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1 Dynamic Random Testing of Web Services:
2 A Methodology and Evaluation
3 Chang-ai Sun , Senior Member, IEEE, Hepeng Dai, Guan Wang, Dave Towey ,Member, IEEE,

4 Tsong Yueh Chen ,Member, IEEE, and Kai-Yuan Cai

5 Abstract—In recent years, service oriented architecture (SOA) has been increasingly adopted to develop distributed applications in

6 the context of the Internet. To develop reliable SOA-based applications, an important issue is how to ensure the quality of web

7 services. In this article, we propose a dynamic random testing (DRT) technique for web services, which is an improvement over the

8 widely-practiced random testing (RT) and partition testing (PT) approaches. We examine key issues when adapting DRT to the context

9 of SOA, including a framework, guidelines for parameter settings, and a prototype for such an adaptation. Empirical studies are

10 reported where DRT is used to test three real-life web services, and mutation analysis is employed to measure the effectiveness. Our

11 experimental results show that, compared with the three baseline techniques, RT, Adaptive Testing (AT) and Random Partition Testing

12 (RPT), DRT demonstrates higher fault-detection effectiveness with a lower test case selection overhead. Furthermore, the theoretical

13 guidelines of parameter setting for DRT are confirmed to be effective. The proposed DRT and the prototype provide an effective and

14 efficient approach for testing web services.

15 Index Terms—Software testing, random testing, dynamic random testing, web service, service oriented architecture, software cybernetics

Ç

16 1 INTRODUCTION

17 SERVICE oriented architecture (SOA) [1] defines a loosely cou-
18 pled, standards-based, service-oriented application devel-
19 opment paradigm in the context of the Internet. Within SOA,
20 three key roles are defined: service providers (who develop
21 and own services); service requestors (who consume or invoke
22 services); and a service registry (that registers services from
23 providers and returns services to requestors). Applications are
24 built upon services that present functionalities through pub-
25 lishing their interfaces in appropriate repositories, abstracting
26 away from the underlying implementation. Published interfa-
27 ces may be searched by other services or users, and then
28 invoked. Web services are the realization of SOA based on
29 open standards and infrastructures [2]. Ensuring the reliability
30 of SOA-based applications can become critical when such
31 applications implement important business processes.
32 Software testing is a practical method for ensuring the
33 quality and reliability of software. However, some SOA fea-
34 tures can pose challenges for the testing of web services [3],

35[4]. For instance, service requestors often do not have access
36to the source code of web services which are published and
37owned by another organization, and, consequently, it is not
38possible to use white-box testing techniques. Testers may,
39therefore, naturally turn to black-box testing techniques.
40Random Testing (RT) [5] is one of the most widely-
41practiced black-box testing techniques. Because test cases in
42RT are randomly selected from the input domain (which
43refers to the set of all possible inputs of the software under
44test), it can be easy to implement. Nevertheless, because RT
45does not make use of any information about the software
46under test (SUT), or the test history, it may be inefficient in
47some situations. In recent years, many efforts have beenmade
48to improve RT in different ways [6], [7], [8]. Adaptive random
49testing (ART) [7], [9], for example, has been proposed to
50improve RT by attempting to have amore diverse distribution
51of test cases in the input domain.
52In contrast to RT, partition testing (PT) attempts to generate
53test cases in amore “systematic” way, aiming, to use fewer test
54cases to reveal more faults. When conducting PT, the input
55domain of the SUT is divided into disjoint partitions, with test
56cases then selected from each and every one. Each partition is
57expected to have a certain degree of homogeneity—test cases
58in the same partition should have similar software execution
59behavior. Ideally, a partition should also be homogeneous in
60fault detection: If one input can reveal a fault, then all other
61inputs in the same partition should also be able to reveal
62a fault.
63RT and PT are based on different intuitions, and each
64have their own advantages and disadvantages. Because it is
65likely that they can be complementary to each other, detect-
66ing different faults, it is intuitively appealing to investigate
67their integration in random partition testing (RPT).
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68 In traditional RPT [6], the partitions and corresponding
69 test profiles remain constant throughout testing, which may
70 not be the best strategy. Independent researchers have
71 observed that fault-revealing inputs tend to cluster into
72 “continuous regions” [10], [11]—there is similarity in the
73 execution behavior of neighboring software inputs. Based on
74 software cybernetics that explores the interplay between soft-
75 ware engineering and control theory, Cai et al.proposed adap-
76 tive testing (AT) to control the testing process [12], however,
77 AT’s decision-making incurs an extra computational over-
78 head. To alleviate this, dynamic random testing (DRT) [6] was
79 proposed byCai et al., aiming to improve on both RT andRPT.
80 In practice, web services have usually been tested by the
81 service providers, and simple or easy-to-test faults have been
82 removed, meaning that the remaining faults are normally
83 hard to detect. For ensuring a higher reliability of theweb serv-
84 ices, a simple RT strategy may not be appropriate [13], espe-
85 ciallywhen the scale is large, or there are some stubborn faults.
86 In this paper, we present a DRT approach for web serv-
87 ices, as an enhanced version of RT adapted to the context of
88 SOA. We examine key issues of such an adaptation, and,
89 accordingly, propose a framework for testing web services
90 that combines the principles of DRT [6] and the features of
91 web services. To validate the fault detection effectiveness
92 and efficiency of the proposed DRT method in the context
93 of SOA, we conduct a comprehensive empirical study. We
94 also explore the impact factors of the proposed DRT, and
95 provide guidelines for setting DRT parameters based on a
96 theoretical analysis. Finally, we compare the performance
97 of the proposed DRT with other baseline techniques.
98 This paper extends our previous work [14] in the following
99 aspects. First, this paper extensively examines the challenges

