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Abstract—In a heterogeneous distributed system composed of various types of computing platforms such as supercomputers, grids,
and clouds, a two-level scheduling approach can be used to effectively distribute resources of the platforms to users in the first-level,
and map tasks of the users in nodes for each platform in the second-level for executing many-task applications. When scheduling
heterogeneous resources, service providers of the system should consider the fairness among multiple users as well as the system
efficiency. However, the fairness cannot be achieved by simply distributing an equal amount of resources from each platform to every
user. In this paper, we investigate how to address the fairness issue among multiple users in a heterogeneous distributed system. We
present three first-level resource allocation policies of a provider affinity first policy, an application affinity first policy, and a platform
affinity based round-robin policy, and two second-level task mapping policies of a most affected first policy and a co-runner affinity
based round-robin policy. Using trace-based simulations, we evaluate the performance of various combinations of the first and second
level scheduling policies. Our extensive simulation results demonstrate that the first-level policy plays a crucial role to achieve relatively

good fairness.

Index Terms—Heterogeneous distributed computing systems, two-level scheduling, fairness, high-throughput computing,

many-task computing

1 INTRODUCTION

O solve a large-scale problem in various scientific do-

mains such as physics, chemistry, astronomy, and phar-
maceuticals, a loosely coupled application which consists
of many tasks, from tens of thousands to even billion tasks, is
commonly used. High-Throughput Computing (HTC) para-
digm [1], which focuses on executing loosely coupled appli-
cations composed of CPU-intensive tasks, has expanded to
Many-Task Computing (MTC) paradigm [2]. In MTC, it is
required to execute a huge number of tasks with potentially
having a large variance in runtimes and resource usage pat-
terns within a relatively short period of time.

To achieve the desired performance for such loosely cou-
pled many-task applications, we can utilize as many resour-
ces as possible from a heterogeneous distributed computing
system which is composed of various types of computing
platforms or clusters, such as supercomputers, grids and
clouds. These heterogeneous platforms are configured differ-
ently in terms of hardware and software. Thus, the configu-
rations of each platform on the hardware such as CPU
microarchitecture and the amount of memory, the software
stack from OS and libraries to the middleware that manages
job submission and execution, and the network & storage
settings are different from each other.

e E. Hwang and Y. Choi are with the School of Electrical and Computer
Engineering, UNIST, Ulsan 44919, Republic of Korea.
E-mail: {hwangej88, ychoi}@unist.ac.kr.

o . Kim is with Department of Computer Engineering, Myongji University,
Seoul 03674, Republic of Korea. E-mail: jiksoo@mju.ac.kr.

Manuscript received 26 Oct. 2017; revised 28 Mar. 2018; accepted 8 May

2018. Date of publication 15 May 2018; date of current version 9 June 2021.

(Corresponding author: Young-ri Choi.)
Digital Object Identifier no. 10.1109/TSC.2018.2836444

A heterogeneous (distributed) computing system can use
a two-level scheduling approach to effectively distribute
resources of the platforms to multiple users and map tasks
of the users in computing nodes for each platform. In the
first level, the computing resources of the platforms are allo-
cated to each user based on a resource allocation policy. In the
second level, the tasks of the applications submitted by the
users are assigned to nodes in each platform based on a task
mapping policy.

Many-task applications submitted to a heterogeneous
computing system have different resource usage patterns.
The performance of a many-task application is basically
determined by which platform’s resources are used to run
it. However, with the advance on the multi-core technology,
the number of cores per node increases, making multiple
tasks from the same application or different applications be
executed on the same node. The interference effect caused
by co-running tasks, i.e., co-runners, on the performance of
the application cannot be simply ignored. Therefore, a first
level policy and a second level policy can make a decision
based on the affinity of each application to a platform and the
affinity of each application to co-running applications, respec-
tively, in order to achieve the maximum performance.

When scheduling heterogeneous resources for work-
loads of multiple users, service providers of heterogeneous
computing systems should consider the fairness among
the users as well as the efficiency of the system, especially
for production-level systems where many active users are
sharing a common infrastructure. However, the fairness
cannot be achieved by simply distributing an equal amount
of computing resources from each platform to every user.
Some users may prefer the resources from the most of the
platforms, while other users may prefer the resources from
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TABLE 1

Heterogeneous Computing Platforms used in the Experiments
Platform Type PLSI Grid Cloud
Computing Platform kias.gene (gene) unist.cheetah (cheetah)  darthvader kisti.re.kr (darth) Local cloud (Icloud)
CPU AMD Opteron 2.0 GHz (2 Cores) Intel Xeon 2.53 GHz (8 Cores) Intel Xeon 2.0 GHz (8 Cores) Intel Xeon 2.0 GHz (12 Cores)
Memory Size 8GB 12GB 16 GB 32 GB (2.4 GB per VM)
Total # of Nodes 64 61 8 6
Network 1 Gbps 1 Gbps 1 Gbps 1 Gbps
Storage GPFS GPFS Separate SE Local FS
Management SW LoadLeveler [3] LoadLeveler [3] PBS [4] TORQUE [5]

one or two specific platforms. Also, it is possible that a user
is allocated preferred resources, but the tasks of the user are
placed on nodes with some co-runners that degrade the per-
formance of the user significantly. With the simple fair allo-
cation of the resources, the system ends up having poor
fairness in these cases.

In this paper, we investigate how to effectively address
the fairness among multiple users in a heterogeneous com-
puting system. Depending on a resource allocation policy
used in the first level and a task mapping policy used in the
second level, the two-level scheduling mechanism provides
different levels of the fairness to the users. Therefore, we
examine several first level resource allocation policies, and
second level task mapping policies. We then evaluate the
performance of various combinations of the first and second
level policies, using trace-based simulations, in order to
understand how different policies in the first and second
levels affect the overall fairness of users. We use traces
obtained from experiments of real scientific applications on
production-level computing platforms.

Specifically, we propose three first level scheduling poli-
cies: a provider affinity first (PAF) policy where the cores of
each platform are distributed to the users based on the
provider’s preference to the applications to improve the effi-
ciency of the platform, an application affinity first (AAF) policy
where the cores of each platform are allocated to the users
based on the preference of each user (or application) to the
platforms to reduce the execution time, and a platform affin-
ity based round-robin (PA-based RR) policy which distributes
the cores of the platforms in a round-robin fashion such that
each user is assigned cores from her/his most preferred
platform in turn. In addition, this paper presents two sec-
ond level scheduling policies, a most affected first (MAF) pol-
icy and a co-runner affinity based round-robin (CA-based RR)
policy. For each platform, with the MAF policy, a user with
the worst performance impact by co-runners selects a com-
bination of tasks to be executed together on the same node,
while with the CA-based RR policy, every user takes turns
to select a combination of co-runners with which the user
has the shortest runtime.

Our extensive simulation results show that a first level
decision on resource allocation strongly affects the fairness of
the system, rather than a second level decision on task map-
ping. Our results also demonstrate that in the first level, the
PA-based RR policy which fairly distributes cores of the sys-
tem to many-task applications while considering the plat-
form affinity of each application provides the best fairness.
In the second level, the MAF policy where an application
with the high performance degradation by co-runners selects

a combination of co-runners as much as possible provides the
best fairness. This is because a degree of the co-runner effect
on the performance of each application varies widely, so that
there is no benefit to make an application with a relatively
small co-runner effect determine the mapping of co-runners.

To summarize, the main contributions of this paper are
as follows. We first investigate several ways to define met-
rics for the platform and co-runner affinities, and show the
importance of using a refined platform affinity metric which
considers both aspects of the platforms and applications to
achieve the good performance, especially the fairness. Sec-
ond, we present three resource allocation policies in the first
level, which use the platform affinities of the applications to
make a decision. We also propose two task mapping poli-
cies in the second level, where a combination of co-runners
is selected based on their co-runner affinities. Finally,
through the comprehensive simulation study based on the
execution traces of real scientific applications, we analyze
how different resource allocation and task mapping deci-
sions in the first and second levels affect the performance of
a heterogeneous computing system with respect to not only
the efficiency but also the fairness.

