of signed
digital certificates. The service sends a signed request along
with its X.509 certificate signed by a trusted Certificate
Authority (CA). AB’s engine verifies that the request is
signed by the service, the service certificate is valid, has not
expired, and is signed by a trusted CA certificate. A positive
verification authenticates the service.

Request Authorization uses the client policies that are
applicable to the requested data item to evaluate the re-
spective attributes of the interacting service (e.g. trust level),
the data item request, and the environment conditions (e.g.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

2. AB
Generation

c 1. Data, Policies, Target Service AB
Generator

3. AB Transmission in
message

Virtusl Machine

E-commerce Service Domain

AB Service .
- —
-

i 4. AB Extraction & execution [

E-commerce Service Domain

AB Service ‘ i
. servee
4
is

[+ Name
v | Email

AB Process

Fig. 13: EPICS operation.

emergency context, attack context). A positive evaluation of
the applicable policies authorizes the service.

Data Disclosure identifies the
data item that needs to be de-
crypted. The symmetric key that
was used to encrypt the data item
during AB creation is dynamically
derived using the unique infor-
mation generated during the AB’s
execution along with the digests
of the AB modules (described in
e section 3.2.3). AB uses the key to
decrypt the data item and returns

| it to the service.

) false
Decryption

l true

Data disclosure

Data access request

Authentication

true

Authorization

3.5 Scenario Revisited

* Name

* Email

« Payment type

« Credit card L)

« Shipping preference o

+ Mailing address order
request

1 +

Active
Bundle
verify

. Active
Bundle

* Name T E(Name)
request
« Email Shopping Seller « E(Email)
* Payment type ‘ Servi « E(Payment type)
+ E(Credit card) m . 2 leo + E(Credit card)
* E(Shipping preference) payment shipping * Shipping preference
* E(Mailing address) request request * E(Mailing address)
+ 3 +

4
+ Name Active
« E(Email) Bundle

« E(Payment type)

Active | « Name
Bundle| « E(Email)

« E(Payment type)

« Credit card Payment Shipping « E(Credit card)
« E(Shipping preference) Servi rvice « E(Shipping preference)
* E(Mailing address) s Se * Mailing address

Fig. 15: EPICS in action for online shopping.

Figure 15 shows the online
shopping scenario introduced in
section 1.1 updated based on the
proposed solution. We assume that
the client and the shopping service
have a pre-existing trust relation-
ship, for instance, established dur-
ing client’s registration with the
shopping service. During registra-

tion, the client, instead of sending all information, sends
an AB to the service. The shopping service stores the AB
and associates it with the client’s account. When the client
logs in, the shopping service starts the AB and gets only
the information from the AB which it requires to provide

8

service. When the client sends an order request, the shop-
ping service sends AB along with the requests to the seller
and the payment services. Similarly the seller service sends
AB along with the request to the shipping service. Each
service interacts with AB and gets only the information
which it needs to provide the service. After completing the
request, the seller, shipping and payment services discard
the information and the AB. The shopping service stops the
AB when the client logs out and discards any information
received from AB. This also reduces the services’ liability to
the client, because if the service is compromised, the client
information is not leaked and the attacker only gets access
to the client’s AB.

4 |MPLEMENTATION

We have implemented a prototype of the EPICS framework
with software components for Active Bundle, AB Generator
and AB Handler. In the subsections below we provide the
implementation details of each component with the pro-
posed security extensions.

4.1 Active Bundle

The AB consists of data, metadata, and an engine, as dis-
cussed in section 3.1. The three components have been
implemented as follows:

Data: Each data item is encrypted and stored as a key-datum
pair using JavaScript Object Notation (JSON)* format, e.g.,
{ ab.email : E(abc@xyz.com) }. This organization allows
services to query AB for specific data items using the key
attribute. The symmetric key for encryption is based on the
AB execution control flow steps as described in section 3.2.3.

Metadata: They include the access control and operational
policies specified by the data owner. The policies are spec-
ified using the Attribute-based Access Control (ABAC)
model and implemented using eXtensible Access Control
Markup Language (XACML) 3.0. An example policy, “ac-
cess to credit card information is allowed only to certified
visa payment services with 5-star ratings”, expressed using
XACML elements, is shown in Table 1.

TABLE 1: Policy: Payment.