100 and practical situations related to testing web services
101 (Section 2.2). It also extensively discusses the limitations of RT,
102 PT, RPT, and AT, when they are used for testing web services
103 (Section 1). Second, although previous work [14] provided a
104 coarse-grained framework for DRT of web services, PT was
105 not studied. In contrast, this paper provides a comprehensive
106 solution based on partitioning (Section 4.4.1). Third, based on a
107 theoretical analysis (Section 3.2), this paper provides guidelines
108 for setting DRT parameters. Such guidelines are crucial to
109 enhance the practical application of DRT, which was not cov-
110 ered in previous work [14]. Fourth, previous work [14] only
111 evaluated the fault detection effectiveness and efficiency of the
112 proposed approach (DRT) in terms of the F-measure and T-
113 measure, and only two small web services (ATM Service and
114 Warehouse Service) were used in the evaluation of its perfor-
115 mance. This paper, in contrast, provides a comprehensive eval-
116 uation that not only evaluates the fault detection effectiveness
117 of the proposed approach in terms of the F-measure, F2-mea-
118 sure, and T-measure (Section 5.1), but also evaluates its effi-
119 ciency in terms of F-time, F2-time, and T-time (Section 5.3).
120 Furthermore, we also examine three real-life web services,
121 comparing the fault-detection effectiveness and efficiency of
122 the proposed approachwith those of RT, RPT, andAT. Statisti-
123 cal analysis is used to validate the significance of the empirical
124 evaluations and comparisons (Sections 5.1 and 5.3), which was
125 not covered in previous work [14]. Extending again the previ-
126 ous work [14], we also examine the relationship between the
127 number of partitions and the optimal control parameter set-
128 tings forDRT, evaluating the usefulness of guidelines provided

129by the theoretical analysis (Section 5.2). The contributions of
130thiswork, combinedwith previouswork [14], include:

131� We develop an effective and efficient testing method
132for web services. This includes a DRT framework that
133addresses key issues for testing web services, and a
134prototype that partly automates the framework.
135� We evaluate the performance of DRT through a series
136of empirical studies on three real web services. These
137studies show that DRT has significantly higher fault-
138detection efficiency than RT and RPT. That is, to detect
139a given number of faults, DRT uses less time and fewer
140test cases than RT and RPT.
141� We provide guidelines for the DRT parameter set-
142tings, supported by theoretical analysis, and vali-
143dated by the empirical studies.
144The rest of this paper is organized as follows. Section 2
145introduces the underlying concepts for DRT, and web serv-
146ices. Section 3 presents the DRT framework for web services,
147guidelines for its parameter settings, and a prototype that par-
148tially automates DRT. Section 4 describes an empirical study
149where the proposed DRT is used to test three real-life web
150services, the results of which are summarized in Section 5.
151Section 6 discusses related work and Section 7 concludes the
152paper.

1532 BACKGROUND

154In this section, we present some of the underlying concepts
155for DRT, and web services.