2 BACKGROUND

In this section, we first provide a brief description of a het-
erogeneous computing system and many-task applications,
which were used in our prior study [6]. We then summarize
the effects of platforms and co-runners on the performance
of each many-task application.

2.1 Heterogeneous Computing Systems

A heterogeneous computing system used in our prior
study consists of three production-level platforms (of gene,
cheetah and darth) and one private cloud platform (Icloud).
Each computing platform is configured with different hard-
ware and software, and also has distinguishable characteris-
tics that can affect the execution of tasks. The detailed
specifications of the platforms are shown in Table 1. Each
type of the platforms used in the experiments with its char-
acteristics is discussed as follows.

PLSI. Partnership and Leadership for the nationwide
Supercomputing Infrastructure (PLSI) [12] is a supercom-
puting platform served by Korea Institute of Science and
Technology Information (KISTI) [13]. PLSI integrates geo-
graphically distributed supercomputing platforms in Korea.
Two PLSI platforms of gene and cheetah were used. Every
computing node in the platforms shares a global storage
system based on GPFS [14], which can cause a potential
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TABLE 2
Many-Task Applications used in the Experiments
. . Input/Output Data .
Application Description # of Tasks (hﬁerme dieI:t e Data) Characteristics
AutoDock [7] A suite of automated docking tools used for 512 8.0MB/3.1KB (-) CPU-intensive
protein-ligand docking
Blast [8] Basic local alignment search tool used for genome 768 1.5GB/1.9MB (-) I/O-intensive
sequencing
CacheBench [9] Benchmark for memory subsystem - -/1.4KB (-) Memory-intensive
Montage [10] Astronomical image mosaic engine used for 1,024 74.7 MB/2.8 MB (970.3 MB) I/O-intensive
assembling images in flexible image transport
system format into composite images called
mosaics
ThreeKaonOmega [11] ~ Multiple N-body calculations used to solve a 2,304 -/6.3KB (-) CPU-intensive

multi-particle production scattering problem in

nuclear physics

performance degradation for I/O-intensive applications
[15], [16].

Grids.A grid platform (darth) operated by KISTI [13] was
used. This platform is composed of a computing element
(CE), which provides computing resources, and a storage
element (SE), which provides storage resources. To execute
a task and collect the result of the task in the grid, additional
overheads to transfer input/output/executable files betw-
een CE and SE are required.

Clouds. Our private cloud platform (Icloud) was used.
For each VM, its image files are stored in the local disk of
each host machine that executes the VM. In the cloud, there
are overheads caused by the virtualization layer and
resource sharing among multiple VMs running on the same
host. In the experiment, there was no on-demand VM provi-
sioning overhead, as we had each worker VM start to run
before submitting many-task applications to TORQUE.

2.2 Many-Task Applications

In the prior study, four real scientific many-task app-
lications in the areas of pharmaceutics, bioinformatics,
astronomy and nuclear physics, and one benchmark that
performs heavy memory operations were used to under-
stand and analyze the behaviors of many-task applications
on heterogeneous platforms. Each application has different
requirements on CPU, memory, and 1/O resources, show-
ing a different trend on the performance over the heteroge-
neous platforms.

Table 2 presents a detailed description of each of the five
applications with the sizes of input and output data. Note
that due to the limitation on time and resources to run
experiments, we used relatively small-scale applications. In
the real-world workloads, the above many-task applications
except CacheBench are executed with much larger numbers
of tasks (for examples, 40,000 queries for Blast [17] and
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Fig. 1. Effects of different platforms on runtimes.

more than one million tasks for Montage [18]). For Auto-
Dock, up to 4,096 IBM BlueGene/P nodes were used to exe-
cute it [19]. In case of ThreeKaonOmega, only a subset of
tasks from more than two million possible tasks was used.
However, we believe that our representative MTC work-
loads are still enough to show major characteristics of each
real many-task application in terms of resource usage pat-
terns on top of heterogeneous distributed systems.

2.3 Effects of Platforms and Co-Runners
The performance of the five many-task applications in the
heterogeneous computing system was thoroughly studied
[6]. Fig. 1 shows the average task runtimes of the many-task
applications over the platforms. In the figure, the runtime of
each application was measured without any co-runners in a
node, i.e.,, with OneCore configuration, regardless of the
number of cores in the node, and each bar presents the stan-
dard deviations of task runtimes. From the results, we can
observe the followings. The average runtime and variance
of tasks for each application are dissimilar to each other.
Also, even though there is a tendency that all the applica-
tions except Montage have the shortest runtime on cheetah
and have the longest runtime on gene, making cheetah the
most preferred platform and gene the least preferred one,
the degree of the performance difference over the platforms
is quite different from each other. A many-task application
can slow down up to 2.82 times in gene, compared to the
runtime in its fastest platform.

Fig. 2 shows the effects of co-runners on the performance
of the five many-task applications. In these experiments, a
task of each application is executed in a node with n cores
with various combinations. With A11Core, n tasks from the
same application are executed together. With combinations
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of two applications (TwoApp), the equal number of tasks
from each of two applications are executed together. With
combinations of four applications (FourApp), the equal
number of tasks from each of four applications are executed
together. In the figure, for each application, the average run-
times in AllCore, TwoApp, and FourApp, normalized to
that with OneCore, are shown along with a bar with the
minimum and maximum normalized runtimes.

From the results, we can easily see that each application
suffers from a different level of the performance degrada-
tion due to the interference by co-runners, and the co-
runner effect of the application appears differently over the
different platforms. Also for some applications such as Blast
and ThreeKaonOmega in cheetah, the difference between
the minimum and maximum runtimes is large, showing
that the performance can be strongly affected by the compo-
sition of co-runners. In cheetah, when tasks of Blast and
ThreeKaonOmega run together with Montage tasks, the
negative effect on the performance becomes high. The co-
runner effect can degrade the performance of a many-task
application up to 3.28 times. To summarize, we can con-
clude that both of the platform and co-runner effects cannot
be neglected on two-level scheduling of many-task applica-
tions in a heterogeneous computing system.

3 FAIRNESS IN HETEROGENEOUS COMPUTING
SYSTEMS

A traditional approach to provide the fairness among multi-
ple users is to distribute computing resources (e.g., CPU
cores or CPU cycles) equally to applications submitted by
the users. For a heterogeneous computing system composed
of different computing platforms, we can simply allocate
the equal number of cores from each platform to each appli-
cation or user' to achieve the fairness as discussed in [20].
However, depending on the characteristics of each applica-
tion, the application has different sets of preferred platforms
and co-runners. Some applications mostly run fast enough
regardless of used resource types and co-running applica-
tions, while other applications may run efficiently only in a
small subset of the platforms and/or have good perfor-
mance only when they are co-located with certain applica-
tions. Thus, distributing all the available cores of the system
fairly (i.e., equally) to applications does not mean that the
equal amount of preferred resources is allotted to each
application, and the degree of the performance degradation
caused by co-runners is similar for all applications. Such a
simple fairness policy likely fails to achieve the fairness. For
fair two-level scheduling, a first level policy to distribute
cores of platforms to applications should consider the affin-
ity of the application to the platforms, while a second level
policy to map tasks of the assigned applications to comput-
ing nodes of each platform should account the affinity
among the applications.

