
Automated Validation of Compensable SLAs
Carlos M€uller , Antonio M. Gutierrez , Pablo Fernandez, Octavio Mart�ın-D�ıaz ,

Manuel Resinas , and Antonio Ruiz-Cort�es

Abstract—A Service Level Agreement (SLA) regulates the provisioning of a service by defining a set of guarantees. Each guarantee

sets a Service Level Objective (SLO) on some service metrics, and optionally a compensation that is applied when the SLO is

unfulfilled or overfulfilled. Currently, there are software tools and research proposals that use the information about compensations to

automate and optimise certain parts of the service management. However, they assume that compensations are well defined, which is

too optimistic in some circumstances and can lead to undesirable situations. In this article we discuss about the notion of validity of

guarantees with a compensation, which we refer to as compensable guarantees (CG). We describe an abstract model of CGs and we

provide a technique that leverages constraint satisfaction problem solvers to automatically validate them. We also present a

materialisation of the model of CGs in iAgree, a language to specify SLAs and a tooling support that implements our whole approach.

An assessment over 319 CGs taken from 24 real-world SLAs suggests that the expressiveness and effectiveness of our proposal can

pave the way for using CGs in a safer and more reliable way.

Index Terms—Analysis, compensation, CSP, penalty, reward, SLA, validation, WS–agreement

Ç

1 INTRODUCTION

IN recent years the use of Service Level Agreements
(SLAs) in Information Systems is in continuous rise. They

are widely used by the industry in situations where con-
sumers and providers need or desire to explicitly express
certain guarantees over the service provisioning. By means
of guarantee terms in the SLA [1], one party (herein after
the guarantor) guarantees to another party (herein after the
beneficiary) the fulfilment of a Service Level Objective (SLO).
For instance, Amazon as provider of its Elastic Compute
Cloud Service (AWS EC2) [2] has a term that guarantees
its consumers an SLO such that availability � 99:95%.
More often than not, guarantee terms of real–world SLAs
have associated one or more compensations that represent
the consequences of unfulfilling (penalties) or overfulfilling
(rewards) the SLO. For instance, Amazon is penalised with a
10 percent in service credits if the availability of AWS EC2
drops below 99.95 percent. In other scenarios, a provider
may be rewarded when the service provided overfulfils the
SLO, i.e., providing a better service level than fixed by the
SLO fulfilment. In a previous work we coined the concept
of Compensable SLAs [3] to refer to SLAs that include at
least either a penalty or a reward.

Given the potential economic impact of compensations, it
is of the utmost importance to validate that they are well
defined in order to avoid undesirable consequences, spe-
cially if the action derived from the compensation is auto-
mated. For instance, while defining compensations it is
desirable to set a limit for the maximum compensation that

can be applied if the SLO is not fulfilled. Amazon does so
by establishing that they compensate consumers of the
AWS EC2 up to a limit of the 30 percent of the monthly bill.
Such a limit helps to avoid mistakes like an unbounded,
automated penalty that was discarded in 2005 by the UK
Royal Mail company after causing a loss of £280 million in
one year and a half.1

However, despite the importance of checking the validity
of compensations, it has not been dealt with by current
research proposals that use some form of compensation in
their SLAs [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19]. Instead, they mostly focus on the
optimisations of service costs by finding a trade-off between
compensation and operation costs or on the automation
of several parts of compensation management. These
approaches assume that compensations are well defined,
which is a too optimistic assumption and the cause of unde-
sirable situations such as the aforementioned UK Royal Mail
example.

In this paper, we aim at answering the question “How can
compensations be automatically validated?” To this end,we build
on the compensable SLAmodel proposed in [3] to provide an
automated technique to validate compensable SLAs. Further-
more, we also present a tooling support that implements our
validation technique. Our proposal has been evaluated by
modelling and analysing the compensations of 24 SLAs of
real-world scenarios including 319 guarantee terms. As a
result, our technique has proven to be useful for detecting
mistakes that are typically derived not only from the manual
specification of SLAs in natural language, but also from the
complex nature of compensation definitions.

This article is structured as follows: Section 2 introduces
twomotivating real-world scenarios that are used as running
examples in the other sections. In Sections 3 and 4 we present

� The authors are with the E.T.S. Ingenier�ıa Inform�atica, University of Sev-
ille, Sevilla 41012, Spain.
E-mail: {cmuller, amgutierrez, pablofm, omartindiaz, resinas, aruiz}@us.es.

Manuscript received 9 Feb. 2018; revised 16 Nov. 2018; accepted 3 Dec. 2018.
Date of publication 7 Dec. 2018; date of current version 8 Oct. 2021.
(Corresponding author: Carlos M€uller.)
Digital Object Identifier no. 10.1109/TSC.2018.2885766 1. Page 3 in http://goo.gl/o7gw6B

1306 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

1939-1374 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0001-8157-9146
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0002-2669-5942
https://orcid.org/0000-0002-9746-5511
https://orcid.org/0000-0002-9746-5511
https://orcid.org/0000-0002-9746-5511
https://orcid.org/0000-0002-9746-5511
https://orcid.org/0000-0002-9746-5511
https://orcid.org/0000-0003-1575-406X
https://orcid.org/0000-0003-1575-406X
https://orcid.org/0000-0003-1575-406X
https://orcid.org/0000-0003-1575-406X
https://orcid.org/0000-0003-1575-406X
https://orcid.org/0000-0001-9827-1834
https://orcid.org/0000-0001-9827-1834
https://orcid.org/0000-0001-9827-1834
https://orcid.org/0000-0001-9827-1834
https://orcid.org/0000-0001-9827-1834
mailto:
http://goo.gl/o7gw6B

both, the abstract model and validity criteria of the compen-
sation function, and the compensable guarantees, respec-
tively. In Section 5 we explain in detail all issues related to
automating the validity checking of compensable guarantees.
Our approach is evaluated in Section 6 by analysing real-
world compensable SLAs. In Section 7 we analyse the litera-
ture to identify related approaches. Finally, in Section 8 we
outline some conclusions and futurework.

2 RUNNING EXAMPLES

In this section two of compensable SLAs found in real world
scenarios are introduced as running examples: a computing
service and a human-driven IT support service.

2.1 AWS EC2 SLA

Amazon Web Services (AWS) is a service catalogue that has
boosted the use of cloud computing in the industry.
Amongst the services offered by AWS, the Elastic Compute
Cloud (EC2) represents a widely used Infrastructure as a
Service (IaaS). The aim of EC2 is to provide a scalable infra-
structure to organizations that either have variable needs or
need to grow seamlessly without the investment for an
internal data center. In this context, the reliability of a vir-
tualised infrastructure represents a key point for IaaS con-
sumers in order to choose a service like AWS EC2.

As a consequence, Amazon has published an SLA for
EC22 that guarantees the availability of the virtual resources
requested by means of the Monthly Uptime Percentage
(MUP) service metric. Specifically, it states that MUP will be
greater or equal than 99.95 percent. The consequences of not
meeting this SLO is defined in two levels: when MUP drops
below 99.95 percent and when it drops below 99 percent.

Fig. 1 depicts3 the penalty function [4] of this scenario that
is defined as a percentage of discount in the next billing
cycle (Service Credit Percentage).

2.2 GNWT SLA

The Government of the Northwest Territories (GNWT)
of Canada outsources their IT support. Specifically, the
demanded services include issues related to: reporting, user
support, problem correction, application enhancement, pro-
cess and application improvement, and other services. They
provide a template for establishing an SLA with an external

vendor that provides the mentioned kind of IT support
with the desired service levels and penalties and rewards
for the parties [20].

Four examples of terms with at least a penalty or a
reward have been extracted (cf. Fig. 2) from its SLA tem-
plate.4 In example GNWT-1, the government demands the
delivery of quarterly reports, which must be received in not
less than five days before scheduled review meetings under
a penalty of 5 percent of monthly invoice for the provider.

Example GNWT-2 depicts specific times for differentmile-
stones that take place in the resolution of problems classified
with severity 1: they imply a critical application function
unusable or unavailable and no immediate workaround
exists. Specifically, an initial response should be received
within 15minutes, an estimation response should be ready in
2 hours, subsequent responses are expected every 30
minutes, and the problem must be resolved within 4 hours.
In this case, a reward for the provider applies if all problems
are resolved in less than 2 hours, and a penalty for the pro-
vider applies if any of them is resolved in more than 4 hours.
An additional clause rewarding when no problem is older
than 60 days is included in GNWT-3.