1562.1 Dynamic Random Testing (DRT)

157DRT combines RT and PT, with the goal of benefitting from
158the advantages of both. Given a test suite TS classified into
159m partitions (denoted s1; s2; . . . ; sm), suppose that a test case
160from si (i ¼ 1; 2; . . . ;m) is selected and executed. If this test
161case reveals a fault, 8j ¼ 1; 2; . . . ;m and j 6¼ i, we then set

p0j ¼
pj � "

m� 1
if pj � "

m� 1
0 if pj <

"

m� 1

8<
: ; (1)

163163

164where " is a probability adjusting factor, and then

p0i ¼ 1�
Xm

j¼1;j6¼i

p0j: (2)

166166

167Alternatively, if the test case does not reveal a fault, we set

p0i ¼
pi � " if pi � "
0 if pi < "

�
; (3)

169169

170and then for 8j ¼ 1; 2; . . . ;m and j 6¼ i, we set

p0j ¼
pj þ "

m� 1
if pi � "

pj þ p0i
m� 1

if pi < "

8><
>: : (4)

172172

173

174Algorithm 1 describes DRT. In DRT, the first test case is
175taken from a partition that has been randomly selected
176according to the initial probability profile fp1; p2; . . . ; pmg
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177 (Lines 2 and 3 in Algorithm 1). After each test case execution,
178 the test profile f s1; p1h i; s2; p2h i; . . . ; sm; pmh ig is updated by
179 changing the values of pi: If a fault is revealed, Formulas (1)
180 and (2) are used; otherwise, Formulas (3) and (4) are used. The
181 updated test profile is thenused to guide the random selection
182 of the next test case (Line 8). This process is repeated until a
183 termination condition is satisfied (Line 1). Examples of possi-
184 ble termination conditions include: “testing resources have
185 been exhausted”; “a certain number of test cases have been
186 executed”; and “a certain number of faults have been
187 detected”.

188 Algorithm 1. DRT

189 Input: "; p1; p2; . . . ; pm
190 1: while termination condition is not satisfied
191 2: Select a partition si according to the testing profile f s1; p1h i;
192 s2; p2h i; . . . ; sm; pmh ig.
193 3: Select a test case t from si.
194 4: Test the software using t.
195 5: if a fault is revealed by t then
196 6: Update pj (j ¼ 1; 2; . . . ;m and j 6¼ i) and pi according to
197 Formulas 1 and 2.
198 7: else
199 8: Update pj (j ¼ 1; 2; . . . ;m and j 6¼ i) and pi according to
200 Formulas 3 and 4.
201 9: end if
202 10: end while

203 As can be seen from Formulas (1) to (4), updating the test
204 profile involves m simple calculations, thus requiring a con-
205 stant time. Furthermore, the selection of partition si, and
206 subsequent selection and execution of the test case, all
207 involve a constant time. The execution time for one iteration
208 of DRT is thus a constant, and therefore the overall time
209 complexity for DRT to select n test cases is Oðm � nÞ.

210 2.2 Web Services

211 A web service is a platform-independent, loosely coupled,
212 self-contained, programmable, web-enabled application that
213 can be described, published, discovered, coordinated and
214 configured using XML artifacts for the purpose of developing
215 distributed interoperable applications [1]. A web service con-
216 sists of a description (usually specified in WSDL) and imple-
217 mentation (written in any programming language). Web
218 services present their functionalities through published inter-
219 faces, and are usually deployed in a service container. Invoca-
220 tion of a web service requires analysis of the input message in
221 its WSDL, test data generation based on its input parameters,
222 andwrapping of test data in a SOAPmessage.
223 A web service is a basic component of SOA software, and,
224 accordingly, the reliability of such SOA software depends
225 heavily on the quality of the component web services. While
226 testing is an obvious potential activity to help assuring the
227 quality of web services, due to the unique features of SOA,
228 web service testing can be more challenging than traditional
229 software testing [4]. Some of these features include:

230 � Lack of access to service implementation: Normally, web
231 service owners will not make the source code of their
232 web services accessible. Typically, service users only
233 have access to the service interface defined in a WSDL

234file, which means that white-box testing approaches
235are not possible.
236� Incomplete documentation or specification: A service pro-
237vider may only offer an incomplete or inaccurate
238description of a service’s functional and non-functional
239behavior. This makes it difficult to decide whether or
240not a test passes, especially when details about behav-
241ior or restrictions on implementations aremissing [15].
242� Lack of control: Unlike traditional software testing
243where testers can control the execution of the software
244under test, there is usually no opportunity to intervene
245in the execution of the web service under test, which is
246often deployed in a remote service container.
247� Side effects caused by testing: A large number of tests
248may introduce an additional communication load,
249and hence impact on the performance of the web ser-
250vice under test. This suggests that the number of
251tests should be kept as low as possible [16].