ALLOW
Resource Credit card
Subject Visa payment services
Action Read
Environment | Rating >4

Engine: This has been implemented as a set of Java classes
that execute the AB, handle access requests and perform
policy evaluation and enforcement. The policy evaluation is
implemented using an open source XACML PDP?) named
WSO2 Balana’. AB provides a set of API methods for

4. A lightweight data-exchange format. http:/ /json.org/.

5. XACML is an open OASIS standard for expressing access control
polices using XML [20].

6. PDP is the module that evaluates access requests against autho-
rization policies and issues access decisions [20].

7. WSO2 Balana. https:/ /github.com/wso02/balana

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

interaction with services. The API is implemented using the
Apache Thrift framework.®

4.2 AB Generator

The AB Generator has been implemented as a Node.js” Web
application that creates ABs. Data owners use the applica-
tion interface to specify the data (as key-value pairs), appli-
cable access control policies (as XACML/JSON elements),
the operational policies, the AB template!” to use, and the
Web address of the target service for AB. The application
parses the input and uses it to derive the symmetric keys
for data encryption. It encrypts the data and adds the
ciphertext and the policies to the specified AB template.
Next, it generates the AB as an executable Java Archive
(JARM) file. It serializes the AB file using Base64 encoding
to preserve the data format, and appends the output to the
HTTP body of the message, which is sent to the specified
target service.

4.3 AB Service Handler

The AB Service Handler is a Web service middleware ex-

tension, implemented as a Node.js module that intercepts

incoming requests before being serviced by the Web service

APIs. The handler is invoked for each service request and

performs the following steps:

1) Checks and proceeds only if the incoming request in-
cludes an AB, otherwise it passes the request to the next
method.

2) Extracts the AB from the request.

3) Decodes the AB and stores it on the file system.

4) Generates a port number and starts AB on that port.

5) Starts execution, at which point it is ready for interaction
with the service.

6) Passes the AB process information to the next middle-
ware method which is eventually passed to the service.

5 EVALUATION

In this section we provide a security discussion of the
proposed framework, its translation into practice and per-
formance evaluation of the prototype system implemented
in the context of the online shopping scenario introduced in
section 1.1.

5.1 Security discussion
5.1.1 How resilient is EPICS against data leakage?

EPICS provides three levels of protection for data disclosure.
The first level of protection is based on the authentication.
Each service needs to authenticate with the AB in order to

8. Thrift is a cross-language Remote Procedure Call framework that
defines an interface language and a binary communication protocol
to develop services that work seamlessly across different implementa-
tions. https:/ /thrift.apache.org/

9. Node js. https:/ /nodejs.org/

10. An AB template defines the program skeleton of AB and is used
to generate ABs with the same structure. It includes the implementation
of the invariant parts (engine) and placeholders for customized parts
(data and policies). ABGen can use multiple AB templates, for instance,
based on the different CA certificates.

11. JAR is a standard way of packaging Java classes, metadata and
resources into one file. It helps to distribute Java code.

9

access the data. The second level of protection is based on
the authorization. Each data access request is authorized
based on the evaluation of the applicable policies. The
third level of protection relies on the integrity-based key
derivation. The data decryption is possible only if the AB
is unmodified. The decryption discloses only the portion of
the data for which the service is authorized.

Attackers copying active bundles cannot decrypt the
data without proper authentication and authorization even
if they analyze the AB execution flow offline. The recipient
needs to have exact knowledge of AB flow control and
which modules have been marked for integration into key
generation before receiving the AB to derive the correct key.
The integrated modules and their code can be randomized
for each AB dissemination to prevent replaying. Addition-
ally, the key does not only depend on the module hashes,
but also authentication tokens for services, without which
proper key derivation is not possible. Authentication and
authorization combined with tamper resistance prevent an
attacker from bypassing access control.

