Optimized Contract-based Model for Resource
Allocation in Federated Geo-distributed Clouds

Jinlai Xu Student Member, IEEE, Balaji Palanisamy Member, IEEE,

Abstract—In the era of Big Data, with data growing massively in scale and velocity, cloud computing and its pay-as-you-go model
continues to provide significant cost benefits and a seamless service delivery model for cloud consumers. The evolution of small-scale
and large-scale geo-distributed datacenters operated and managed by individual Cloud Service Providers (CSPs) raises new
challenges in terms of effective global resource sharing and management of autonomously-controlled individual datacenter resources
towards a globally efficient resource allocation model. Earlier solutions for geo-distributed clouds have focused primarily on achieving
global efficiency in resource sharing, that although tries to maximize the global resource allocation, results in significant inefficiencies in
local resource allocation for individual datacenters and individual cloud provi ders leading to unfairness in their revenue and profit
earned. In this paper, we propose a new contracts-based resource sharing model for federated geo-distributed clouds that allows CSPs
to establish resource sharing contracts with individual datacenters apriori for defined time intervals during a 24 hour time period. Based
on the established contracts, individual CSPs employ a contracts cost and duration aware job scheduling and provisioning algorithm
that enables jobs to complete and meet their response time requirements while achieving both global resource allocation efficiency and
local fairness in the profit earned. The proposed techniques are evaluated through extensive experiments using realistic workloads
generated using the SHARCNET cluster trace. The experiments demonstrate the effectiveness, scalability and resource sharing

fairness of the proposed model.

Index Terms—federated cloud; geo-distributed cloud; resource sharing; resource sharing contracts

1 INTRODUCTION

IN the era of Big Data, with data growing massively in
scale and velocity [1], cloud computing and its pay-as-
you-go model continues to provide significant cost benefits
and a seamless service delivery model for cloud consumers.
The recent explosion of large-scale data and the impact that
big data analytics brings to enterprises and enterprise cus-
tomers create an ever-increasing trend for adopting cloud
technologies and moving applications to the cloud [2]-[4].
The evolution of small-scale and large-scale geo-distributed
datacenters operated and managed by individual Cloud
Service Providers (CSPs) raises new challenges in terms
of effective global resource sharing and management of
autonomously controlled individual datacenter resources
towards a globally efficient resource allocation model. In-
dividual datacenters have capacity limitations in terms of
available server capacity and dynamically varying elec-
tricity prices that determine the cost and profitability of
the datacenters at various electricity pricing and workload
conditions. Cloud federation [5]-[7] aims at extending the
capacity of the datacenter resources by leveraging resources
in remote datacenters that are under utilized or available
at a reduced cost. Cloud federation is intended to handle
burstiness in workloads, fluctuations in electricity price
and responding to emergency datacenter failures for high
availability applications. It also provides an opportunity
for datacenters to share resources to maximize revenue by
leveraging remote datacenter resources that may be avail-
able at a lower cost due to dynamic electricity pricing.

e].Xu and B.Palanisamy are with the School of Information Sciences,
University of Pittsburgh, Pittsburgh, PA 15213.
Email: {jinlai.xu, bpalan}@pitt.edu

Manuscript received XX XX, XXXX; revised XX XX, XXXX.

Earlier solutions for geo-distributed clouds have focused
primarily on achieving global efficiency in resource sharing.
Several mechanisms were designed to achieve higher util-
ity and overall global profit [8] [9]. Most geo-distributed
resource allocation in the past [10]-[16] have considered
a completely co-operative model of a shared pool of geo-
distributed resources that are allocated to optimize the
global resource usage cost. Such schemes although try to
optimize the global resource usage, they result in signifi-
cant inefficiencies in local resource allocation for individual
datacenters leading to unfairness in their profit earned.
Furthermore, solutions that are based on a completely co-
operative geo-distributed cloud model are not easily adapt-
able when consumers have constraints of geographic loca-
tions, business policies or security regulations that limit the
datacenters in which their services/jobs can be deployed.

In this paper, we propose a new contracts-based resource
sharing model for federated geo-distributed clouds that al-
lows CSPs to establish resource sharing contracts with indi-
vidual datacenters apriori for defined time intervals during
a 24 hour time period. Based on the established contracts,
individual CSPs employ a contracts cost and duration aware
job scheduling and provisioning algorithm that enables jobs
to complete and meet their response time requirements
while achieving both global resource allocation efficiency
and local fairness in the profit earned. Concretely, this paper
makes the following contributions: first, we develop the pro-
posed contracts-based resource sharing model and present
an optimal contract establishment algorithm that produces
the optimal design of resource sharing contracts considering
the size and type of resources in each resource sharing
contract. Second, we develop an auction-based contract
allocation mechanism that ensures both fairness and rev-

$

N

o

o
'

Electricity price ($)
)
o

50-

7..2015 10... 2015 1...2016

4..2015

Date
"Price" — Average Price ---- Price at 19:00pm

Fig. 1. Electricity price trends of NationalGrid in 2015

enue maximization for the individual datacenter providers.
Third, we develop a suite of job scheduling and contracts-
based resource provisioning algorithms that leverage the es-
tablished contracts for each CSP and minimizes the resource
usage cost of individual CSPs. We evaluate the proposed
techniques through extensive experiments using realistic
workloads generated using the SHARCNET cluster trace.
The experiments demonstrate the effectiveness, scalability
and resource sharing fairness of the proposed model.

The remainder of this paper is organized as follows.
Section 2 provides a background of various resource shar-
ing models for geo-distributed clouds and motivates the
proposed contracts-based model. In Section 3, we develop
the proposed contracts-based resource allocation system
model. In Section 4, we present new techniques for optimal
contracts designing and allocation. In Section 5, we present
our proposed contracts-based job scheduling techniques.
Section 6 evaluates the performance of the contracts-based
resource allocation mechanisms in comparison with conven-
tional complete cooperation geo-distributed clouds using
real-world datacenter workload traces. Section 7 discusses
the related work and we conclude in Section 8.

2 BACKGROUND & MOTIVATION

In this section, we briefly review the background concepts
related to various models of operating a geo-distributed
cloud and discuss their merits and demerits.

2.1 Stand-alone Clouds

Conventional cloud computing models (e.g., Amazon EC2
[17] and Google Cloud [18]) use a single datacenter or a
set of datacenters jointly managed by a single CSP. Thus,
the CSPs do not cooperate with each other and do not aim
at optimizing resource allocation and cost across multiple
CSPs (Figure 2a). Despite resulting in sub-optimal resource
allocation and resource management, this centralized single-
site resource management model has the benefit of eas-
ier resource management as each datacenter is managed
independently of each other, providing higher autonomy
and control for individual datacenters. Even though this
“stand-alone” datacenter management may result in locally
optimized resource management at individual datacenters,
such an approach can be largely sub-optimal with respect
to global resource management considering all datacenter
resources jointly in a federated geo-distributed cloud envi-
ronment. As an example, Figure 1 shows the dynamic elec-
tricity pricing from the NationalGrid [19] data in 2015. We

2

observe that besides the notable long-term (e.g., one year)
fluctuations, there are significant short-term price variations
even on a single day: the highest per-day pricing on one
given day can be as much as six times the lowest price
observed on the same day. Thus, “stand-alone” clouds that
have neither complete nor partial co-operation with each
other can operate very sub-optimally forcing individual
datacenters to run workloads locally at higher electricity
prices even though resources for which may be available
at remote datacenters at a possibly lower electricity cost.

2.2 Federated Clouds with Complete Cooperation

In the literature, several techniques for global management
geo-distributed datacenters have been proposed. These
mechanisms can be classified into two broad categories:
Virtual Geo-distributed Clusters: This class of techniques
builds Virtual Machines (VMs) for users to use computing
resources across the geo-distributed datacenters as a single
virtual cluster. There are several works focusing on opti-
mizing the performance in the geo-distributed environment
[10]-[16]. Here, the datacenters are treated as one single
virtual entity and having a single centralized cloud manager
makes it easier to schedule the jobs and place data to
achieve the overall goal. The cloud manager obtains the
global information of the jobs and the individual workload
requirements of each datacenter to balance the load and
schedule the jobs.

Federated Cloud: Federated clouds provide a platform for
the CSPs to share computing resources with each other. Each
CSP is assumed to manage its datacenters autonomously.
There is a centralized Cloud Exchange Institution that ob-
tains all infrastructure information from the datacenters
and provides the platform for the CSPs to discover the
resources from the members of the federated cloud [5] [7].
The key objective for the CSPs is to share their resources
on the federated cloud platform to maximize their resource
utilization and increase the success rate of meeting the SLAs
for the jobs.

We illustrate these two types of global resource manage-
ment mechanisms in Figure 2b and we refer to this model
as federated clouds with complete cooperation. This model
enables the free use of the resources through a centralized
broker such that all the resources in the geo-distributed
datacenters can be used by all the other members partici-
pating in the system. However, this model suffers from a
few key drawbacks, which include (i) lack of fairness in
revenue earned by competing CSPs, i.e., since the global
resource optimization objective of this approach does not
lead to locally optimized profits for individual datacenters,
the individual profit of each datacenter may be even lower
than the profits they can get by operating stand-alone and
(ii) limited scalability - as it is difficult for all the geo-
distributed datacenters to globally synchronize the infor-
mation necessary for sharing, provisioning and allocating
resources in a real-time manner for job scheduling can be a
significant challenge.