2523 DRT FOR WEB SERVICES

253In this section, we describe a framework for applying DRT
254to web services, discuss guidelines for setting DRT’s param-
255eters, and present a prototype that partially automates DRT
256for web services.

2573.1 Framework

258Considering the principles of DRT and the features of web
259services, we propose a DRT for web services framework, as
260illustrated in Fig. 1. In the figure, the DRT components are
261inside the box, and the web services under test and testers
262are located outside. Interactions between DRT components,
263the web services, and testers are depicted in the framework.
264We next discuss the individual framework components.

2651) WSDL Parsing. Web services are composed of serv-
266ices and the relevant WSDL documents. By parsing
267the WSDL document, we can get the input informa-
268tion for each operation in the services. This includes
269the number of parameters, their names and types,
270and any additional requirements that they may have.
2712) Partition Construction. Partition testing (PT) refers to a
272class of testing techniques that classify the input
273domain into a number of partitions [17]. Because DRT
274is a black-box testing technique, combining RT and PT,
275the PT approaches used are at the specification level.
276Various approaches and principles for achieving con-
277venient and effective partitions have been discussed in

Fig. 1. DRT for web services framework.
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278 the literature [17], [18]. The input domain of the web
279 service under test (WSUT) can be partitioned based on
280 the WSUT specifications and the parsed parameters.
281 Once partitioned, testers can assign probability distri-
282 butions to the partitions as an initial testing profile.
283 This initial testing profile can be assigned in different
284 ways, including using a uniform probability distribu-
285 tion, or one that sets probabilities according to the
286 importance of the partition: For example, a partition
287 within which faults were previously detected should
288 be given higher priority.
289 3) Test Profile and DRT Parameter Initialization. Testers
290 need to initialize the test profile, a simple way of doing
291 whichwould be the use of a uniformprobability distri-
292 bution (p1 ¼ p2 ¼ . . . ¼ pk ¼ 1=k, where k denotes the
293 number of partitions, and pi ði ¼ 1; 2; . . . ; kÞ denotes
294 the probability of selecting the ith partition). They also
295 need to set the DRT parameters (guidelines for which
296 are introduced in Section 3.2).
297 4) Partition Selection. DRT randomly selects a partition
298 si according to the test profile.
299 5) Test Case Selection. DRT selects a test case from
300 the selected partition si according to a uniform
301 distribution.
302 6) Test Case Execution. The relevant DRT component
303 receives the generated test case, converts it into an
304 input message, invokes the web service(s) through
305 the SOAP protocol, and intercepts the test results
306 (from the output message).
307 7) Test Profile Adjustment. Upon completion of each test,
308 its pass or fail status is determined by comparing the
309 actual and expected results (a pass status if both are
310 the same). The pass or fail status is then used to adjust
311 the (partition) probability distribution accordingly. Sit-
312 uationswhere determination of the test outcome status
313 is not possible (i.e., in the presence of the oracle prob-
314 lem [19], [20]) may potentially be addressed using
315 metamorphic testing [21].
316 Generally speaking, DRT test case generation is influenced
317 by both the probability distribution (for selection of the rele-
318 vant partition), and the principles of RT—combining the effec-
319 tiveness of PT with the ease of RT. Because our technique is
320 based on PT, it is necessary that the partition details be pro-
321 vided (by the tester), which can easily be done through analy-
322 sis of the input parameters and their constraints, as described
323 in the specification of theweb service under test. Once the par-
324 tition details are available, then it is not difficult to set an initial
325 test profile. The tester can, for example, simply use a uniform
326 probability distribution (p1 ¼ p2 ¼ . . . ¼ pm ¼ 1=m, where m
327 denotes the number of partitions, and pi ði ¼ 1; 2; . . . ;mÞ
328 denotes the probability of selecting the ith partition). In
329 Section 3.2, we provide some guidelines for how to set the DRT
330 parameters. Furthermore, many of the components in the DRT
331 for web services framework can be automated. To make it eas-
332 ier for potential adopters of DRT forweb services, we have also
333 developed a prototype application (described in Section 3.3).