The framework provides protection against the follow-
ing threats that are possible in the current Web services
model:

o Unauthorized data disclosure: This threat occurs when an
unauthorized service accesses the client’s data or an au-
thorized service accesses the data items for which it is
not authorized. In EPICS, the use of policy evaluation
and enforcement for each data access request ensures that
the appropriate data is disclosed only to an authorized
service.

o Ignored policy transmission: This threat occurs when a ser-
vice ignores to transmit the policies during data dissemi-
nation. In EPICS, the policies are always transmitted along
with the data by means of AB.

e Disregarded policy evaluation: This threat occurs when a
service disregards the evaluation of the policies associated
with the data. In EPICS, the use of EM (as part of AB)
ensures that any data access request is intercepted and
evaluated against the relevant policies.

o Circumvented policy enforcement: This threat occurs when
a service accesses the data either by disregarding the
policy evaluation or by ignoring the decision of the policy
evaluation. In EPICS, the use of EM (as part of AB) ensures
that the decision to allow or deny access to data is based
on the results of the policy evaluation.

o Unauthorized data dissemination: This threat occurs when a
service disseminates the data to an external domain and
the data is accessed by unauthorized services. In EPICS,
the use of AB to transmit data and policies ensures that
the services in any domain are unable to access the data if
they are not authorized.

5.1.2 What factors does EPICS resilience depend on?

While EPICS provides protection against various data leak-
age threats as discussed above, the level of resilience against
attacks depends on the level of protection it has against
malicious receivers. A malicious service that receives an
AB can try to attack the AB to gain unauthorized access
to the data or compromise the AB to disseminate incorrect
data or attack other services. Therefore, an AB needs to be

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

protected against services that are malicious or have been

compromised. This can be achieved as follows:

o Secure communication: An AB should be transferred using
secure communication, e.g. HTTPS. This prevents man-
in-the-middle attacks during AB transfer. When a service
interacts with an AB, the AB employs authentication to
identify the service and verify the authenticity of the
service to ensure that it is interacting with a legitimate
service, which prevents masquerade attacks on the AB.
The AB API provides the getSecurevValue () method,
which a service can use to receive the data encrypted with
its public key. The data can be decrypted only by using
the secret key of the service. This prevents the man-in-
the-middle attacks on the interaction between an AB and
a service.

o Tamper resistance: The AB uses code integrity checks to
provide protection against tampering attacks. It uses the
digest values of its modules to dynamically derive the
secret keys for data decryption. The correct keys are gen-
erated only if the modules are unmodified, which ensures
correct execution. This prevents attackers from gaining
access to AB’s data (e.g. using tamper attacks that modify
the policies of the AB).

o Cloud-based execution: A trusted cloud platform can be
used to execute the AB (e.g. IBM Bluemix'?). Services
can interact with the AB executing in the cloud and get
access to the data only if they are authorized. Note that
the cloud platform in this case is used only for code
execution; it does not broker data requests or perform
policy enforcement and, therefore, does not get access
to data. The execution of the AB in the cloud prevents
tampering and hijack attacks.

5.2 Translation into practice

The services need to implement the AB Service Handler for
supporting and handling requests that use AB. To interact
with AB, the services need to use an AB Client that provides
the protocol for communicating with AB. The AB Service
Handler and AB Client can be provided as platform specific
libraries that the services can include in their application
servers. No changes are required at the service API layer
as the AB is included in the HTTP body and transferred by
means of REST messages.

Specification of access policies in EPICS are easily trans-
lated into practice using XACML. The policies define the
applicable resource (requested data item), the allowed sub-
ject (requesting service), the permitted action (read access),
and the acceptable environment conditions. Figure 16 shows
a sample policy, which blocks the access to user’s address
information (resource) if the requesting service (access sub-
ject) is not a shipping service. In practice, use-case specific
policy templates, with attributes pre-populated by default
values and selectable through a drop-down list of options,
can be provided as part of the AB Generator application on
the user side, which the users can modify to specify their
preferences.

12. https:/ /console.ng.bluemix.net

10

<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" PolicyId="sample2"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0: rule-combining-algorithm:deny-overrides"
Version="1.0">
<Target>
<AnyO0f>
<A110f>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
XMLSchema#string">ab.user.shipping.address</AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-
id" Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource”
</Match>
</AL10f>
</Any0f>
<AnyOf>
<A110f>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">Shipping</

AttributeValue>
<AttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-
id" Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"

</Match>
</AL10f>
</Any0f>
</Target>
<Rule Effect="Permit" RuleId="permit-rule"/>
</Policy>

Fig. 16: EPICS address policy example.

5.3 Performance experiments

We conducted a series of experiments to measure the over-
head of using active bundles for interaction with services.
We describe the experimental setup and present the results
in the following sections.