Example GNWT-4 includes a term that relates the sched-
uled project delivery to the real project delivery, which
includes a penalty for the provider if the Elapsed Days Per-
centage until delivery (EDP) is more than 20 percent greater
than planned as well as a reward for the provider if the EDP
is 20 percent less than planned. Note that, if the latter sen-
tence is taken literally, the reward does not make sense
because it would apply if the delivery is exactly 20 percent
less than planned and not for an early-delivery that would
be more interesting for the government, e.g., 40 percent less
than planned. Such a problem can be solved with the auto-
mated validation proposed in Section 5.

3 COMPENSATION FUNCTIONS

A compensation function is defined over a service metric
and can represent two different types of compensation: pen-
alty and reward. A penalty represents a compensation from
the guarantor to the beneficiary, whereas a reward

Fig. 1. Example AWS EC2: Penalties for Amazon as provider.

Fig. 2. Compensation actions extracted from the SLA of GNWT.

2. Available at http://aws.amazon.com/es/ec2/sla/
3. Note that in all functions, a dark point denotes the inclusion of the
metric value in the interval and a gray point means the value
exclusion. 4. Available at https://goo.gl/m0duhI

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1307

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

http://aws.amazon.com/es/ec2/sla/
https://goo.gl/m0duhI

represents a compensation from the beneficiary to the guar-
antor. Next, we provide a rigorous description.

3.1 Core Definitions

Definition 1 (Metric Values). Letm be a metric of the service,
which assumes values within a domainMm. The domain can be
numerical or categorical, in which case Mm is constituted by a
(possibly infinite) set of values Mm ¼ fv1; . . . ; vng. If it is
numerical, it can be either continuous, i.e., Mm � R, or dis-
crete, i.e.,Mm � Z

The examples in Section 2 show metrics such as MUP,
interventions, and urgent interventions, with bounded
domains (e.g., MMUP ¼ fv 2 Rj0 � v � 100g); and others
such as resolution hours, or EDP with unbounded domains
(e.g.,MResolutionHours ¼ R�0).

Definition 2 (Utility Function). A Utility Function for the
metric m, denoted as Um, is defined as a function from Mm to
R that associates a utility to each of the values; i.e., it defines
which metric values in Mm are more interesting for a given
party. Utility functions can be defined as decreasing, increas-
ing, constant, or non-monotonic.

Fig. 3 shows a decreasing utility in the dotted function
for the metric resolution hours of GNWT-2 example; and a
non-monotonic utility function for daily hours of high avail-
ability, which aims at optimising different customer goals,
such as a common office time of 8 hours per day of high
availability, or fully 24 hours per day of high availability,
which are the two peeks in the non-dotted function5. Utility
functions do not appear explicitly in the SLAs because the
value each party gives to a service metric is part of their pri-
vate information and they are usually not willing to share
this information with other parties.

Definition 3 (Utility Precedence). Let Um a utility function
defined on metric m, a precedence relation on Mm, denoted as
�, can be induced in such a way that given any two values
v1; v2 2 Mm is said that v1 is less interesting or useful than v2
when Umðv1Þ < Umðv2Þ.
Dotted function in Fig. 3 represents the utility of the ben-

eficiary of GNWT-2. A utility precedence that could be
induced is that the higher value of resolution hours, the less
interesting for the beneficiary (e.g., 4 � 2).

Definition 4 (Compensation Function). A Compensation
Function for the metric m, denoted as CFm, is defined as a

function from Mm to a numerical target set C that associates a
compensation value to each of the values of m. C can be either
continuous, i.e., C � R, or discrete, i.e., C � Z. Similarly to
utility functions, the compensation functions can be defined as
decreasing, increasing, constant, or non-monotonic.

As a normalised convention that is aligned with related
work [4], [22] we establish positive compensations as penal-
ties (that should be compensated from the guarantor to the
beneficiary) and negative compensations as rewards (i.e.,
beneficiary should compensate guarantor).

Fig. 4 shows an example of increasing compensation
function taken from the GNWT-2 example. The function
denotes: (1) a reward if problems are solved in less than 2
hours; (2) no compensation applies in problems which are
solved between 2 and 4 hours, inclusive, and (3) a penalty if
the problems are solved in more than 4 hours. Fig. 1
depicts the compensation function of AWS EC2, which does
not take negative values, meaning that only penalties are
applicable.

Definition 5 (Compensation Regions). Let CFm be a com-
pensation function of a given metric m; up to three compensa-
tion regions can be defined by such compensation function,
namely: penalised, rewarded, and neutral.

PenalisedðCFmÞ ¼ fvi 2 MmjCFmðviÞ > 0g
NeutralðCFmÞ ¼ fvi 2 MmjCFmðviÞ ¼ 0g

RewardedðCFmÞ ¼ fvi 2 MmjCFmðviÞ < 0g:

Fig. 4 shows these three potential subsets in GNWT-2
example. Thus, 8vi < 2 in the Figure, vi is a rewarded
value; 8vi > 4 in the Figure, vi is a penalised value; and
8vij2 � vi � 4 in the Figure, vi is a neutral value.

3.2 Validity Criteria of Compensation Functions

Our proposal to define the validity criteria of a Compensation
Function relies on the notions of Consistency and Saturabil-
ity, that we rigorously describe in the following properties.

Property 1 (Consistency). Let be Um a utility function for m
defined by the beneficiary, a compensation function CFm is said
to be consistent w.r.t. Um, denoted as ConsistentðCFm;UmÞ, if
the compensation for a less interesting value of the metric is
greater than or equal to the compensation for a more interesting
value, according to the utility precedence defined by Um, i.e.,
if it holds:

8v1; v2 2 Mm � v1 � v2) CFmðv1Þ � CFmðv2Þ:

Fig. 3. Example of decreasing or non-monotonic utility functions.
Fig. 4. Compensation function of GNWT-2 (CFResolutionHours).

5. Example called “horizontal demand” in [21].

1308 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

Let us analyse the consistency of the compensation func-
tions of AWS EC2 and GNWT-4 examples assuming that, in
AWS EC2, the beneficiary establishes that the higher the
metric value, the more interesting, i.e., the utility function
UMUP is monotonically increasing, while in GNWT-4, the
lesser the metric value, the less interesting, i.e., the utility
function UEDP is monotonically decreasing. In the case of
AWS EC2, the decreasing CFMUP depicted in Fig. 1 is consis-
tent w.r.t. the monotonically increasing UMUP. As counterex-
ample, the non-monotonically increasing CFEDP depicted in
Fig. 5 is not consistent w.r.t. the UEDP in the GNWT-4 exam-
ple because an early-delivery in the 40 percent of EDP, that
is a less interesting value for the guarantor, implies a higher
compensation than 80 percent of EDP.

Property 2 (Saturability). A compensation function CFm is
said to be saturated w.r.t. a threshold t ¼ ðtmin; tmaxÞ, where
tmin; tmax 2 R, denoted as SaturatedðCFm; tÞ if the threshold
delimits the higher compensation, either penalty or reward, i.e.,
if the following holds:

8vi 2 Mm;CFmðviÞ 2 ½tmin; tmax	:

This property prevents the definition of unbounded com-
pensations, where the boundary is defined by a threshold t.
One may think that it would be enough to check that com-
pensations do not grow infinitely. In practice, however, this
is often not enough because, although bounded, it does not
guarantee that the compensation is reasonable according to
the problem domain. For instance, a compensation that
grows linearly with the number of minutes of unavailability
in a month is bounded because the number of minutes in a
month is also bounded. However, in practical terms, such a
compensation may be unreasonable for the provider. There-
fore, we define the threshold as a way to set a reasonable
boundary in a domain-specific manner. Since compensation
functions of the running examples are defined as piecewise
functions, they are saturated by definition.

Property 3 (Validity). Let Um be a utility function defined
for m by the beneficiary, and let t be a threshold for m, a
compensation function CFm is said to be valid, denoted as
ValidðCFm;Um; tÞ, if it is consistent w.r.t. Um and saturated
w.r.t. t. i.e., if the following holds:

ConsistentðCFm;UmÞ ^ SaturatedðCFm; tÞ:

According to this definition, the compensation functions
of Figs. 1 and 4 are valid. On the contrary, the compensation

function of GNWT-4 example, depicted in Fig. 5, is not con-
sistent and therefore, not valid.

4 COMPENSABLE GUARANTEES

A guarantee term guarantees the fulfilment of a certain SLO
to a beneficiary (e.g., ResolutionHours � 4h). When a guar-
antee term also includes penalties and/or rewards to com-
pensate the unfulfilment and/or overfulfilment of the SLO,
it becomes a compensable guarantee term and by extension
its containing SLA becomes a compensable SLA [3]. Next,
we provide some core definitions to formally define the
validity of compensable guarantees.