334 3.2 Guidelines for Parameter Setting

335 Our previous work [14] found that the DRT performance
336 depends on the number of partitions and the parameter ".

337We next explore these impacts through a theoretical analy-
338sis, which, to be mathematically tractable, has the following
339assumptions:

3401) The failure rate ui of each partition si (i ¼ 1; 2; . . . ;m,
341andm > 1) is unknown, but can be estimated.
3422) Each failure rate ui (i ¼ 1; 2; . . . ;m, and m > 1)
343remains unchanged throughout the testing process
344(faults are not removed after their detection).
3453) Test cases are selectedwith replacement, whichmeans
346that some test casesmay be selectedmore than once.
347A principle of the DRT strategy is to increase the selection
348probabilities (by amount ") of partitions with larger failure
349rates. In addition to the impact of the parameter ", the number
350of partitions also influences the speed of updating the test pro-
351file (Formulas (1) to (4)). Therefore, for a given number of par-
352titions, we are interested in investigating what values of "
353yield the best DRT performance.
354Letting uM denote the maximum failure rate, and sM
355denote partitions with that failure rate, then pni denotes the
356probability of executing the nth test case from partition si.
357As testing proceeds, the probability pM of partition sM being
358selected is expected to increase:

pnþ1
M > pnM: (5) 360360

361

362In order to achieve the best performance, the probability
363of selecting the partition sM (which has the maximum fail-
364ure rate) is expected to increase. To achieve this, the increase
365in probability of sM being selected for the next round should
366be larger than that for other partitions. We further analyze
367sufficient conditions for this goal, and can accordingly
368derive an interval for ".
369Initially, the test profile is f s1; p

0
1

� �
; s2; p

0
2

� �
; . . . ; sm; p

0
m

� �g,
370which, after n test cases have been executed, is then updated
371to f s1; p

n
1

� �
; s2; p

n
2

� �
; . . . ; sm; p

n
m

� �g. During the testing process,
372pni is increased or decreased by the value ", which is relatively
373small (set to 0.05 in previous studies [22], [23]). Because the
374initial p0i is larger than ", and the adjustment of pi is relatively
375small (Formulas (1) to (4)), the following two situations are
376rare, and thus not considered here: pi < "=ðm� 1Þ or pi < "
377(i ¼ 1; 2; . . . ;m).
378To explore the relationship between pnþ1

i and pni , we cal-
379culate the conditional probability, pðijdÞ, of the following
380four situations (denoted as d1; d2; d3, and d4):

3811) If tn =2 si and a fault is detected by tn, then pðijd1Þ is cal-
382culated according to Formula (1):

pðijd1Þ ¼
X
i6¼j

uj

�
pni �

"

m� 1

�
:

384384

385

3862) If tn 2 si and a fault is detected by tn, then pðijd2Þ is cal-
387culated according to Formula (2):

pðijd2Þ ¼ uiðpni þ "Þ: 389389

390

3913) If tn 2 si and no fault is detected by tn, then pðijd3Þ is
392calculated according to Formula (3):

pðijd3Þ ¼ ð1� uiÞðpni � "Þ:
394394

395
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396 4) If tn =2 si and no fault is detected by tn, then pðijd4Þ is cal-
397 culated according to Formula (4):

pðijd4Þ ¼
X
i6¼j

ð1� ujÞ
�
pni þ

"

m� 1

�
:

399399

400

401 Therefore, pnþ1
i for all cases together is:

pnþ1
i ¼ pni þ Y n

i ; (6)
403403

404 where

Y n
i ¼ "

m� 1
ð2pni uim� pni m� 2pni ui þ 1Þ

� 2"

m� 1

X
j6¼i

pnj uj:
(7)

406406

407

408 From Formula (7), we have:

Y n
M � Y n

i ¼ 2"

m� 1
mðpnMuM � pni uiÞ �

mðpnM � pni Þ
2

� �
:

(8)410410

411

412 Before presenting the final guidelines, we need the fol-
413 lowing lemma.

414 Lemma 1. If pni � pnM > 2ðpni ui � pnMuMÞ, then pnþ1
M > pnM .

415 Proof. See AppendixA,which can be found on the Computer
416 Society Digital Library at http://doi.ieeecomputersociety.
417 org/TSC.2019.2960496. tu
418 Accordingly, we can now present the following theorem
419 that states a sufficient condition for achieving pnþ1

M > pnM .

420 Theorem 1. For failure rate umin ¼ minfu1; . . . ; umg, uM >
421 umin, if 0 < umin < 1

2, the following condition is sufficient to
422 guarantee that pnþ1

M > pnM :

2mu2min

1� 2umin
< " <

ðm� 1Þmumin

2ðmþ 1Þ : (9)424424

425

426 Proof. See Appendix A, available in the online supplemen-
427 tal material. tu
428 In summary, when 1

2 < uM < 1, there is always an
429 interval I :

" 2 ð 2mu2min

1� 2umin
;
ðm� 1Þmumin

2ðmþ 1Þ Þ (10)

431431

432 where umin � ui; i 2 f1; 2; . . . ;mg, and ui 6¼ 0, which can

433 guarantee pnþ1
M > pnM .