5.3.1 Experimental setup

The experiments were conducted using Amazon EC2
cloud® to bechmark AB’s performance. The variables used
in the experiments are as follows:

1) AB types: These include 4 different implementations of
AB — ABc, ABct, ABx and ABxt.

e In ABc and ABct versions, the AB policy elements
(such as subject, object, resource etc) are specified in
JSON and the PDP is implemented as conditional
statements in Java code that evaluate the policies. The
ABct version includes tamper resistance in addition.

« In ABx and ABxt versions, the AB policies are specified
in XML according to XACML specifications and WSO2
Balana library is used as PDP for policy evaluation. The
ABxt version includes tamper resistance in addition.

2) AB policies: The applicable policies for a data item were
varied exponentially (27) from 1 to 16.

3) AB execution environment: Two different service execu-
tion environments (Amazon EC2 instance types) were
used — EC2 Large and EC2 XLarge.

The AB is created with 6 data items, as shown in fig-
ure 15, and at least 1 policy applicable to each data item.
An interaction between AB and a service involves — service
sending request to AB for a data item, AB authenticating the
service, AB authorizing the service request for the data item
using applicable policies, AB decrypting the data item, and
AB sending the response back to the service. It also involves
tamper resistance when ABct or ABxt are used.

5.3.2 Results

The results are reported based on the mean of data collected
over 5 runs, where each run includes 100 interactions.
Figure 17 shows the graph for increase in the size of
different AB types as the policies of AB grow exponentially.
The results show that the growth in AB size is linear with the

13. We used the EC2’s C3 instances for experiments as they are suit-
able for Web-servers. http://aws.amazon.com/ec2/instance-types/

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

increase in policies for each type of AB. Tamper resistance
adds a slight overhead to ABct and ABxt size. The use of
XACML-based policies incur some additional overhead.

The first experiment was conducted to measure the inter-
action time between AB and a service for a data item request
under different experiment settings. Figure 18 shows the
graph for interaction time (in ms) between AB and service
on EC2 Large for different AB types as the policies of AB
grow exponentially. The results show that the growth in
interaction time with the increase in policies is constant for
ABc and ABct and is linear for ABx and ABxt. The difference
in interaction time and growth is due to the difference in
the implementation of policies. In case of ABc and ABct,
the policies are specified as conditional statements in Java
code and do not require any external library for evaluation,
whereas, in case of ABx and ABxt, the policies are specified
in XML according to XACML specifications and use WSO2
Balana for evaluation. Evaluation of conditional statements
is highly optimized, whereas the evaluation of XACML
policies involve the traversal of XML policy and request
trees, which takes longer. Figure 19 shows the graph for
interaction time (in ms) on EC2 XLarge. The graph confirms
the earlier trends.

Figures 20a and 20b show the overhead of using tamper
tesistance in AB with and without XACML respectively on
EC2 Large. The overhead is linear in ABxt (with XACML)
and constant in ABxt (without XACML). The difference in
overhead comes from the tamper resistance’s digest cal-
culation of XACML policies, which takes longer. XACML
policies are XML files in addition to the code, whereas in
case of ABct, the policies are conditional statements which
are already part of the code.

1000 -
ABc ABct ABx ABxt

FOO <o eee et

Log Size

AB1 AB2 AB 4 AB 8 AB 16
AB Policies

Fig. 17: AB size vs. number of policies.

OO0 =+ ee e e ems et
ABxt

100 -

Log Time

AB1 AB2 AB 4 ABS8 AB 16
AB Policies

Fig. 18: AB-service interaction time on EC2 Large.

We also conducted experiments to measure the complete
interaction time of the online-shopping scenario. These ex-
periments measure the round-trip time taken by the client’s
order request. It includes the network time to transfer the

11

1000
© ABc ABct ABx ABxt

Log Time

AB1 AB2 AB4 AB8 AB 16
AB Policies

Fig. 19: AB-service interaction time on EC2 XLarge.
40 e
B ABx

30

Time (ms)
n
o

AB 1 AB 2 AB 4 AB B
AB Policies

AB 16

Fig. 20a: Tamper resistance overhead with XACML.

AB to the services in the composition, interaction time of
the AB with each service, and the response time of each
service. Figure 21 shows the round trip interactions in the
scenario with EPICS.

