
Delay-Optimal Scheduling of VMs in a
Queueing Cloud Computing System

with Heterogeneous Workloads
Mian Guo , Quansheng Guan , Senior Member, IEEE,

Weiqi Chen, Fei Ji ,Member, IEEE, and Zhiping Peng

Abstract—This paper studies virtual machine (VM) scheduling in a queueing cloud computing systemwith stochastical arrivals of

heterogeneous jobs by considering jobs’ delay requirements. The delay-optimal VM scheduling in such a cloud computing system is

formulated as amulti-resource multi-class problemminimize the average job completion time, which is often NP-hard. To solve such a

problem, we first propose a queueingmodel that buffers the same type of VM jobs in one virtual queue. The queueingmodel then divides

the VM scheduling into two parallel low-complexity algorithms, i.e., intra-queue buffering and inter-queue scheduling. Amin-min best fit

(MM-BF) policy is used to schedule the jobs in different queues to minimize the remaining system resources, while a shortest-job-first

(SJF) policy is used to buffer the job requests in each queue based on their job lengths in an ascending order. To avoid job starvation for

the long-duration jobs in SJF-MMBF, we further propose a queue-length-basedMaxWeight (QMW) policy based on Lyapunov drift to

minimize the queue lengths of VM jobs, which is called SJF-QMW. Simulation results show that, SJF-MMBF and SJF-QMWachieve low

delay performance in terms of average job completion time and high throughput performance in terms of job hosting ratio.

Index Terms—Cloud computing, virtual machine, delay-optimal scheduling, queueing, Lyapunov drift

Ç

1 INTRODUCTION

WITH the surging applications of Internet of Things (IoT),
e.g., healthcare, transportation, industrial automation,

and so on, the requirements for cloud computing increase
exponentially, which in the meanwhile extraordinarily
increases the workloads of a cloud computing system [1].
Although the concept of fog computing has been delivered to
alleviate the workloads of a cloud computing system [2], [3],
the amount of computing resource requirements delivered to
a cloud systemwould still grow exponentially. In the concept
of fog computing, only low-complexity computing (e.g., data
gathering) would be handled by local fog nodes, which are
deployed at the edge of the Internet and are configured with
small-sized network devices. Whereas high-complexity com-
puting (e.g., data analysis) are still required to be delivered to
the cloud system.

Cloud computing system provides on-demand services by
allocating resources flexibly. In a cloud computing system,
infrastructure resources (e.g., CPU, memory, storage, and so
on) are dynamically segmented into a number of virtual
machines (VMs) via virtualization technologies. End users

submit their requests for accessing the Infrastructure as a
Service (IaaS) in the form of VMs. The requested resources are
then allocated from the resource pool of the cloud computing
system, and are rent to end users in an on-demand manner
for a required time period.

On receiving amassive amount of requests from end users,
VM scheduling in the cloud computing system determines
the number of VM instances that can be served in parallel
according to the available system resources, and also deter-
mines the priorities to run the VM instances. VM scheduling
is a key technique since that it affects the resource utilization,
throughput, and service availability in the cloud computing
system, aswell as the quality of service (QoS) provisioning for
end users [4].

As an important QoS metric, delay is significant for both

delay-sensitive cloud applications [5], [6] and user experien-

ces with Service Level Agreements (SLAs) in cloud comput-

ing systems [7]. SLA includes a user’s requirement regarding

job completion time (i.e., the duration between its arrival time

and finished time) [8]. The existing VM scheduling schemes

mainly focused on load balancing among VMs and servers

[9], [10], [11], [12], throughput maximization [13], cost mini-

mization [8], [14], [15], [16], [17], etc. However, these schemes

may dissatisfy users’ SLAs, since the job completion time is

not the concern of these schemes.
A number of delay-optimal scheduling policies have

been explored for jobs using single-dimensional resources
[18], [19], [20], [21]. However, the cloud system has multiple
types of resources, e.g., CPU, memory and storage. In the
meanwhile, heterogeneous cloud users have different types

� M. Guo and Z. Peng are with the Guangdong University of Petrochemical
Technology, Guangdong 525000, P.R. China.
E-mail: mian.guo123@gmail.com, pengzp@foxmail.com.

� Q. Guan, W. Chen, and F. Ji are with the School of Electronic and Informa-
tion Engineering, South China University of Technology, Guangzhou
510000, P.R. China.
E-mail: qshguan@gmail.com, c.weiqi@qq.com, eefeiji@scut.edu.cn.

Manuscript received 4 Jan. 2019; revised 14 May 2019; accepted 28 May 2019.
Date of publication 24 June 2019; date of current version 4 Feb. 2022.
(Corresponding author: Quansheng Guan.)
Digital Object Identifier no. 10.1109/TSC.2019.2920954

110 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

1939-1374 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7917-5652
https://orcid.org/0000-0001-7917-5652
https://orcid.org/0000-0001-7917-5652
https://orcid.org/0000-0001-7917-5652
https://orcid.org/0000-0001-7917-5652
https://orcid.org/0000-0001-6159-3194
https://orcid.org/0000-0001-6159-3194
https://orcid.org/0000-0001-6159-3194
https://orcid.org/0000-0001-6159-3194
https://orcid.org/0000-0001-6159-3194
https://orcid.org/0000-0003-1549-3322
https://orcid.org/0000-0003-1549-3322
https://orcid.org/0000-0003-1549-3322
https://orcid.org/0000-0003-1549-3322
https://orcid.org/0000-0003-1549-3322
mailto:
mailto:
mailto:
mailto:
mailto:

of resource demands (e.g., CPU-intensive and memory-
intensive demands), and the users workloads have different
job durations. In the practical cloud system (e.g., Amazon),
a user often requests one type of VMs, which present his
resource demand. For example, a high performance com-
puting (HPC) user requests a VM with a resource set of
(4 CPU, 30 GiB memory, 420 GB storage), while a database
(DB) user requests a VM of (4 CPU, 15 GiB memory, 1,690
GB storage). The existing delay-based scheduling schemes
designed for single-resource systems cannot be applied
directly into such a cloud system.

Considering both the heterogeneous resource demands
and the job completion time requirements, it becomes chal-
lenging to schedule VMs and allocate resources for delay-
sensitive users. For example, a system of (8 vCPU, 32 GiB
memory, 4,000 GB storage) can accommodate one HPC user
or two DB users at a time. The scheduling order will affect the
average job completion time in the system. Furthermore, an
un-appropriate scheduling strategy may give rise to a phe-
nomenon of job starvation. For example, the throughput-
optimal strategy schedules jobs under resource utilization
maximization criterion, which will prefer scheduling two DB
users at a time. A large waiting delay will be introduced to
HPC users. When DB users continually arrive at the system,
HPCusersmay be starved.

This paper studies the delay-optimal VM scheduling in
the multi-resource cloud system. Due to the high cost of
purchasing and maintaining cloud infrastructures and cool-
ing systems as well as bandwidth infrastructures, it is costly
to over-purchase these types of infrastructures to immedi-
ately response to the massive amount of computing
requests from end users. In this sense, queueing would be
inevitable in a cloud system, resulting in a nontrivial
response time for the requests from end users. Generally,
the job completion time provided to end users mainly con-
sists of a queueing delay and a job duration time. The
queueing delay is critical for the job completion time mini-
mization problem. For example, the throughput-optimal
strategy (e.g., Myopic MaxWeight in [13]) often schedules
the job from the longest queue first, which may lead to a
long queueing delay for the job with a low arrival rate and
starve the job with a low arrival rate.

We aim at minimizing the job completion time for
users with heterogeneous workloads in such a cloud
queueing system. We assume that the cloud system pro-
vides limited types of VM instances. Users arrive at the
system stochastically. An end user requests a type of VM
instance, i.e., a job for the cloud system, for a required
length of time. The main contributions are summarized
as follows.

� Formulation for a delay-optimal multi-resource multi-class
VM scheduling problem: We use the performance
metric in terms of average job completion time as the
optimization objective to construct a multi-resource
multi-class VM scheduling problem in a queueing
cloud system. The problem is then transformed to
a delay-optimal decision making process by defining
a VM-configuration array as the solution space.
The VM-configuration array is defined as the feasible
VM-configuration vectors with respect to resource

requirements of various types of VMs and resource
configurations in the cloud.

� Intra-queue buffering and inter-queue scheduling in
queueing cloud system: We propose a queueing model
that buffers the arriving requests for the same type
of VMs into a separate virtual queue. Intra-queue
buffering and inter-queue scheduling algorithms are
then designed for the delay-optimal decision making
process. We use a min-min best fit (MMBF) policy to
schedule the jobs in different queues, and use a
shortest-job-first (SJF) policy to buffer the job requ-
ests in each queue. MMBF selects a sequence of VM-
configuration vectors to minimize the remaining
resources, while SJF re-arranges the job requests in
an ascending order based on their job lengths. We
then combine the parallel-running SJF and MMBF
algorithms (called SJF-MMBF) to find the solution
that optimizes the average job completion time.
Once the number of jobs that request the same type
of VMs is determined by MMBF, the corresponding
number of jobs will leave the queue in a head-of-line
(HOL) manner and be executed on the cloud.

� Job starvation avoidance by Lyapunov drift: The SJF-
MMBF scheme will lead to a job starvation for the
long-duration jobs. Based on the Lyapunov drift the-
ory, a queue-length-based MaxWeight (QMW) pol-
icy is then proposed to minimize the queue lengths
of the VM requests. Theoretical analysis and simula-
tion results illustrate the efficiency of the proposed
SJF-QMW in delay-optimal scheduling of VMs.

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Section 3 formulates
the VM scheduling problem and transforms it to a decision
making process, based on the definition of VM-configuration
array. Section 4 proposes the SJF-MMBF scheme to find out
the solution for the problem. Section 5 improves SJF-MMBF
with SJF-QMW based on Lyapunov drift theory. Simulation
studies are conducted to demonstrate the efficiency of the pro-
posals in Section 6. Finally, Section 7 concludes this paper.