434 From the proof in Appendix A, available in the online
435 supplemental material, it is clear that the value of uM affects
436 the upper bound (Iupper) of I . When umin < uM < 1

2, the

437 value of Iupper should be close to the lower bound of I . In
438 practice, we should set

" � 2mu2min

1� 2umin
: (11)440440

441

442 For a given partition scheme, with a total of m partitions,
443 identification of the partition with the minimum failure rate
444 ðuminÞ first requires calculation of the failure rates of each

445partition, then identification of the minimum. Each parti-
446tion’s failure rate can be obtained in two ways:

4471) It can be calculated directly as F=E (F is the number
448of failures and E is the number of executed tests), if
449the test history of the web service under test is
450available.
4512) It can be approximated by 1=ki, where ki is the total
452number of test cases executed before revealing a fault.

4533.3 Prototype

454This section describes a tool that partially automates DRT for
455web services, calledDRTester1. DRTester supports the follow-
456ing tasks in testingweb services: a)WSDLparsing; b) partition
457construction; c) settingDRT parameters (probability adjusting
458factor " and test profiles); andd) test case preparation and exe-
459cution. The details of DRTester are as follows:

4601) Guidance. This feature describes the steps the tester
461should follow when testing a web service.
4622) Configuration. This feature, as shown in Fig. 2, inter-
463acts with the testers to obtain and set the information
464related to testing the web service, including: the
465address of the web service under test; the DRT
466parameters and partition details; and the test case
467preparation. The detailed steps are as follows:
468� Inputting and parsing the URL (Fig. 2a): We integrate
469the WSDL parsing functionality provided by
470MT4WS [24]. This enables all the (WSDL) parame-
471ters and their types to be automatically obtained.
472� Parameter setting (Fig. 2a): The tester is responsi-
473ble for selecting which operations of the current
474web service under test are to be tested, and for
475partitioning each parameter into disjoint choices.
476� Partition setting (Fig. 2b): The tester is responsible
477for specifying the partitions by combining the
478choices associated with each parameter.
479� Test case generation (Fig. 2b): The tester is respon-
480sible for specifying the mode of test case genera-
481tion (either randomly generating test cases based
482on the parameters, or uploading test cases gener-
483ated using other techniques).
4843) Execution. This feature presents a summary of the
485testing results, including details of the test case exe-
486cution (input, expected output, partition, and result
487(pass or fail)). For randomly generated tests, the tes-
488ter has to check each individual result. Otherwise,
489when all tests have been completed, a report is gen-
490erated in a downloadable file.
491The back-end logic is composed of several RestfulAPIs and
492Java classes: The APIs are responsible for communicating
493HTTP messages to and from the front-end interface. The con-
494troller class is responsible for updating the test profile accord-
495ing to the test results, and for selecting test cases from the
496partitions. The selected test cases are wrapped in SOAP mes-
497sages and sent to theweb service under test through the proxy
498class, which also intercepts the test results.

1. The prototype tool, together with a number of accompanying
resources, has been made available at: https://githup.com/
phantomDai/DRTester.git
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499 4 EMPIRICAL STUDY

500 We conducted a series of empirical studies to evaluate the
501 performance of DRT.

502 4.1 Research Questions

503 In our experiments, we focused on addressing the following
504 three research questions:

505

506 RQ1 How effective is DRT at detecting web service faults?
507 Fault-detection effectiveness is a key criterion for
508 evaluating the performance of a testing technique.
509 This study used three popular real-life web services
510 as subject programs, and applied mutation analysis
511 to evaluate the effectiveness.

512

513RQ2 How do the number of partitions and the DRT
514parameter " impact on the failure detection effective-
515ness and efficiency of DRT?
516In our earlier work [14], we found that the DRT
517parameter " had a significant effect on DRT effi-
518ciency, and that the optimal value of the parameter
519could be related to the number of partitions. The
520relationship between " and the number of partitions
521is examined through theoretical analysis, and veri-
522fied through the empirical studies.
523

524RQ3 Compared with the baseline techniques, how efficient
525is DRT at detectingweb service faults in terms of time?
526Comparedwith RT and PT, DRT incorporates the selec-
527tion of partitions and test cases within a partition. Com-
528pared with AT, which also introduces feedback and
529adaptive control principles to software testing, DRT has
530a simple but efficient control strategy. Thus, we are
531interested in comparing the fault detection efficiency of
532DRT, RT, PT, andAT in terms of their time costs.