2.3 Contracts-based Resource Sharing
In this paper, we propose a new contracts-based resource
sharing architecture for the CSPs to share resources across

globally geo-distributed datacenters. The demerits of the
complete cooperation model lead us to a more flexible and

(a) No resource sharing between the CSPs

Fig. 2. Resource sharing mechanisms comparison

limited sharing mechanism that provides a controlled cost-
aware resource sharing opportunity. Thus, the contracts-
based resource sharing model finds suitable tradeoffs be-
tween traditional clouds without federation and that with
complete cooperation as illustrated in Figure 2. The figure
shows three different architectures for a geo-distributed
cloud of five CSPs. Here, the edges represent the usage of
resources among the CSPs. As illustrated in Figure 2a, none
of the five CSPs can use others’ resources when there is
no federation. However, in Figure 2b, we find that there is
a complete graph showing that every CSP can use every
other’s resources with complete co-operation. In Figure 2c,
there are only six edges between the CSPs representing a
partial graph. Here, each CSP does not share resources with
every other CSP in the federation. Each edge represents a
contract between the CSPs to share resources.

The proposed contracts-based resource sharing mecha-
nism is based on resource sharing contracts that are estab-
lished between the CSPs after negotiations. The resource
sharing contracts could be signed by the CSPs stipulating
the rights and duties of the CSPs to share the committed
resources during the time duration and the negotiated price
in the contract. For the contracts-based resource sharing
mechanism, the CSPs design and trade the resource sharing
contracts with each other. Thus, the contract may be prede-
termined and established apriori before the effective time.
The establishment of contracts involves two key challenges
namely (i) how to design and build contracts that can max-
imize individual profit of the CSP and (ii) how to schedule
jobs to maximize the utility of using the contracts.

(b) Completely cooperating resource sharing

TABLE 1
The status of the five providers in the contracts-based example
CSP1 CSP2 | CSP3 | CSP4 | CSP5
Electricity Price 100 30 40 30 30
of Servers | 30,000 | 40,000 | 30,000 | 30,000 | 50,000
Require # of Servers | 15,000 | 52,000 | 15,000 | 21,000 | 41,000

Figure 3 and Table 1 present an example scenario to
illustrate the key benefits of using a contracts-based resource
sharing mechanism namely (i) balancing the workload, (ii)
minimizing the operating cost and (iii) increased resource
utilization:

Balancing the workload: In the example shown in Fig-
ure 3a, CSP2 has overcapacity workload and needs 52K
servers to meet the workload requirements. However, it has
only 40K servers. Therefore, under normal operations, it has
to either delay some jobs in the workload or drop them

(c) Contracts-based resource sharing

entirely. Alternately, in the contracts-based federated cloud
model, CSP2 borrows 9K servers from CSP5 and 3K servers
from CSP3 to meet workload requirements of 52K servers.
As we can see, this not only increases the revenue for CSP2
but also for the other CSPs participating in the contracts-
based resource sharing.

Minimizing operating cost: In Figure 3b, CSP1 experiences
an increased electricity cost requiring to spend $100 per
megawatt per hour. Even though it has the similar workload
amount as CSP4 and CSP3, it uses contractual relationships
to borrow 9K servers from CSP4 and 6K servers from CSP3
respectively. This minimizes the operating cost and saves up
to 66% in operating cost for CSP1.

Increased resource utilization: Figure 3 also illustrates that
some CSPs that have idle resources share their resources
with other CSPs (e.g.,, CSP 3,4,5). Thus, contracts-based
resource sharing results in an increased utilization of the
computing resources in the datacenter infrastructures.

As discussed above, we find that contracts-based re-
source sharing has additional potential and flexibility to
achieve a more efficient resource allocation while increasing
the profit and minimizing the cost for each individual dat-
acenter. In this paper, we model the problem formally, ana-
lyze and develop algorithms for contract establishment and
job scheduling to efficiently and profitably share resources
between CSPs.

3 SYSTEM MODEL

In this section, we describe the system model for the
proposed contracts-based federated geo-distributed cloud
model. We discuss it in three steps: first, we describe the
features of the CSPs that participate in the cloud federation
process. We then discuss the agreements and the responsi-
bilities of the federation coordinator and finally, we discuss
the role of the contract manager that manages the resource
sharing contracts agreed between the CSPs.

3.1 Cloud Service Provider

CSPs offer a variety of cloud computing services to the cus-
tomers. We primarily consider CSPs offering Infrastructure
as a Service (laaS) [20] that provide customers with various
computing resources such as VMs and virtual disk space
to store and process their data. The providers may offer
different types of VMs with different Quality of Service
(QoS) guarantees and the VMs may be priced differently.
The QoS provided by the VMs may depend on how many
CPU cores are present in the VMs, memory, network and

0

servers
NN

15
SP3 lends 3K servers to

1
3K Servers
in contract ™

9K Servers
in contract
4

é30 SP5 lends 9K servers to
CSP2 to balance the workload

(a) Balance the workload

\\\\\\

 in contrac'g

9K servers
CSP4->CSP1

1

6K Servers, /

in contract! /
1

6K servers CSPI’s electricity cost

CSP3->CSP1 per unit workload:
(9K*30+6K*40)/15K
=34

Operation Cost saving:
(100-34)/100=66%

(b) Decrease the operating cost

Fig. 3. Contracts-based cloud federation example of saving electricity cost and balance the workload

other resources that are guaranteed in the period of time
when the resources are provided to the user. The price is
set by the CSP which provides the service based on the
QoS provided by the VM type, the Service Level Agreement
(SLA) and the market demand and supply.

The provider charges the customers on-demand based on
the length of the running time and the price of the VM type.
The profit of the CSP is determined by the charges provided
by the customers, the operating cost and the penalty for
violating the SLA. The operating cost which varies with the
time includes the electricity cost, management cost and cost
for maintenance. The penalty is paid by the CSP to the cus-
tomers to compensate their loss in case of violating the SLA.
For example, in Amazon Elastic Compute Cloud(Amazon
EC2) [17], the SLA stipulates that if the monthly uptime
of the service is less than 99.95% and greater than 99.0%,
Amazon EC2 will pay 10% of the charge of using the service
back to the users” account and 30% if the uptime is fallen to
less than 99.0% [17].

Every CSP has limited resources to serve the users.To
handle the overcapacity workload that cannot be serviced
within the CSP’s own datacenter, the CSPs can engage in
a federation process to share idle resources and handle
overcapacity requests. The negotiating steps are done by
a trusted third party which we refer to as the Federation
Coordinator.

3.2 Federation Coordinator

The federation coordinator is a third-party service which is
trusted by the CSPs in the federated cloud and it is responsi-
ble for providing a platform for the CSPs to trade computing
resources with each other. There is an agreement signed
with the coordinator before the CSP joins the federation. The
agreement stipulates the rights and duties of the coordinator
and the CSP. The coordinator follows the optimized contract
establishment process proposed and discussed in Section 4
to establish the contracts between the CSPs.

When building the contracts, each CSP sends its de-
mand and supply to the coordinator to compare with
the demands and supplies from others. The demand and

supply information may have private information of the
CSPs and hence the agreement also stipulates the privacy
policy for the coordinator which determines to which de-
gree the coordinator can publish or share the information
submitted by the CSPs. All the CSPs are autonomous and
have their own customers. Each CSP has its own utility
(which can be estimated approximately by the profit) and
each CSP wants to increase the utility after participating in
the federation. Under this condition, the problem contains
both the cooperating and competing aspects with multiple
participants which cannot be solved by the methods that
assume that all resource allocation decisions are handled
with a central objective of global resource optimization.
So in this scenario, auction mechanisms that are widely
studied in Game Theory are most suitable. Auctions allow
the participants to both cooperate and compete [21]. The
essence of the auction is to match the supply and demand at
both sides which fit the characters of the problem intuitively.
The coordinator uses an auction-based mechanism to match
the demands and supplies of the CSPs. The auction ends
with a set of results which contains the winning decisions
and the market clearance prices. Based on the results, the
coordinator establishes the contracts.

3.3 Contract Manager

The contract manager manages the resource sharing con-
tracts agreed by the CSPs. The contract is an agreement
between the CSPs which stipulates the rights and duties of
both sides, the buyer and the seller in the contract.

An actual resource sharing contract contains the follow-
ing four information: (i) the buyer and the seller of the
resource in the contract, (i) effective time of the contract
which controls the starting and ending time of the contract,
(iii) the resource type and quantity in the contract and
(iv) agreed resource price. In our work, we use dedicated
resources as the unit of trading in the contracts. A dedicated
resource is a collection of servers which is hardware isolated
from the other resources in the datacenter. Examples of such
resources include IBM Bluemix Dedicated Cloud [22] and
Amazon EC2 Dedicated Instances [23]. The pricing model

used for the contracts consists of two components namely
(i) the reservation price that is paid when the two sides
establish the contract and (ii) the usage price which is paid
when the resources in the contract are actually used. The
usage price is paid according to the usage amount and
time of the resource. The contract can also include the
SLA which provides more guarantees for the performance
of the resource included in the contract. Other constraints
that can be included in the contract include the location
constraints of placing the jobs, the business policies and
security requirements.