2 RELATED WORK

A number of VM scheduling and task scheduling algo-
rithms have been proposed in recent years to achieve differ-
ent objectives.

Load balancing distributes workloads to servers to scale
up increasing demands. Several approaches have been pro-
posed to schedule VMs among servers, like genetic algo-
rithm (GA) [9] and ant colony optimization with particle
swarm (ACOPS) [10].

Resource minimization and throughput optimization are
critical to reduce the cost in the cloud computing system.
Rampersaud et al. designed several online algorithms,
including first-fit-sharing (FFS) and best-fit-sharing (BFS),
to determine the assignment of user requested VM instances
to physical servers for minimizing the number of physical
servers [11]. Maguluri et al. designed a non-preemptive
scheduling scheme to solve the VM scheduling problem for
achieving throughput optimization [13].

Some works focused on the economic aspects in the
cloud computing system. Nejad et al. studied the truthful

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 111

greedy mechanisms for dynamic VM provisioning and allo-
cation to achieve promising results in terms of revenue for
the cloud provider [12]. Samreen et al. studied the task
assignment problem based on machine learning, aiming at
balancing between the instance price and application execu-
tion time [22].

Many works focused on task scheduling in cloud comput-
ing environments [23], [24], [25, 26]. A number of heuristic
algorithms, including first-come-first-serve (FCFS), minimum
completion time (MCT), minimum execution time (MET),
max-min, min-min and GA algorithms as well as their var-
iants [8], [14], [15], [16], [17], have been explored for task
scheduling. These algorithms focused on addressing the
problem of task assignment among various VMs to minimize
the performance metrics in terms of makespan (i.e., the time
interval between the starting of the first task and the finished
time of the last task), cost, degree of imbalance, etc. Mann
studied the interplay ofVMallocation amongphysical servers
and task assignment amongVMs [27].

A number of delay-optimal scheduling policies have also
been explored for jobs using a single-dimensional resource.
SJF was initially proposed to address the delay-optimal
scheduling problem in machine repair [18] and then was
extended to computer systems in CPU scheduling [19]. The
round-robin (RR) preemptive scheduling discipline was
proposed to minimize the per-user response time in CPU
scheduling [19], [20]. Sun et al. studied the delay-optimal
scheduling of replications in scheduling tasks of a computer
system [21].

Since the above single-dimensional delay-optimal schedul-
ing algorithms cannot directly apply to the multi-class multi-
resource system, they motivate the study in this paper. Our
work differs from the existing works in two aspects. First, we
study the delay-optimal scheduling of VM instances in a
multi-class multi-resource cloud system with heterogeneous
and dynamic workloads. We aim at minimizing the average
job completion time. Second, our study is carried out under a
virtual queueing model, which facilitates separate intra-
queue buffering and inter-queue scheduling to lower the
complication of VM scheduling and avoid job starvation. To
the best of our knowledge, this is the first work that tackles
the delay-optimal scheduling of VM instances in such a
queueing system.

3 MODEL AND FORMULATION

This section formulates the VM scheduling problem in a
queueing cloud computing system.

3.1 System Model

This paper considers a cloud computing system with a
resource pool (e.g., a cluster, or, a fog node) consisting of a
number of computing infrastructure resources (e.g., CPU,
memory and storage, etc.). These infrastructure resources
are rented out to end users in the form of VM instances via
virtualization technologies. The capacity of a resource pool
is much larger than that of a VM instance. Therefore, multi-
ple VM instances can be ran in a resource pool in parallel.
Assume that, a limited number of VM types are provided to
end users, where a type of VM specifies the maximum infra-
structure resources at which an end user can use per time

slot. As an example, Table 1 lists three types of VM instan-
ces, which are available in Amazon EC2 [28].

Assuming there are V distinct types of VMs provided by
the system, where each type of VM is specified by K differ-
ent resources. Let V ¼ {1; . . . ; V } and K ¼ {1; . . . ; K} be the
spaces of VM types and resource types, respectively. Let
Rvk be the amount of type-k resources required by a type-v
VM. Let Ck be the amount of type-k resources in the system.
Then, the system can support a type-v VM instance if and
only if the following resource constraint is satisfied

Rvk � Ck; 8k 2 K: (1)

Definition 1 (A feasible VM-configuration). A V -elemen-
tal vector N ¼ ðN1; N2; . . . ; NV Þ is defined as a feasible VM-
configuration of a fog/cloud computing system if the system
can simultaneously run N1 number of type-1 VMs, N2 number
of type-2 VMs, . . ., and NV number of type-V VMs. That is,
the V -elemental vector N is a feasible VM-configuration if and
only if the following resource constraint is satisfied

XV
v¼1

NvRvk � Ck; 8k 2 K: (2)

The maximum number of type-v jobs Nmax
v for v 2 V that

can be supported is defined as

Nmax
v ¼ min

k2K
Ck

Rvk

� �
; (3)

where bXc represents the maximum integer number that
does not exceedX.

3.2 Traffic Model

A queueing model with heterogeneous and dynamic work-
loads is considered: (1) V types of VM requests arrive sto-
chastically and independently; (2) for each type of VM, the
arriving number of jobs per time slot follows an indepen-
dent and identical distribution (i.i.d), and the length of jobs
also follows an i.i.d.

We assume that when a request from an end user arrives,
its required type of VM and its duration time (i.e., the job
length) can be specified. A job is said to be a type-v job if a
type-v VM instance is allocated.1 The length S of a job indi-
cates that an instance needs to run for S time slots. It is the
duration between a job starts and finishes from the user’s per-
spective. The job length S is determined by the application-
level workloads and the requesting service (e.g., VM types)

TABLE 1
Representative Instances Provided by Amazon EC2

Category Type Memory vCPU Storage

General Purpose m4.2xlarge 32 GiB 8 1,690 GB
Memory Optimized r4.xlarge 30.5 GiB 4 420 GB
Compute Optimized c4.xlarge 7.5 GiB 4 1,690 GB

1. An end user can request a VM instance from supported types of
VMs directly. The user can also request a custom VM instance with
specified amounts of multi-resources, e.g., CPU, memory, and storage.
In this case, the system will allocate one type of supported VMs for this
user via clustering technologies.

112 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

[29], [30], [31]. Although S cannot be obtainedprecisely before
job completion, it can be predicted via estimation technologies
[31], [32], [33], [34], [35]. Particularly, the prediction method
using machine learning in reference [32] has achieved a best-
case estimation error of 1.6 percent.

We consider a non-preemptive time-slotted system,
where a job will be served until it finishes. At the beginning
of each time slot, the VM scheduler has to decide which
types of VM instances and how many of them can be served
in parallel, as well as which instances to run first.

Assume that initially the system is idle. Let JvðtÞ � 0 be
the number of type-v jobs that arrive in time interval
½t; tþ 1Þ and Sj

vðtÞ be the length of the jth type-v job, where
0 � j < JvðtÞ. Then the expected arrival rate of type-v jobs
�v is derived by

�v ¼ E½JvðtÞ� ¼ lim
t!1

1

t

Xt�1

t¼0

JvðtÞ: (4)

The job arrival rate of the system is derived by

� ¼
XV
v¼1

�v: (5)

Let Sv be the expected length of type-v jobs, which is
derived by

Sv ¼ E½Sj
vðtÞ� ¼ lim

t!1
1

t

Pt�1
t¼0

PJvðtÞ�1
j¼0 Sj

vðtÞPt�1
t¼0 JvðtÞ

: (6)

Let NN
v ðtÞ be the number of type-v jobs that begin to be

scheduled at time slot t, NP
v ðtÞ the number of type-v jobs

that were scheduled before t and require continuation.
Then, the total number of type-v jobs that will be scheduled
in time interval ½t; tþ 1Þ is derived by

NvðtÞ ¼ NN
v ðtÞ þNP

v ðtÞ; (7)

where NvðtÞ should satisfy the resource constraint in Eq. (2).
Let QvðtÞ denote the number of type-v jobs queueing in

the system at the beginning of time slot t. Then the evolution
of queue length Qv follows:

Qvðtþ 1Þ ¼ max½QvðtÞ þ JvðtÞ �NN
v ðtÞ; 0�: (8)

Notice that if a job is scheduled, it leaves the queue.
Let WvðtÞ denote the accumulative workload of type-v

jobs at the beginning of time slot t. Since the job lengths of

all type-v jobs that arrived at time interval ½t; tþ 1Þ isPJvðtÞ�1
j¼0 Sj

vðtÞ, and the job lengths of all served jobs in time
interval ½t; tþ 1Þ isNvðtÞ, the evolution ofWv follows:

Wvðtþ 1Þ ¼ max WvðtÞ þ
XJvðtÞ�1

j¼0

Sj
vðtÞ �NvðtÞ; 0

" #
: (9)

Note that queue length QvðtÞ represents the accumulative
number of type-v jobs that compete for the shared available
resource at time slot t, while WvðtÞ represents the accumula-
tive job length requirements.

Similar to references [13], the stability of a cloud system
is defined as follows

Definition 2 (Stability of a fog/cloud system). A fog/cloud
system is stable if the queue QðtÞ and the workload WðtÞ are
both stable, where the queue QðtÞ ¼ ðQ1ðtÞ; . . . ; QV ðtÞÞ is sta-
ble if

lim
t!1

sup
1

t

Xt�1

t¼0

E
X
v

QvðtÞ
" #

< 1: (10)

The workloadW ðtÞ ¼ ðW1ðtÞ; . . . ;WV ðtÞÞ is stable if

lim
t!1

sup
1

t

Xt�1

t¼0

E
X
v

WvðtÞ
" #

< 1: (11)

The details of some notations are listed in Table 2.