5334.2 Subject Web Services

534Although a number of web services are publicly available, for
535various reasons, their implementations are not. This renders
536them unsuitable for our experiments, which involve the crea-
537tion of faulty mutants (requiring access to the implementa-
538tions). We therefore selected three web services as the subject
539programs for our study, and implemented them ourselves,
540based on real-life specification:2 Aviation Consignment

541Management Service (ACMS); China Unicom billing

542service (CUBS); and Parking billing service (PBS).
543We used the tool MuJava [25] to conduct mutation analysis
544[26], [27], generating a total of 1563mutants. Eachmutant was
545created by applying a syntactic change (using one of all appli-
546cable mutation operators provided byMuJava) to the original
547program. Equivalent mutants, and those that were too easily
548detected (requiring less than 20 randomly generated test
549cases), were removed. To ensure the statistical reliability, we
550obtained 50 different test suites using different random seeds,
551then tested all mutants with all test suites, calculating the
552average number of test cases needed to kill (detect) a mutant.
553Table 1 summarizes the basic information of the used web
554services and their mutants. A detailed description of each
555web service is given in the following.

5564.2.1 Aviation Consignment Management

557Service (ACMS)

558ACMS helps airline companies check the allowance (weight)
559of free baggage, and the cost of additional baggage. Based

Fig. 2. DRTester configuration snapshots.

TABLE 1
Subject Web Services

Web service LOC Number of mutants

ACMS 116 3
CUBS 131 11
PBS 129 4

2. The implementations have been made available at: https://
github.com/phantomDai/subjects4tsc.git
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561 or international. For international flights, the baggage allow-
562 ance is greater if the passenger is a student (30 kg), otherwise
563 it is 20 kg. Each aircraft offers three cabin classes fromwhich
564 to choose (economy, business, and first), with passengers in
565 different classes having different allowances. The detailed
566 price rules are summarized in Table 2, where price means
567 economy class fare and weight is the weight that exceeds the
568 weight of the free carry.

569 4.2.2 China Unicom Billing Service (CUBS)

570 CUBS provides an interface through which customers can
571 know how much they need to pay according to cell-phone
572 plans, calls, and data usage. The details of several cell-
573 phone plans are summarized in Tables 3, 4, and 5.

574 4.2.3 Parking Billing Service (PBS)

575 Consider a parking billing service that accepts the park-
576 ing details for a vehicle, including the vehicle type, day
577 of the week, discount coupon, and hours of parking.
578 This service rounds up the parking duration to the next
579 full hour, and then calculates the parking fee according
580 to the hourly rates in Table 6. If a discount voucher is
581 presented, a 50 percent discount off the parking fee is
582 applied.
583 To facilitate better parking management, at the time of
584 parking, customers may provide an estimation of parking
585 duration, in terms of three different time ranges ((0.0,2.0],
586 (2.0,4.0], and (4.0,24.0]). If the estimation and actual parked
587 hours fall into the same time range, then the customer will
588 receive a 40 percent discount; but if they are different
589 ranges, then a 20 percent markup is applied. A customer
590 may choose to either use a discount coupon, or provide an
591 estimation of parking duration, but may not do both. No
592 vehicles are allowed to remain parked for two consecutive
593 days on a continuous basis.

5944.3 Variables

5954.3.1 Independent Variables

596The independent variable is the testing technique. RT, RPT,
597DRT, and AT [12] were used for comparison.