Figure 22 shows the results obtained for average round-
trip scenario interaction time on EC2 Large. The graph fol-
lows the same trends as the interaction time graphs shown
in Figures 18 and 19. The results show that the interaction
time of the scenario is under 1.7 secs on EC2 Large even with
16 XACML policies. The use of JSON policies reduces it to
under 1 sec. These scenario times easily meet the real-time
Web service constraints, showing that EPICS is promising
for adoption in real-world composite Web services.

5.3.3 Comparison with baseline

We also conducted experiments to compare the perfor-
mances of a baseline case, policy enforcement at data owner,
vs. policy enforcement with EPICS for one specific compo-
sition pattern, a service chain consisting of three services
S1, S2 and S3, where S1 invokes S2 and S2 invokes S3
to complete the request. Figure 23 shows the round-trip
interactions between the client and the chain of services for
the baseline case, and figure 24 shows the interactions for
the same service chain with EPICS. In the baseline case, data
access authorization and authentication have to go through
the client for every service needing access to a data item
owned by the client™, whereas in EPICS each service in
the chain receives the entire active bundle shared by the
client and authentication and authorization take place at the
service domain through the active bundle API. This results
in fewer interactions between the client and the services to
complete a service request, i.e. in the baseline case there is

14. Note that here we make the assumption that the services are able
to directly interact with the client.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

40

B ABe H ABct

30

Time (ms)
n
o

— e — — p—
- 5 5 8 0§ 1
AB1 AB2 AB 4 AB 8 AB 16

AB Policies

Fig. 20b: Tamper resistance overhead without XACML.

AB

Request »w‘

Request AB
executed

Request AB

Response

Response {o- oo Seller Shipping
AB
executed
Response /
Response ‘/
User Shopping Payment

Fig. 21: Round trip interactions between client and
composite service in EPICS.

an extra data request-response interaction between the client
and each service requesting access to a data item.

In these experiments, each active bundle contains 6 data
items, each of which has a single applicable access policy,
and each service in the chain requests access to 1 data item in
the bundle. The flavor of AB used in the EPICS experiments
is ABxt, i.e. XACML-based policies and tamper resistance.
The experiments were run using C3 Large EC2 instances, 5
times with 100 interactions per run. The average round-trip
response time for the baseline case is 908 ms, and the aver-
age round-trip response time for EPICS is 1184 ms, which is
a reasonable overhead for enhanced security. As the number
of services in the chain grows, the baseline approach may
not scale due to the extra interactions involved for data
access, whereas EPICS will not have the same scalability
issues.

6 RELATED WORK

Access control is a well-studied topic in the context of Web
services. Various Web service standards have been proposed
to address security in SOAP-based services, including WS-
Security to provide specifications for credential exchange,
message integrity, and message confidentiality during ser-
vice interactions, and WS-Policy to provides specifications
for advertising policies of services and policy requirements
of clients. These standards could be sufficient for point-
to-point security and policy enforcement in static service
invocations, but they fall short of the policy transmission
and enforcement in dynamic service invocations because
of the involvement of multiple services in a request. Sin-
gle sign-on and shared authentication solutions such as

12

© ABx o ABxt ABc > ABct

N

Time (sec)

AB 1 AB 2 AB 4 AB 8
AB Policies

AB 16

Fig. 22: Round-trip scenario time on EC2 Large.

|

-AB executed

h‘R-gE""\eif\\
AB executed
L_ng_u_e_st‘_‘_‘AB

executed

W

User 51 52 53

Fig. 23: Round-trip interaction between client and chain of
services with policy enforcement at data owner.

OpenID® and OAuth'® provide centralized and federated
access management, but do not consider specification and
enforcement of client policies.

Security Assertion Markup Language (SAML) is an
open-standard specification and a framework for exchang-
ing authentication and authorization information between
parties in XML [24]. Cross-domain implementation of SAML
is a problem, because browser cookies used to maintain
the authentication state information cannot be transferred
across different DNS. Shibboleth defines an architecture
based on SAML and provides an open-source implemen-
tation that allows federated identity management, authenti-
cation, and authorization [25], which enables cross-domain
single sign-on. The solution is prone to the TTP related
issues because of its dependence on an identity provider.