In a heterogeneous computing system, we can compute
the ideal performance of an application using Fastest-
OneCore algorithm. With Fastest-OneCore, each application
is executed by using the resources from its most preferred

1. Note that in this work, we use two terms of user and application
interchangeably.

platform without any co-runners. To compute the runtime
of each application with Fastest-OneCore, we first compute a
fair share k, i.e., the number of cores to be allotted to each
user by the above simple fairness approach. We then com-
pute a hypothetical runtime of the application when it is
assigned k nodes from its most preferred platform (where it
runs the fastest in the system), and its tasks are executed
without any co-runners on each of the assigned nodes.
Therefore, this hypothetical runtime is the shortest one for
the application by using total k cores in the system.

In this work, we define the fairness of users with a given
scheduling algorithm as follows. For each user u, a through-
put of the application submitted by u with the scheduler, ¢,,
is computed and then normalized to its throughput with
Fastest-OneCore. The scheduling algorithm is considered to
be fair if the performance of all users is similarly improved
or degraded compared to their ideal performance, i.e., per-
formance with Fastest-OneCore. A fairness metric is com-
puted based on the coefficient of variation form [21]

fairness =1 — ﬁ,
My
where 1, is the average normalized throughput of all users,
and oy is the standard deviation of ¢, for all users. For a
scheduling algorithm that provides a high level of fairness,
the variation should be relatively tiny, compared with the
average value of the normalized throughputs of the users,
making the value of the fairness metric close to one.

In heterogeneous computing systems where diverse
resources can be selectively used for each application and its
tasks can be carefully mapped to a node with applications of
certain types, the fairness should be computed based on the
“best possible performance” of each user (application), which
is reflected in Fastest-OneCore. This is because it is more
important how fairly the resource allocation and task assign-
ment are done from the perspective of each application to
maximize its performance, rather than simply distributing
the resources of each platform evenly to each application.

4 PLATFORM AND CO-RUNNER AFFINITIES

To quantify the effects of platforms and co-runners on the per-
formance of many-task applications, we define two metrics of
the platform affinity and co-runner affinity for each applica-
tion. A platform affinity of an application K to a platform P
represents how good to run application K on P, while a co-
runner affinity of application K to platform P represents a
degree of performance degradation of application K on plat-
form P by co-runners. These metrics can be defined in several
ways. In this section, we discuss three definitions of the plat-
form affinity and two definitions of the co-runner affinity.

4.1 Platform Affinity Metric
For all the metrics below, a higher metric value means that it
is more beneficial to run an application K on a platform P,
rather than the other platforms in the system.

Throughput. A throughput of a many-task application on
a platform with OneCore (i.e., the number of tasks proc-
essed using one core per hour) can be used for platform
affinity as in [20], [22]. It is a simple raw metric to show the
performance of the application on that particular platform.
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TABLE 3
Platform Affinity Metrics
Aoolicati Throughput (Tasks/Hour) Egocentric Platform Affinity! Reciprocal Platform Affinity?
t
ppication gene cheetah darth Icloud gene cheetah darth Icloud gene cheetah darth Icloud
AutoDock 7.49 14.75 1037 1224 0.614 1532 0978 1214 0966  1.169 0918 0974
Blast 56.28  94.97 7766 9358 0.640  1.308 1.009 1284 1.009  0.997 0.955 1.042
CacheBench 9.57 10.71 10.06 ~ 10.15 0.929  1.080 0.994 1.006 1473  0.854 0.988  0.847
Montage 11.64  23.88 2528 3376 0.431 1.234 1326 1883 0.684  0.892 1203 1.484
ThreeKaonOmega 17.98  50.69 35.62 4144 0431 1.822 1.181 1428 0.678  1.341 1.060 1.102

LSuitability of P to K, 2Combined suitability of P to K and K to P, where P is a platform and K is an application.

The throughput of the application is higher as the task run-
time of the application is shorter. This metric cannot show
the relative importance of a platform for an application,
compared to other applications.

Egocentric Platform Affinity. An egocentric platform affinity
(EPA) metric for an application K to a platform P indicates
how suitable platform P is to run application K compared
to other platforms. For the metric, we compute the perfor-
mance of K when the equal number of cores from each plat-
form except P is used to complete all the tasks of K to
identify the usefulness of P for K. To do so, we compute
the average task runtime of K with OneCore over all the
platforms except P, and normalize it by the runtime of K
with OneCore on platform P. For example, the EPA of
AutoDock on cheetah is 1.532(=48042534TUE29LI6 /944 (5),
since the runtimes of AutoDock on gene, cheetah, darth and
Icloud are 480.42, 244.05, 347.11, 294.16. A metric value
which is less than 1 can mean that the runtime of K becomes
shorter by not using any resource from P and so P is not so
useful to K. On the other hand, a value which is larger than
1 can mean that the the runtime becomes longer without
using resources from P and so P is important to K. This
platform affinity metric is similarly defined in [6].

Reciprocal Platform Affinity. A reciprocal platform affinity
(RPA) metric of an application K to a platform P indicates
how suitable platform P is to run application K compared to
the other platforms, and also how suitable application K is to
be executed on platform P compared to the other applica-
tions. For given sets of many-task applications and plat-
forms, this metric can be computed as follows. As the first
step, for every platform, we compute the average task run-
time of all applications with OneCore, and normalize the
runtime of each application with OneCore by the average
runtime of the platform. Then we compute the average of the
runtimes of K, which are normalized in the first step, over all
the platforms except P, similar to the egocentric platform
affinity metric. Finally, we normalize the computed runtime
of K to the (normalized) runtime of K on P with OneCore.
For example, on cheetah, the average runtime of all the appli-
cations with OneCore is 167.97 seconds. In case of AutoDock
on cheetah, its runtime is 244.05 seconds, so that its normal-
ized runtime is 1.453 (=244.05/167.97). In the same way, the
normalized runtimes of AutoDock on gene, darth, and
Icloud are computed as 1.680, 1.744, and 1.669, respectively.
Thus, the average normalized runtime of AutoDock, not
including that on cheetah, is 1.698, and the RPA metric of
AutoDock to cheetah is computed as 1.169(= 1.698/1.453).
If the RPA value is high, we can conclude that executing K
on P is beneficial from the perspectives of both K and P.

Analysis. Table 3 shows the three platform affinity metric
values for the applications in the experiments [6]. In all the
platforms, the runtime of Blast is the shortest among
all applications, so that it has the highest throughput.
However, the resource of Icloud is more critical to Montage
than Blast, as Blast has high throughputs in other platforms.
The throughput metric cannot reflect the comparative
importance of Icloud to Montage, but EPA of Montage on
Icloud is higher than that of Blast.

When the throughput and EPA are used, the platform
rankings of all the applications except Montage are the
same as cheetah, Icloud, darth and gene in order from the
highest to lowest ones. However, for RPA, the platform
rankings of the applications are different from each other.
With RPA, CacheBench which has a small variation on run-
times over all the platforms has a high value for gene, and
Blast has the highest value for Icloud, as it is more beneficial
that other applications like AutoDock and ThreeKaon-
Omega use the resources of cheetah rather than Blast.

4.2 Co-Runner Affinity Metric

For two co-runner affinity metrics discussed below, a higher
metric value means that the effect of co-runners on the per-
formance of an application K is stronger, compared to other
applications, on a platform P.

Raw Difference. A raw difference co-runner affinity metric
uses the runtime difference (in seconds), of application K
between a run with OneCore (i.e., solorun) and a run with
co-runners on platform P. The co-runner affinity of K to P is
computed as follows. For each possible combination com-
posed of some number of applications including K which are
assigned some cores of P, we first compute the runtime dif-
ference (i.e., the average runtime of tasks with the co-runner
combination minus the average solorun runtime). We then
compute the average over all the combinations on P. If the
valueis z, then the execution time of K increases by x seconds
on average by running together with other applications on P.

Normalized Difference. A normalized difference co-runner
affinity metric uses the runtime difference, in percentage
(%), of application K between a solorun and a run with co-
runners, normalized by the solorun runtime. We compute
the value of the co-runner affinity of K to P in the same ways
as in the raw difference except that we normalize the com-
puted average difference value by the solorun runtime, and
then multiply it by 100. If the value is y, then the execution
time of K increases by y% on average with co-runners on P.