4.1 Core Definitions

Definition 6 (Service Level Objective). Let m be a service
metric, SLOm is said to be Service Level Objective over a metric
m, if it represents a predicate overm.

Examples of valid SLOs are ResolutionHours � 4h, and
MUP � 99:95%, in GNWT-2 and AWS, respectively.

Definition 7 (Fulfilment Regions). Given an SLOm two
regions over the values of m can be defined, namely fulfilment
and unfulfilment.

FulfilmentðSLOmÞ ¼ fvi 2 MmjSLOmðviÞg
UnfulfilmentðSLOmÞ ¼ fvi 2 Mmj:SLOmðviÞg:

According to this definition, the fulfilment region of
GNWT-2 scenario is ResolutionHours � 4h and the unfulfil-
ment region is ResolutionHours > 4h.

Definition 8 (Compensable Guarantee). A compensable
guarantee defined over a metric m, denoted as CGm, is a tuple
of the form ðSLOm;CFmÞ, where SLOm is a service level objec-
tive and CFm is a compensation function, both defined over the
same service metric m. CGm:SLO refers to the SLO of CGm

and CGm:CF to the compensation function of CGm.

According to this definition, all guarantees in the article
are compensable guarantees. Fig. 6 shows a typical compen-
sation function that depicts the relationships between the
fulfilment regions delimited by the SLO and the compe-
nsation regions defined by the compensation function
(cf. Section 3.1). Moreover, as shown in this Figure, it is
important to highlight that fulfilment regions are not

Fig. 5. Example of inconsistent CF of GNWT-4 (CFEDP).

Fig. 6. A generic example of compensable guarantee showing the fulfil-
ment and compensation regions.

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1309

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

necessarily coupled with compensation regions. Specifi-
cally, the Figure exemplifies a case in which metric values
between t and b are unfulfilled but not penalised, and simi-
larly metric values between a and t are fulfilled but not
rewarded.

4.2 Validity Criteria of Compensable Guarantees

The validity of a compensable guarantee resides not only in
the validity of its compensation function, but also in the
existing coherence between the compensation function and
the SLO. Considering the coherence as a property, it can be
defined as follows.

Property 4 (Coherence). A compensable guarantee CGm is
said to be coherent, denoted as CoherentðCGmÞ, if it does the
fulfilment regions w.r.t. compensation regions, which implies a
threefold condition namely, there is no unfulfilled value that is
rewarded, no fulfilled value that is penalised, and there is at
least one fulfilled value that is neutral, i.e., if the following
holds:

UnfulfilmentðCGm:SLOÞ \ RewardedðCGm:CFÞ ¼ ?

^ FulfilmentðCGm:SLOÞ \ PenalisedðCGm:CFÞ ¼ ?

^ FulfilmentðCGm:SLOÞ \NeutralðCGm:CFÞ 6¼ ? :

According to this property, GNWT-2 compensable guar-
antee of Fig. 4 is coherent with its SLO (shown in Fig. 2 as
ResolutionHours � 4) due to all resolution hour in the SLO
fulfilment region is in either rewarded region when the SLO
is overfulfilled or in the neutral region; and all resolution
hour in the unfulfilment region (i.e., ResolutionHours > 4Þ
is in the penalised region.

Based on Properties 3 and 4 we can formalise the validity
of a compensable guarantee as follows:

Property 5 (Validity of a CG). Let U be a utility function
defined for metric m by the beneficiary, and let t be a threshold
form, a compensable guarantee CGm is said to be valid, denoted
as ValidðCGm;Um; tÞ, if it is coherent, i.e., the SLO and CF are

coherent between themselves; and it contains a valid compensa-
tion function w.r.t.Um and t.

CoherentðCGmÞ ^ValidðCGm:CF;Um; tÞ:

According to this property, GNWT-2 compensable guar-
antee of Fig. 4 is valid because it is coherent and its compen-
sation function is valid.

5 VALIDITY CHECKING OF COMPENSABLE

GUARANTEES

Checking whether a compensable guarantee contains any
errors become a tedious and time-consuming task, and it is
error-prone in itself. Our approach to automate this process is
depicted in Fig. 7 and requires a language to specify compen-
sable guarantees. Thus, we propose the use of iAgree [23], a
WS–Agreement-based [1] language with precise semantics
(cf. Section 5.2). The underlying idea is to leverage off-
the-shelf Constraints Satisfaction Problem (CSP) reasoners to
automate the analysis of operations; more specifically, to
extract information from the CSPs that represents the com-
pensation function of the guarantee specified in iAgree. As
shown in Fig. 7, we establish a hierarchy of operations: the
Validity properties formalised in Sections 3 and 4 (included in
the reduced glossary of Table 1) for CF (Property 3) and CG
(Property 5), respectively, are derived from three core opera-
tions, namely:Consistency (Property 1), Saturability (Property
2), and Coherence (Property 4). Each core operation can be

Fig. 7. Process to automate the validity checking.

TABLE 1
Definitions and Properties Glossary

Definition Reduced Explanation

Mm Set of all values for a metric m.
Um Function that associates a utility to each value of m.
Precedence� Precedence relation denoting that a value of m is less interesting than other.
CFm Function that associates a compensation to each of the values of a metric.
Compensation Regions PenalisedðCFmÞ, RewardedðCFmÞ, NeutralðCFmÞ; where the metrics values have an associated penalty, reward, or

none, respectively.
SLOm A service level over m (i.e., a predicate over m).
Fulfilment Regions FulfilmentðSLOmÞ, UnfulfilmentðSLOmÞ; where the metrics values hold and do not hold the SLO predicate,

respectively.
CG A guarantee that includes either a penalty, a reward, or both. It comprises both, a SLOm and a CFm.

Property Reduced Explanation

ConsistentðCFm;UmÞ A CF is consistent if the compensation for a less interesting value of m is greater than or equal to the compensation
for a more interesting value, according to the utility precedence.

SaturatedðCFm; tÞ A CF whose penalties or rewards are always less than a threshold (t).
ValidðCFm;Um; tÞ A CF that is consistent and saturated.
CoherentðCGÞ A CGwhose fulfilment and compensation regions make sense (e.g., there is no unfulfilled value that is rewarded, etc).
ValidðCGm;Um; tÞ A CG that is coherent and its CF is valid.

1310 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

expressed in terms of a standard CSP-based reasoning opera-
tion (cf. .solve in Fig. 7). This scheme requires to define a map-
ping between iAgree compensations and CSP denoted asmap
(CF) in this Figure.

5.1 Inferring Utility Function and Saturability
Thresholds

As described in Section 3.2, the validity of a compensation
function requires knowing besides the compensation function
of each compensable guarantee, both, (i) the utility function of
the beneficiary for each metric as far of the Consistency prop-
erty; and (ii) the threshold for the Saturability property. How-
ever, these elements are not usually public, and hence, they
do not appear in the SLA. Therefore, they must be provided
by domain experts during the validity checking. However,
although the utility function is not explicitly described in the
SLA, its structure can be roughly estimated from the SLO;
based on our analysis, this assumption has proved to be use-
ful in order to avoid an explicit utility function definition in
most of SLAs found in the industry.

After analysing up to 24 SLAs, 95 percent of their 319
compensable guarantees include simple SLOs in the form of
metric > target value or metric < target value. Therefore,
the intuitive related utility can be described as a monotonic
linear function directly proportional (a greater value of the
metric is more useful) or inversely proportional (a lower
metric value is more useful) to metric values, respectively.
For instance, in the SLO: availability � 99, the utility func-
tion can be described as UavailabilityðxÞ ¼ x, and in the SLO
EDP � 120 (cf. SLO of Fig. 8), the utility function can be
described as UEDPðxÞ ¼
x. Therefore, to avoid manual
modelling, we apply this simple automatic criteria using
the SLO inequation to define the utility function in our tool-
ing. This approach is not valid when there is no explicit

SLO, the SLO is specified as an equation instead of an
inequation, or the SLO is more complex, but it covers the
95 percent of modelled agreements. In cases where the SLO
is defined as an equation (e.g., UnavailableMinutes ¼ ¼ 0),
the domain expert had to model it, with no side-effects in
validation, to the SLO UnavailableMinutes � 0, that allows
to infer a proper utility function for the metric (the sign of
the inequation can be decided based on the metric seman-
tic). This modelling decision is valid in all the analysed sce-
narios but should be extended for objectives such as
deliveryDay ¼ Friday; in such cases, in spite formalisation
provides support for that, the tools developed would need
to be extended since it is required for automatically infer-
ring a utility function. As a potential alternative, if the utility
function was provided by the user, then SLOs could be
defined as an equation.