3.3 Optimization Objective

We are mainly interested in the average job completion time
in a cloud system. The average job completion time is the
average job completion time over all types of VMs and over
all time. It has some advantages of using the average job
completion time as an optimization objective to design a
delay-optimal VM scheduling policy in comparison with
other performance metrics. First, since the completion time
of a job is the summation of its queueing delay and its run-
ning duration, it relates directly to the quality of experiences
of end users. Second, given the same traffic loads and
resource configurations, the VM scheduling achieving a
shorter average job completion time is more efficient in
resource utilization [36].

Let Tj
v be the job completion time of the jth type-v job,

which is defined as

Tj
v ¼ Dj

v þ Sj
v; (12)

whereDj
v is the queueing delay and Sj

v is the job length.
The long-term job completion time of type-v jobs is

derived by

E½Tv� ¼ lim
t!1

Pt�1
t¼0

PJvðtÞ�1
j¼0 Tj

vPt�1
t¼0 JvðtÞ

: (13)

The goal of this paper is to seek for low-complexity
scheduling policies that solves the following problem:

TABLE 2
Some Notations

Symbol Definition

V The space of VM types
K The space of resource types
Rvk The amount of kth resources required by a type-v VM
Ck The amount of kth resources in a resource pool
JvðtÞ The number of type-v jobs arriving during t

Sj
v The length (duration) of the jth job of type-v

�v The expected arrival rate of type-v jobs

Sv The expected length of type-v jobs

NN
v ðtÞ The number of type-v jobs that begin to run at t

NP
v ðtÞ The number of type-v jobs that must be continued at t

NvðtÞ The total number of type-v jobs to run during t

QvðtÞ The number of type-v jobs queueing in the system

WvðtÞ The accumulative job length requirements

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 113

Minimize:

E½T � ¼ 1

V

XV
v¼1

E½Tv�:
(14)

Subject to:

XV
v¼1

NvðtÞRvk � Ck; 8k 2 K
(15)

NN
v ðtÞ � QvðtÞ; 8v 2 V (16)

NvðtÞ � WvðtÞ; 8v 2 V (17)

0 � NN
v ðtÞ � NvðtÞ; 8v 2 V; (18)

where Eq. (14) is the average job completion time of all jobs
over time; Eq. (15) is the resource constraint; Eq. (16) fol-
lows Eq. (8); Eq. (17) follows Eq. (9); and Eq. (18) follows
Eq. (7).

As shown in Eqs. (15), (16), (17), and (18), the decision
variables are NvðtÞ and NN

v ðtÞ. According to Eq. (7), if NvðtÞ
is determined, then NN

v ðtÞ is also determined. Therefore, the
above problem is equivalent to finding out a sequence opti-
mal N�

v ðtÞ for t ¼ 0; . . . ;1 to achieve the objective.

3.4 Resource Abstraction and Problem
Transformation

To solve the problem described in Eq. (14), this paper intro-
duces a VM-configuration array NAt�V ¼ Nðat; vÞð ÞAt�V ,
which represents the set of feasible scheduling strategies
with respect to the multi-resource requirements of various
types of VMs and the capacity of a cloud computing system.
The definition of VM-configuration array is as follows

Definition 3 (VM-configuration array). NAt�V is said to be
a VM-configuration array at time slot t for t ¼ 0; . . . ;1 if and
only if the row vector Nat ¼ ðNðat; vÞÞ1�V for at ¼ 1; . . . ; At

is a feasible VM-configuration at time slot t, where a V -elemen-
tal VM-configuration Nat ¼ ðNðat; 1Þ; . . . ; Nðat; V ÞÞ at time
slot t is said to be feasible if and only if the following constraints
are satisfied:

PV
v¼1 Nðat; vÞRvk � Ck; 8k 2 K

Nðat; vÞ �NP ðat; vÞ � QvðtÞ; 8v 2 V

Nðat; vÞ � WvðtÞ; 8v 2 V

0 � NP ðat; vÞ � Nðat; vÞ; 8v 2 V:

8>><
>>: (19)

where NP ðat; vÞ equals NP
v ðtÞ, representing the number of

on-scheduling type-v jobs starting at slot t. At is a numerical
variable representing the number of feasible VM-configura-
tions at slot t. For any at =2 f1; . . . ; Atg, Eq. (19) does not
hold for Nat .

Example 1. Consider a resource pool that is configured
with specified amounts of memory, CPU and storage
resources of (32, 12, 4,000) respectively, and consider
three types of VMs with different resource require-
ments of (32, 8, 1,690), (30.5, 4, 420) and (7.5, 4, 1,690),
respectively. Assume that WvðtÞ > Nmax

v , QvðtÞ >
Nmax

v �NP
v ðtÞ

� �
and NP

v ðtÞ ¼ 0 for v 2 V. Then, according
to Definition 3, At ¼ 5, and the VM-configuration array at
slot t is abstracted as

N5�3 ¼

0 0 0
0 0 1
0 0 2
0 1 0
1 0 0

0
BBBB@

1
CCCCA;

which means that there are five feasible VM-configura-
tions. If we choose a ¼ 5 such that the VM-configuration
ð1 0 0Þ is selected, then the system will schedule one
type-1 jobs and none of the other two types of jobs simul-
taneously at time slot t.

The number of VM configurations will become large when
the VM types increase. This limits the scalability of VM sched-
uling algorithms. To address this issue, the practical system
often divides the cloud resource into multiple region-based
resource pools, e.g., clusters. Each resource pool is then
assigned to deal with a number of specific VM types. For
example, Amazon providesmore than 70 types of VMs.How-
ever, only 17 VM types are distributed to the physical servers
configured with Intel Xeon E5 [28]. A physical Intel Xeon E5
server is practically assigned to deal with a part of the 17 VM
types. Additionally, the dominated VM configurations can be
removed to further reduce the VM configuration array. For
Example 1, the first and the second rows (0 0 0) and (0 0 1) can
be removed since they are dominated by the third row (0 0 2).

With the introduction of VM-configuration array, the
optimal problem in Eq. (14) becomes a decision making
problem with a decision regarding which at 2 f1; . . . ; Atg
should be selected at t for t ¼ 0; . . . ;1 such that the long
term E½T � is minimized.

On the other hand, according to Eq. (7), the number of
type-v jobs completed at t is derived as follows:

NF
v ðtÞ ¼ NvðtÞ �NP

v ðtþ 1Þ: (20)

We consider a lossless system; then, the average job comple-
tion time of type-v jobs at the beginning of time slot t for
t > 0 could be approximated by

E½TvðtÞ� ¼
Pt�1

t¼0

PNF
v ðtÞ�1

j¼0 Tj
vPt�1

t¼0 N
F
v ðtÞ

¼
Pt�1

t¼0

P NvðtÞ�NP
v ðtþ1Þð Þ�1

j¼0 Tj
vPt�1

t¼0 NvðtÞ �NP
v ðt þ 1Þ� � ;

(21)

which is a function of a sequence NvðtÞ for t ¼ 0 to t� 1.
Let gðfNatgÞ denote a function of a sequence Nat for

t ¼ 0; . . . ;1 that represents the average job completion time
of all jobs in the long run. Then, the optimization problem
in Eq. (14) is transformed into

Minimize:

gðfNatgÞ
¼ lim

t!1
E½T ðtÞ�

¼ lim
t!1

1

V

XV
v¼1

E½TvðtÞ�

¼ lim
t!1

PV
v¼1

Pt�1
t¼0

PðNðat ;vÞ�Nðat ;vÞP ðtþ1ÞÞ�1
j¼0 Tj

vPV
v¼1

Pt�1
t¼0ðNðat; vÞ �Nðat; vÞP ðt þ 1ÞÞ :

(22)

114 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

Subject to:

Nat 	 NAt�V ; t ¼ 0; . . . ;1; at 2 f1; . . . ; Atg:
(23)

Notice that limt!1
Pt�1

t¼0 N
F
v ðtÞ ¼ limt!1

Pt�1
t¼0 JvðtÞ holds

for all v 2 V in a lossless system. Therefore, the average job
completion time optimization problem is equivalent to find-
ing out a sequence a�t such that a sequential Na�t minimizes
the long term gð
Þ.

It is worth pointing out that the feasible VM configurations
can be determined offline only once before the running of
scheduling algorithms. In this sense, the offline computation
has reduced the complexity of online scheduling.

4 SJF-MMBF

Because of the high degree of heterogeneity and dynamism
in workloads, particularly from IoT applications, it would
be difficult and very costly to accurately model the traffic
characteristics (e.g., the expected arrival rate and the aver-
age job length, etc.). Therefore, traditional “offline” methods
such as the linear/nonlinear programming solver are
unsuitable for solving the optimization problem described
in Eqs. (22) and (23).

A job often experiences buffering and scheduling in the
queueing cloud system. We find that the job buffering pol-
icy and the job scheduling policy are separable, since the
intra-queue buffering can be carried out on the arrivals of
jobs while the inter-queue scheduling is carried out at the
head of line. In this sense, we propose a queueing model
that buffers the arriving requests for the same type of VMs
into a separate virtual queue, as shown in Fig. 1. Using our
queueing model, the intra-queue buffering decides the
order of the same type of VM instances to be served, while
the inter-queue scheduling decides the number of VM
instances to be served simultaneously in each virtual queue.
Since the jobs have been re-arranged in each queue, the
inter-queue scheduler just needs to simply de-queue the
HOL jobs in each virtual queue. The parallel processes of
intra-queue buffering and inter-queue scheduling facilitates
the policy study in each process and reduce the complexity
of the delay-optimal VM scheduling.

We first design a min-min best fit algorithm to schedule
jobs in different queues, which addresses the problem of
how many VM instances in each virtual queue can be
served in parallel. Then the SJF policy is designed to buffer
arriving jobs in each queue for solving the problem of which
instances of the same type to run first. By combining the
previous two algorithms in parallel scheduling and buffer-
ing processes, respectively, the solutions of the problem

described in Eqs. (22) and (23) are obtained. We will present
the algorithm details in this section.