Analysis. Table 4 shows the two co-runner affinity metric
values of the applications for each of the platforms. Note
that these values are computed based on runtimes of a
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TABLE 4
Co-runner Affinity Metrics

Raw Difference! (sec.) Normalized Difference? (%)

Application gene cheetah darth Icloud gene cheetah darth Icloud
AutoDock 26.75 24.05 3485 2547 557 986 10.04 8.66
Blast 044 1280 346 462 069 3376 747 1201
CacheBench 4759 090 1330 130 1265 027 372 037
Montage 24.70 106.72 14.01 1357 799 7078 9.84 1273
ThreeKaonOmega 9.41 442 645 377 470 622 638 4.34

! Average of C — S, ? Average of (C — S)/S x 100, where S is a solorun run-
time and C'is a runtime with co-runners.

subset of the tasks of applications (which are randomly
selected) with various combinations from the experiments
[6]. The normalized difference can reflect a degree of slow-
down due to co-runners, compared to a solorun runtime,
showing the co-runner effects on the performance of K on
P clearly. Also it can show the relative impact of co-runners
on the performance of K compared to other applications on
P. For example, on gene, the values of the raw difference
for AutoDock and Montage are similar, but the performance
degradation of Montage is more severe than that of Auto-
Dock, having a higher value of the normalized difference
for Montage. Also, for AutoDock, even though the raw dif-
ferences on gene and Icloud are similar, the performance
effect is stronger on Icloud, having a higher normalized dif-
ference value on Icloud.

5 TwoO-LEVEL SCHEDULING ALGORITHM

In this section, we first discuss the overview of two-level
scheduling algorithms, and then present three resource allo-
cation policies which can be used in the first level, and two
task mapping policies which can be used in the second
level. In a two-level scheduling algorithm, a resource alloca-
tion policy basically decides the number of cores to be allo-
cated to a user for each of the platforms. Once the first level
scheduling is done, for each platform, a set of the users
assigned to the platform and the number of cores allocated
to each of the users are decided. In each platform, a task
mapping policy then maps tasks of the users to nodes in the
platform.

For a many-task application composed of a large number
of tasks, the system can employ pilot jobs to reduce schedul-
ing overhead. For each submitted application, the system
creates a separate queue to maintain its tasks. For an allo-
cated core to the application, a pilot job is deployed to con-
tinuously fetch and execute a task of the application from
the queue until there is no task left in the queue [6], [16],
[20], [23].

The scheduling algorithm needs to be invoked when
there are some changes in the system such as the submis-
sion and termination of an application, the addition and
removal of resources to and from the system. On redistrib-
uting cores to applications, it may need to re-deploy a pilot
job to another node. In this case, the system adopts the non-
preemption mechanism to let running tasks complete before
the re-deployment of the pilot job [6], [16], [20]. Also, for the
system, we assume that some services for job submission
and account management [16], data management to transfer
input/output files to/from computing platforms [24] are
provided to run many-task applications.

1: struct User{

2:  inttask; // num of remaining tasks in queue
tuple comblc|[m]; // ¢is num of combinations of
co-runners

4:  int share[m]; // num of allocated cores for each platform
5:  double CA[m|; // dynamic co-runner affinity metric
6: }
7. struct Platform{
8: int avCores; // num of available cores
9:  double PA[n]; // platform affinity of each user
10: }

In the two-level scheduling algorithm, the above data
structures of User and Plat form are used, where n is the
number of users, and m is the number of platforms. For
users, attribute task is set to the number of remaining tasks
in the job queue of the user as input. The initial value of
task is the total number of tasks for a many-task application.
Attribute comb[k][j], where kisin 0 .. ¢ — 1, and c is the total
number of combinations of users, is to store a tuple
< cSet, cVal >, where cSet is a set of users in that combina-
tion k, and cVal is a (task) runtime of the user with combina-
tion k on platform j, and this information is provided as
input. Attributes share[j] and CA[j], where jis 0 .. m —1,
are used to store the number of allocated cores for a plat-
form j to the user, and a dynamically computed co-runner
affinity of the user on platform j, respectively, and their ini-
tial values are all 0.

For a platform, attribute avCores is the number of cores
to be allocated to users, and initially its value is the number
of all available cores in the platform. Attribute PA[:], where
iis 0 .. n—1, is used to store a platform affinity value of
each user to the platform.

5.1
5.1.1

First Level Resource Allocation Policies
Provider Affinity First and Application Affinity First
Policies

In this section, we discuss two first level policies, called a
Provider Affinity First (PAF) policy and an Application Affinity
First (AAF) policy, which allocate the resources of favored
platforms with respect to a resource provider and a user
application, respectively, to each application.

Algorithm 1 presents the overview of PAF and AAF poli-
cies. In the algorithm, we first compute the platform affinity
values for each user with remaining tasks to all the plat-
forms with available cores. This step is only needed for RPA
metric, since the values of the throughput and EPA for each
application are computed by only using its runtimes over
the platforms, and so they have no need to be updated dur-
ing the execution (unless a new platform is added or an
existing platform is removed to/from the system). Thus, at
each scheduling invocation, the platform affinity values can
be dynamically changed. In a process of allocating cores to
users, based on each policy, we select favored platforms for
users (line 8), and if none of platforms are selected at all by
any users, we assign each platform with remaining cores to
some user(s) (line 9).

Next, we distribute the cores of the platforms to the users
based on the assignment computed as the above. Basically
for the available cores of each platform, we allocate the
equal number of the cores to each of the assigned users
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(lines 11-20). However, we do not need to allot more cores
than the demand of a user. Thus, we allocate the cores of a
platform to each user in increasing order sorted by the num-
ber of tasks which still need to be allocated cores. In this
way, all the available cores can be assigned to a user who
requires more cores. Also, for each user, we assign cores
from a platform with a higher platform affinity value first to
the user. After this process, it is possible that the available
cores of some platforms have not been distributed yet, and
some users still need to get more cores. In this case, we
repeat the above process. Note that in each step of the algo-
rithm, we only consider a user who needs to get more cores
and a platform that has available cores.

Algorithm 1. Affinity First Policy (First-Level)

1: Input: U: User[n];
2:  P:Platform[m];
3: Var: d: int; // initially 0
4:  Z:int[n][m]; // initially 0, favored platform matrix
5:  S:int[m]; // initially 0, num of assigned users for each
plat.
6: Compute P[j]. PA[i] of each plat. j for user ¢ with remaining
tasks;
7: while SumAvailCores(P) > 0 A SumTask(U) >
umShare(U) do
8:  Set Z[i][j] to 1if i favors j for each user i and platform j;
9:  If no selection was made in line 8 at all, assign some
user(s) to a platform with available cores;
10: S := SumColumn(Z);
11:  foreach ¢ in U in increasing order sorted by
Uli].task — Sum(U[i].share) do

12: for each jin P in decreasing order sorted by
P[j].PA]i] do

13: if Z[{][j] > 0then

14: d := Min(U[i].task — Sum(U[i].share), ZL5Cres);

15: 21131, STj] := 0, S — 1;

16: Uli].sharelj] := Uli].sharelj] + d;

17: Pljl.avCores := P[j].avCores — d;

18: end if

19: end for

20:  end for

21: end while

Provider Affinity First. When selecting favored platforms
of users (line 8), for each platform, we first sort the users in
decreasing order by their affinities to the platform. We com-
pute that a platform provider favors a user, if the user is
within the highest (i.e., top) k% users for the platform. Note
that k£ should be an integer which is less than or equal to 50,
since this is a threshold to differentiate favored users.