DataSafe is a software-hardware architecture that sup-
ports data confidentiality throughout their lifecycle [26]. It is
based on additional hardware and uses a trusted hypervisor
to enforce policies, track data flow, and prevent data leak-
age. The hosts without DataSafe can only access encrypted
data, but it is unable to track data if they are disclosed
to non-DataSafe hosts. The use of a special architecture
limits the solution to well-known hosts that already have
the required setup.

A privacy-preserving information brokering (PPIB) sys-
tem has been proposed by Li et al. for secure information
access and sharing via an overlay network of brokers, coor-
dinators, and a central authority (CA) [27]. To provide pro-
tection, this approach proposes a mechanism to divide and
allocate the responsibility and processing among multiple
brokers so that no single component has sufficient control to

15. http:/ /openid.net/
16. http:/ /oauth.net/

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

Transactions on Services Computing

Request

Reques;
L Request
L

-Data response|
S

Request

Eétfar_e_gs@la
L

P—
+Data response.
I
R

| Response—1

| Responss—

User S1 s2 s3

Fig. 24: Round-trip interaction between client and chain of
services with EPICS.

make meaningful inference from the information disclosed
to it. However, the ownership, distribution, and manage-
ment of components are a challenge in a large cross-domain
system. Also the uses of a centralized TTP to manage
metadata, joining/leaving of brokers, and key management
creates a single point of failure. Other solutions have been
proposed that address secure data dissemination when the
recipients are not known in advance. Pearson et al. present
a case study of the EnCoRe project that uses sticky policies
to manage the privacy of shared data across different do-
mains [28]. The main idea of sticky policies is to make data
and policies inseparable so that an unauthorized recipient
cannot access the data without satisfying the policies. In the
EnCoRe project, the sticky policies are enforced by a TTP,
making the approach prone to TTP-related issues.

Another class of solutions for ensuring proper access
control in Web services is based on tracking of data flow in
applications. These approaches rely on modified language
interpreters keeping track of the flow of user data to ensure
that access control checks are carried out properly, such
as the approach proposed by Dalton et al. [29], which
carries out shadow checks before operations execute on
data resources in a system. Static program analysis tech-
niques discovering application code paths with missing
access control checks are also utilized to discover access
control vulnerabilities. However, such approaches require
accessing the source code of the applications, are language-
specific and make assumptions about the architecture of the
application [30], which makes them inapplicable in the case
of composite Web services with dynamically determined
service compositions. Approaches such as CloudFence [31]
and SilverLine [32] enforce access control by associating
access control state with data flows, using taint analysis.
Data flow tracking solutions in general suffer from signif-
icant performance overheads and tight language binding,
limiting their applicability in Web services.

7 CONCLUSION

Composite Web services are generally composed of cross-
domain heterogeneous services. The clients interact with
the primary service, which can outsource their requests
(including their data) to secondary services from different
ownership domains. In this case, it is very difficult for

13

a client to determine how their data will be shared and

who will access it. This invisible sharing exposes the data

to new risks that are otherwise avoidable if data stays
within a trusted domain. Existing solutions provide point-
to-point secure data transmission and ensure security within

a single domain, but are insufficient for distributed data

dissemination because of the involvement of multiple cross-

domain services.

In this paper, we proposed the EPICS framework based
on the notion that data can reside anywhere but are always
accompanied by the owner’s access policies and a policy
enforcement mechanism that protects and controls their
disclosure. The novelty of EPICS lies in the transformation
of data, traditionally a passive entity, into an active entity
protecting itself against unauthorized disclosure and tam-
pering. In case of attacks detected by AB engine, EPICS
makes it possible to destroy the data dynamically to prevent
disclosure, which is not possible with models treating data
as passive entities. We described the design and implemen-
tation of the framework and provided a performance and
security evaluation using a realistic e-commerce scenario.
The proposed framework is compatible with existing service
infrastructure and meets the real-time constraints of Web
service interactions. The main benefits of using the EPICS
framework for data dissemination in composite Web ser-
vices are as follows:

« It ensures policy-based access control of a client’s data
based on the enforcement of policies.