4.1 MMBF Inter-Queue Scheduling

Intuitively, at every decision epoch, if we choose an action
that uses the most amount of available resources among all
actions, then the average queueing delay would be short-
ened such that the average job completion time would also
be shortened. Therefore, the first algorithm, called MMBF,
is proposed to determine a sequence Na�t . Originally, best fit
was designed to schedule single-resource jobs, such as those
involving memory or storage [37], [38]. The main idea of
best fit is to find the smallest segmented available resource
among multiple segmented available resources to satisfy a
request, aiming at minimizing the amount of wasted avail-
able resources. Differently, in MMBF, we define the best fit
action as the action that minimizes the remaining resources.
However, MMBF has to define the remaining resources in
the multi-resource cloud system when applying the best fit
policy, which is presented as follows.

Let DkðatÞ denote the kth normalized remaining resource
under scheduling decision Nat , where Nat 	 NAt�V and
at 2 f1; . . . ; Atg. That is

DkðatÞ ¼ Ck �
PV

v¼1 Nðat; vÞRvk

Ck
: (24)

Let DðatÞ denote the minimum value of DkðatÞ for k 2 K

under action at. That is

DðatÞ ¼ min
k2K

DkðatÞ: (25)

Then, under the MMBF scheduling policy, the solution a�t
in Eq. (22) at t is the one that satisfies

a�t ¼ arg min
at2f1;...;Atg

DðatÞ: (26)

Accordingly,Na�t is determined according to Definition 3.

4.2 SJF Intra-Queue Buffering

Section 4.1 has proposed the MMBF policy to determine a�t
and Na�t for decreasing the average job completion time of
all types of jobs in the long run by maximizing the resource
utilization in every decision epoch. Since MMBF is not
delay-optimal, this section focuses on the extended problem
of which jobs of the same type to run first when the number
of jobs to be scheduled is determined, with the goal of opti-
mizing the delay performance of the jobs.

Studies [19], [39] shown that SJF is an efficient non-pre-
emptive scheduling discipline for achieving low average job
completion time in a system consisting of a single resource. In
SJF, a system schedules the shortest job first, then the next
shortest, and so on [19]. Since jobs requesting the same VM
type require the same amount ofmulti-resources, it is possible
to buffer them in the same virtual queue. Thus, each queue
becomes a standard single-resource system. Then, SJF can be
applied to each queue to determine the queueing positions,
such that the average job completion time isminimized.

This paper proposes the SJF buffering policy to address
the problem of which jobs of the same type to run first for

Fig. 1. System model for our proposed job scheduling. By using a virtual
queue for each type of jobs, two parallel algorithms, including SJF
buffering and MMBF (or, QMW) scheduling, can be ran simultaneously.

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 115

delay optimization. As shown in Fig. 1, the arriving jobs are
buffered into V virtual queues according to their requesting
types of VMs. Under the SJF buffering policy, the jobs
requesting the same type of VMs are buffered in the same
virtual queue in ascending order of their lengths, e.g., the
job with the shortest length is buffered at the head of
the line. The details of the SJF buffering policy is shown in
Algorithm 1. Once a�t is determined by MMBF, the Nða�t ; vÞ
number of type-v jobs will be de-queued in a HOL manner
and scheduled on the cloud in parallel at t.

Algorithm 1. SJF Buffering

While a type-v job f arrives in time interval ½t; tþ 1Þ, do
1) Find a position j in the type-v queue that satisfies

Sj
v � Sf � Sjþ1

v ; j in type-v queue (27)

2) Insert job f into the type-v queue in a position after j,
and let

Qvðtþ 1Þ ¼ QvðtÞ þ 1;
Wvðtþ 1Þ ¼ WvðtÞ þ Sf :

�
(28)

End while
where Sf is the length of the new job f and Sj

v is the length of
the jth job in the type-v queue.

Algorithm 2. SJF-MMBF

Initialization: Qv ¼ Wv ¼ Nv ¼ 0 for v 2 V.
For t ¼ 0 to1, do

(1) Buffering process (SJF algorithm): All the type-v jobs
that arrived in time interval ½t� 1; tÞ are buffered in
the vth queue with the buffering policy described in
Algorithm 1, for v 2 V.

(2) Scheduling process:
a) Determine scheduling strategy (MMBFalgorithm):

At decision epoch t, do
i) Caculate the VM-configuration array NAt�V

according to Eq. (19).
ii) Choose action a�t 2 f1; . . . ;Atg according

to Eq. (26) such that Na�t 	 NAt�V is
determined.

b) Scheduling: In time interval ½t; tþ 1Þ, NP
v ðtÞ type-v

jobs continue to run, ðNða�t ; vÞ �NP
v ðtÞÞ type-v

jobs de-queue from the vth queue in a HOL man-
ner and begin to run, for v 2 V. The number of jobs
waiting in the queue and the accumulative work-
load requirement are updated, respectively, by

Qvðtþ 1Þ ¼ QvðtÞ � ðNða�t ; vÞ �NP
v ðtÞÞ;

Wvðtþ 1Þ ¼ WvðtÞ �Nða�t ; vÞ:
�

(29)

Since the proposedMMBF scheduling algorithm addresses
the problem of how many VM instances could be served in
parallel, and the SJF buffering policy addresses the problem
of which instances of the same type to run first, we combine
them together, called SJF-MMBF, to solve the problem

described in Eqs. (22) and (23). Specifically, as shown in Fig. 1,
in SJF-MMBF, there are two parallel processes, buffering and
scheduling. When a job arrives, the SJF buffering algorithm is
initiated to buffer the new job according to its job length. As
for scheduling process, at the beginning of every slot t, the
scheduler determines the scheduling strategy based on the
MMBF algorithm. The details of SJF-MMBF are shown in
Algorithm 2.

5 POLICY IMPROVEMENT BASED ON LYAPUNOV

DRIFT

Although SJF is efficient in the average job completion time
optimization, it has the potential for job starvation under the
SJF-MMBF scheme. This is because the behavior of MMBF,
which always selects an action minimizing the remaining
resources, will be detrimental to some type of jobs. As an
example, with the resource settings in Example 1, when
type-1 jobs are queueing, the scheduler of MMBF would
always choose action N5 ¼ ð1 0 0Þ, which minimizes the
remaining resources of the system. Accordingly, jobs from
other queues will experience extremely long queueing
delays if type-1 jobs arrive continually. To overcome this
disadvantage of SJF-MMBF, we analyze the Lyapunov drift
of the queue lengths under any scheduling policy in the fol-
lowing section. Then, the scheduling policy is optimized
based on the analytical results.

5.1 Lyapunov Drift

Let LðtÞ ¼ 1
2

PV
v¼1 QvðtÞ2 be the quadratic Lyapunov function

on QðtÞ, where QðtÞ is a queue length vector consisting of V
elements. Define DLðtÞ as one-step conditional Lyapunov
drift, that is

DLðtÞ ¼ E Lðtþ 1Þ � LðtÞjQðtÞ½ �: (30)

We have the following theorem.

Theorem 1. Every slot t, for any value of QðtÞ, and under any
scheduling policy, the Lyapunov drift satisfies

DLðtÞ � Bþ
XV
v¼1

QvðtÞ NP
v ðtÞ þ �v

� �

�E
XV
v¼1

QvðtÞNðat; vÞjQðtÞ
" #

;

(31)

where B is a finite constant.

Proof. Substituting Eq. (30) with Eq. (8) and with some
calculus, we have

DLðtÞ �
XV
v¼1

QvðtÞE JvðtÞ �NN
v ðtÞjQðtÞ� �

þ 1

2

XV
v¼1

E JvðtÞ �NN
v ðtÞ� �2jQðtÞ

h i
:

(32)

According to Eqs. (4) and (7), we have �v ¼ E½JvðtÞ�
and NN

v ¼ Nv �NP
v , therefore

116 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

DLðtÞ � 1

2

XV
v¼1

E �v �NvðtÞ þNP
v ðtÞ

� �2jQðtÞ
h i

�
XV
v¼1

QvðtÞE NvðtÞ �NP
v ðtÞ � �vjQðtÞ� �

:

(33)

Since 0 � NP ðtÞ � NvðtÞ � Nmax
v , where Nmax

v is derived
by Eq. (3), we have

�v �NvðtÞ þNP
v ðtÞ

� �2� max½�2
v; ðNmax

v � �vÞ2�:

Let B ¼ max 1
2�

2
v;

1
2 ðNmax

v � �vÞ2
h i

and substituting into
Eq. (33), we have

DLðtÞ � B�
XV
v¼1

QvðtÞE½NvðtÞ �NP
v ðtÞ � �vjQðtÞ�:

Note that �v is independent of QðtÞ. NP
v ðtÞ is the num-

ber of jobs that have started and require to continue past
t, which is also independent of QðtÞ. Therefore

E½NP
v þ �vjQðtÞ� ¼ NP

v ðtÞ þ �v:

Note that NvðtÞ is equivalent to Nðat; vÞ 2 Nat , as
described in Section 3.4. Accordingly

DLðtÞ � Bþ
XV
v¼1

QvðtÞ NP
v ðtÞ þ �v

� �

� E
XV
v¼1

QvðtÞNðat; vÞjQðtÞ
" #

:

(34)

Then the statement follows. tu

5.2 SJF-QMW

According to the Lyapunov drift theory [40], [41], if a policy
can be designed to control the Lyapunov drift DLðtÞ as
described in inequality (31) towards negative, then the
queue length will be stable such that the potentiality of job
starvation for jobs which have long lengths could be avoid-
able with high probability. Therefore, based on the result of
Theorem 1, another online scheduling algorithm, called
Queue-based-MaxWeight (QMW), is proposed to determine
a sequence a�t andNa�t .