Note that in case of PAF, k% of users with remaining
tasks are selected for a platform. Thus, if the number of the
users reduces, only a small number of users are assigned to
the platform, which will make it hard to find good combina-
tions of users in the second level. A computed allocation
matrix in one run is provided as input for the next run, and
based on this information, we make a user continuously
execute its tasks on a previously assigned platform.

Application Affinity First. For the favored platform selec-
tion, for each user, we first sort the platforms in decreasing
order by the platform affinity values of the user. We then

consider a platform as a favored one of the user if the plat-
form is within the highest k% platforms for the user.

5.1.2 Platform Affinity Based Round-Robin Policy

Algorithm 2 presents a Platform Affinity based Round-Robin
(PA-based RR) policy. Like PAF and AAF policies, the PA-
based RR policy computes the platform affinities of users
dynamically at each run when RPA metric is used. The algo-
rithm computes a fair share of cores per user. Basically, for
the total available cores in the system, the same number of
cores is assigned to each user as a fair share, but when some
user has less number of remaining tasks than the fair share,
the unneeded cores are equally distributed to the users who
need more cores to run their tasks. Then the available cores
from the heterogeneous platforms are assigned to users in a
round-robin fashion. For each turn of a user, the user selects
a platform with the highest platform affinity value among
the platforms that still have available cores, and up to D
core(s) can be allotted to the user.

Algorithm 2. Round-Robin Policy (First-Level)

: Const: D,,;; // unit of allocating cores, D,;r > 1
: Input: U: User[n];
P: Platform[m];
Var: r, d: int; // initially 0
fairShare: int[n]; // fair share of each user
: Compute P[j]. PA[i] of each plat. j for user ¢ with remaining
tasks;
: Compute fairShareli] of each user ¢ with remaining tasks;

N

8: while Sum(fairShare[i]) > SumShare(U) do
9: foriin0..n — 1 where
fairShare[i] — Sum(U][i].share) > 0 do
10: Get a plat. r, where P[r].avCores > 0, with max PA
for UJil;

11: d := Min(Dypit, fairShare[i] — Sum(Ul[i].share),
Pljl.avCores);

12: Uli].sharelr] := Uli].share[r] + d;

13: Plr].avCores := P[r|.avCores — d;

14:  end for

15: end while

5.2 Second Level Task Mapping Policies

An overview of a task mapping policy used in the second
level is given in Algorithm 3. For each of the platforms, we
find a co-runner combination of the users and place the
combination on a node based on a task mapping policy
(line 9). If only a few number of shares (or pilot jobs), which
are not enough to make any combination by a task mapping
policy, from some of the users remain, we make a random
combination and assign it to a node (lines 12-15).

5.2.1 Most Affected First Policy

A Most Affected First (MAF) policy allows a user who suffers
from co-runners severely to select a combination of users
which will be placed together on a computing node. For each
of the platforms, we first compute the co-runner affinity
value of each user assigned to the platform dynamically by
considering only the users who are assigned to the platform
and still can be used to make a combination (line 8). We then
search the user with the maximum co-runner affinity (whose
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performance can be most degraded by co-runner tasks) to the
platform. For the selected user 7/, we find a possible combina-
tion ¢ with the smallest runtime (i.e., cVal). We then attempt
to map this combination to a node as much as possible in the
platform until the remaining number of shares for some of
the users in ¢ becomes insufficient to create a whole combina-

tion (i.e., Uli].share[j] < W%%
where P[j].nCore is the number of cores per node in platform
7 (line 9). We also decrease the shares of the users in ¢ and
update Uy, which is a set of users who are allocated all or
nearly all of the shares for the platform accordingly (Iine 10).
If there are users whose tasks have not been mapped yet, we
repeat the above process to assign a new co-runner combina-
tion from the remaining users to nodes. (A similar algorithm
was discussed in in [6].)

for some U[i] in ¢

Algorithm 3. Task Mapping Policy (Second-Level)

1: Input: U: User[n];

2. P:Platform[m];

3: Var: Ugyyp,: set of Users; // initially null

4: foreach jin P do

5. Set Uypne to null;

6:  Add U[i] to Uy, for each U[d] in U if U[i].share[j] = 0;

7. while |Ugpne| < ndo

8 Compute U[i].CA[j] of each U[i] in U where U[i] ¢ Ugone;
// only for MAF

9: Place some combination(s) of tasks on available nodes
in platform j;
10: Update share of users and Uy according to above
placement;

11:  end while
12:  while Uli].share[j] > 0 for some i do

13: Assign possible random comb. of U[i] to an available
node in platform j;

14: Decrease share for each user in random comb.
accordingly;

15:  end while

16: end for

Note that if two or more users have the same maximum
co-runner affinity value because the users execute the same
application or they happen to have the same value, the algo-
rithm can work in a round-robin fashion for those users
similar to the below policy.

5.2.2 Co-Runner Affinity Based Round-Robin Policy

In a Co-runner Affinity based Round-Robin (CA-based RR) pol-
icy, for each platform, all the users who are assigned to the
platform take a turn to select a combination and map the
selected combination up to P, node(s). Each user selects
one of the possible combinations, which has the smallest
runtime of the user with co-runners, on the platform (line
9). Similar to MAF policy, if the share of a user becomes
zero, or too small to make a combination, then the user will
be added to Ugyye (Iine 10). This round-robin scheduling
process is repeated until all users belong to the Ugone.

5.3 Discussion

We analyze the time complexity of the proposed first and
second level policies in terms of the number of users (i.e., n)

in the system, since in general the number of platforms (i.e.,
m) is relatively smaller than n and it does change often. We
then discuss how to measure the platform and co-runner
affinities of many-task applications.

5.3.1 Time Complexity of the First Level Policies

PAF and AAF. To compute the time complexity of PAF and
AAF, we assume that & is 50. The time complexity of com-
puting the platform affinity of n applications is O(n) in line
6. In PAF, at the first iteration of the while loop in line 7, all
the platforms are selected by some user(s). Once a platform
is selected, all the available cores of the platform are
assigned to the user(s) (who favor the platform), unless all
the users are allocated all of the needed cores. An additional
iteration may be needed for the platform, if the total number
of remaining tasks for the user(s) is less than the number of
available cores for that platform. If only one user who still
needs more cores is left, but there are one or more platforms
with available cores, no selection occurs in line 8. In this
case, the platforms can be assigned to the user as favored
ones (line 9). Thus, the additional iterations are bounded by
n. The complexity for line 8 is O(n logn) and that for lines
11-20 is O(n logn). The complexity of each iteration for the
while loop (in line 7) is O(n log n). Hence, the complexity of
PAFis O(n? logn).

In AAF, at each iteration of the while loop in line 7, at least
|3 platforms are selected as favored ones in line 8. If there is
only one platform with available cores, a user or users cannot
make a selection in line 8. In this case, the platform can be
assigned to a user whose platform affinity value to the plat-
form is higher than or equal to the median platform affinity
value over all the users who need more cores (line 9). There-
fore, there can be additional iterations bounded by n, similar
to PAF. The complexity for line 8 is O(n) and that for
lines 11-20 is O(n log n). The complexity of each iteration for
the while loop is O(n logn). Therefore, the complexity of
AAFis O(n? logn) (= O(( log 2+ n) x n logn)).

PA-based RR. The time complexity of computing fair
shares for users is O(n logn) (in line 7). For PA-based RR,
each user who needs more cores is assigned up to D,
cores at a time in one iteration of the while loop (in line 8).
The maximum number of iterations for the while loop is

bounded by Sum(BavCores) yyy der the assumption that the total

unit

number of available cores in each platform and the number
of tasks for each user are multiples of D,,,;. The complexity
of each iteration for the while loop is O(n). Thus, the
time complexity of PA-based RR is computed as O(n logn)

(=0(n+nlogn —Q—W X n)).

5.3.2 Time Complexity of the Second Level Policies

We compute the complexity of mapping cores to users for
each platform (i.e., the complexity of lines 5-15).