« It provides privacy-preserving controlled data dissemina-
tion by minimizing the data disclosure.

o It provides context-based adaptable data dissemination
based on the use of external environment information
(such as trust values, an emergency or an attack context)
and the flexibility of the policies.

o It allows consumers sharing data to define access control
policies without knowing the data disclosure path and
ensure policy enforcement at each endpoint in the inter-
action.

« It is independent of TTPs and does not require the avail-
ability of the data owner to disseminate data once the data
is shared with the primary service.

o It reduces the liability of a service for managing a client’s
data by disclosing to the service only the data authorized
by the client’s policies.

o It is compatible with the existing service infrastructure
such as HTTP-based RESTful services.

o It can be incorporated in any data dissemination appli-
cation as it is policy language agnostic and supports a
wide range of standard authentication and authorization
mechanisms.

Future work will include extending the framework im-
plementation with stateful and mutable versions of active
bundles, enhancing security of the framework against exe-
cution hijack attacks using mechanisms such as code obfus-
cation and secure enclave execution (cf. Intel SGX [33]), and
applying the framework for data dissemination and policy
enforcement in different application domains.

REFERENCES

[1] M. P. Papazoglou and W.-J. Van Den Heuvel, “Service oriented
architectures: approaches, technologies and research issues,” The

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2797277, IEEE

(2]

(3]

(4]

(5]
6]
(71

(8]

(9]

[10]
[11]

(12]

[13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Services Computing

International Journal on Very Large Data Bases, vol. 16, no. 3, pp.
389415, 2007.

R. Ranchal, A. Mohindra, . Manweiler, and B. Bhargava, “Radical
strategies (RADS) for engineering web-scale cloud solutions,”
IEEE Cloud Computing, vol. 2, no. 5, pp. 20-29, 2015.

M. Azarmi, B. K. Bhargava, P. Angin, R. Ranchal, N. Ahmed,
A. Sinclair, M. Linderman, and L. B. Othmane, “An end-to-end
security auditing approach for service oriented architectures.” in
IEEE Symposium on Reliable Distributed Systems, 2012, pp. 279-284.
R. Fernando, R. Ranchal, B. An, L. Othmane, and B. Bhargava,
“Consumer oriented privacy preserving access control of elec-
tronic health records in the cloud,” in Proc. IEEE Conference on
Cloud Computing, 2016.

“Owasp top 10 2013,” https://www.owasp.org/index.php/Top_
10_2013-Top_10, accessed: Mar 2017.

“Whitehat security. website security statistics report,” https://
www.whitehatsec.com /resources/, 2014, accessed: Mar 2017.
“Target data breach,” https://corporate.target.com/about/
shopping-experience/payment-card-issue-FAQ, accessed: Mar
2017.

“Anthem data breach,” http://www.anthemfacts.com, accessed:
Mar 2017.

D. Muthukumaran, D. O’Keeffe, C. Priebe, D. M. Eyers, B. Shand,
and P. R. Pietzuch, “Flowwatcher: Defending against data disclo-
sure vulnerabilities in web applications.” in ACM Conference on
Computer and Communications Security, 2015, pp. 603-615.

“Web Services Policy Framework 1.5, W3C, Tech. Rep., Aug.
2007. [Online]. Available: http:/ /www.w3.org/TR/ws-policy/

F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf.
Syst. Secur., vol. 3, no. 1, pp. 30-50, Feb. 2000.

D. Basin, V. Jugé, F. Klaedtke, and E. Zilinescu, “Enforceable
security policies revisited,” ACM Transactions on Information and
System Security (TISSEC), vol. 16, no. 1, pp. 3:1-3:26, Jun. 2013.

J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” IEEE, vol. 63, no. 9, pp. 1278-1308, 1975.

L. B. Othmane and L. Lilien, “Protecting privacy of sensitive data
dissemination using active bundles,” in World Congress on Privacy,
Security, Trust and the Management of e-Business, 2009, pp. 202-213.
R. Ranchal, “Cross-domain data dissemination and policy enforce-
ment,” Ph.D. dissertation, West Lafayette, IN, USA, 2015.

R. Ranchal, B. Bhargava, R. Fernando, H. Lei, and Z. Jin, “Privacy
preserving access control in service-oriented architecture,” in Proc.
IEEE International Conference on Web Services, 2016, pp. 412—-419.
R.S.Sandhu, E.]. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2, pp.
3847, 1996.