Regarding the saturability property, there are different
situations where the maximum (tmax) and the minimum
(tmin) values are defined in the SLA. In some cases, as in
Fig. 8, compensation is defined through constant values, 10
and -5, in lines 32 and 37, so the maximum and minimum
possible values are in fact saturability thresholds. In cases
where there are no explicit thresholds in the SLA and they
are not included in analysis (e.g.,: c ¼ 100�DelayDays), the
default approach is using the domain of the compensation
variable as threshold. Thus, we consider that if the compen-
sation can reach maximum or minimum domain value, it is
not saturated.

5.2 iAgree as Specification Language

The validity properties identified for compensable guar-
antees deal with four key elements, namely: service met-
rics (m), compensable guarantees (CG), service level
objectives (SLOs), and compensation functions (CF). In
such a context, iAgree already supported with a precise
semantics m and SLOs, complementary, as a key contri-
bution of this paper, we extend the support to include CG
by means of a formal semantics for CF ; this extension is
detailed in Section 5.3.

Fig. 8 depicts an excerpt of the GNWT SLA in iAgree
including the GNWT-4 compensable guarantee. Specifi-
cally, an iAgree SLA includes two types of elements,
namely: a context and a set of terms. The context specifies
who the consumer and provider are and defines schemas
that specify the domain and unit for the compensations
used in the SLA (we refer to the compensation value as c in
the following sections; cf. Penalty Invoice Percent, PIP in
the example, line 10). The terms are divided into metrics and
guarantees. Metrics are specified by means of their schemas,
which define their values (m; cf. EDP in the example, line
16). Therefore, schemas can be seen as a function domain
that returns the domain of either metrics or compensation
defined as domainðmÞ ¼ Mm and domainðcÞ ¼ Mc, respec-
tively (e.g., domainðEDPÞ ¼ ½
200; . . . ; 200	, line 20).

Guarantees include both: (i) the SLO defined on a service
metric (SLOm; cf. EDP < 120 in the example, line 24),
and (ii) the Compensation Function (CFm). Following the
WS–Agreement specification, CFm is defined by specify-
ing penalties and rewards separately. Neutral values are
not explicitly specified and include those that are not part of
any penalty or reward. For each penalty and reward, the
compensation domain is defined by means of element over.

Fig. 8. GNWT-4 compensable guarantee term in iAgree syntax.

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1311

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

The definition of the penalty (or reward) part of the com-
pensation function is done as a piecewise function through
a set of ðvalue; conditionÞ pairs (e.g., ‘10’; EDP � 120, lines
32 and 33 in the penalty of the example). According to our
definition of CFm, both penalty and reward are defined
over the same schema, a penalty schema in our example. It
is important to highlight that, based on the analysis of SLAs
in the industry (cf. Section 6) two assumptions can be made
in our example: first, following our CF definition we use the
PIP as the compensation metric assuming a positive value
as penalties and negative value as rewards; and second,
the usage of piecewise functions proves to be sufficiently
expressive to model a wide range of compensations func-
tions in real-world scenarios as shown in Section 6.

5.3 Formal Semantics of iAgree Compensation
Functions

The primary objective of formalising iAgree compensation
functions is to establish a sound basis for an automated sup-
port. Therefore, according to the formalisation principles
defined by Hofstede et al. [24], the style and target domain
should be chosen accordingly (Primary Goal Principle). In
our case, we follow a transformational style and we propose
CSP as target domain because of two major reasons. First,
compensations are specified by means of constraints of
their related metrics. Thus, a quite straightforward way
to implement the checking of the introduced properties
(cf. Sections 3 and 4). Second, similar techniques have been
previously applied by the authors [25], [26] to analyse sev-
eral SLA problems, namely: (i) the conflicts between agree-
ment terms (e.g., to avoid inconsistencies); (ii) the SLA
violation (e.g., to detect violations and explain potential
causes); and (iii) the compliance between agreements and
agreement templates.

A CSP is defined as a triple ðV;D;CÞ of a set of variables
V , their domains D and a number of constraints C. A solu-
tion of a CSP is an assignment of values to the variables in
V from their domains in D so that all the constraints in C
are fulfilled. A CSP operation that returns if it has at least

one solution is called solve, and there are a number of solv-
ers that automates this CSP operation. Our approach, thus,
involves mapping the iAgree CF to a CSP and then using
the solve operation of a CSP solver to check the different
properties. Next we explain this mapping in detail, summa-
rising it in Table 2.

In the following, to refer to the elements in the iAgree doc-
ument we use the following notation. For each compensable
guarantee, CG, in an iAgree document, we will use CG.SLO,
CG.CF to refer to its SLO and compensation function, respec-
tively. The compensation function is defined with penalties
and rewards, notated as P and R, respectively. Furthermore,
m and c refer to the metric and the compensation variable
used in the guarantee. Similarly, and abusing the notation,
for each set of penalties that conform the piecewise penalty
function P (resp. rewards R), Pcond;n, and Pval;n refer to the
n-th condition and the n-th value of the penalty, respectively
(resp.Rcond;n,Rval;n for the set of rewardsR).

Mapping the Compensation Function (CF): Table 2 describes
the CSP of a compensation function defined as a set of pen-
alties and rewards. The compensation and the metrics
(together with their schemas) in Agree are the variables
(and their domains) in this CSP.

Each ðvalue; conditionÞ pair in penalties or rewards in
iAgree is mapped to a constraint of the form condition)
variable ¼¼ value. Hereinafter, we use c to refer to the
compensation variable (penalties and rewards could refer
to different compensation variables but then, they would
be analysed as different compensation functions). By defi-
nition in iAgree, the compensation is zero outside the
defined penalty and reward expressions so we add an
additional constraint with this consideration. Finally, all
these constraints are combined with an AND operator.
Note that this mapping corresponds to a well-defined
piecewise function; as a potential extension, before the
presented compensation analysis, we could check whether
the compensation is a mathematical well-defined function
(e.g., two different penalty values with the same condition
cannot exist).

The resulting CSP of mapping the compensation function
of guarantee GNWT-4 in Figure 8 is as follows:

mapðCFEDPÞ
¼ ffEDP;PIPg; fint½
200::200	; int½
100::100	g;
fðEDP � 120) PIP ¼¼ 10Þ AND
ðEDP ¼¼ 80) PIP ¼¼
5Þ AND
NOTðEDP ¼¼ 80 OR EDP � 120Þ) ðPIP ¼¼ 0Þgg:

This CSP is used to evaluate the analysis operations for
the properties of CF and CG, which are described next.

5.4 Automated Checking Operations

In this section we explain the automated technique to check
the core operations of the proposed properties (cf. Table 3).
Note that we stand by: (i) the CF mapping in Table 2
(mapðCFmÞ), (ii) the inferred utility function (Um), and
(iii) the inferred saturability thresholds (tmin; tmax). Since
core operations are used to check theValidity operations, we
have also included them to provide all checking operations.

TABLE 2
Compensation Function to CSP

1312 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

Operation for Consistency (Property 1). Since CSPs can only
solve satisfiability problems (i.e., exists a solution) and we
have to check if this property holds for all possible values,
we verify this property with the solve operation and verify-
ing that there is not value which solves the inconsistency of
the compensation function. That is, there do not exist two dif-
ferent metric values, m1 and m2, where m1 has higher utility
thanm2 (Um1 andUm2, respectively), but also higher compen-
sation value (c1 and c2, respectively). For instance, if the CF is
defined on metric EDP, we define two different metrics,
EDP1 and EDP2, with the same compensation function (that
is duplicating the penalty and rewards conditions for the
duplicated metrics). We express this using ra=bðCFÞ, which
means thatwe rename b with a in CF . The property is evalu-
ated by adding a constraint that relates the two compensa-
tions and utilities for these variables so that one variable can
have both a higher compensation (i.e., higher penalty) and a
higher utility than the other. If the resulting constraints can
be solved (i.e., it has a solution) it implies that the function is
not consistent. Otherwise, it would mean that there are two
values of the metric variable for which one have both higher
penalty and higher utility than the other.

In our example, a greater delay in delivery is less useful
for the customer, this means that the utility function is
inversely proportional to the metric EDP. Thus, according to
our described utility inference, a possible utility function U
could be the negative function of the metric: UEDP ¼
EDP,
and consequently, the constraint ðUm1

> Um2
Þ replaced by

ð
EDP1 >
EDP2Þ in our example.

ConsistentðCFEDP;UEDPÞ,
NOTð solveðmapðrEDP1;PIP1=EDP;PIPðCFEDPÞÞ
AND mapðrEDP2;PIP2=EDP;PIPðCFEDPÞÞ
AND ðPIP1 > PIP2Þ AND ð
 EDP1 >
 EDP2ÞÞÞ;

where r1 (resp. r2) renames EDP and PIP by EDP1 and
PIP1 (resp. EDP2 and PIP2).

