Enabling Probabilistic Differential Privacy Protection for Location Recommendations | IEEE Journals & Magazine | IEEE Xplore

Enabling Probabilistic Differential Privacy Protection for Location Recommendations


Abstract:

The sequential pattern in the human movement is one of the most important aspects for location recommendations in geosocial networks. Existing location recommenders have ...Show More

Abstract:

The sequential pattern in the human movement is one of the most important aspects for location recommendations in geosocial networks. Existing location recommenders have to access users' raw check-in data to mine their sequential patterns that raises serious location privacy breaches. In this paper, we propose a new Privacy-preserving LOcation REcommendation framework (PLORE) to address this privacy challenge. First, we employ the nnth-order additive Markov chain to exploit users' sequential patterns for location recommendations. Further, we contrive the probabilistic differential privacy mechanism to reach a good trade-off between high recommendation accuracy and strict location privacy protection. Finally, we conduct extensive experiments to evaluate the performance of PLORE using three large-scale real-world data sets. Extensive experimental results show that PLORE provides efficient and highly accurate location recommendations, and guarantees strict privacy protection for user check-in data in geosocial networks.
Published in: IEEE Transactions on Services Computing ( Volume: 14, Issue: 2, 01 March-April 2021)
Page(s): 426 - 440
Date of Publication: 05 March 2018

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.