In QMW, an action at is chosen if it minimizes the upper
bound of the queue length, i.e., a�t is chosen if it satisfies

a�t ¼ arg max
at2f1;...;Atg

XV
v¼1

QvðtÞNðat; vÞ: (35)

Consequently, Na�t is determined according to Definition 3.
QMW is proposed to find out the optimal vector of VM-

configurations Na�t from the VM-configuration array NAt�V

while SJF is designed to select which jobs of the same type
to run first. We combine them to form another scheme,
called SJF-QMW, to minimize the long term job completion
time gð
Þ. Specifically, as shown in Fig. 1, in the SJF-QMW
scheme, the SJF policy is used to buffer arriving jobs, and
the QMW algorithm is used to find out a sequence a�t and
Na�t . Then, the Na�t number of jobs will run simultaneously.

The process of SJF-QMW is similar to Algorithm 2, but differ-
ently, the a�t under SJF-QMW is determined with Eq. (35).

5.3 Performance Analysis

We investigate the efficiency of the proposed SJF-QMW
scheme by analyzing the stability of the queueing system
under SJF-QMW. Similar to reference [13], the capacity
region of a cloud computing system is defined as follows

Definition 4 (The capacity regions of a cloud computing
system). Let a V -elemental vector � ¼ ð�1; . . . ; �V Þ represent
the expected job arrival rates, i.e., �v ¼ X indicates that there
are averagely X number of type-v job arrivals per time slot. Let
�S ¼ ð�1S1; . . . ; �V SV Þ be the expected arrival loads, where Sv

is the expected length of the type-v jobs. Two sets C� and Cw are
defined respectively as

C� ¼ � : � 2 ConvðNNÞ	

; (36)

and

Cw ¼ �S : �S 2 ConvðNÞ	

; (37)

where Conv denotes the convex hull. N is the VM-configuration

array that only considers the resource constraints
PV

v¼1 Nðat;
vÞRvk � Ck for all k and all t, while the other constraints in
Eq. (19) are released. Therefore, we have NAt�V � N for t ¼
0; 1; 2; NN

At�V ¼ NNðat; vÞ
� �

At�V
, where NNðat; vÞ repre-

sents the number of type-v jobs that begin to be scheduled in t

under action at. Accordingly, according to Eq. (7), NAt�V ¼
NN

At�V þNP
At�V . Then, C� and Cw are two types of capacity

regions of the computing system. The former is called client-
capacity region while the latter is load-capacity region.

With the definitions of the capacity regions and the stability
of a cloud system in Definitions 4 and 2, respectively, it is easy
to obtain the following results.

Lemma 1. For any � =2 C�

lim
t!1

E
XV
v¼1

QvðtÞ
" #

¼ 1: (38)

For any �S =2 Cw

lim
t!1

E
XV
v¼1

WvðtÞ
" #

¼ 1: (39)

Since SJF-QMW controls the queue length vector via the
Lyapunov drift theory, we have the following theorem.

Theorem 2. For any vector of job arrival rates that satisfies
ð1þ �Þ� 2 C� and any vector of arrival loads that satisfies
ð1þ �Þ�S 2 Cw for some � > 0, the fog/cloud computing sys-
tem is stable under the SJF-QMW scheme.

The one-step Lyapunov drift of the queue length follows:

DLðtÞ � B� �
XN
v¼1

QvðtÞ�v; (40)

whereB is a constant, which is the same withB in Theorem 1.

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 117

Similarly, the one-step Lyapunov drift of the workload follows:

DV ðtÞ � BW � �
XV
v¼1

WvðtÞ�vSv; (41)

where BW is a constant.

Proof. (1) The stability of the queue lengths under the SJF-
QMW scheme is proved as follows.

Under SJF-QMW, we have

XV
v¼1

QvðtÞNða�t ; vÞ ¼ max
at2f1;...;Atg

XV
v¼1

QvðtÞNðat; vÞ:

Accordingly

XV
v¼1

QvðtÞNNða�t ; vÞ ¼ max
at2f1;...;Atg

XV
v¼1

QvðtÞNNðat; vÞ:

Since ð1þ �Þ� 2 C�, according to Eq. (36), we have

ð1þ �Þ� 2 Conv fNNg:

Therefore, we get

ð1þ �Þ
XV
v¼1

QvðtÞ�v �
XV
v¼1

QvðtÞNNða�t ; vÞ: (42)

On the other hand, under SJF-QMW, the Lyapunov
drift of Theorem 1 becomes

DLðtÞ � Bþ
XV
v¼1

QvðtÞ NP
v ðtÞ þ �v

� �

� E
XV
v¼1

QvðtÞNða�t ; vÞjQðtÞ
" #

: (43)

Substituting Eq. (42) into the above inequality and
rewriting NP

v ðtÞ asNP
v ða�t ; vÞ, we get

DLðtÞ � Bþ
XV
v¼1

QvðtÞ NP ða�t ; vÞ þNNða�t ; vÞ
� �

�E
XV
v¼1

QvðtÞNða�t ; vÞjQðtÞ
" #

� �
XN
v¼1

QvðtÞ�v

¼ Bþ
XV
v¼1

QvðtÞNða�t ; vÞ

�E
XV
v¼1

QvðtÞNða�t ; vÞjQðtÞ
" #

� �
XN
v¼1

QvðtÞ�v

¼ B� �
XN
v¼1

QvðtÞ�v:

(44)

Let B ¼ fQ :
PV

v¼1 Qv�v � B
�g. Then, the drift DLðtÞ is

negative outside the finite set B, which indicates that,
when Q =2 B, the queue state Q is positively recurrent, it
will eventually return to a positively recurrent state

within finite time intervals. Then, the queue length is sta-
ble following the Foster-Lyapunov theorem [41], [42].

(2) The stability of the workload under SJF-QMW is
proved as follows.

Let V ðtÞ ¼ 1
2

PV
v¼1 WvðtÞ2 be the quadratic Lyapunov

function on WðtÞ, where W ðtÞ is a V -elemental vector of
the workload. Define DV ðtÞ as one-step conditional
Lyapunov drift of V ðtÞ, that is

DV ðtÞ ¼ E V ðtþ 1Þ � V ðtÞjWðtÞ½ �: (45)

Substituting Eq. (45) with Eq. (9) and with some calcu-
lus, we have

DV ðtÞ �
XV
v¼1

WvðtÞE
XJvðtÞ�1

j¼0

Sj
v �NvðtÞjWðtÞ

" #

þ 1

2

XV
v¼1

E
XJvðtÞ�1

j¼0

Sj
v �NvðtÞ

 !2

jWðtÞ
2
4

3
5

¼
XV
v¼1

WvðtÞE �vSv �NvðtÞjW ðtÞ� �

þ 1

2

XV
v¼1

E �vSv �NvðtÞ
� �2jWðtÞ
h i

:

(46)

Since 0 � NvðtÞ � Nmax
v , where Nmax

v is defined in
Eq. (3), we have

�vSv �NvðtÞ
� �2� max ð�vSvÞ2; ðNmax

v � �vSvÞ2
h i

:

Let BW ¼ max
�
1
2 ð�vSvÞ2; 12 ðNmax

v � �vSvÞ2
�
and substi-

tuting into Eq. (46). RewritingNvðtÞ asNðat; vÞ by consid-
ering action at, we get

DV ðtÞ � BW þ
XV
v¼1

WvðtÞE �vSv �Nðat; vÞjWðtÞ� �
: (47)

Since ð1þ �Þ�S 2 Cw, we have

ð1þ �Þ�S 2 Conv fNg:

According to SJF-MQW, we get

ð1þ �Þ
XV
v¼1

�vSv �
XV
v¼1

Nða�t ; vÞ: (48)

Substituting it into Eq. (47), we get

DV ðtÞ � BW � �
XV
v¼1

WvðtÞ�vSv: (49)

Let Bw ¼ fW :
PV

v¼1 Wv�vSv � BW
� g. Then, the Lyapu-

nov drift DV ðtÞ is negative outside the finite set Bw.
Therefore, the workload WðtÞ is stable following the Fos-
ter-Lyapunov theorem [41], [42].

Therefore, according to Definition 2, the cloud comput-
ing system is stable under SJF-QMW. tu
Theorem 2 indicates that, when the job arrival rates and

loads both fall in the capacity regions of the cloud, then

118 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

under SJF-QMW, the queue lengths of all types of VMs are
finite such that the job starvation using SJF is avoided or
happens with a low probability.

6 PERFORMANCE EVALUATION

This section uses simulations to evaluate the performances of
SJF-MMBF and SJF-QMW. The delay and throughput perfor-
mance as well as algorithm complexities are compared. Three
typical VM types are used to represent VM requests for gen-
eral purpose (Type 1: m4.2xlarge) and memory optimized
(Type 2: r4.xlarge) and compute optimized (Type 3: c4.xlarge)
resources, respectively. The details of the VM resource config-
urations are listed in Table 1. The investigating system is a
queueing system. The queueing environments are simulated
by configuring the system with a resource set (memory:
32GiB, CPU: 12 vCPU, storage: 4, 000 GB).

The results of Google trace show that jobs arrive every 5
minutes and job arrivals follow a Poisson distribution [31].
The job duration follows a heavy-tailed distribution, shaped
with 80 percent of jobs in the trace being shorter than the
average job duration [31], [43]. Therefore, an exponential
function is used in the simulations to generate a per-time-
slot number of arriving jobs. To model the heavy-tailed
properties of job lengths, a generalized Pareto random num-
ber function is used to generate the job length requirements
[44], [45], [46], whereas the tail index � (� 2 ½0:5; 1Þ, the shape
parameter) is a heavy-tailed variable for which the larger
the tail index, the heavier the job lengths.