In the next section, we present the proposed mechanisms
for establishing resource sharing contracts.

4 RESOURCE SHARING CONTRACTS ESTABLISH-
MENT

We design an auction-based mechanism for establishing
resource sharing contracts as the nature of the contract es-
tablishment problems naturally fits the auction mechanism.
Some key features such as truthfulness and budget balance of
the auctioning protocol are highly desirable and essential for
solving the contract establishment problem. Truthfulness or
“strategy-proofness” is a feature provided by many auction
mechanisms such as VCG mechanism [24] and McAfee
mechanism [25] and it ensures that the participants of the
auction can maximize its utility only by bidding with the
true value which he/she values the goods in the auction.
This feature simplifies the problem by narrowing down the
choices of the participants. The budget balance feature guar-
antees that the payment from the buyers is equal to or more
than the payment to the sellers. This feature guarantees that
the coordinator will not subsidize in the auction.

As discussed above, we choose to design the proposed
auction mechanism based on McAfee mechanism as it in-
herently guarantees both truthfulness and budget-balance. In
the McAfee mechanism, the selling price and the buying
price are determined separately which helps to keep the
auction truthful and budget-balanced. Even though hav-
ing separate selling and buying prices makes the trade
efficiency sub-optimal, it is necessary to design a truthful
auction mechanism. As the uniqueness-of-prices theorem
[26] implies, this subsidy problem (the auctioneer need to
subsidize the auction) is inevitable - any truthful mechanism
that optimizes the social welfare will have the same prices
(up to a function independent of the bid prices of each
bidder). If we want to keep the mechanism truthful while
not having to subsidize the trade, we must compromise on
efficiency and implement a less-than-optimal social welfare
function [27]. The McAfee mechanism is designed based on
the above theorem which has a bounded trade efficiency
loss, 1/ min(|B|,|S|) where B is the set of buy bids and S
is the set of sell bids, but maintains both truthfulness and
budget-balance.

We design the framework of the contracts establishment
process in three parts: first we model the problem of es-
tablishing the resource sharing contracts into an auction;
second we develop the strategy for the CSP to bid in the
auction; third we design the auction algorithm which deter-
mines winning bids and the market clearance prices. Finally,
we design the iterative process of building the contracts,
which is based on the proposed auction algorithm.

4.1 Problem Description

We first model the contracts establishment problem as a
sealed-bid double auction problem. In a sealed-bid double
auction [24], there are three kinds of participants: first are the
buyers who have the demands for the goods; second are the
sellers that can supply the goods; the third is the auctioneer
which is responsible for conducting the auction. In the
contracts establishment problem, the CSPs can act as both
buyers and sellers based on their demands and supplies.
The coordinator of the federated cloud, a trusted third party
acts as the auctioneer. The traded goods in the auction are
the rights to use a certain amount of cloud resource in a
certain period of time (time slot). We use dedicated resource
types [23] [22] to represent a cloud resource. The dedicated
resources can be considered as bundles of servers isolated
from other resources in the data center. It is defined by
k € {1,2,..., K}. Each type-k resource may contain several
servers which can be represented by a list D; and each
server d € Dy has a capacity V¢ and the overall capacity
of a type-k resource is Vi, = > ,cp. V&, We note that the
resource types are sorted by the resource capacity which
means that if &y > ko, Vi, > Vi,

We consider a federated cloud with N individual CSPs.
The contracts establishing problem is formulated using
discrete time slots 7. The cloud datacenters are located in
geo-distributed locations and each of them is controlled by
one CSP. We assume each CSP i € [1,N] has only one
datacenter for simplicity. We assume that each datacenter
has several types of servers. It has a server list M;(7) which
contains all the servers controlled by the CSP 7 in time slot
7. The server list can be modified in each time slot 7 by
adding or removing the servers which are controlled by
the cloud manager of the CSP. These operations simplify
the representation of the resource which is changed every
time slot with different contracts signed in each time slot.
The capacity of each server m € M;(7) is CI". Therefore,
the capacity of CSP ¢ in time slot 7 can be represented
by Ci(1) = >, () Ci"- Each CSP serves its customers
by providing resources for running their computationally-
intensive jobs. The job requests are sent to the CSP, which
are pushed into a job queue. The jobs in the queue are pro-
cessed according to a FCFS (First Come First Served) service
policy. We assume that the demand for each time slot 7 is
Ai(7) for CSP i which can be determined by predicting the
upcoming workloads through mechanisms such as ARIMA
[28] or Hidden Markov Modeling (HMM) [29]. The profit
earned by the CSPs is determined by the difference between
payments from the users and the operating cost and the
penalty. The payments are related to the demand X;(7) and
we use p; to denote the unit price for one unit resource
(for example, one VM with one EC2 Compute Unit (ECU)
and one-gigabyte memory in Amazon EC2 [30] can be a unit
resource). Therefore, the capacity for each server CI™ and V;2
can also represent the number of unit resources that can be
run on the server. We use Cost¥(7) to denote the operating
cost of CSP ¢ for the type-k dedicated resource.

The problem of establishing the contracts in each time
slot T for each type-k dedicated resource can be represented
as a double auction in which each CSP decides the sell bid

(ask prices), s¥(7), for each type-k dedicated resource in

time slot 7 and buy bid, b¥(7), based on the valuation of
the resources and the expected utility. For simplicity, in the
rest of the paper, we use the term sell bid to indicate the
minimal price that the sellers expect in order to sell their
resources. The coordinator base on the bids to decide the
pairs of winning bids. Here Xj(7) = {zp, (7), T4, (1), ... }*
(if xp, = 1 means b; wins and vice versa) denotes the buy
bids result and X,(7) = {w,(7),7s,(7),...}* denotes the
sell bids result. The resource sharing contracts establishment
problem is solved by the auction. The resource sharing con-
tract represents the following information: (i) the effective
time of the contract determined by 7, (ii) the two sides of the
contract determined by matching the bidders of the winning
bids. We use index ¢ to denote the seller’s index and j to
denote the buyer’s index, (iii) the selling and buying price
of the contract represented by 7¥(7) and 7f(7), (iv) the
resource type and quantity represented by k and Dj. The
contract is denoted by Contry;(1) =< w&(r), 7 (7), Dy >.
The optimal solution for establishing the contracts maximize
every CSP’s utility after attending the auction. We first
propose the suggested bidding strategy and we discuss the
utility function of the CSPs participating in the auction.

4.2 Proposed Bidding Strategy

As discussed previously, in our model, each provider partic-
ipates in the federated cloud to potentially increase its profit.
We design the bidding strategy for the CSPs to ensure that
the CSPs increase their profits through their participation in
the federated cloud. Before we design the bidding strategy
for the provider, we first discuss the utility function of
the providers. The utility of participating in the auction is
defined based on the profit a CSP can gain from running
the jobs on the resources in the contracts and the profit it
can gain from selling its local resources to other CSPs in the
contract.

First, we define the utility function using the profit a
provider ¢ can get from renting type-k dedicated resources
from others:

uf (1) = o; max{min{Res(\;(7)) — Ci(7), Vi'},0} — 7k (7)

)
where Res() is a function that calculates the resource from
the service demand.

Then, if the demand is under capacity but the operating
cost is higher, the CSP can also participate in the auction
to increase the utility from running jobs on other CSPs’
resources. In this condition, the utility function is:
ui (1) = Cost; () — w5 (7) 2

?

There is only one condition in which the CSP wants to
sell their resource to others: the demand is notably less than
the capacity of the available resources. In this condition, the
utility function of the CSP which wants to provide type-k
dedicated resources to others can be represented by:

uf (r) = m(7) = Costi(r) ©

When participating in the auction, provider i needs to
consider the utility it can gain from the auction. For the
potential seller who has idle resources, it wants to increase
its profit by increasing the utilization of the idle resources.
For the potential buyer, it also wants to increase its profit
by either serving the demand which is over the capacity

6

of the local resource or decreasing the operating cost by
outsourcing the jobs to the other lower cost resource in the
contracts.

From the above discussion, we can get the bidding
strategy for the CSPs. For the potential seller, it only needs
to estimate the usage of the resource and match the idle
resource into one type of dedicated resource and set the bid
price by the operating cost. For the potential buyer, it has a
mixed strategy: if the predicted service demand is over the
capacity of the current servers in the server list, it bids by
the profit it can get from serving the overcapacity demand;
otherwise, it bids by the operating cost instead.

From the above bidding strategies” discussion, provider
1 that has idle servers matching type-k dedicated resources
can set the selling price by the operating cost:

Cost? () if Res(\i(T)) > Ci(1) — Vi
and Dy C M;(7) 4)
NULL otherwise

where “NULL” represents a null bid. Here, we note that the
condition, Dy, C M;(7), checks whether the available server
list, M;(7), contains the type-k resource, Dy, or not.

The buyer who wants to buy type-k dedicated resource
will bid in two conditions: first, the predicted demand is
above the current capacity; second, the operating cost is
relatively high in the time slot 7. So the bidding strategy
is a combination of two separate strategies:

o; min{Res(\;(7)) — C;(1), Vi }
if Res(\;(7)) > Ci(7) &)
Cost¥ (1) otherwise

b(r) =

It is worth noting that as shown in the above strategies,
when there are idle resources, the CSP will set the buy bid
with its operating cost regardless of whether it needs the
resources or not. We can understand this condition from two
aspects: if the CSP does not bid when it has idle resources, it
will always get zero utility in this round of auction; instead,
if the CSP bids with the operating cost, it will at least get
zero utility, which will become the dominant strategy for
the CSP.