As this CSP is satisfiable, i.e., solve returns a solution, the
example compensation function is inconsistent. This is an
effect of a wrong compensation definition, which only
rewards when the value for EDP is exactly 80, but does not
reward more useful values. For instance, the reward does

not apply if a project is delivered one month earlier than
planned; but it only applies if it is delivered exactly one
week earlier than planned.

Operation for Saturability (Property 2). For this property,
the operation receives two additional input values, the satu-
rability thresholds, so we only check if the metrics are out-
side these two values. If they are, then we consider it not
saturated. In our example, following a domain expert con-
sideration, 30 and -30 are suitable candidate for saturability
thresholds. Thus, the CSP for checking the saturation in the
example compensation function is:

SaturatedðCFEDP; 30;
30Þ,
NOTð solveðmapðCFEDPÞANDðPIP > 30 OR PIP <
30ÞÞÞ:

As the compensation variable cannot reach maximum or
minimum values in any case (its only possible values are 10,
0 and -5), the problem is not satisfiable and the compensa-
tion is therefore saturated.

Operation forValidity of Compensation Function (Property 3).
This is a derived operation of core consistent and saturated
operations.

ValidðCFEDP;UEDP; 30;
30Þ,
ConsistentðCFEDP;UEDPÞAND SaturatedðCFEDP; 30;
30Þ:

In our example, the compensation is invalid (it is saturated
but not consistent).

Operation for Coherence (Property 4). This property
involves checking one existentially quantified constraint (it
exists at least one value that is neutral and fulfilled), and one
universally quantified constraint (no value is fulfilled and
penalised or unfulfilled and rewarded at the same time).
Therefore, we build and solve two different constraints to
evaluate this property. First, if it exists a neutral compensa-
tion region for an SLO fulfilled value, and if it does not exist
a positive compensation value (penalty) when the SLO is ful-
filled or a negative compensation value (reward) when SLO
is unfulfilled. The operation to check the coherence between
compensation function and the SLO in our example is:

CoherentðCGEDPÞ, solveðmapðCGEDP:CFÞ AND
ðPIP ¼¼ 0 AND EDP < 120ÞÞ

AND NOTðsolveðmapðCGEDP:CFÞ AND
ððPIP > 0 AND EDP < 120Þ
OR ðPIP < 0 AND NOTðEDP < 120ÞÞÞÞÞ:

As it exists a neutral compensation when EDP is less than
120 and it does not exist any positive compensation when
EDP is less than 120 neither negative when EDP is greater
or equal than 120, the compensable guarantee is coherent.

Operation forValidity of Compensable Guarantee (Property 5).
The compensable guarantee is valid if it is coherent with
compensation function (Property 4) and the compensation
function is valid (Property 3). Therefore we provide this
operation as a derived operation of the core coherent opera-
tion and the derived valid compensation operation.

ValidðCGEDP;UEDP; 30;
30Þ,
CoherentðCGEDPÞ AND ValidðCGEDP:CF;UEDP; 30;
30Þ:

TABLE 3
Automated Core Operations Using Solve Operation of CSPs

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1313

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

For our example, the compensation function is invalid,
hence the compensable guarantee is also invalid.

5.5 Tooling Support
In order to assist in the modelling and analysis of proper-
ties, an ecosystem of tools has been developed6 that is com-
posed of (i) an analysis framework, that is implemented
using a MiniZinc [27] CSP solver; and (ii) a designer tool
that are integrated by means of REST APIs.

As shown in Fig. 9, the designer studio (part of the larger
framework Governify) provides a GUI that allows modelling
and analyzing compensable SLAs: specifically, it is possible to
generate workspaces (far left section of the tool) with agree-
ments written in iAgree with a YAML/JSON format (left edi-
tor) or using a form that renders the compensation function in
a graphical way (right editor). Once the agreement is mod-
elled, a general validity check of compensations is available
(bottom right blue button) or an individual operation check
for each property identified in Sections 3 and 4 can be invoked
(bottom right gray dropdown). The result of the operations is
shown in the console of the tool (bottom section) highlighting
the logic (true/false) outcome of the operation. In case of
properties P1, P2 and P4 a CSP mapping can be shown (blue
link in the console) describing the actual MiniZinc CSP that is
executed in the engine to solve the property check.

Following the micro-service architecture principles, the
analysis module exposes a well defined REST API7 that is
divided into two main resources: first, the models
resource, that corresponds to the different types of docu-
ments allowed as inputs for the analysis (e.g., agreements)
and their serialisation formats (currently JSON and
YAML). Second, the operations resource, that allocates the
different analysis available for a given model. From an
internal perspective, the agreement module develops a
two stage model transformation process: first, the agree-
ment model is transformed using the mapping rules pre-
sented in Section 5.4 into a simplified CSP model
composed of variables, domains and constraints; second,
the CSP model is serialised into the MiniZinc CSP lan-
guage. In order to execute the solver, a docker container
has been integrated so MiniZinc engine can be invoked
dynamically for each file generated.

6 EVALUATION IN REAL-WORLD SCENARIOS

In this section we describe how we have evaluated our
proposal. In particular, the goal of the evaluation was to
answer the following research questions:

RQ1: How Expressive is our Compensations Model in
Comparison to Real-World SLAs? We want to know whether

Fig. 9. Screenshot of our designer studio tool.

6. Available at https://isa-group.github.io/2017-12-compensations/ 7. A portal for this API is available at https://goo.gl/zbCG9i

1314 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

https://isa-group.github.io/2017-12-compensations/
https://goo.gl/zbCG9i

the compensation model that we use is expressive enough
to model a wide variety of real-world SLAs and which
are the characteristics of the SLAs that we are not able to
express.

RQ2: Are the compensations in real-world SLAs valid accord-
ing to our notion of validity? The validity of a CG is at the
central part of this article, so we want to know whether
CG of real-world SLAs follow this notion of validity.

RQ3: Which difficulties appear when modelling SLAs defined
in natural language? All real-world SLAs are expressed in
natural language. Therefore, before checking their validity
it is necessary to formalise them. With this question, we
examine the problems that may appear in this step.

To answer these questions, we have modelled with
iAgree and tried to validate up to 319 compensable guar-
antees that are described in natural language, in 24 dif-
ferent scenarios8 belonging to three different domains,
namely: cloud service providers (e.g., Amazon and Rack-
space), non-cloud service providers (e.g., DHL and train
companies), and B2B service outsourcing. As a comple-
mentary material we provide a workspace with the
whole list of agreements modelled; in such a context,
while in the Designer Studio tool a pre-loaded demon-
stration workspace is available with a subset of agree-
ments, the whole dataset of modelled agreements9 can be
imported into the tool to be analysed. Next, we detail the
results.

6.1 RQ1: Expressiveness of Compensable SLAs

Table 410 depicts a number of features regarding the 24 sce-
narios which have been studied. In a first block, we present
(i) the number of guarantees that have the corresponding
features, and (ii) the number of metrics which are involved

in each guarantee, most usually one. In the second block,
we present which metrics are involved in compensation
functions (CF) for each scenario. Finally, in a third block, we
present whether the scenarios do not hold validity criteria
defined in Sections 3.2 and 4.2, which are discussed later in
Section 6.2. Next we provide details for the kind of metrics
included in the second block:

� The CF does only involve the SLO metric, which
is the most usual case. As an example, if the SLO
is availability � 99%, then the penalty condition is
availability < 99%, and the proper penalty is
Penalty ¼ 10%.

� The CF involves an aggregation of the SLO metric.
As an example, in GNWT a penalty condition is
defined as “Less than 95 percent of severity-4 problems
are resolved in 20 calendar days”.

� The CF involves the SLO metric multiplied by a
constant value, which is another usual case. As an
example, consider the expression Penalty ¼ 0:1�
unavailablePeriod�monthlyBill.

� The CF involves other service and, possibly, different
SLAs. As an example, in RENFE (the public Spanish
train service) a penalty is expressed as “If service is
cancelled within 48 hours of scheduled time, RENFE is
obliged to give an alternative transport, be either by train
or by another mean of transport [...] or the devolution of
the service cost.”. Note the reference to initiate another
SLA (a contract for a new service) due to the alterna-
tive transportation.

� The CF involves value metrics from more than
one billing cycle. As an example, in Movistar (an
Spanish telecommunications company) a penalty is
expressed as “if the installation deadline is not fulfilled,
the provider must give an automated compensation which
consists of [...] a number of monthly fees equivalent to the
number of months, or fraction, by which the deadline has
been overcome”.