To evaluate the efficiency of the proposals for VM sched-
uling, this paper investigates the performance in terms of
average job completion time and throughput under various
traffic intensities through two types of job parameter set-
tings with a discrete event-based simulator that combines
Matlab and C++, where algorithms are implemented using
C++. In the first setting, the job parameters (including job
arrival rates and tail indexes of job lengths) of type-2 and
type-3 VMs are set to be constants. Then, we observe the
performance of the proposed VM scheduling schemes by
varying the job parameters (including job arrival rate and
tail index of job lengths) of the type-1 VMs. In the second
type of setting, the job arrival rates of the type-2 and type-3
VMs are set to be once and triple of that of the type-1 VMs
respectively according to the previous resource settings
(including CPU, memory and storage) of the system and the
resource requirements of these three types of VMs. For sim-
plification, the tail indexes of the type-2 and the type-3 jobs
are set to be equal to that of the type-1 jobs. Then, we
observe the performance of the proposals by varying the job
parameters of the type-1 VMs.2 The simulation time is set to
216 time slots. The time complexities of the SJF-MMBF and
SJF-QMW algorithms are also investigated.

6.1 Job Completion Time

6.1.1 SJF-MMBF versus FIFO-MMBF

We first compare the performance of SJF-MMBF and FIFO-
MMBF, where FIFO-MMBF is a scheme that combines the
MMBF scheduling policy that was proposed in Section 4.1

and the FIFO buffering policy that uses the first-in-first-out
buffering discipline.

In scenario 1, we observe the performance under the first
type of job parameter settings. The average lengths of all types
of jobs are set to 4 time slots and the tail indexes of both of the
type-2 and type-3 jobs are set to 0.5. Then, according to the
VM resource configurations listed in Table 1 and the resource
setting of the simulated system, the average client-capacity
region could be approximated as C� ¼ (0.05, 0.05, 0.15) jobs/
slot according to Definition 4. Therefore, the job arrival rates
are set as �2 ¼ 0:05 jobs/slot, �3 ¼ 0:15 jobs/slot. As shown in
Fig. 2, the average job completion time by SJF-MMBF
increases explicitly slower than that by FIFO-MMBF with the
increasing job arrival rate of the type-1 jobs when �1 ¼ 0:5,
�1 ¼ 0:6 and �1 ¼ 0:7, respectively. Particularly, when the
lengths of the type-1 jobs vary vastly (e.g., �1 ¼ 0:7), the aver-
age job completion time by FIFO-MMBF exceeds 70 slotswhile
SJF-MMBF is under 55 slotswhen �1 ¼ 0:08 jobs/slots.

Notice that, the average job completion time in a larger tail
index setting (e.g., �1 ¼ 0:7) is higher than that in a smaller tail
index setting (e.g., �1 ¼ 0:6 or �1 ¼ 0:5) under the same sched-
uling scheme (e.g., SJF-MMBF or FIFO-MMBF) with the same
job arrival rate as shown in Fig. 2. This is because, the larger
the tail index, the heavier the job lengths, such that the higher
probability for a type-1 job to request a long running duration.

In scenario 2, we observe the performance under the
second type of job parameter settings. Similar to the settings
in scenario 1, the average lengths of all types of jobs are also
set to 4 slots. But differently, let �2 ¼ �1, �3 ¼ 3�1 and �2 ¼
�3 ¼ �1. As shown in Fig. 3, SJF-MMBF also outperforms
FIFO-MMBF by a lower average job completion time under
the same job arrival rates and the same tail indexes. Particu-
larly, the heavier the workload requirements (e.g., �1 ¼ �2 >
0:06 jobs/slot, �3 > 0:18 jobs/slot and � ¼ ð0:7; 0:7; 0:7Þ), the
larger difference of the average job completion times by SJF-
MMBF and FIFO-MMBF.

The simulation results from the above two scenarios
illustrate that, the SJF-MMBF scheme is more efficient in the
average job completion time in comparison with a scheme
that combines MMBF and FIFO buffering policies in a queue-
ing cloud computing system. However, when the system is in
a heavy-loaded situation, e.g., �1 ¼ �2 ¼ 0:08 jobs/slot,
�3 ¼ 0:24 jobs/slot and � ¼ ð0:7; 0:7; 0:7Þ in scenario 2, the

Fig. 2. SJF-MMBF versus FIFO-MMBF (ð�2; �3Þ ¼ ð0:05; 0:15Þ jobs=slot,
C� ¼ (0.05, 0.05, 0.15) jobs=slot, S ¼ 4 slots; �2 ¼ �3 ¼ 0:5).

2. The job parameters of the type-2 and type-3 VMs also varies
according to the job parameter settings.

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 119

average job completion time by SJF-MMBF is still high,
e.g., 2,000 slots. This is because, as discussed in Section 5,
the continual arrivals of the type-1 jobs would make jobs
in the type-2 and type-3 queues experience extremely long
queueing delays under SJF-MMBF, resulting in a sub-opti-
mal average job completion time.

6.1.2 SJF-QMW versus SJF-MMBF

The performance of SJF-QMW and SJF-MMBF is further com-
pared by investigating the delay performance in terms of aver-
age job completion time at traffic intensities similar to the
settings in scenarios 1 and 2, respectively. We first observe the
performance under the first type of job parameter settings in
scenario 3, where the job parameter settings are similar to those
in scenario 1. As shown in Fig. 4, the average job completion
time by SJF-QMW increases explicitly slower than that by SJF-
MMBF with the increasing job arrival rate of the type-1 jobs
when �1 ¼ 0:5, �1 ¼ 0:6 and �1 ¼ 0:7, respectively. Particularly,
evenwhen�1 reaches 0.08 jobs/slot and �1 ¼ 0:7, the average job
completion time by SJF-QMW could still be lower than 25 slots
while SJF-MMBF exceeds 50 slots.

In scenario 4, we observe the performance under the sec-
ond type of job parameter settings, which are similar to the
settings in scenario 2. As shown in Fig. 5, SJF-QMW also

outperforms SJF-MMBF in terms of average job completion
times under the same arrival rates and the same tail indexes
of job lengths at the traffic intensities from light-loaded
(e.g., � ranges from (0.03, 0.03, 0.09) to (0.05, 0.05, 0.15)) to
heavy-loaded (e.g., � ranges from (0.06, 0.06, 0.18) to (0.08,
0.08, 0.24)). Particularly, even when the system is in an
extremely heavy-loaded environment, e.g., � ¼ (0.08, 0.08,
0.24) jobs/slot and � ¼ ð0:7; 0:7; 0:7Þ, the average job comple-
tion time by SJF-QMW could still be lower than 500 slots,
while that by SJF-MMBF with the same job arrival rates and
the same tail indexes approximates 2,000 slots.

The simulation results from scenarios 3 and 4 illustrate
that, the SJF-QMW scheme is more efficient in the delay per-
formance optimization in comparison with the SJF-MMBF
scheme in a queueing cloud computing system. This is
because, although SJF is efficient in job completion time
optimization, it has the potential for job starvation, for
example, the jobs from the type-2 and type-3 queues would
be starved when type-1 jobs arrive continually. SJF-QMW
tries to overcome the disadvantage of SJF buffering by using
QMW to control the queue lengths with Lyapunov drift the-
ory, such that job starvation happens with a low probability.

6.1.3 SJF-QMW versus FIFO-MMBF

Based on the results in Figs. 2, 3, 4, and 5, we find that the
performance in terms of average job completion time
improves explicitly by SJF-QMW in comparison with
FIFO-MMBF. For example, when � ¼ (0.08, 0.08, 0.24)
jobs/slot and � ¼ ð0:7; 0:7; 0:7Þ, the average job completion
time by FIFO-MMBF approximates 8,000 slots as shown in
Fig. 3. However, by SJF-QMW, the average job completion
time could be reduced to 500 slots as shown in Fig. 5.
Accordingly, the efficiency of SJF-QMW in terms of aver-
age job completion time is demonstrated.

6.2 Throughput

To investigate the throughput performance, we observe the
average job hosting ratios by FIFO-MMBF, SJF-MMBF and
SJF-QMW under various traffic intensities. The average job
hosting ratio is defined as the proportion of the per-time-unit
number of jobs actually running to the per-time-unit num-
ber of jobs requesting for scheduling over a long term.

Fig. 3. SJF-MMBF versus FIFO-MMBF (�2 ¼ �1; �3 ¼ 3�1, C� ¼ (0.05,
0.05, 0.15) jobs=slot, S ¼ 4 slots; �2 ¼ �3 ¼ �1).

Fig. 4. SJF-QMW versus SJF-MMBF (ð�2; �3Þ ¼ ð0:05; 0:15Þ jobs=slot,
C� ¼ (0.05, 0.05, 0.15) jobs=slot, S ¼ 4 slots; �2 ¼ �3 ¼ 0:5).

Fig. 5. SJF-QMW versus SJF-MMBF (�2 ¼ �1; �3 ¼ 3�1, C� ¼ (0.05,
0.05, 0.15) jobs=slot, S ¼ 4 slots; �2 ¼ �3 ¼ �1).

120 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

We first observe the performance of the above schemes at
various job arrival rates. To this end, in scenario 5, we use the
second type of job parameter settings. The average lengths of
all types of jobs are set to 4 slots and the vector of tail indexes
are set to � ¼ ð0:7; 0:7; 0:7Þ. As shown in Fig. 6, when the sys-
tem is in a light-loaded situation, e. g., �1 � 0.05 jobs/slot, �2 �
0.05 jobs/slot and �3 � 0.15 jobs/slot, the average job hosting
ratios by all the investigated schemes could be bounded to 100
percent. When the system is in a heavy-loaded situation, e.g.,
�1 � 0.06 jobs/slot, �2 � 0.06 jobs/slot and �3 � 0.18 jobs/slot, the
average job hosting ratios decrease with the increasing job
arrival rates as shown in Fig. 6.