MAF. For each iteration of the while loop (in line 7), at
least one user is inserted to Ug,ye. Thus, an upper bound on
the number of iterations of the while loop is n. For each iter-
ation, the policy needs to compute the co-runner affinity for
each of users (in line 8), and to search all possible combina-
tions of a selected user with at most n users on a platform
composed of nodes with & cores each (in line 9). For a user,
the total number of possible combinations of co-runners is
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TABLE 5
Default Resource Configuration

TABLE 6
The Number of Tasks in Default Workload

gene cheetah darth Icloud AutoDock Blast CacheBench Montage ThreeKaonOmega
# of nodes 300 75 75 50 #tasks 34,600 248,800 31,230 72,950 112,420
# cores per node 2 8 8 12
# total cores 600 600 600 600

n+k—2Cr—1, 1.e., the total number of selecting k — 1 users from
n users with repetition, since that user should be selected at
least once. Thus, the complexity of each iteration for the
while loop is O(n*)(= O(n* + n*71)), making the complexity
of the policy O(n**1).

CA-based RR. For CA-based RR, each user who is
assigned to a platform takes a turn to place a combination
of co-runners up to P,,;:. For each user, it searches possible
combinations of co-runners with at most n users on a node
with k cores each (in line 9). Therefore, the complexity of
each iteration for the while loop is O(n*). The maximum
number of iterations for the while loop is bounded by = Dnote
where N, is the total number of nodes in the platform
under the assumption that N, and the number of tasks
for each user are multiples of P,,;;. Hence, the time com-
plexity of CA-based RR is computed as O(n*).

Discussion on the Second Level Complexity. The complexity
becomes huge if the number of cores per node is large. In
practice, to reduce the complexity of the algorithm, we can
consider mapping at most two users to each node, regard-
less of the number of cores per node. When two users are
assigned to a node, the cores of the node are evenly distrib-
uted to the users. In this case, the value of k¥ becomes 2 and
so the complexities of MAF and CA-based RR become
O(n?) and O(n?), respectively. Note that in many previous
scheduling algorithms which reflect the effect of co-runners,
only pairwise co-location of applications on a node is con-
sidered due to the intricacy of understanding the effect of a
large number of co-runners on the same node [25], [26],
[27]. Furthermore, with regard to MAF, the co-runner affin-
ity values of users for a platform are recomputed for each
iteration of the while loop in order to exclude users who
cannot be used for mapping anymore. However, in most of
cases, the updated values are similar to the previous ones.
If we compute the co-runner affinity values only once (after
line 6), the complexity of MAF becomes O(n*). For pairwise
co-location, it is O(n?). We will discuss how the above
approaches to reduce the complexity affect the performance
in Sectioné.

5.3.3 Measuring Platform and Co-Runner Affinities

To compute the platform and co-runner affinity metrics of
an application, we need the (average) task runtime of the
application with OneCore, and its task runtime with each
possible combination on every platform. In this work, we
perform off-line profiling to measure these runtimes in
advance, which incurs overhead. However, at runtime, for a
small subset of tasks of each submitted application, we can
measure the runtimes with OneCore and with the possible
combinations on some dedicated nodes of every platform.
Based on the measured runtimes of the tasks in the subset,
we can compute its platform and co-runner affinity values,
and continuously get feedback to update the values, as

more tasks of the application are executed (which is similar
to adaptive runtime profiling techniques [28], [29]).

6 RESULTS

6.1 Evaluation Methodology

We have simulated our two-level scheduling algorithms
using a trace-based simulator in C++. The trace of task run-
times was obtained from the experiments of real scientific
applications running on top of production-level computing
platforms [6]. For TwoApp and FourApp combinations,
runtimes of a subset of tasks for the applications were mea-
sured. Therefore, for each application, the regression analy-
sis was used to estimate a runtime of a task with some
co-runner combination from its runtime with OneCore,
and the estimated runtimes are used for the simulations as
in [6]. Note that we did not have any exclusive access to the
production-level systems of gene, cheetah, and darth, and
so we could not replace their scheduling software for evalu-
ating our policies. Since we could not use each platform
exclusively during our experiments, it may have been influ-
enced by other applications co-running at that time.
However, the effects of different hardware configurations,
software stack, and network & storage settings of real plat-
forms were still reflected in the trace. Therefore, the overall
performance trend of our algorithms measured by the simu-
lator based on application execution trace will be retained in
a real production-level environment.

The default resource configuration of a heterogeneous
computing system is given in Table 5. The total number of
cores in the system is 2,400. The number of tasks for each
application used in the default workload is given in Table 6.
The total number of tasks in the workload is 500,000.
To generate the workload, the tasks of the applications from
the trace were replicated. In the default workload, the num-
bers of tasks for the applications were decided such that if
the equal number of cores from each platform is assigned to
each of the applications and each task is executed with
OneCore, the makespan of each application to complete all
of its tasks is similar to each other.

In each simulation run, all applications are submitted at
the same time. The simulator was implemented such that if
multiple pilot jobs of an application attempt to fetch and
execute a task from the queue of the application at the same
time, the task is assigned to one of the pilot jobs randomly.
Thus, we ran 100 simulation runs and computed the aver-
age value for each of the simulation results.

For comparison of the first level policies, we have also
used the simple fairness policy. This policy allocates the
cores of each platform equally to every user, but if the num-
ber of tasks for a user is smaller than the total number of
cores assigned to the user, the remaining cores of the user
are distributed equally over other users who need more
cores. For the second level, we have used two additional
policies, Al1Core and Random. AllCore (which assigns
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TABLE 7
Metrics and Policies used in our Simulations

First Level Second Level

e Throughput (Thr.)
e Egocentric Platform Affinity (EPA)
o Reciprocal Platform Affinity (RPA)

e Fairness

o Platform Affinity First (PAF)

o Application Affinity First (AAF)
o Platform Affinity based
Round-Robin (PA-based RR)

Feature

e Raw Difference
e Normalized Difference

Metrics

e AllCore

e Random

e Most Affected First (MAF)
e Co-runner Affinity based
Round-Robin (CA-based RR)

Policies

the tasks of the same application to a node) can be com-
monly used in a production-level cluster without knowing
other applications running on the cluster. Random ran-
domly maps tasks of the applications to a node, which rep-
resents the average performance of the task mapping since
the tasks of the applications are executed with various com-
binations. In our simulations, we randomly select a possible
combination of applications among the combinations that
we have the trace of task runtimes. For PAF and AAF, k is
set to 50. By default, D,,; for PA-based RR and P, for
CA-based RR are assigned to 1.

Along with the fairness metric defined in Section 3, we also
measure a system makespan normalized to that when the fair-
ness policy is used in the first level and Al1Core is used in the
second level, for the system efficiency. Note that unlike the
fairness metric, Fastest-OneCore which computes a hypotheti-
cal runtime of each application on its fastest platform without
co-runners cannot be used to evaluate overall performance of
the system to support multiple many-task applications.

We evaluate the performance of two-level scheduling
algorithms of different combinations of the first level and
second level policies over various scenarios. Table 7 summa-
rizes all the platform and co-runner metrics, and all the first
level and second level policies considered in our evaluation
with their abbreviations. We analyze how the metrics and
policies perform over different compositions of a heteroge-
neous computing system regarding the types and amounts
of resources. We also investigate their performance over var-
ious workloads of multiple many-task applications, which
have different resource requirements. Thus, each scenario
varies depending on the number of platforms, the number of
cores in each platform, the number of applications, and/or
the number of tasks composed of each application. Total 23
scenarios are categorized into five types as follows.

e Default: The default workload given in Table 6 is
executed with the default resource configuration
given in Table 5.

e W/o Platform (W/o Plat.): The default workload is
used, but the resources from one of the four plat-
forms are not used at all.