TABLE 4
Summary on the Expressiveness and Effectiveness of Our Proposal in Real-World Compensable SLAs

8. Documents used to model SLAs at https://goo.gl/yLvxo5
9. Available at https://goo.gl/PEvSTC
10. A detailed version of this table at https://goo.gl/8jXfn4

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1315

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/yLvxo5
https://goo.gl/PEvSTC
https://goo.gl/8jXfn4

� The CF denotes whether the SLO is fulfilled during
more than one billing cycle. As an example, in the
Indian Baroda Bank, a reward condition is “If Situa-
tion A is achieved for the consecutive 2 months following
a situation E”, where such “situations” refer to differ-
ent stages of SLO fulfilment.

Table 4 shows that our technique has three main limita-
tions concerning the expressiveness of compensation func-
tions. First, an SLO must be specified with just one service
metric. Therefore, compensable guarantees marked with
“2+” cannot be supported. Second, compensations have to
be based on such SLOmetric, so that its related utility prece-
dence function can be properly evaluated. (ie. if CF is not
based on the same SLO metric, it cannot be validated).
Third, due to limitations in the CSP engine used in the anal-
ysis, metric domains are restricted to Integer type. This limi-
tation can be overcome by transforming real domains to
integers with a particular precision; e.g., a metric for a per-
centage that should be real, can be defined as an integer
with domain 0..10000 assuming 10
2 of precision.

In addition, there are scenarios which can be supported
by our technique, namely, the compensation expression
may include other variables provided that they are indepen-
dent from the SLO metric, since such variables do not have
an impact on validity analysis (ie. the CF involves the SLO
metric multiplied by a constant value as depicted in Table 4).
As an example, let be an SLO specifying a maximum in the
number of human resource substitutions (HRS) for a proj-
ect, expressed as HRS � 2. In this context, a compensation
expression as Penalty ¼ ðHRS
 2Þ �HPR� 40, where
HPR stands for an hourly profile rate, can be supported
because HPR is independent from HRS. In another exam-
ple, note the independent MonthlyBill variable in the com-
pensation expression Penalty ¼ 0; 1� unavailablePeriod �
monthlyBill. Both cases show that the independent variable
can be even considered as a constant with regard to the SLO
metric; as a matter of fact, they are omitted in the calculus
for validation analysis with no effect in the result.

Despite these limitations, our tooling support can vali-
date up to 242 compensable guarantees (76 percent of
reviewed cases).

6.2 RQ2: Effectiveness of Proposed Validation
Technique

After modelling the iAgree documents of the 24 real-world
scenarios and using our proposed automated validation
technique, we found that nine compensable guarantees
were not properly defined in the original SLAs specified in
natural language. Specifically, five were wrongly specified
by Verizon, and four were wrongly specified by the out-
sourcing service hiring of the regional governments of:
Northwest Territories of Canada, and Andalusia in Spain.
These results are included in the third block of Table 4.

Among the 7 cases that are not consistent, in the
Verizon scenario we find in three compensable guarantees
(cf. A14G13-G15 in the dataset) a wrong use of a “less than”
symbol instead of a “less and equal” symbol in the definition
of penalty conditions for the metric values intervals with
higher penalty assignment. On the one hand, in A14G13

the conditions that penalise with 10 and 25 service credits
are availability � 95:000% and availability < 94:999%, respe-
ctively. Thus, while an availability of either 95:000% or

94:998% would be penalised with 10 and 25 service credits,
respectively, an availability of exactly 94:999% does not imply
a penalty. Therefore, any of these penalty conditions should
include 94.999 percent value and this is not the case. On the
other hand, in A14G16 and A14G19 the problem is the lack of
a lower limit value in the penalty conditions as follows:
Penalty of 20 service credits if availability < 99%; Penalty of
40 service credits if availability < 98%, etc. Thus, the overlap-
ping of penalty assignments makes it impossible to apply the
right penalty for values of 97 percent or less.

In the GNWT scenario, two compensable guarantees
(cf. A01G04 and A01G16 in the dataset) have the same kind
of problem in the compensation condition by a wrong use
of the expression “20 percent less than” instead of “up to
20 percent less than”. The first one has been analysed as a
running example to exemplify an invalid compensation
function in Section 3.2. This wrong definition results in a
reward defined just for a single metric value while other
metric values with higher utility do not imply a reward.

Among the 2 cases which are not coherent, in the Sande-
tel outsourcing service scenario, two compensable guaran-
tees (cf. A16G01-G02 in the dataset) have the same kind of
problem in the compensation definition because the penal-
ized metric values are those that fulfill the SLO. Specifically,
in A16G01 the SLO is Percent of Solved Interventions >
90% and the penalties apply for all the values for the metric
that are greater than 90 percent and lesser than 95 percent.
This results in a nonsense penalty for a hired company that
is properly offering the service (i.e., while the SLO specified
is being fulfilled, the service provider is penalised due to
the wrong penalty conditions).

6.3 RQ3: Modelling Issues

During the recent years, we have found that the use of natu-
ral language in the reviewed SLAs of real-world scenarios11

makes them susceptible to include semantic ambiguities.
Among others, we have found the following problems that
must be solved in order to obtain a formal iAgree model of
the real-world scenarios:

6.3.1 Imprecise and Misleading Compensation

Conditions and/or SLOs

As an example, OVH (cf. A04 in the table and dataset) guar-
antees an availability of 99,999 percent but compensations
only apply for 1-minute periods and starting after a 3-min-
ute period of downtime. However, it is not clarified if the
“3-minutes” exception might be considered for every single
failure, or also in relation to the aggregated failure time. In
our modelling (cf. A04G01 in the dataset) we have consid-
ered that the 3-minutes initial exception is affecting to the
aggregated failure time. Thus, to compute the compensation
we use the accumulated unavailability, defined as the
aggregated minutes of unavailability after the first three,
divided by the total minutes in the month. In addition, the
SLO is not precisely defined because considering a 31-days
month, the 100 percent of availability in minutes are 44640
minutes, and the 99.999 percent of availability just permits 1

11. This study was comprised of 3 cases in [3], 5 in [23], and 24 in the
current article. All of them are available at: https://goo.gl/yLvxo5.

1316 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/yLvxo5

minute of unavailability that will not be compensated due
to the lack of an initial “3-minutes” exception. Therefore, as
one compensation applies after 4 minutes of unavailability,
the total minutes of availability without compensations is
44636 (i.e., a 99.991 percent of availability) and thus, the
actual SLO would be availability > 99:991%.

6.3.2 Usage of Imprecise Value

As in Rackspace and Host Europe (cf. A03 and A08 in the
table and dataset, respectively), there are imprecise values. In
these cases, the availability percentages are given as integer
values or float values providing just one decimal. However, it
is not clear whether they are simply rounding values for the
sake of clarity, or not. For instance, Rackspace compensates
with 5 percent of the service fees for each 30minutes of Cloud
Database Instance unavailability, after the first 0.1 percent of
unavailability during the month (cf. A03G02 in the dataset).
Note that this 0.1 percent is equivalent to 43.2 minutes in
months of 30 days and thus, it is not clear if the penalty applies
after 43 or 44minutes of unavailability.

6.3.3 Lack of SLOs

Many SLAs include compensable guarantees without an
explicit SLOs, as the GNWT running example (cf. A01 in
the dataset). In these cases, a domain expert should infer the
SLO from the compensation conditions: Fig. 8 includes the
SLO EDP < 120 that we inferred from the penalty condi-
tion EDP � 120. Recently, Amazon has changed the AWS
S3 SLA (cf. A02 in dataset), and its current version does not
state any SLO12.

A side effect of representing in a machine-processable
iAgree document the real-world SLAs defined in natural
language is that some modifications must be done to face
the three aforementioned modelling problems. In the fol-
lowing, we provide some modelling best practices that an
expert should consider in the process of writing an iAgree
document supported by our proposed technique.

As general rule, the expert should obtain a mathematical
formula for both SLO and compensations. In case of SLOs
specified as equations of the form UnavailableMinutes ¼¼ 0
or availability ¼¼ 100, as mentioned in Section 5.1,
they should be transformed to an SLO of the form
UnavailableMinutes � 0 or availability � 100, respectively,
because this allows to infer a proper utility function for the
metric.