Notice that, SJF-QMW outperforms the other two schemes
by always provisioning a higher average job hosting ratio as
shown in Fig. 6. This is because, as discussed in Section 5, the
potential of job starvation for jobs from the type-2 and type-3
queues increases with the continual arrivals of the type-1 jobs
under the MMBF policy. In addition, many jobs request long
running durations with a high probability due to the large tail
indexes (e.g., �1 ¼ �2 ¼ �3 ¼ 0:7 in scenario 5), such that the
job hosting ratios of the type-2 and type-3 queues decrease
faster than that of the type-1 queue as the arrival rate of the
type-1 jobs increases under MMBF. QMW avoids job starva-
tion by controlling the Lyapunov drift of the vector of job
lengths towards a negative, such that the job hosting ratios of
the type-2 and type-3 queues would be as high as that of the
type-1 queue. Therefore, it’s unsurprising that the average job
hosting ratio by SJF-QMW decreases slower than those by
FIFO-MMBF and SJF-MMBF as the job arrival rate increases.

Scenario 6 compares the performance of FIFO-MMBF,
SJF-MMBF and SJF-QMW at various tail indexes of job
lengths. To this end, the vector of job arrival rates are set to
� ¼ (0.05, 0.05, 0.15) jobs/slot, which is equal to the average
client-capacity region of the simulated system. Then, we
observe the performance under various tail indexes as
shown in Fig. 7. A job requesting a long duration happens
with an increasing probability as the tail index increases.
The number of jobs requesting long durations increases
with the increasing tail index, too. The event that the instant
workload requirements exceed the system capacity happens
with an increasing probability as the tail index increases. It
is unsurprising that the average job hosting ratio decreases
with the increasing tail index. However, as shown in Fig. 7,

the average job hosting ratios by all the investigated
schemes could be bounded to 100 percent as the tail indexes
of all types of jobs are small, e.g., � < 0:7. Surprisingly,
even when the lengths of all types of jobs violate their aver-
age values heavily, e.g., � ¼ 0:9, SJF-QMW could also pro-
vide the job hosting ratio up to 80 percent as shown in Fig. 7.

The summaries of the simulation results from scenarios 5
and 6 are listed in Table 3.

6.3 Time Complexity Analysis

It is easy to see from Algorithm 1 that, the time complexity of
the SJF buffering algorithm is Oðmax1�v�V QvÞ, where Qv is
the length of the type-v queue. As shown in Algorithm 2, the
time complexity of the MMBF scheduling algorithm is
OðAV Þ, where A is the number of feasible VM-configura-
tions and V is the number of VM types. Since the SJF
buffering and MMBF scheduling processes work in parallel,
the time complexity of the SJF-MMBF scheme is
max½Oðmax1�v�V QvÞ; OðAV Þ�. Similarly, the time complex-
ity of the QMW scheduling algorithm is OðAV Þ according
to Eq. (35). Since the SJF buffering and QMW scheduling
algorithms work in parallel, the time complexity of SJF-
QMW is max½Oðmax1�v�V QvÞ; OðAV Þ�, which is similar to
that of SJF-MMBF. As the traffic loads increase, the buffer-
ing complexity of SJF will dominate both MMBF and QMW,
leading to a complexity of Oðmax1�v�V QvÞ.

However, since SJF-QMW uses QMW to control queue
lengths, the running time of SJF under SJF-QMW usually is
far smaller than that under SJF-MMBF. As shown in Fig. 8,
when job arrival rates exceed � ¼ (0.05, 0.05, 0.15) jobs/slot
and � ¼ (0.06, 0.06, 0.18) jobs/slot for SJF-MMBF and SJF-
QMW respectively, their algorithm complexities both equal
to Oðmax1�v�V QvÞ. Even when the system is in a heavily-
loaded situation, e.g., � ¼ (0.08, 0.08, 0.24) jobs/slot, the algo-
rithm complexity of SJF-QMW could still be low, e.g., less

Fig. 6. Throughput versus job arrival rate (�2 ¼ �1; �3 ¼ 3�1, C� ¼ (0.05,

0.05, 0.15) jobs=slot, S ¼ 4 slots, �1 ¼ �2 ¼ �3 ¼ 0:7).

Fig. 7. Throughput versus tail index (�1 ¼ �2 ¼ �3 ¼ �, � ¼ (0.05, 0.05,

0.15) jobs/slot, C� ¼ (0.05, 0.05, 0.15) jobs/slot, S ¼ 4 slots).

TABLE 3
A Comparison of Job Hosting Ratio

Workload FIFO-MMBF SJF-MMBF SJF-QMW

Light-loaded 100% 100% 100%
High job arrival rate Similar Best
High dynamic of job lengths Similar Best

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 121

than 100 time units, while that of SJF-MMBF approximates
1,200 time units, as illustrated in Fig. 8.

Notice that, when the system is in a lightly-loaded
situation, e.g., �1 ¼ �2 � 0.05 jobs/slot, �3 � 0.15 jobs/slot, the
queue lengths under both of SJF-QMW and SJF-MMBF are
quite small, thus the complexities of both SJF-QMW and
SJF-MMBF are equal to OðAV Þ as shown in Fig. 8.

In addition, the time complexities of both of SJF-MMBF
and SJF-QMW are low, since we decompose the scheduling
into two parallel algorithms. One of them solves the prob-
lem of how many VM instances to schedule in parallel; and
the other solves the problem of which jobs to run first, from
parallel buffering and scheduling processes.

7 CONCLUSION AND FUTURE WORK

This paper has studied the delay-optimal VM scheduling
problem in a queueing cloud computing system with hetero-
geneous and dynamic workloads. The VM scheduling is for-
mulated as a multi-resource multi-class problem to minimize
the average job completion time, and is transformed to a
delay-optimal decision making process by defining a VM-
configuration array as the solution space. Our proposed
queueing model then leads to a solution having two separate
and parallel low-complexity algorithms, including shortest-
job-first intra-queue buffering and min-min best fit inter-
queue scheduling. SJF and MMBF are then combined (called
SJF-MMBF) to find out the VM scheduling solution to mini-
mize the average job completion time. A queue-length-based
MaxWeight policy based on Lyapunov drift is further pro-
posed to avoid job starvation in SJF-MMBF. Theoretical analy-
sis and simulation results have illustrated the efficiency of the
proposed SJF-MMBF and SJF-QMW in average job comple-
tion time, average job hosting ratio, and time complexity.

ACKNOWLEDGMENTS

The authors would like to thank the editor and the reviewers
for their detailed reviews and constructive comments, which
have helped to improve the quality of this paper. This work
was supported in part by the National Natural Science Foun-
dation of China under Grants 61431005, 61671208, 61671211,

61672174 and 61772145, the Guangdong provincial research
project under Grant 2015A030310287 and 2016A030308006.

REFERENCES

[1] Cisco, “Cisco visual networking index complete traffic forecast
(2016–2021).” [Online]. Available: https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-
vni/qa_c67-482177.html, Accessed on: Dec. 14, 2017.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. 1st Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[3] L. M. Vaquero and L. Rodero-Merino, “Finding yourway in the fog:
Towards a comprehensive definition of fog computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, 2014.

[4] D. Ardagna, G. Casale, M. Ciavotta, J. F. P�erez, and W. Wang,
“Quality-of-service in cloud computing: Modeling techniques and
their applications,” J. Internet Serv. Appl., vol. 5, no. 1, 2014, Art.
no. 11.

[5] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” SIG-
COMMComput. Commun. Rev., vol. 41, no. 4, pp. 50–61, 2011.

[6] I. Arapakis, X. Bai, and B. B. Cambazoglu, “Impact of response
latency on user behavior in web search,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Inf. Retrieval, 2014, pp. 103–112.

[7] B. Saovapakhiran, M. Devetsikiotis, G. Michailidis, and Y. Viniotis,
“Average delay SLAs in cloud computing,” in Proc. IEEE Int. Conf.
Commun., 2012, pp. 1302–1308.

[8] P. Hoenisch, D. Schuller, S. Schulte, C. Hochreiner, and S. Dustdar,
“Optimization of complex elastic processes,” IEEE Trans. Serv.
Comput., vol. 9, no. 5, pp. 700–713, Sep./Oct. 2016.

[9] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load
balancing of virtual machine resources in cloud computing environ-
ment,” in Proc. 3rd Int. Symp. Parallel Archit. Algorithms Program.,
Madison,WI, 2010, pp. 89–96.

[10] K.-M. Cho, P.-W. Tsai, C.-W. Tsai, and C.-S. Yang, “A hybrid meta-
heuristic algorithm for VM scheduling with load balancing in cloud
computing,”Neural Comput. Appl., vol. 26, no. 6, pp. 1297–1309, 2015.

[11] S. Rampersaud and D. Grosu, “Sharing-aware online virtual
machine packing in heterogeneous resource clouds,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 7, pp. 2046–2059, Jul. 2017.

[12] M. M. Nejad, L. Mashayekhy, and D. Grosu, “Truthful greedy
mechanisms for dynamic virtual machine provisioning and allo-
cation in clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 2,
pp. 594–603, Feb. 2015.

[13] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proc.
IEEE INFOCOM, 2012, pp. 702–710.

[14] U. PLampe, M. Siebenhaar, R. Hans, D. Schuller, and R. Steinmetz,
“Let the clouds compute: Cost-efficient workload distribution in
infrastructure clouds,” in Proc. Int. Conf. Econ. Grids Clouds Syst.
Serv., 2012, pp. 91–101.

[15] S. S. Rajput and V. S. Kushwah, “A genetic based improved load
balanced min-min task scheduling algorithm for load balancing in
cloud computing,” in Proc. 8th Int. Conf. Comput. Intell. Commun.
Netw., 2016, pp. 677–681.

[16] S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid,
“Resource scheduling for infrastructure as a service (IaaS) in cloud
computing: Challenges and opportunities,” J. Netw. Comput. Appl.,
vol. 68, no. Supplement C, pp. 173–200, 2016.

[17] J. Ma, W. Li, T. Fu, L. Yan, and G. Hu, “A novel dynamic task
scheduling algorithm based on improved genetic algorithm in
cloud computing,” in Proc. Wireless Commun. Netw. Appl., 2016,
pp. 829–835.