While above suggested bidding strategy provides a ba-
sic methodology to estimate the benefits CSPs can obtain
from participating in the auction, we note that the bidding
strategy can be extended with additional requirements for
CSPs (e.g., reliability requirements, scheduling policy con-
straints, data locality constraints, etc.,) to further customize
the bidding process.

4.3 Winning Bids Decision

In this subsection, we present the proposed algorithm for
determining the winning bids. As mentioned earlier, the
proposed auction algorithm (Algorithm 1.) guarantees both
truthfulness and budget balance properties.

The winner decision algorithm for the auction is based
on the McAfee mechanism which both guarantees truth-
fulness and budget balance. The decision of the auction is
indicated by two sets of indicators, X;(7) and X(7). The
buying bid b’s indicator is set to be x5, = 1 if bid b, wins.
For the selling bid, it is the same as for the buying bid. We
note that the time complexity of Algorithm 1is O(N log N).
Here the key time-consuming operation is the initial sorting
operation.

Algorithm 1: Algorithm for the double auction to
choose winners for one type of dedicated resource

Input : Type of the dedicated resource : k;

Buy bids: B¥ () = {b1 (1), b2(7), . }k

Sell bids: S* (1) = {s1(7), 32(7) L

Output: Clearing Buying Price: = (T) Clearing Selling Price: 7f (7);
Auction decision: X, (1) = {zb]k(r) s Ty (T), - LR

Xa(7) = {@e (1), 2y (1), .}

1 Sort B(7) in descending order by b; (7) and S(7) in ascending order by
si(7);

Initially, set current buying price b as by, as the first bid (highest price) in
By, (t) and current selling price s as sy, as the first bid (lowest price) in
Sk (t). current bid indicator h = 0;

3 while b > s do

4 s =s,(7);

5 b=10b;(7);

6 h=h+1;

7

8

9

N)

if h is larger than the size of B¥ (1) or S* (1) break;
end
p = (bht1 + snt1)/2;
10 if by, > p > sp, then
1 All the first h buyers and first h sellers win with price:;
12 mi(r) = mp (1) = p;

13 end

14 else

15 All the first h — 1 sellers win with selling price: 7% (1) = s3,;
16 All the first h — 1 buyers win with buying price: 7§ (1) = by,;
17 end

4.4 Contracts Establishment Process
In this subsection, we discuss the overall process for build-
ing the contracts based on the auction algorithm. We illus-
trate it as a sequence of procedural steps:

Step.1 Begin the auction from k = K that represents the
CSP with the largest amount of resources. The auc-
tion begins at time slot 7 = 1.

Step.2 CSPs send the bids to the coordinator of the federa-
tion using the strategy described above.

Step.3 The coordinator decides the winners by the algo-
rithm as shown in Algorithm 1.

Step.4 The winning bids build the contracts one to one in
the order of the sell and buy bids. Each winning
buyer adds the servers in the dedicated resource into
the server list M;(7) in time slot 7. Each winning
seller also updates the server list M;(7) by removing
the servers from the list.

Step.5 The losing bids of the type-k dedicated resource are
sent back to the CSP. The CSP will separate it into
several bids which may be used in the auctions for
the smaller types of dedicated resource. These bids
also obey the strategies defined in Subsection 4.2.

Step.6 For the next smaller type-{k — 1} dedicated resource,
the CSPs execute the above steps from Step.2 until
the smallest type dedicated resource is reached.

Step.7 The CSPs execute the above steps from Step.1 for the
next time slot 7 + 1 until the last contract time slot
7 = T is reached;

We note that the optimized contract provides the CSPs
with a set of available remote resources in a cost-efficient
manner. However, the individual CSP needs to employ in-
telligent job scheduling techniques that understand the cost
implications of the underlying contract structure to leverage
the remote resources available to the CSPs effectively. We
discuss them in the next section.

5 CONTRACTS-BASED JOB SCHEDULING
In this section, we first formulate the contracts-based job
scheduling problem and then propose our mechanisms to

7

schedule jobs using the extended resources provided to the
CSPs through the resource sharing contracts.

5.1 Job Scheduling Problem Model

We model the scheduling problem for each CSP that partici-
pates in the federated cloud. We note that in the scheduling
model, the time slot indicated by ¢ can be a very short
time interval. It can be several orders of magnitude shorter
than the time slot for establishing the contracts which is
represented by 7. We introduce two new terms, t%9" and
tend, to indicate the beginning and end of the interval of
the contract time slot 7 during job scheduling. All the jobs
come to a CSP enter into an FIFO queue. The arriving rate
in time slot ¢ is denoted as r;(t) for provider 4. The queue is
updated every time slot:

Qi(t +1) = max{Qi(t) — Ui(t) +ri(t) — Ai(£),0} (6)

where Uj(t) is the set of scheduled jobs in time slot ¢, A;(t)
is the set of the jobs which are dropped because of violating
the SLA or other failures in time slot ¢. The queue is only
updated at the beginning of the time slot.

In addition, there is a constraint that the amount of
the used resources of the running jobs cannot exceed the
current capacity of the CSPs. We use the notations below to
represent the running jobs.

Zi(t+1) = Z;i(t) + Ui(t) — Fi(t) (7)
where Z;(t) is the running jobs’ set at time slot ¢, U, () is the
scheduled jobs in time slot ¢, F;(t) is the finished or failed
jobs in the running jobs set in time slot ¢. Here the capacity
constraint is:

M; (1)
Res(Z Z | Vi € [thegin gend] (8)
where Res(Z;(t)) represents the estimated resources that all

the running jobs need for CSP i in time slot ¢. The resource
list M;(7) is updated at the beginning of every contract time
slot 7.

The actual benefits a CSP ¢ can get from the contract is

obtained as:
Zﬂ Zﬂb ©)

1), i € e

where 7¥(t) is the clearing selling price for the contracts in
time slot ¢ € [te9i" ¢end] for the type-k dedicated resource.

The actual cost of the electricity consumption is calcu-
lated by the consumption of each server in time slot ¢.
For each server, the electricity consumption can be approx-
imated by a linear model [31] as illustrated in Table 2. For
each server m € [1, M;], the electricity consumption in time
slot ¢ is calculated as:

Contract;(

begzn
tT

: (10)

B () = &g+ % if server m is on
0 otherwise

where £ and ¢;" are the parameters in the linear model
for estimating the electricity cost of the server, u;" is the
utilization of server m in time slot ¢. Therefore the actual
electricity cost for CSP ¢ can be calculated as:

M;

Electricity;(t) = PUE; » Y _E"(t) # &i(t) (11)

TABLE 2
IBM server x3550 Xeon X5675 power consumption with different workload

Workload 0% | 10% | 20%

30%

40% | 50% | 60% | 70% | 80% | 90% | 100%

Power Consumption(Watts) | 58.4 98 | 109

118 128 140 153 170 189 205

222

where PU L; is the Power Usage Effectiveness (PUE) of CSP
i, 6;(t) is the electricity price for the time slot ¢ for CSP i.

We note that the profit is approximately proportional to
the resource consumption of running jobs. Therefore this is
another objective for the provider to maximize:

Income;(t) = p; x Res(Z;(t)) (12)
Finally, we note that there is a penalty of violating the
SLA of the jobs. The penalty can be estimated as:
Penalty;(t) = Z ¥ * 0; * yp if violates p’'s SLA (13)
PEQi(t)
where ¥; is the parameter of the penalty which is deter-
mined in the SLA for violating the SLA, #, is the resource
usage of job p.
Considering all the objectives and constraints together,
we can obtain the objective for the CSP i as:
T—-1

max lim Income;(t) — Electricity;(t) — Penalty;(t)
T — o0
t=0
14
+Contract;(t), (14)
Vi € [1, N]

s.t. Constrains (6) — (8)

We note that the above-mentioned scheduling problem
can be reduced to a bin packing problem. However, bin
packing problems are shown to be NP-hard [32]. Thus, we
need to resort to heuristic techniques to achieve a scalable
solution. We describe them in the next subsection.

5.2 Contracts-based Job Scheduling Mechanisms

We propose a set of heuristic scheduling mechanisms to
schedule jobs across the geo-distributed clouds based on
the resource sharing contracts. We develop two mechanisms
to optimize the scheduling decision based on the contracts:
one is to use the contracts in a cost-aware manner; another
is to schedule the job with minimal live migrations by
understanding the duration of the contracts.

The objective of the CSPs in the job scheduling technique
is to schedule the jobs to maximize the utility of using
the contracts. The utility of using the contracts consists of
two parts namely the payment for successfully completing
the jobs and the cost of using the contracts. As optimizing
the number of completed jobs is an NP-hard problem, we
use the basic real-time FCFS service policy and first-fit
scheduling algorithm as the preliminary approach. We then
extend the basic scheduling algorithm to optimize the cost
of using the contracts. We note that the cost of using the
contracts can be separated into two components namely (i)
the cost to use the contracts, which is decided by the price
and (ii) the additional cost which occurs when using the
contracts such as the job migrating cost and the penalty of
violating the contracts.