This general rule must be applied wisely by making deci-
sions to solve the modelling issues. These decision making
could be as simple as in the following three scenarios: (i) in
the GNWT scenario, the iAgree document of Fig. 8 is
straightforwardly gathered from the GNWT-4 term of Fig. 2
by just considering the EDP ¼¼ 100% as the scheduled
delivery date; (ii) the aforementioned imprecise compensa-
tion function definition of CloudLock scenario can be easily
solved by considering the metric monthly uptime percentage
as a kind of availability that is the SLO-related metric (cf.
A10 in the dataset); and (iii) the exception condition of
OVH scenario can be solved by considering a new metric
called Accumulated unavailability as a kind of unavailability

that does not include the first 3 minutes of unavailability
(cf. A04 in the dataset). Regarding the imprecise value defi-
nitions, we cannot model what is not expressed in the real-
world SLAs. Therefore, we propose to consider that the
specified values are rounded values despite of the impre-
ciseness it implies in terms of compensations.

On the contrary, applying the general rule to other sce-
narios may lead to make more complex decisions. For
instance, in GoGrid (cf. A15 in the dataset), it is guaranteed
the 100 percent of server uptime so that the costumers are
compensated with a 100 percent of the failure time (in rela-
tion with the customer fee) in further service credits. As an
example, a one hour failure of a virtual server, whose cost
of 1GB RAM is $0.08/GB Hour, will generate a credit of
$0.08 x 1 (GB) x 100 = $8. In this case, two considerations are
required: i) the customer fee should be omitted by our
modelling because it is a constant value; and ii) server
uptime and duration failure, in total hours, must be taken
into account in each compensation term. This GoGrid sce-
nario demonstrates that we must also include as best model-
ling practice the homogenization of metrics used in both:
SLO and compensations conditions.

7 RELATED WORK

In this article we have made the question “How can compen-
sations be automatically validated?”. As far as we know, other
works have also approached this or a similar question, as
commented in the following. A first point is how expressive
are their approaches. Similar to ours, having a compensa-
tion including condition, penalty, and saturation, some
works extend WS–Agreement as [9], [12], [19], others have a
semantic approach as [10], [28], [29], [30], and most an
abstract model [7], [11], [16], [22]. Other approaches only
have one or another element, such as [5], [6], [13], [14], [15],
[17], [18]. Pioneering this point, Leitner et al. in [4] introduce
some features of penalty functions and describe up to four
types of penalty functions. This work was the starting point
of our initial formalisation [3] and modelling [23] approach,
but including rewards and the properties to validate com-
pensations. A second point is whether these approaches
enable some kind of automated validation to avoid wrong
specifications. One the one hand, Krotsiani et al in [9]
extend WS–Agreement by means of penalty and renegotia-
tion predicates, which are processed by means of a probabi-
listic timing automata. This allows to make predictive
questions such as “what is the probability to pay a penalty for
the next week?” on the event of incoming service requests.
Thus, it is a different but complementary approach to ours.
On the other hand, Kritikos et al. in [10] extend OWL with a
semantic SLA model in which service levels are assigned
both compensations and pricing. The validation, defined by
means of SWRL derivation rules, allows to check (1) the
monotonicity of compensations according to their metrics,
and (2) the transitions between service levels mirror their
pricing accordingly, so that lower levels are cheaper than
higher ones. The overall objective is to minimise the costs on
the event of transitions to adjust the quality-of-service. Third,
regarding the best practices, we only have found the work of
[29] which includes an extensive analysis on the question of
legality on using WS–Agreement. Fourth and last point, it is
the use of compensations in these works. Most of approaches
try to avoid, one way or another, SLA violations and/or find

12. The service commitment of 99,9 percent in previous version
(https://goo.gl/HGrGjH) has been removed in current version
(https://goo.gl/KdB665)

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1317

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

https://goo.gl/HGrGjH
https://goo.gl/KdB665

adaptations to prevent them, in order to minimise the overall
cost. Hussain et al. [13] try to minimise the number of viola-
tions, thus penalty costs. Ranaldo et al. [16] avoid violations
while maintaining a competitive price. Labidi et al. [28] intro-
duce CSLAONTO, a ontological SLA model defined by
SWRL rules, which are processed by the Jess inference
engine, to monitor and predict SLA violations, then adjusting
service execution, in order to minimise the penalty risk.
Serrano et al. [14] reduce the service price in case of request
which may provoke a SLA violation. It also introduce the
notion of a procedure for notifying penalties, including:
(1) the actor in charge, (2) the method, and (3) the period for
notification. Chard et al. [15] try to avoid malicious bidding
strategies. Maarouf et al. [8] propose a formal model consid-
ering penalties of different metrics. Xiaoyong et al. [7] try to
maximise the revenue by means of avoiding penalisations.
Amokrane et al. [17] reduce costs in a green cloud environ-
ment. Narasayya et al. [18] try to minimise penalisations in
multi-tenant relational databases-as-a-services. Garg et al.
[11] try to maximise resource usage while the SLA is fulfilled,
together with SLA enforcement, admission control and
scheduling, and forecasting. Haq et al. [12] try to prevent
SLA violations, by means of pro-active actions (adjusting
infrastructure to avoid violations), and reactive actions (pen-
alty enforcement). It introduces a agent-based framework
based on a RuleML ontology which extends WS–Agreement.
Rana et al. [29] identify how SLOs may be impacted by the
choice of specific penalty clauses. Grabarnik et al. [6] propose
a model intended to reduce costs of composite services, by
means of considering a trade-off between penalty costs and
fulfilment cost at a design-time choice of service suppliers.
Paschke et al. [30] model an SLA which defines minimum
and maximum thresholds to compensate SLAs unfulfilment
or overfulfilment. Last, Buco et al. [5] propose an SLA man-
agement system that uses penalties to alert about potential
cumulative penalty cost.

In business studies, utility function models are also ana-
lysed as they are strongly dependent on customer preferen-
ces and behaviour. Bar-Isaac et al. in [21] describe a
business scenario with cost, customer expectations and rep-
utation variables where reward function follows a non-
monotonic behaviour (based on satisfying preferences from
different customers). Similarly, Ren et al. analyse in [31]
how utility function is obtained from customer objective
function (i.e., customers timetable preferences affect how
transactions distribute through commercial opening hours).

Finally, in authors’ previous work [25], the validity of
SLAs is formalised by considering a set of conflict-free guar-
antee terms that define valid assertions that must be ful-
filled, i.e., an SLA is considered as valid if it is defined
without conflicts between and within its SLOs. Examples of
conflicts are: Resolution Hours <¼ 4h AND > 4; or MUP <
99.95 percent IMPLIES MUP � 99.95 percent; however, such
validity does not consider compensations.

8 CONCLUSIONS AND FUTURE WORK

Using the presented formalisation and technique, the
assessment conducted over 24 real-world SLAs allowed us
to identify 9 situations that lead to wrong compensable
SLAs and whose mistakes could be automatically identified.
The proposed validity criteria can be used for current

approaches of other authors as well as the underlying CSP-
based technique that enables the automation. Thus, activi-
ties that rely on compensations such as adjust the billing or
predict SLA violations can be carried from now on in a safer
and more reliable way. Regarding the expressiveness limita-
tions of our proposal, the existence of some kind of terms
unable to be specified with our abstract model encourage us
to expand both the abstract model and iAgree. Finally, we
would like to highlight that checking the validity is just one
step to debug real-world SLAs; as next steps, to allow tem-
poral-aware compensations considering [32], and to diag-
nose and suggest solutions for the problems found will be
addressed with a similar approach than [26] where we auto-
mate the diagnosis of SLA violations.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their comments
that have significantly improved the quality of the article.
Partially supported by grants TIN2015-70560-R (MINECO/
FEDER, UE), TIN2016-81978-REDT (MINECO), P12-TIC-
1867 (Andalusian R&D&I).

REFERENCES

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, “Web Serv-
ices Agreement Specification (WS-Agreement) (v. GFD-R.192),”
Open Grid Forum (OGF), https://www.ogf.org/documents/
GFD.192.pdf, Oct. 2011.

[2] J. Garc�ıa-Gal�an, P. Trinidad, O. F. Rana, and A. Ruiz-Cort�es,
“Automated configuration support for infrastructure migration to
the cloud,” Future Generation Comput. Syst., vol. 55, pp. 200–212,
Feb. 2016.

[3] C. M€uller, A. M. Guti�errez, O. Mart�ın-D�ıaz, M. Resinas, P. Fern�an-
dez, and A. Ruiz-Cort�es, “Towards a formal specification of SLAs
with compensations,” in Proc. OTM Confederated Int. Conf., “On the
Move Meaningful Internet Syst.”, 2014, pp. 295–312.

[4] P. Leitner, W. Hummer, and S. Dustdar, “Cost-based optimization
of service compositions,” IEEE Trans. Serv. Comput., vol. 6, no. 2,
pp. 239–251, Apr. 2013.

[5] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and
P. S. Yu, “Utility computing SLA management based upon busi-
ness objectives,” IBM Syst. J., vol. 43, no. 1, 2004.