TABLE 8
Simulation Scenarios

Feature Default W/oPlat. S/LPlat. W/oApp. S/L App.
# of scenarios 1 4 8 5 5
# of plat. used 4 3 4 4 4
# of app. used 5 5 5 4 5

g 10

E oo

= —— Thr.
= 0.8 == EPA
2 07 H |_| |'| H == RPA
> 06

Default W/o Plat. S/L Plat. W/o App. S/L App. Average
(a) System fairness

z

g 10

Q

S 09

& 1 Thr.
= 08 == EPA
§ 07 == RPA
E; 0.6

w

Default W/o Plat. S/L Plat. W/o App. S/L App. Average

(b) System efficiency

Fig. 3. Performance over various platform affinity metrics.

e Small/Large Platform (S/L Plat.): The default work-
load is used. However, the number of cores for one
of the four platforms is either reduced to half of or
doubled from that in the default configuration,
becoming either a “small” or “large” platform. For
the rest of the platforms, the default resource config-
uration is used.

e W/o Application (W/o App.): The default resource
configuration is used, but only four applications out
of the five applications are submitted.

e Small/Large Application (S/L App.): The default reso-
urce configuration is used, but the numbers of tasks for
the applications vary. For a “small” application, the
number of tasks is reduced to half of that in the default
workload, while for a “large” application, the number
of tasks becomes twice that in the default workload.
For each workload in this type, one of the five applica-
tions is selected as a small application, while the
remaining applications become large applications.

Table 8 shows the number of scenarios, and used plat-

forms and applications for each of the scenario types.

6.2 Effects of Different Platform and Co-Runner
Affinity Metrics

Fig. 3 shows the system fairness and efficiency by different
platform affinity metrics of the throughput, EPA and RPA.
For each result, we consider all combinations of the first
level policies which use a platform affinity metric, i.e., all
except the fairness policy, with every second level policy.
(Note that if a fairness value is closer to one, we achieve
higher fairness, while if an efficiency value is smaller, we
achieve higher efficiency.) Each of the results is the average
value over all the executions in each scenario type.

When the throughput is used with PAF, all available
resources of the system are allocated first to Blast and Three-
KaonOmega which have shorter runtimes than the other
applications, and until Blast and ThreeKaonOmega are
done, the other applications suffer from starvation. The
throughput metric does not present the resource preference
among the applications properly, having the lowest system
fairness and efficiency. With EPA, in many scenarios, some
application is allotted more resources than the other appli-
cations except PA-based RR policy, whereas with RPA, in
most cases, the applications are assigned a similar number
of the cores from the system in total. Therefore, on average,
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Fig. 4. Performance difference caused by EPA and RPA metrics.

the system fairness of RPA is 10 and 3 percent higher than
those of the throughput and EPA, while the efficiency of
RPA is 8 and 2 percent higher than those.

Fig. 4 compares the performance of EPA with that of
RPA over all the scenario runs with different combinations
of the first and second level policies (except the fairness
policy in the first level). For each of the runs, we compute
how the fairness or efficiency with RPA is better than that
with EPA. In the figure, the results of all the runs are
sorted in increasing order of performance improvement,
and value 0 percent means that the resource allocation and
task assignment by EPA and RPA are done in the same
way. For 59.7 percent of the scenarios, the fairness with
RPA is higher up to 24.3 percent than that with EPA, while
for 64.3 percent, the efficiency with RPA is higher up to
10.2 percent than that with EPA. Note that in some cases
of S/L Plat. scenarios, when EPA is used, all the applica-
tions except Montage receive a larger number of cores
from their fastest platforms or a smaller number of cores
from their slowest platforms, ending up having a higher
fairness value than that with RPA.

For the co-runner affinity, the two metrics of the raw dif-
ference and normalized difference can make a performance
difference only for MAF policy in the second level. We eval-
uate all combinations of MAF with every first level policy.
In most of scenarios, we observe that the most affected
application is the same, or the same co-runner combination
is selected, regardless of which metric is used. There are cer-
tain combinations of co-runners, which degrade the perfor-
mance significantly such as co-running Montage with other
applications on cheetah, and co-running Montage and Blast
on gene. However, the resource allocation is done by the
first-level policies except the fairness policy in a way that
such co-runner combinations are unlikely occur. For exam-
ple, the cores of cheetah is not assigned to Montage. There-
fore, even for some cases in which different co-runner
combinations are selected depending on which metric is
used, their performance is similar in our simulations.

However, the normalized difference can have better per-
formance if there is a many-task application which has a
short task runtime and is strongly affected by co-runners on
some platform. Such an application may not be selected as
the most affected one by the raw difference. Making this
application select the co-runner combination with the mini-
mum performance degradation can be helpful to improve
the throughput of the platform. In each platform, we ana-
lyze all possible resource allocations for the five applica-
tions (in which 2, 3, 4, or 5 of them are assigned to the
platform), and estimate the throughput of the platform
based on runtime traces. In the analysis, the throughput of a
platform with the normalized difference is up to 8 percent
higher, compared with the raw difference.
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Fig. 5. Performance over various first level policies.

6.3 Best Policy at Each Level

We investigate which policy in each level shows the best per-
formance. For this study, we use RPA and the normalized dif-
ference as the platform affinity and co-runner affinity metrics,
respectively. Fig. 5 shows the system fairness and efficiency
over the four first level policies with a bar that presents the
minimum and maximum results in each scenario type except
the default one. In the figure, for each of the first level policies,
we run simulations of all the scenarios with every second
level policy and average the performance over the simula-
tions. The analysis on these simulation results are as follows.

e For the fairness policy, it distributes the equal
amount of resources from each platform to applica-
tions without considering their platform affinities.
Thus, it has the lowest efficiency but provides some
degree of the fairness.

e For AAF, each of the users is assigned some number
of cores from its favored platforms, having a shorter
system makespan. However, each platform has a dif-
ferent number of applications that favor the resources
of the platform. Thus, it is possible that some applica-
tion is assigned a larger number of cores from its
favored platforms, resulting in lower fairness.

e PAF only considers the perspective of the platforms.
Thus, some applications are allocated a large amount
of favored resources, while other applications starve
for favored resources. Thus, it can provide the sys-
tem efficiency similar to that with the other policies,
but it achieves the low fairness.

e With PA-based RR, all users are allocated the same
amount of preferred resources, unlike AAF and
PAF. Thus, it achieves the highest fairness and com-
petitively good system efficiency compared to all the
other first level policies.

Fig. 6 shows the performance over the four second level
policies with a bar for the minimum and maximum results.
Similar to Fig. 5, each result of a second level policy is the
average over all the scenarios with every first level policy.
From the results, we analyze the followings.

e With AllCore, some applications such as Cache-
Bench on gene show the worst performance, having
the lowest fairness and the longest makespan.

e A degree of the performance effect by co-runners
varies widely depending on the applications. Hence,
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Fig. 6. Performance over various second level policies.

with MAF, the most affected application selects a co-
runner combination with the minimum performance
degradation, improving the overall performance and
consequently providing the best fairness and effi-
ciency among the second level policies.

e With CA-based RR, each application ends up being
executed with various combinations, and a comb-
ination selected by each application with a small
co-runner affinity value does not help to improve the
performance, even though the runtime of the appli-
cation can decrease in a few cases. Thus, its perfor-
mance in terms of the fairness and efficiency is
similar to that of Random.

Note that in Fig. 6, we observe that all the fairness values
tend to be lower than those in Fig. 5, because we execute
each second level policy with all the first level policies
including PAF that shows the lowest fairness.