Concretely, we propose three schemes. While the con-
tracts cost-aware scheduling (ConBCA) adopts a lowest cost
resource (resources in the contract or local datacenter) first
policy to minimize the cost of using the contracts, the con-
tracts duration-aware scheduling (ConBConA) considers the
duration of the contracts in order to minimize the number

and cost of live migrations. The contracts duration-aware
and cost-aware scheduling (ConBCAConA) simultaneously
aims to minimize both the cost of using the contracts as
well as the number of live migrations based on contracts
duration. z e space-0.1in

5.2.1

In the contracts cost-aware scheduling approach, the CSPs
cooperate with each other based on the established contracts
to maximize their profit. In an intuitive scheduling policy,
the providers may choose only to use the contracts when
the local resource is not sufficient to meet the workload
demands, which we refer to as contracts-based local first
(ConBLF) scheduling mechanism. The disadvantage of this
mechanism is that if the local operating cost is higher than
some of the negotiated price in the contracts, the contracts
become poorly utilized. An alternate intuitive scheduling
policy may approach the scheduling problem in the op-
posite manner which is the contracts first contracts-based
scheduling mechanism. This scheme also has shortcomings,
the cost of the contracts may be higher than the local
resource in some scenarios, in which cases, the contracts-
based remote resource may only be used when the local
resources are exhausted.

The above discussion provides the intuition behind
the contracts-based cost-aware (ConBCA) scheduling algo-
rithm. The provider can estimate the unit cost compared
with the local unit operating cost. It may use the contract
which has a lower cost than the local operating cost first. It
may then use the local resources. The contracts which have
a higher cost than the local operating cost are used only
when the previous two kinds of resources are exhausted.
The detailed algorithm is illustrated in Algorithm 2.

Contracts cost-aware scheduling

5.2.2 Contracts duration-aware scheduling

For maximizing the utility of using the contracts, another
aspect to consider is how to increase the utilization of the
contracts and avoid violating the contracts. An example
of contract violation includes using the resources in the
contracts beyond the effective time. When the contract is
near the end of effective time, the jobs which are not already
finished should be moved to other places that have re-
sources to continue the jobs. Therefore, we have another cost
which occurs in this condition. This cost represents the cost
of migrating the jobs when the contract ends but the jobs
are not finished already. Furthermore, for providing a more
continuous service, most of the jobs should be moved using
a seamless live migration method [33] that incurs minimal
or no impact on the performance of the job. Live migration
is a way of migrating the VMs which minimize the down-
time of the VM. This mechanism iteratively copies the dirty
memory to the remote server and moves the job to the server
in a short down-time. However, the migrating operation is
expensive and may consume network bandwidth between
the two geo-distributed datacenters and the CPU resources
on both servers. Therefore, the provider should avoid the

migrating process by carefully understanding the duration
of the contracts. We call this scheme as the contracts-based
contracts duration-aware mechanism (ConBConA).

The provider needs to minimize the probability of live
migrating the jobs when the contract is near expiration time.
If the expected finish time of the job is beyond the expiration
time of the contract, the job should not be scheduled to the
datacenter unless the benefit of running outside is more than
the migration cost.

We model the probability of migrating the job as follows.
The remaining time from the expected finish time of each job
p in time slot ¢ can be calculated as:

t;emain _ t‘ernd —(t+ lp) (15)

Where t¢"¢ represents the end time of the contract, ¢ is the
starting time of job p which is indicated by the current time
slot ¢, 1, is the expected length of job p.

We assume that the probability of migrating is inversely
proportional to the remaining time from the expected end
time to the expiration time of current effective contract.
The possibility of migrating can be estimated by the above
remaining time of the job p:

1

tremain

Pr(z,=1)=ax (16)
where 2z, = 1 is an indicator that indicates whether the job
needs to be live migrated, Pr(z, = 1) is the probability
that the job needs to be live migrated, « is a parameter. The
probability that the job needs to be migrated live is inversely
proportional to the remaining time from end of the job to the
contract expiration time.

The migration cost can be estimated by a function which
is related to the dirty rate and the size of memory. We use
the equation in [34] to estimate the migration cost:

0, pis scheduled locally
(nSize(vyp) + t)Pr(z, = 1), otherwise
17)
where 7, is the parameter in the live migrating cost esti-
mating model, Size(v,) is the estimated live migration size
of the job p which can be calculated by the algorithm in [34].
The actual size of migrating is related to the kind of jobs
running on the VM. This function calculates the migrating
cost if the job is scheduled in time slot ¢ to the contract.

As shown above, we use a simplified live migration
model to calculate the migration cost. For a more accurate
estimation of the migration cost, the migration model may
be replaced with other sophisticated models such as [35] that
considers the migration bandwidth and the page dirty rate,
[36] which considers the bandwidth waste of in-band migra-
tion and the downtime of the job or [37] which optimizes the
live migration cost on a Wide Area Network (WAN). Thus,
the key idea behind the contracts-based contracts duration-
aware scheduling algorithm is to minimize the possible cost
of having to migrate the tasks.

Migration,(t) = {

5.2.3 Contracts duration-aware and cost-aware scheduling

Considering the two mechanisms discussed above, we de-
velop a new mechanism for scheduling the jobs with the
features of both contracts duration-aware and cost-aware
scheduling with using the contracts (ConBCAConA).

9

In this approach, the provider first sorts all the contracts
by their unit buying price and separates them into two sets:
lower cost contracts which has lower cost than the local
resource; higher cost contracts which has higher cost than
the local resource which is only used when the workload is
beyond the capacity of the previous two sets of resources.

In every time slot ¢, the provider schedules the tasks by
considering the utility of finishing the task p:

ub(t) = o;Res(p) * I, — Migration,(t) — Cost?

i (18)
where Res(p) is the resource task p needs, Cost! is the
operating cost depending on whether the job runs locally
(calculated by the local operating cost) or on the remote
contract resources (calculated by the buying price).

The scheduler needs to maximize the outsourcing profit
and minimize the cost of using the contracts and live mi-
grating the jobs as shown in Algorithm 2. For each time

Algorithm 2: Algorithm of Scheduling the jobs based
on contracts

1 Separate the contracts in time slot 7 into two set: Contracts;., and
Contractspigh;

2 foreach Scheduling time slot t € [t2°9"™ "] do

3 if job p can be scheduled to Contr; € Contracts;,,, then

4 | Schedule the job p which Pr(z, = 1) < e with Contr;;

5 end

6 else

7 if Job p can be scheduled to local resource then

8 | Schedule the job p to the local resource

9 end

10 else

1 Schedule the job p which Pr(z, = 1) < e with
Contr; € Contractspigh;

12 end

13 end

14 end

slot t, the time complexity of the scheduling Algorithm 2
is determined by the number of jobs |P| so that the time
complexity is O(| P|).

6 EVALUATION

In this section, we present our experimental study on the
performance of the proposed contracts-based resource man-
agement techniques.

6.1

We implement the simulator and the proposed algorithms
in JAVA and the simulator runs with a global virtual clock.
We log the status of all the servers in the CSPs for each vir-
tual second which includes the available resources, the job
status (submitted, running or finished) information, and the
performance metrics of the jobs. We run all the experiments
on an Intel i5-3210M Machine with 8GB memory.

6.1.1 datacenters

We consider that each provider has one datacenter in our
evaluation and we use the default configuration shown in
Table 3 for each datacenter. The default server has the same

Setup

TABLE 3
Datacenters’ Default Configuration

of providers 25 | # of servers / provider 300
Cores per server 6 MIPS per Core 3067
Memory per Server | 16 GB Bandwidth per Server 1GB
PUE 1.2 Contract Interval | 4 hours

Prepaid ratio 0.5 | Maximal response time 3600

performance as the IBM server x3550 (2 x [Xeon X5675 3067
MHz, 6 cores], 16GB). The different power consumption of
the server from [31] is shown in Table 2. The locations of the
datacenters are chosen from Amazon’s AWS datacenters’
locations with the timezone and location from [30]. The price
model uses the AWS EC2 On-Demand price model [38]. The
actually model is given by: 8y + 51 * ECU + B3 * Memory,
and from the linear regression, we get 3y = 0.0005884, 31 =
0.0093460, B2 = 0.0076067. Here, one ECU equals 1000
MIPS (Million Instructions Per Second) in our definition.
6.1.2 Real electricity price

The electricity price is generated based on the hourly real-
time electricity price from [19]. We obtained the distribution
of the data in 2015 from NationalGrid’s hourly electricity
price and the distribution includes two type of features: one
is auto-correlation which means that the electricity price’s
trend has very high possibility to be similar in a period
of observation; another is the burstiness, which indicates
that the electricity price can fluctuate significantly in a short
period. In our simulation, we use the distribution of the
electricity price and randomly choose each day’s price from
it by shifting the time based on the datacenters’ time zones.
6.1.3 Workload