L. Wang, D. Wijesekera, and S. Jajodia, “A logic-based framework
for attribute based access control,” in ACM Workshop on Formal
Methods in Security Engineering, 2004, pp. 45-55.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in IEEE Symposium on Security and
Privacy (S&P°07), 2007, pp. 321-334.

M. Lorch, S. Proctor, R. Lepro, D. Kafura, and S. Shah, “First
experiences using xacml for access control in distributed systems,”
in ACM workshop on XML security, 2003, pp. 25-37.

H. Krawczyk, “Cryptographic extraction and key derivation: The
hkdf scheme,” in Advances in Cryptology—CRYPTO 2010. Springer,
2010, pp. 631-648.

M. Wand, G. Kiczales, and C. Dutchyn, “A semantics for advice
and dynamic join points in aspect-oriented programming,” ACM
Transactions on Programming Languages and Systems, vol. 26, no. 5,
pp- 890-910, 2004.

P. Angin, B. Bhargava, and R. Ranchal, “Tamper-resistant au-
tonomous agents-based mobile-cloud computing,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS'16), 2016.
“Security assertion markup language (SAML),” https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=security,
accessed: June 2015.

S. Cantor and T. Scavo, “Shibboleth architecture,” Protocols and
Profiles, vol. 10, p. 16, 2005.

Y.-Y. Chen, P. A. Jamkhedkar, and R. B. Lee, “A software-hardware
architecture for self-protecting data,” in ACM Conference on Com-
puter and Communications Security, 2012, pp. 14-27.

F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu, “Enforcing secure
and privacy-preserving information brokering in distributed in-
formation sharing,” IEEE Transactions on Information Forensics and
Security, vol. 8, no. 6, pp. 888-900, 2013.

(28]

[29]

[30]

[31]

[32]

[33]

14

S. Pearson and M. C. Mont, “Sticky policies: An approach for
managing privacy across multiple parties,” IEEE Computer, no. 9,
pp. 60-68, 2011.

M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis: Preventing
authentication & access control vulnerabilities in web applica-
tions,” in 18th USENIX Security Symposium, 2009, pp. 267-282.

M. Monshizadeh, P. Naldurg, and V. N. Venkatakrishnan, “Mace:
Detecting privilege escalation vulnerabilities in web applications,”
in ACM Conference on Computer and Communications Security, 2014,
pp. 690-701.

V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, and A. D.
Keromytis, “Cloudfence: Data flow tracking as a cloud service,” in
16th International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID’13), 2013, pp. 411-431.

Y. Mundada, A. Ramachandran, and N. Feamster, “Silverline:
data and network isolation for cloud services,” in 3rd USENIX
conference on Hot topics in cloud computing (HotCloud’11),2011, p. 13.
M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and]. Del Cuvillo,
“Using innovative instructions to create trustworthy software
solutions.” in HASP@ ISCA, 2013, p. 11.

Rohit Ranchal is with IBM Watson Health, Cam-
bridge, MA. He received his Ph.D. in Computer
Science from Purdue University. He is a member
of IEEE. (ranchal@us.ibm.com)

Bharat Bhargava is with Computer Science at
Purdue University, West Lafayette, IN. He re-
ceived his Ph.D. in Electrical Engineering from
Purdue University. He is a fellow of the IEEE and
IETE. (bbshail@purdue.edu).

Pelin Angin is with Computer Science at Purdue
University, West Lafayette, IN. She received her
Ph.D. in Computer Science from Purdue Univer-
sity. (pangin@purdue.edu)

Lotfi ben Othmane is with Electrical and
Computer Engineering at lowa State Univer-
sity, Ames, IA. He received his Ph.D. in com-
puter science from Western Michigan University.
(Ibenothmane@gmail.com)

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.whitehatsec.com/resources/
https://www.whitehatsec.com/resources/
https://corporate.target.com/about/shopping-experience/payment-card-issue-FAQ
https://corporate.target.com/about/shopping-experience/payment-card-issue-FAQ
http://www.anthemfacts.com
http://www.w3.org/TR/ws-policy/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

	EPICS: A Framework for Enforcing Security Policies in Composite Web Services
	EPICS: A Framework for Enforcing Security Policies in Composite Web Services
	Abstract
	Keywords
	Disciplines
	Comments

	tsc-2797277-pp.pdf