[6] G. Grabarnik, H. Ludwig, and L. Shwartz, “Management of service
process QoS in a service provider - service supplier environment,”
in Proc. IEEE Int. Conf. E-Commerce Tech., Jul. 2007, pp. 543–550.

[7] Y. Xiaoyong, T. Hongyan, L. Ying, J. Tong, L. Tiancheng, and
W. Zhonghai, “A competitive penalty model for availability based
cloud SLA,” in Proc. 8th IEEE Int. Conf. Cloud Comput., 2015,
pp. 964–970.

[8] A. Maarouf, B. El qacimy, A. Marzouk, and A. Haqiq, “A novel
penalty model for managing and applying penalties in cloud
computing,” in Proc. 12th IEEE/ACS Int. Conf. Comput. Syst. Appl.,
2015, pp. 1–6.

[9] M. Krotsiani, C. Kloukinas, and G. Spanoudakis, “Validation of
service level agreements using probabilistic model checking,” in
Proc. IEEE Int. Conf. Serv. Comput., 2017, pp. 148–155.

[10] K. Kritikos, D. Plexousakis, and P. Plebani, “Semantic SLAs for
services with Q-SLA,” in Proc. Comp. Sci. 2nd Conf. Cloud Forward:
From Distrib. Complete Comput., 2016, vol. 97, pp. 24–33.

[11] S. Garg, S. K. Gopalaiyengar, and R. Buyya, “SLA-based
resource provisioning for heterogeneous workloads in a vir-
tualized cloud datacenter,” in Proc. Int. Conf. Algorithms Archi-
tectures Parallel Process., 2011, pp. 371–384.

[12] I. U. Haq, E. Schikuta, I. Brandic, A. Paschke, and H. Boley, “SLA
validation of service value chains,” in Proc. Int. Conf. Grid Cloud
Comput., 2010, pp. 308–313.

[13] W. Hussain, F. K. Hussain, O. Hussain, R. Bagia, and E. Chang,
“Risk-based framework for SLA violation abatement from the
cloud service provider’s perspective,” Comput. J., vol. 61,
pp. 1306–1322, 2018.

1318 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2021

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

https://www.ogf.org/documents/GFD.192.pdf
https://www.ogf.org/documents/GFD.192.pdf

[14] D. Serrano, S. Bouchenak, Y. Kouki, F. A. de Oliveira Jr, T. Ledoux,
J. Lejeune, J. Sopena, L. Arantes, and P. Sens, “SLA guarantees for
cloud services,” Future Generations Comput. Syst., Jan. 2016,
pp. 233–246.

[15] K. Chard and K. Bubendorfer, “Co-operative resource allocation:
Building an open cloud market using shared infrastructure,” IEEE
Trans. Cloud Comput., Jul. 2016, p. 1.

[16] N. Ranaldo and E. Zimeo, “Capacity-driven utility model for ser-
vice level agreement negotiation of cloud services,” Future Genera-
tions Comput. Syst., vol. 55, pp. 186–199, 2016.

[17] A. Amokrane, et al., “Greenslater: On satisfying green SLAs in
distributed clouds,” IEEE Trans. Netw. Service Manage., vol. 12.
no. 3. pp. 363–376, Sep. 2015.

[18] V. Narasayya, et al., “Sharing buffer pool memory in multi-tenant
relational database-as-a-service,” Proc. VLDB Endowment, vol. 8,
no. 7, pp. 726–737, Feb. 2015.

[19] A. Garc�ıa and I. Blanquer, “Cloud services representation using
SLA composition,” J. Grid Comput., vol. 13, pp. 35–51, Mar. 2015.

[20] M. Cho, et al., “A new framework for defining realistic SLAs: An
evidence-based approach,” in Proc. Int. Conf. Business Process
Manage., 2017, pp. 19–35.

[21] H. Bar-Isaac and J. Deb, “What is a good reputation? career
concerns with heterogeneous audiences,” J. Ind. Org., vol. 34.
pp. 44–50, 2014.

[22] P. Leitner, et al., “Cost-efficient and application SLA-aware client
side request scheduling in an infrastructure-as-a-service cloud,”
in Proc. IEEE 5th Int. Conf. Cloud Comput., Jun. 2012, pp. 213–220.

[23] C. M€uller, P. Fernandez, O. Martin Diaz, A. M. Gutierrez,
M. Resinas, and A. Ruiz Cortes, “Specifying compensations with
WS-agreement,” IEEE Latin America Trans., vol. 15, no. 7,
pp. 1335–1341, Jun. 2017.

[24] A. H. M. Ter Hofstede, et al., “How to formalize It? formalization
principles for information system development methods,” Inf.
Softw. Technol., vol. 40, pp. 519–540, 1998.

[25] C. M€uller, et al., “Comprehensive explanation of SLA violations at
runtime,” IEEE Trans. Services Comput., vol. 7, no. 2, pp. 168–183,
Apr.-Jun. 2014.

[26] C. M€uller, et al., “Automated analysis of conflicts in WS–
agreement,” IEEE Trans. Services Comput., vol. 7, no. 4, pp. 530–
544, Oct.-Dec. 2014.

[27] N. Nethercote, et al., “MiniZinc: Towards a standard CP model-
ling language,” in Proc. 13th Int. Conf. Principles Practice Constraint
Programm., 2007, pp. 529–543.

[28] T. Labidi, et al., “CSLAOnto: A comprehensive ontological SLA
model in cloud computing,” J. Data Semantics, vol. 5, pp. 179–193,
2016.

[29] O. Rana, et al., “Managing violations in service level agreements,”
in Grid Middleware Services: Challenges Solutions, Berlin, Germany:
Springer, 2008, pp. 349–358.

[30] A. Paschke and M. Bichler, “Knowledge representation concepts
for automated SLA management,” Decision Support Syst., vol. 46,
pp. 187–205, Dec. 2008.

[31] F. Ren and M. Zhang, “Bilateral single–issue negotiation model
considering nonlinear utility and time constraint,” inDecision Sup-
port Systems, vol. 60, Amsterdam, The Netherlands: Elsevier,
Apr. 2014.

[32] O. Mart�ın-D�ıaz, et al., “An approach to temporal-aware procure-
ment of web services,” in Proc. Int. Conf. Service-Oriented Comput.,
2005, pp. 170–184.

Carlos M€uller received the PhD degree in com-
puter science from the University of Sevilla,
Spain. He is a lecturer and member of the Applied
Software Engineering Group (ISA, www.isa.us.
es) at University of Sevilla, Spain. His current
research line includes the automated analysis of
service level agreements and the application of
such analysis at SLA design and monitoring.

Antonio M. Gutierrez received the PhD degree
in computer science from the University of
Sevilla, Spain. He is a member of the Applied
Software Engineering Group (ISA, www.isa.us.
es) at University of Sevilla, Spain. He worked as
engineer for several companies before joining the
academia. His research interests are related to
service oriented computing and business process
management.

Pablo Fern�andez received the PhD degree in
computer science from the University of Sevilla,
Spain. He is a lecturer and member of the Applied
Software Engineering Group (ISA, www.isa.us.
es) at University of Sevilla, Spain. His current
research is focused on the automated gover-
nance of organizations based on service level
agreements and commitments.

Octavio Mart�ın-D�ıaz received the PhD degree in
computer science from the University of Sevilla,
Spain. He is a lecturer and member of the Applied
Software Engineering Group (ISA, www.isa.us.
es) at University of Sevilla, Spain. His current
research line includes purchasing in cloud com-
puting and service oriented computing, specifi-
cally aspects related to time management in
service level agreements.

Manuel Resinas received the PhD degree in
computer science from the University of Sevilla,
Spain. He is a lecturer at the University of
Sevilla, Spain. His current research lines include
analysis and management of service level agree-
ments, business process compliance, and pro-
cess performance management. Previously, he
worked on automated negotiation of service level
agreements.

Antonio Ruiz-Cort�es is a full professor of soft-
ware and service engineering and he heads the
Applied Software Engineering Group, University
of Sevilla. His current research focuses on ser-
vice-oriented computing, business process man-
agement, testing and software product lines,
being the recipient of the Most Influential Paper of
SPLC 2017 award. He is an associate editor of
Springer Computing. Contact him at aruiz@us.es.

M€ULLER ET AL.: AUTOMATED VALIDATION OF COMPENSABLE SLAS 1319

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 20,2021 at 10:44:02 UTC from IEEE Xplore. Restrictions apply.

www.isa.us.es
www.isa.us.es
www.isa.us.es
www.isa.us.es
www.isa.us.es
www.isa.us.es
www.isa.us.es
www.isa.us.es

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