We conduct the experiments using a real-world workload
trace from the online Parallel Workload Archive (PWA)
repository [39]. We choose the SHARCNET clusters’ trace
from the archive as it is a computational-intensive High-
performance Computing (HPC) workload trace logged in
real clusters. The trace is for a duration of thirteen months
(From Dec. 2005 to Jan. 2007) with 1,195,242 independent
jobs [40], [41]. As suggested by the publisher of PWA, we
do not use the entire SHARCNET trace as the configuration
of the clusters has changed during the duration of the trace.
Instead, as recommended, we extract a two-day (From Dec.
1st to Dec. 2ed) period that does not contain cluster con-
figuration changes. For our simulation, we have extracted
the following information from the trace: the job submitted
time, the job running time, the requested number of CPUs,
the requested size of memory and the utilization of CPUs. In
order to keep the workload same in every sub-experiment,
we have used two different methods to generate the work-
loads. Except for the evaluation of testing the impact of
number of providers in Section 6.2.2, in other scenarios, all
the jobs in the workload are replicated in each provider so as
to keep the same amount of jobs in each sub-evaluation. For
the evaluation of the different number of providers, we have
replicated the extracted trace 25 times that corresponds to
half of the maximum number of providers in the evaluation
and we have randomly assigned the jobs to the CSPs so as
to maintain the same amount of jobs in each sub-evaluation.
We set the dedicated resources in the simulation using a set
of hierarchical categories having 256, 128, 64, 32, 16, 8, 4
servers respectively. By default, we assume an accurate pre-
diction of the workload at each CSPs. For evaluating under
conditions of erroneous predictions, we dedicate a separate
set of experiments to test the performance of our algorithms
under various levels of errors in workload prediction.

6.1.4 Algorithms

The reference algorithms include: (i) no federation (NF),
which does not share any resources and workload with

10

others and the scheduler tries the best effort to mini-
mize the electricity cost; (i) contracts-based scheduling
algorithm using the local resource first (ConBLF); (iii)
contracts-based scheduling algorithm with contracts cost-
aware (ConBCA) scheduling; (iv) contracts-based contracts
duration-aware scheduling algorithm that avoids live mi-
gration (ConBConA); (v) contracts-based contracts cost-
aware and duration-aware scheduling (ConBCAConA); (vi)
the last candidate approach for comparison is the unrealistic
method which uses a greedy algorithm (filling the jobs to the
datacenter with lowest operating cost by the FCFS policy)
to optimize the operating cost across all the datacenters
without considering the local datacenter’s profit. We refer
to it as real-time complete cooperation scheduling (RT). The
summary of the algorithms is shown in Table 4.

TABLE 4
Compared Algorithms
Use Cost- Contracts
Algorithm Description Con- duration-
tracts aware aware
NF No Federation
ConBLF Contracts-based N
Local First
ConBCA Contracts-based V4 Vv
Cost-aware
ConBConA Contracts- V4 N
based Contracts
duration-aware
ConBCAConA || Contracts-based VA v v
Contracts cost-
aware and
duration-aware
RT Real Time com-
plete cooperation

6.2 Experimental Results

For illustrating the performance of our contracts-based al-
gorithms, we complete five sets of experiments: first, we
study the impact of increasing the number of servers in
the datacenters; second, our experiment analyses the impact
when the number of datacenters is increased; third, we
add different amount of errors to the prediction of the
workloads and study its impact; fourth, we test the influence
of different contract intervals on the performance; finally, we
evaluate the fairness of our algorithm compared to global
optimization approaches that do not consider local profits
of the individual datacenters. For each set of the first four
experiments, we measure the electricity cost per successful
job, the success rate, the average server utilization and the
number of job live migrations.

6.2.1 Impact of Number of Servers

We first test the performance of our mechanisms using
different number of servers per datacenter. The number of
servers increases from 100 to 500 per datacenter in the eval-
uation. As shown in Figure 4a, the y-axis is the normalized
electricity cost per successful job compared with NE. The x-
axis is the number of servers per datacenter. We observe that
with the ability to share resources in the cloud federation,
the electricity cost compared with no federation has been
optimized from about 10% to 40% as the number of servers
increase. ConBCA achieves the best result and it is close
to that of RT. This is due to the fact that if the provider
does not need to consider violating the contracts or the
cost of live migrations, it can send all the jobs to the lower

"’ ConBLF
m—ConBCA
£ GonBGonA
£z ConBCAConA
AT

success rate

X~ GonBConA |
ConBCAConA

—v-RT
0 I L.
100 150 200 250 300 350 400 450 500
of servers per data center

(b) Success Rate

\
\
\
\
\

average normalized electricity

100 200 300
of servers per data center

(a) Electricity Cost

Fig. 4. Evaluation results for a different number of servers per datacenter

o RT

success rate

ConBCAConA|

===
EEEEEELK
00000000077
e ——

| v wweeeeos
ESSSSESS88S

L L L P Y L
15 20 25 30 35 40 45 50
of providers

(b) Success Rate

average normalized electricity

\
A
A
A
A
A
A
A
N
2

0
10 50 10

S
@
5}
IS
S

of providers

(@) Electricity Cost

Fig. 5. Evaluation results for a different number of datacenters

cost contracts it holds. As this will increase the utilization
of the low cost contracts, it can potentially decrease the
operating cost per successful job. In Figure 4b, we observe
that the success rate increases with increase in the number
of servers. The priority of sharing the resources are mainly
reflected when the resources are scarce. Thus, if the resource
is scarcer, the difference can be larger. In Figure 4c, we
can observe that our contracts-based mechanism and the
RT mechanism obtain better results (around 2%) as the
sharing mechanism makes the workload more balanced in
the providers which increases the utilization of the servers.
In Figure 4d, we observe that the techniques that avoid live
migration (ConACB and ConACAConB) achieve the best
result. The cost-aware algorithm performs poorly as it uses
the contracts regardless of the effective time of the contracts.
ConBLF which is the local resource first mechanism also
does not perform well (near 8K live migrations when the
number of servers is 100) as it ignores the length of the
contract. ConBLF performs better than the ConBCA when
the number of servers is increased as ConBLF uses local
resource first strategy. Therefore, if the resource is available,
the usage of the contracts will decrease and the number of
live migrations will be decreased as well.

Owerall, we can deduce that contracts-based algorithm per-
forms significantly better than the NF scheme with respect
to operating cost and success rate. Live migration is avoided
when using contracts duration-aware mechanisms (ConBConA
and ConBCAConA) and the performance of our contracts-based
mechanisms is close to that of the RT method in most of the
measurements.

6.2.2 Impact of Number of Providers

We next evaluate the performance of our mechanisms to
study the impact of different number of service providers in
the federated cloud. The number of providers is increased
from 10 to 50. As shown in Figure 5a, the y-axis is the
normalized electricity cost per successful job compared
with no federation. The x-axis is the number of providers
which remains unchanged in this set of evaluation. We can
observe that the electricity cost compared with no feder-
ation has been optimized from about 10% to 20% in the

11

30000 T

ConBLF ' |
--M-- ConBCA

25000 - —% — ConBConA
E ConBCAConA

& 20000 |-
15000 -
10000 - .. HE-....

[e B

0.5 —%- ConBConA
ConBCAConA
“w-RL

o .
100 150 200 250 300 350 400 450 500
of servers per data center

5000 -

average server utilization
°
2 2 85 2 g
T
of live migration times

0 Ly .
100 150 200 250 300 350 400 450 500
of servers per data center

(c) Average Server Utilization (d) Number of Live Migrations

30000 T

ConBLF '
--W-- ConBGA
—> — ConBConA
ConBCAConA

25000
20000
150008y,

10000 - . ELL

--M-- ConBCA -

0.5 |- —%— ConBConA
ConBCAConA

—¥-RT

0.4 A T R 0

10 15 20 25 30 35 40 45 50 10
of providers

Tl
5000 - -

o
3
T

of live migration times

average server utilization

Ly o & .
15 20 25 30 35 40 45 50
of providers

(c) Average Server Utilization (d) Number of Live Migrations

proposed schemes. This result is similar to the previous
experiment. Here, ConBCA optimizes the electricity cost
very significantly compared to the other contracts-based
algorithms when the resources are sufficiently available in
the federation. As shown in Figure 5b, the success rate also
increases with increase in the number of providers. Thus,
all contracts-based algorithms perform better than NF with
more than 20% improvements. Also, the contracts-based
algorithms perform similarly to RT when the number of
providers is more than 20. The utilization levels measured in
Figure 5c also show a similar trend as previous experiments.
We can see that when the number of providers is increased,
the number of live migrations of ConBLF and ConBCA
are decreased. The reason is that when the resources are
available and when the number of jobs submitted to each
datacenter is decreased, the number of live migrations also
decrease. From the above experiments, we can conclude that
contracts-based algorithm performs better than the NF in op-
erating cost and success rate. Live migration is avoided when
using contracts duration-aware mechanisms (ConBConA and
ConBCAConA). Most of the measurements of our contracts-based
mechanisms are close to the RT.

6.2.3 Impact of Prediction Errors

We next evaluate the performance of our mechanisms using
different proportions of prediction error added to the de-
mand and workload prediction. We use a white noise [42]
to introduce the error in the predicted values. The amount
of error introduced is increased from 10% to 50% in the
experiment. All the other settings are kept as shown in the
default configuration Table 3. As shown in Figure 6a, the
y-axis is the same as the previous evaluations. The x-axis is
the average percentage of prediction errors. The electricity
cost compared with no federation has been optimized from
about 10% to 15% regardless of the prediction errors. The
result shows that the prediction errors do not influence the
result significantly(2% with 50% added error) as the error
only influences the contract trading volume. The resources
are traded between the providers with the true value. As
only the volume is influenced insignificantly by the added
error, it does not have a significant impact on the outcome.