With the best first level policy (i.e., PA-based RR), the
improvement of MAF on the fairness is 2.0 percent on aver-
age and 5 percent at maximum, and that on the efficiency is
3.7 percent on average and 9 percent at maximum, com-
pared to Random. As we can see from the research on real
Grid workload, users can be categorized into “normal
users” who frequently submit relatively small numbers of
jobs and “data challenge users” who occasionally submit
much larger numbers of jobs [30]. This type of data chal-
lenge pattern can be also demonstrated by some national
labs in U.S. where only a few number of mission critical
workloads are supported on their supercomputing resour-
ces. Therefore, the service providers can appropriately
adopt our proposed two-level scheduling mechanisms
based on their resource usage patterns and associated work-
loads. When supporting a small number of data challenge
users in a heterogeneous computing system, the perfor-
mance improvement by MAF can make a significant differ-
ence on the users and system even with its higher time
complexity. However, if the system needs to support a large
number of normal users, Random might be a better choice.

6.4 First Level Effect versus Second Level Effect

We investigate how the decision at each level can affect the
performance of the system. Figs. 7a and 7b show the perfor-
mance improvement caused by a different choice for a first
level policy, where all the four first level policies are used
with RPA metric and MAF in the second level for total 23
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Fig. 7. Impacts of first and second level policies.

scenarios in Table 8. Figs. 7c and 7d show the performance
improvement caused by a different choice for a second level
policy, where all the four second level policies are used
with PA-based RR and RPA metric in the first level for the
scenarios. For each scenario, we compute how the perfor-
mance with the best (first or second level) policy is better
than that with the worst policy on that scenario.

As shown in the figure, the fairness is strongly affected
by which policy is used in the first level, and a used policy
in the second level has a small effect on the fairness, because
possible co-runner combinations depend on which applica-
tions are assigned to each platform by a first level policy.
For the efficiency, the effect by a first level policy is higher
than that by a second level policy on average. However, at
the worst case, the effect of the second level decision on effi-
ciency is similar to that of the first level decision.

6.5 Discussion

Varying Dy and P,,;. In PA-based RR, when D,
increases to 200 cores (i.e., 8 percent of the total cores in the
system) for the default setting, the fairness is degraded by 3
percent while the efficiency remains the same, compared to
the performance when D,,;; = 1. Similarly, in CA-based
RR, when P,,;; increases to 20 nodes (i.e., 4 percent of the
total nodes), there is almost no performance difference,
compared to the performance when P,,,;; = 1.

Reducing the Complexity of MAF. In the above results, all
the combinations of co-runners analyzed in Section 2.3 were
considered and the co-runner affinity value of a user was
kept recomputed before selecting a new combination. We
observe that the effect of considering the combinations with
up to two users on the performance is negligible. Updating
the co-runner affinity value may be critical when several
applications with high co-runner affinities are allocated rel-
atively a small number of cores for a platform. However, in
our simulations, there is almost no performance difference
even when its value is computed only once. These results
show that the complexity of MAF can be potentially further
reduced without significant performance degradation.

Dynamic Submission. We also studied the performance
trend when applications in a workload are submitted
dynamically based on a Poisson distribution with four dif-
ferent mean rates. For the experiments, we used the default
and W/o App. workloads in the default resource configura-
tion. In general, the first level and second level policies
show a similar performance trend as all the applications are
submitted at the same time. However, the fairness of PAF
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improves. This is because in PAF, an early submitted appli-
cation can continuously execute its tasks on previously
assigned platforms, and consequently, more applications
can be assigned to a platform.

7 RELATED WORK

Defining the Fairness. In earlier studies, the fairness of users
was defined based on their performance slowdowns similar
to our work, such as the maximum slowdown [31], [32] and
the ratio of the maximum slowdown to the minimum slow-
down [33]. With the fairness index [34], the best fairness is
achieved when all users have the same degree of the perfor-
mance slowdown [35]. However, the ideal performance of
each application is computed as that when all the available
resources are used without considering interference effects
among its own tasks [32], or when an even share of each type
of heterogeneous resources is used without reflecting different
behaviors of application performance on platforms [20], [31].

Scheduling Many-Task Applications. In a heterogeneous com-
puting system, several scheduling algorithms for many-task
applications have been investigated to improve the efficiency
[6], [20], [22], [36]. A scheduling algorithm that considers the
suitability (i.e., importance) of a platform to an application as
well as that of an application to a platform was proposed [36].
Also, preference rankings of applications for different plat-
forms provided by users are used on scheduling many-task
applications [22]. In these studies, the effect of co-runners is
not taken into account. A two-level scheduling algorithm is
proposed to allocate the cores of each platform to users whose
EPA values are higher than or equal to the average EPA value
of the platform in the first level, similar to PAF, and use MAF
in the second level [6]. However, in the first level, the number
of users who are assigned to a platform can be quite different
from each other, generally having lower fairness compared to
PAF. In the second level, the co-runner affinity values of the
users for each platform are computed once by considering all
the users in the system and are used in all cases without
reflecting the current assignment of the users to the platform.
Resource allocation policies were proposed to achieve effi-
ciency, fairness, and/or user satisfaction without considering
the co-runner effects [20]. A fairness-aware scheduling policy
for bag-of-task applications was studied for a large-scale plat-
form in which the number of tasks for each application is
much less than the number of nodes [32].

Scheduling Independent Tasks. Techniques to map and
schedule independent tasks on heterogeneous computing
platforms have been investigated [37], [38], [39], in which
the effects of different machine types on the performance
are taken into account on scheduling. Moreover, the sched-
uling heuristics for independent tasks such as Min-min and
Sufferage [37], [38] map a single task to a machine at a time.
Thus, when they are used without modification in our set-
ting, basically only one application is assigned to a platform,
which usually shows poor performance.

Heterogeneity and Interference Aware Scheduling. The imp-
act of heterogeneity of platforms and interference caused
by co-runners has been considered to support web-service
applications [40], single-thread and multi-threaded applica-
tions [41], distributed analytics frameworks and latency crit-
ical services [42] in large-scale datacenters. Nathuji etal.
proposed a framework to capture the effects of interference,

and provision additional resource to guarantee the QoS for
CPU bound applications [43]. The application and platform
aware resource allocator was proposed, but a single multi-
core server was considered [44].

Fairness on Clouds and Big Data Analytics Platforms. The
fairness among multiple users has been considered in big
data analytics frameworks [45], [46], [47]. The fairness
regarding the locality of input blocks is considered on
scheduling [45], [46]. Xu et al. presented a proportional
share I/O scheduler to achieve the fairness for competing
data-intensive applications [47]. For allocating multiple
types of resources to users with diverse resource demands,
the dominant resource fairness (DRF) is proposed to allo-
cate the equal amount of the dominant resource to each
user [48] without considering the interference effect. Tang
et al. presented the resource-as-you-contributed fairness,
where each user can use the resource proportional to the
resource contribution of the user to other users [49]. For pri-
vately shared datacenters, a task co-location technique was
presented, where the co-location of two tasks is fair if their
performance is degraded in a similar level [27].

8 CONCLUDING REMARKS

In this paper, we studied the fairness in two-level scheduling
for heterogeneous distributed computing systems to support
multiple many-task applications with various resource
requirements. We discussed three resource allocation poli-
cies used in the first-level and two task mapping policies in
the second level. We showed that the fairness of the system
is mostly affected by which resource allocation policy is used
in the first level, because possible co-runner combinations in
task mapping are limited by the decision in the first level. In
our evaluation results, the performance difference on the
fairness is up to 38 percent depending on a first level policy,
while it is up to 8 percent depending on a second level policy.
Our study can also be useful for resource providers (such
as KISTI [13]) to build and maintain a heterogeneous com-
puting system that can effectively support different types of
challenging applications. If a resource provider needs to
support various many-task applications whose performance
is strongly affected by which platforms are used, the fair-
ness can be improved by building the system to have a
similar amount of resources for each type of platforms
respectively in order to maintain the best performance of
each application type. Otherwise, the provider can simply
build the system to secure a large amount of resources as
much as possible to increase the overall system throughput.
As a future work, we are planning to build a pilot service
for large-scale many-task applications in a few selected
domains with our collaborating resource providers.
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