[18] T. E. P. Jr., and W. R. V. Voorhis, “Machine repair as a priority wait-
ing-line problem,”Operations Res., vol. 4, no. 1, pp. 76–86, 1956.

[19] R. H. Arpaci-Dusseau andA. C. Arpaci-Dusseau,Operating Systems:
Three Easy Pieces, 0.91 ed. Arpaci-Dusseau Books, Madison, WI,May
2015.

[20] L. Kleinrock, “Analysis of a time-shared processor,” Aval Res.
Logistics Quart., vol. 11, no. 1, pp. 59–73, 1964.

[21] Y. Sun, C. E. Koksal, and N. B. Shroff, “On delay-optimal schedul-
ing 1195 in queueing systems with replications,” CoRR, abs/
1603.07322, 2016.

[22] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair, “Daleel:
Simplifying cloud instance selection using machine learning,” in
Proc. IEEE/IFIP Netw. Operations Manage. Symp., 2016, pp. 557–563.

Fig. 8. Complexity versus job arrival rate (�2 ¼ �1; �3 ¼ 3�1, C� ¼ (0.05,
0.05, 0.15) jobs=slot, S ¼ 4 slots, �1 ¼ �2 ¼ �3 ¼ 0:7, 1 time unit =
algorithm running time of {]. of VM type =1,]. of feasible VM-
configuration = 1, queue length =1}).

122 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 1, JANUARY/FEBRUARY 2022

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/qa_c67-482177.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/qa_c67-482177.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/qa_c67-482177.html

[23] Z. T. He, X. Q. Zhang, H. X. Zhang, and Z. W. Xu, “Study on new
task scheduling strategy in cloud computing environment based
on the simulator CloudSim,” Adv. Materials Res., vol. 651,
pp. 829–834, 2013.

[24] Y. Cao, C.W. Ro, and J.W. Yin, “Comparison of job scheduling poli-
cies in cloud computing,” eds H. K. Jung, J. Kim, T. Sahama,
C. H. Yang, Future Information Communication Technology Applica-
tions. Lecture Notes in Electrical Engineering. Dordrecht: Springer,
vol. 235, pp. 81–87, 2013.

[25] T. Mathew, K. C. Sekaran, and J. Jose, “Study and analysis of various
task scheduling algorithms in the cloud computing environment,” in
Proc. Int. Conf. Advances Comput. Commun. Informat., 2014, pp. 658–664.

[26] S. H. H.Madni, M. S. A. Latiff, Y. Coulibaly, and S.M. Abdulhamid,
“Recent advancements in resource allocation techniques for cloud
computing environment: A systematic review,” Cluster Comput.,
vol. 20, no. 3, pp. 2489–2533, 2017.

[27] Z. A. Mann, “Interplay of virtual machine selection and virtual
machine placement,” in Proc. Eur. Conf. Service-Oriented Cloud
Comput., 2016, pp. 137–151.

[28] Amazon, “EC2 Instance.” [Online]. Available: https://aws.
amazon.com/ec2/instance-types/, Accessed on: Jun. 06, 2018.

[29] D. Candeia, R. Araujo, R. Lopes, and F. Brasileiro, “Investigating
business-driven cloudburst schedulers for e-science bag-of-tasks
applications,” in Proc. IEEE 2nd Int. Conf. Cloud Comput. Tech. Sci.,
2010, pp. 343–350.

[30] D. Villegas, A. Antoniou, S. M. Sadjadi, and A. Iosup, “An analysis
of provisioning and allocation policies for infrastructure-as-a-service
clouds,” in Proc. 12th IEEE/ACM Int. Symp. Cluster Cloud Grid
Comput., 2012, pp. 612–619.

[31] M. C. Calzarossa, M. L. Della Vedova, L. Massari, D. Petcu,
M. I. M. Tabash, and D. Tessera, “Workloads in the clouds,” in
Principles of Performance and Reliability Modeling and Evaluation:
Essays in Honor of Kishor Trivedi on his 70th Birthday. Berlin,
Germany: Springer, 2016, pp. 525–550.

[32] T. P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow
task execution time in the cloud using a two-stage machine
learning approach,” IEEE Trans. Cloud Comput., vol. PP, no. 99,
pp. 1–13, Aug. 2017.

[33] A. M. Chirkin, A. S. Belloum, S. V. Kovalchuk, M. X. Makkes,
M. A. Melnik, A. A. Visheratin, and D. A. Nasonov, “Execution
time estimation for workflow scheduling,” Future Generation
Comput. Syst., vol. 75, pp. 376–387, 2017.

[34] M. R. M. Kumar, B. R. Rajendra, C. K. Niranjan, and M. Sreenatha,
“Prediction of length of the next CPU burst in SJF scheduling
algorithm using dual simplex method,” in Proc. 2nd Int. Conf.
Current Trends Eng. Technol., Jul. 2014, pp. 248–252.

[35] M. H. Hilman, M. A. Rodriguez, and R. Buyya, “Task runtime
prediction in scientific workflows using an online incremental
learning approach,” CoRR, abs/1810.04329, 2018.

[36] Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang,H. S.-H. Chung, andY. Li,
“Cloud computing resource scheduling and a survey of its evolu-
tionary approaches,” ACM Comput. Surveys, vol. 47, pp. 63:1–63:33,
Jul. 2015.

[37] Y. Hasan and M. Chang, “A study of best-fit memory allocators,”
Comput. Languages Syst. Struct., vol. 31, no. 1, pp. 35–48, 2005.

[38] J. E. Shore, “On the external storage fragmentation produced by
first-fit and best-fit allocation strategies,” Commun. ACM, vol. 18,
pp. 433–440, Aug. 1975.

[39] A. S. Tanenbaum,Modern Operating Systems, 3rd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007.

[40] M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. San Rafael, CA, USA: Morgan and
Claypool Publishers, 2010.

[41] S. P. Meyn and R. L. Tweedie, “Stability of Markovian processes
III: Foster-Lyapunov criteria for continuous-time processes,”
Advances Appl. Probability, vol. 25, pp. 518–548, Sep. 1993.

[42] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability,
2nd ed. New York, NY, USA: Cambridge Univ. Press, 2009.

[43] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” inProc. 3rd ACMSymp. Cloud Comput., 2012, pp. 7:1–7:13.

[44] A. Mahanti, N. Carlsson, A. Mahanti, M. Arlitt, and C. Williamson,
“A tale of the tails: Power-laws in internet measurements,” IEEE
Netw., vol. 27, no. 1, pp. 59–64, Jan./Feb. 2013.

[45] J. R.M.Hosking and J. F.Wallis, “Parameter and quantile estimation
for the generalized pareto distribution,” Technometrics, vol. 29, no. 3,
pp. 339–349, 1987.

[46] E. Castillo and A. S. Hadi, “Fitting the generalized pareto
distribution to data,” J. Amer. Statistical Assoc., vol. 92, no. 440,
pp. 1609–1620, 1997.

MianGuo received the PhD degree in communica-
tion and information systems from the South China
University of Technology, China, in 2012. She was
a visiting professor with the University of Ottawa,
Ottawa, Canada, in 2016, and a visiting professor
with Beihang University, China, in 2017. She is cur-
rently a lecturer with the Guangdong University of
Petrochemical Technology, China. Her research
interests include resource allocation, QoS provi-
sioning in computer and communication networks,
software-defined networking, big data applications,
and reinforcement learning.

Quansheng Guan (S’09-M’11-SM’17) received
the PhD degree from the South China University
of Technology (SCUT), in 2011. From 2009 to
2010, he was a visiting PhD student with the Uni-
versity of British Columbia, Canada. From 2012 to
2013, he was a postdoc researcher with the Chi-
nese University of Hong Kong. He was a visiting
scholar with the Singapore University of Technol-
ogy and Design in 2013, and a visiting professor
with Polytech Nantes, France. He is currently a full
professor with the School of Electronic and Infor-

mation Engineering, SCUT. He is the co-recipient of Best Paper Awards
from IEEE ICCC 2014 and IEEE ICNC 2016, Best Demo Award from
ACMWUWNET 2018. He is associate editors of the IEEE Access and the
International Journal of Distributed Sensor Networks, and a guest editor of
the Mobile Information System. His main research interests include the
areas of wireless networks, underwater acoustic networks, as well as net-
work games and economics. He is a seniormember of the IEEE.

Weiqi Chen received the BE degree in communi-
cation engineering from Sun Yat-sen University,
Guangdong, China, in 2008, and the MS degree
from the South China University of Technology,
in 2011. She is currently working toward the PhD
degree in the School of Electronic and Informa-
tion Engineering, South China University of Tech-
nology, Guangdong, China. Her main interests
include wireless multi-hop networks and under-
water acoustic sensor networks.

Fei Ji (M’06) received the PhD degree from the
South China University of Technology, in 1998.
Upon graduation, she joined South China Univer-
sity of Technology (SCUT) as a lecturer. She was
an associate professor in 2003-2008. She worked
with the City University of Hong Kong as a research
assistant from March 2001 to July 2002 and a
senior research associate from January 2005 to
March 2005. She was with the University of Water-
loo as a visiting scholar fromMay 2009–May 2010.
She is currently a full professor with SCUT. Her
research focuses on wireless communication sys-
tem and networking. She is amember of the IEEE.

Zhiping Peng received the PhD degree in com-
puter science from the South China University of
Technology, in 2007. He is current a professor
with the School of Computer and Electronic Tech-
nology, Guangdong University of Petrochemical
Technology. His research interests cover cloud
computing, resource allocation, and reinforce-
ment learning.

GUO ET AL.: DELAY-OPTIMAL SCHEDULING OF VMS IN A QUEUEING CLOUD COMPUTING SYSTEMWITH HETEROGENEOUS... 123

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