§16 —
T4 M- —— %
[}
] . a a a
o508 12 === ConBCACon o o8t
§ 8o 1 ©
S8Z0s Vil Y NV 8 061
€250s NN i &
522086 WEE N A S 04 —a— NF
250 \ \ 0 N 2 GonBLF
oo 204 W 3 N A W-- ConBCA
288 N N ! N 021 —¥ - ConBConA 4
g8 go2 N N / ’§ ConBCAConA|
g 5, R EV N ERA L TYC-RT
® 0

0 .
10 15 20 25 30 35 40 45 50
prediction error (%)

(b) Success Rate

10

N

0 40 5
prediction error (%)

(a) Electricity Cost

12

30000 T

ConBLF ' |
--M-- ConBCA

25000 - —% — ConBConA
E ConBCAConA

§ 20000 -
S 15000 -

10000 -

0.5 —%- ConBConA 5000®

ConBCAConA
“w-RT L

.

0
10 15 20 25 30 35 40 45 50 10
prediction error (%)

average server utilization
°
3
T

of live migration times

0.4

Ly oy
15 20 25 30 35 40 45 50
prediction error (%)

(c) Average Server Utilization (d) Number of Live Migrations

Fig. 6. Evaluation results for different average errors of the workload predictions

cost of successful tasks
success rate

compared with No Federation

e 9 9o =
I N I R

average normalized electricity

2 4
contract interval (hour)

(b) Success Rate

1
contract interval (hour)

(@) Electricity Cost

Fig. 7. Evaluation results for different inner intervals of the contracts

In Figure 6b, we also observe that the success rate is not
influenced much (less than 1% variance) by the prediction
error. We find a similar trend with the measurements on
utilization and live migrations in Figure 6¢c and Figure 6d
respectively. From the above experiments we can deduce that
the prediction error does not influence our algorithm significantly
and hence the proposed techniques are robust under a wide range
of errors in the workload prediction.

6.24

Next, we test the performance of our mechanisms with
different duration of contract intervals. The contract interval
is set to five values (1, 2, 4, 8 and 12 hours). As shown in
Figure 7a, the x-axis is the contract interval. We can see that
the contract interval does not influence the operating cost
significantly. But when the contract interval increases, the
normalized electricity price is also increased considerably
between 3% to 5% except for ConBCA. ConBCA is influ-
enced more and has an increase of 16%. This is because
with a longer interval, the evaluation accuracy of the true
values for each time slot will decrease which will influence
the contracts establishment process. However, the influence
is not very significant. In Figure 7b, we observe that the
success rate is not influenced significantly by the contract in-
tervals and in Figure 7c, we note that the average utilization
of the running servers also does not change significantly.
As shown in Figure 7d, the number of live migrations
decreases when the contract interval increases(for LFConB,
from 12K to 0.6K; for ConBCA, from 52K to 1K) as the longer
effective time decreases the probability of live migrations.
The contracts duration-aware mechanisms (ConBConA and
ConBCAConA) also perform better here.

Owerall, from the above experiment, we can see that the
contract interval influences the number of live migration and
electricity cost. With an increase in the contract interval, the
normalized electricity cost is slightly increased and the number
of live migrations is decreased.

6.2.5 Fairness

In this set of experiment, we evaluate the fairness of the
proposed schemes by comparing the individual profit of

Impact of Contract Intervals

60000

50000
40000 £zz21 ConBCAConAl
30000

20000

average server utilization
of live migration times

10000

o sesses
| e eeeea
FERSSSSSSSSSSS o

12

2 8
contract interval (hour)

contract interval (hour)

(c) Average Server Utilization (d) Number of Live Migrations

each CSP. The result is observed with the setup of 100
servers per datacenters. We use the default setting for the
other experiment parameters. As shown in Figure 8, the
y-axis is the gain or loss ratio of the normalized profit
which is the difference between the profit that can be earned
using the federated cloud and the profit that can be earned
otherwise when operating alone. When the number is larger
than 0, it means that the provider earns more using the
federated cloud than when it operates alone and vice versa.
The x-axis represents the index for each CSP. From the
figure, we can see that, when the federated cloud is operated
using the real-time complete cooperation mechanism, there
are six CSPs (CSP4, 5, 6, 8, 13, 22) of the total 25 CSPs
losing profits compared with the profits they can earn when
operating alone. The contracts-based mechanisms perform
significantly better than operating alone except for CSP10
which gets a very minimal decrease (less than 4%) com-
pared to the profit that it can earn from operating alone.

From the observations above, we can see that the real-time
complete cooperation mechanism globally optimizes the operating
cost but results in several CSPs losing profits. In contrast, the
proposed contracts-based mechanisms perform better than the real-
time complete cooperation mechanism and achieve higher fairness
with most of the CSPs obtaining higher profits when participating
in the federation.

7 RELATED WORK

Existing literature [10]-[16] have focused on optimizing
the performance of cloud services in the Geo-distributed
Cloud environment. This class of techniques builds Virtual
Machines (VMs) for users to use computing resources across
geo-distributed datacenters as a single logical virtual cluster.
These techniques primarily ptimize the data placement [10]
[12], the latency of the services [12] [13] [14] , the Quality
of Service(QoS) [11] [15], the electricity cost [13] [16] across
multiple datacenters.

In the recent past, cloud Federation has gained signifi-
cant focus from the cloud computing research community.
Most of the works related to Cloud Federation primarily
focus on two aspects: the first kind of research efforts focus
on the architecture and the system model for enabling and

o

T T T T T
XXX ConBLF
mmmm ConBCA
ES==1 ConBConA
EZZZ1 ConBCAConA
o RT

LLﬂmqhdqﬁjd qjj Mj_ﬁj%djﬂ

L L L L L L L L
1234567 8 910111213141516171819202122232425
CSP #

Fig. 8. The gain or loss ratio of the profit for each individual CSP
deploying federated clouds [5]-[7], [43], [44]; the second
class of existing work optimizes the performance of fed-
erated cloud through efficient job scheduling, job migra-
tion and resource allocation [8], [13], [45]-[47]. Rochwerger
et al. [6] proposed an architecture called RESERVOIR to
enable cloud providers to deal with each other in a P2P
manner. Buyya et al. [7] proposed a centralized architecture
named InterCloud which provides a market for the CSPs or
cloud brokers to share their resources. In [5], Carlini et al.
proposed a centralized architecture for achieving federated
cloud which provides single sign-on and both centralized
and decentralized architecture for building the federated
cloud. Moreno et al. [44] proposed a cloud-broker-based
architecture to support the management of the federated
cloud. In [43], Ferrer et al. proposed OPTIMIS which is
a toolkit for implementing peer-to-peer Cloud Federation
provisioning.

McGough et al. [45], [46] analyzed and optimized the
power consumption in a commercial framework for es-
tablishing Cloud Federations. In [8], Li et al. proposed a
model which makes it possible for one Cloud Federation
to consider both the workload and the electricity price and
maximize the profit through an auction mechanism. Xu et
al. [13] proposed a technique that combines the alternating
direction method of multipliers (ADMM) method with the
problem of how to place the cloud services with minimized
electricity cost and latency to the client. However, the work
is based on the geo-distributed cloud assumption which
assumes that all the services” and users’ information can be
accessed by the provider, which is not applicable for generic
federated clouds with competing CSPs, such as the one
considered in our work. In [47], Breitgand et al. proposed a
method that uses policy similar to contracts to optimize the
service placement problem in federated clouds. However,
this work primarily addresses the architectural issues of the
policy enforcement but not the combination of the contracts-
based solution with optimization based on contracts, which
is the key focus of our work.

IS
T

w
T

-

gain or loss ratio of the profit
compared with no federation
o n

N

8 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a contracts-based mechanism
for resource sharing between CSPs in a federated cloud.
Compared with previous work in this area, our proposed
approach considers both the global cost minimization as
well as the local profit maximization of each individual
datacenters participating in the federation process. We de-
veloped an auction-based mechanism for contract establish-
ment and a suite of contracts cost-aware and duration-aware
scheduling techniques that maximize the local profits of the
CSPs while meeting the individual job requirements. We

13

evaluated the performance of the proposed approach us-
ing a trace-driven simulation study with realistic workload
traces and electricity pricing. The contracts-based solution
achieves good performance and performs significantly bet-
ter than the traditional model in terms of fairness in local
profits while achieving similar operational costs and success
rate properties as existing methods.

In the future, we plan to address three limitations of our
current work. First, the auctioneer in our present model rep-
resents a single point of failure. One direction of future work
may focus on developing the auctioneer in a decentralized
way so that single point of control and trust can be elimi-
nated. Second, in our current work, we do not account for
data-intensive workloads in the resource allocation model.
The second direction may extend our resource allocation
and job scheduling techniques to take into consideration
data-locality and data-affinity constraints so that both data-
intensive and computationally intensive workloads can be
supported in the model. Finally, another direction of our
future work may focus on considering additional SLA re-
quirements in the resource allocation framework including
job reliability and fault-tolerant requirements to further
enhance the resource allocation model.

ACKNOWLEDGEMENTS

The workload logs on which it is based are available on-line
from the Parallel Workloads Archive [39].

REFERENCES

[1] D. Laney, “3d data management: Controlling data volume, veloc-
ity and variety,” META Group Research Note, vol. 6, p. 70, 2001.

[2]]. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,
and A. H. Byers, “Big data: The next frontier for innovation,
competition, and productivity,” 2011.

[3] I A.T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of big data on cloud computing: Review
and open research issues,” Information Systems, vol. 47, pp. 98-115,
2015.

[4] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud
computing: current state and future opportunities,” in Proceedings
of the 14th International Conference on Extending Database Technology.
ACM, 2011, pp. 530-533.

[5] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, “Cloud
federations in contrail,” in European Conference on Parallel Process-
ing. Springer, 2011, pp. 159-168.

[6] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres et al.,
“The reservoir model and architecture for open federated cloud
computing,” IBM Journal of Research and Development, vol. 53, no. 4,
pp- 4-1, 2009.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in International Conference on Algorithms
and Architectures for Parallel Processing. Springer, 2010, pp. 13-31.

8] H. Li, C. Wu, Z Li, and E C. M. Lau, “Profit-
Maximizing Virtual Machine Trading in a Federation of
Selfish Clouds,” IEEE/ACM Transactions on Networking, pp.
1-1, 2015. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=7124534

[9] S. Ren, Y. He, and F. Xu, “Provably-efficient job scheduling for

energy and fairness in geographically distributed data centers,”

in Distributed Computing Systems (ICDCS), 2012 IEEE 32nd Interna-

tional Conference on. IEEE, 2012, pp. 22-31.

S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman,

and H. Bhogan, “Volley: Automated data placement for geo-

distributed cloud services.” in NSDI, 2010, pp. 17-32.

[11] H. Roh, C. Jung, W. Lee, and D.-Z. Du, “Resource pricing game
in geo-distributed clouds,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 1519-1527.

[10]

(12]

(13]

[14]

[15]

[16]

(17]
(18]

(19]

[20]
[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
in Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication. ACM, 2015, pp. 421-434.

H. Xu and B. Li, “Joint request mapping and response routing
for geo-distributed cloud services,” in INFOCOM, 2013 Proceedings
IEEE. IEEE, 2013, pp. 854-862.

B. Yu and]. Pan, “Location-aware Associated Data Placement for
Geo-distributed Data-intensive Applications.”

L. Gu, D. Zeng, P. Li, and S. Guo, “Cost minimization for big data
processing in geo-distributed data centers,” IEEE Transactions on
Emerging Topics in Computing, vol. 2, no. 3, pp. 314-323, 2014.

Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. Lui, and H. Jin,
“Carbon-aware load balancing for geo-distributed cloud services,”
in 2013 IEEE 21st International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems. IEEE, 2013,
pp. 232-241.

Amazon, “AWS Amazon EC2,” accessed Jan. 4, 2016. [Online].
Available: https:/ /aws.amazon.com

“Google Cloud,” accessed Aug. 4, 2016. [Online]. Available:
https:/ /cloud.google.com

National Grid, = “Large General TOU,” accessed Jan. 4,
2016. [Online]. Available: https://www.nationalgridus.com/
niagaramohawk /business/rates/5_hour_charge.asp

P. Mell and T. Grance, “The nist definition of cloud computing,”
2011.

C. Camerer, Behavioral game theory: Experiments in strategic interac-
tion. Princeton University Press, 2003.

IBM, “Bluemix Dedicated,” accessed Nov. 7, 2016. [Online].

Available: https://www.ibm.com/cloud-computing/bluemix/
dedicated
Amazon, “Amazon EC2 Dedicated Instances,” accessed Nov.

11, 2016. [Online]. Available: https://aws.amazon.com/ec2/
purchasing-options/dedicated-instances/

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorith-
mic game theory. Cambridge University Press Cambridge, 2007,
vol. 1.

R. P. McAfee, “A dominant strategy double auction,” Journal of
economic Theory, vol. 56, no. 2, pp. 434-450, 1992.

N. Nisan et al., “Introduction to mechanism design (for computer
scientists),” Algorithmic game theory, vol. 9, pp. 209242, 2007.
“Double auction,” accessed Aug. 29, 2017. [Online]. Available:
https:/ /en.wikipedia.org/wiki/Double_auction

R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications
qos,” IEEE Transactions on Cloud Computing, vol. 3, no. 4, pp. 449-
458, 2015.

A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload char-
acterization and prediction in the cloud: A multiple time se-
ries approach,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE. 1EEE, 2012, pp. 1287-1294.

“AWS Regional Data Centers mapping,” accessed Jan. 4,
2016. [Online]. Available: https://github.com/turnkeylinux/
aws-datacenters

A. Beloglazov and R. Buyya, “Optimal online deterministic al-
gorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 13, pp. 1397-1420, 2012.

M. R. Gary and D. S. Johnson, “Computers and intractability: A
guide to the theory of np-completeness,” 1979.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
L. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation-Volume 2. USENIX Association, 2005, pp.
273-286.

H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy
modeling for live migration of virtual machines,” Cluster comput-
ing, vol. 16, no. 2, pp. 249264, 2013.

S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper,
“Predicting the performance of virtual machine migration,” in
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on. IEEE,
2010, pp. 37-46.

D. Breitgand, G. Kutiel, and D. Raz, “Cost-aware live migration of
services in the cloud.” in SYSTOR, 2010.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

14

T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe,
“Cloudnet: dynamic pooling of cloud resources by live wan mi-
gration of virtual machines,” in ACM Sigplan Notices, vol. 46, no. 7.
ACM, 2011, pp. 121-132.

Amazon, “AWS Amazon EC2 On-demand Pricing,” accessed Jan.
4, 2016. [Online]. Available: https://aws.amazon.com/ec2/
pricing/on-demand/

“Logs of real parallel workloads,” accessed Aug. 29,
2017. [Online]. Available: http:/ /www.cs.huji.ac.il/labs/parallel/
workload/

D. Klusacek and H. Rudova, “Alea 2: job scheduling simulator,”
in Proceedings of the 3rd International ICST Conference on Simulation
Tools and Techniques. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2010, p. 61.

I. Rodero, F. Guim, and J. Corbalan, “Evaluation of coordinated
grid scheduling strategies,” in High Performance Computing and
Communications, 2009. HPCC’09. 11th IEEE International Conference
on. IEEE, 2009, pp. 1-10.

Y. Wu, K. Hwang, Y. Yuan, and W. Zheng, “Adaptive workload
prediction of grid performance in confidence windows,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 7, pp.
925-938, 2010.

A.]. Ferrer, F. HerndNdez, J. Tordsson, E. Elmroth, A. Ali-Eldin,
C. Zsigri, R. Sirvent, J. Guitart, R. M. Badia, K. Djemame ef al.,
“Optimis: A holistic approach to cloud service provisioning,”
Future Generation Computer Systems, vol. 28, no. 1, pp. 66-77, 2012.
R. Moreno-Vozmediano, R. S. Montero, and I. M. Llorente, “Iaas
cloud architecture: From virtualized datacenters to federated
cloud infrastructures,” Computer, no. 12, pp. 65-72, 2012.

A. S. McGough, C. Gerrard, P. Haldane, D. Sharples, D. Swan,
P. Robinson, S. Hamlander, and S. Wheater, “Intelligent power
management over large clusters,” in Proceedings of the 2010
IEEE/ACM Int’l Conference on Green Computing and Communications
& Int’l Conference on Cyber, Physical and Social Computing. 1EEE
Computer Society, 2010, pp. 88-95.

A.S. McGough, C. Gerrard, J. Noble, P. Robinson, and S. Wheater,
“Analysis of power-saving techniques over a large multi-use clus-
ter,” in Dependable, Autonomic and Secure Computing (DASC), 2011
IEEE Ninth International Conference on. IEEE, 2011, pp. 364-371.
D. Breitgand, a. Marashini, and J. Tordsson, “Policy-driven service
placement optimization in federated clouds,” IBM Research Divi-
sion, Tech. Rep, vol. 0299, 2011.

Jinlai Xu is currently a PhD student in the
School of Computing and Information at Univer-
sity of Pittsburgh He received the BE and ME
degrees from China University of Geosciences,
China, in 2012 and 2015, respectively. His re-
search interests are in the areas of Edge/Fog
and Cloud Computing, with a current focus on
contracts-based resource sharing and allocation
in edge/fog and cloud computing. He is a student
member of the IEEE.

Balaji Palanisamy is an Assistant Professor in
the School of Information Science in University
of Pittsburgh. He received his M.S and Ph.D.
degrees in Computer Science from the college
of Computing at Georgia Tech in 2009 and 2013
respectively. His primary research interests lie in
scalable and privacy-conscious resource man-
agement for large-scale Distributed and Mobile
Systems. At University of Pittsburgh, he co-
directs research in the Laboratory of Research
and Education on Security Assured Information

Systems (LERSAIS), which is one of the first group of NSA/DHS

designated Centers of Academic Excellence in Information Assurance

Education and Research (CAE &CAE-R). He is a member of the IEEE.