5984.3.2 Dependent Variables

599The dependent variable for RQ1 is the metric for evaluat-
600ing the fault-detection effectiveness. Several effectiveness
601metrics exist, including: the P-measure [28] (the probabil-
602ity of at least one fault being detected by a test suite); the
603E-measure [29] (the expected number of faults detected
604by a test suite); the F-measure [30] (the expected number
605of test case executions required to detect the first fault);
606and the T-measure [31] (the expected number of test cases
607required to detect all faults). Since the F- and T-measures
608have been widely used for evaluating the fault-detection
609efficiency and effectiveness of DRT-related testing techni-
610ques [6], [8], [22], [23], [31], [32], they are also adopted in
611this study. We use F and T to represent the F-measure
612and the T-measure of a testing method. As shown in
613Algorithm 1, the testing process may not terminate after
614the detection of the first fault. Furthermore, because the
615fault detection information can lead to different probabil-
616ity profile adjustment mechanisms, it is also important to
617see what would happen after revealing the first fault.
618Therefore, we introduce the F2-measure [30] as the num-
619ber of additional test cases required to reveal the second
620fault after detection of the first fault. We use F2 to repre-
621sent the F2-measure of a testing method, and SDmeasure to
622represent the standard deviation of metrics (where
623measure can be F , F2, or T ).
624An obvious metric for RQ3 is the time required to detect
625faults. Corresponding to the T-measure, in this study we
626used T -time, the time required to detect all faults. F -time
627and F2-time denote the time required to detect the first
628fault, and the additional time needed to detect the second
629fault (after detecting the first), respectively. For each of these
630metrics, smaller values indicate a better performance.

TABLE 2
ACMS Baggage Allowance and Pricing Rules

Domestic flights International flights

First class Business class Economy class First class Business class Economy class

Carry on (kg) 5 5 5 7 7 7
Free checked-in (kg) 40 30 20 40 30 20/30
Additional baggage pricing (kg) weight� price� 1:5%

TABLE 4
Plan B

Plan details Month charge (CNY)

op1B op2B op3B op4B op5B op6B

Basic Free calls (min) 120 200 450 680 920 1180
Free data (MB) 40 60 80 100 120 150
Free incoming calls Domestic (including video calls)

Extra Incoming calls (CNY/min) 0.25 0.20 0.15 0.15 0.15 0.15
Data (CNY/KB) 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4
Video calls (CNY/min) 0.60 0.60 0.60 0.60 0.60 0.60

TABLE 3
Plan A

Plan details Month charge (CNY)

op1A op2A op3A

Basic Free calls (min) 260 380 550
Free data (MB) 40 60 80
Free incoming calls Domestic (including video calls)

Extra Incoming calls (CNY/min) 0.25 0.20 0.15
Data (CNY/KB) 3E-4 3E-4 3E-4
Video calls (CNY/min) 0.60 0.60 0.60

SUN ET AL.: DYNAMIC RANDOM TESTING OF WEB SERVICES: A METHODOLOGY AND EVALUATION 7
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631 4.4 Experimental Settings

632 4.4.1 Partitioning

633 In our study, we set the partitions bymaking use of a decision
634 table (DT) [33].ADTpresents a large amount of complex deci-
635 sions in a simple, straightforward manner, representing a set
636 of decision rules under all exclusive conditional scenarios in a
637 pre-defined problem. Typically, a DT consists of four parts:

638 1) The upper-left part lists the conditions denoted Ci

639 (i ¼ 1; . . . ; n, where n is the number of conditions in
640 the pre-defined problem, and n � 1). Each condition
641 Ci contains a set of possible options Oi;q 2 COi ¼
642 fOi;1; . . . ; Oi;tig, where ti is the number of possible
643 options forCi, and q ¼ f1; . . . ; tig.
644 2) The upper-right part shows the condition space,which
645 is a Cartesian product of all the COi (SPðCÞ ¼
646 CO1 � CO2 � . . .� COn). Each element in the SPðCÞ
647 is a condition entry (CE) with the ordered n-tuple.
648 3) The lower-left part shows all possible actions, repre-
649 sentedAj (j ¼ 1; . . . ;m, wherem is the number of pos-
650 sible actions and m � 1). Similar to COi, an action Aj

651 contains a set of possible options O
0
j;p 2 AOj ¼

652fO0
j;1; . . . ; O

0
j;kj

g, where kj is the number of alternatives
653forAj, and p ¼ f1; . . . ; kjg.
6544) The lower-right part shows the action space SP ðAÞ,
655which is also a Cartesian product of all the AOj

656(SP ðAÞ ¼ AO1 �AO2 � . . .�AOm). Similar to CE,
657each element in the SP ðAÞ is an action entry (AE)
658with the orderedm-tuple.
659A DT rule is composed of a CE and its corresponding AE.
660With DT, it is possible to obtain partition schemes with dif-
661ferent granularities. For fine-grain partition schemes, each
662CE of a DT rule corresponds to a partition; while for coarse-
663grained schemes, a partition corresponds to the union of a
664group of partitions for which all CE of DT rules have the
665same AE. The decision tables for ACMS, CUBS, and PBS are
666shown in Tables 7, 8 and 9, respectively. In the tables, Ri

667ði ¼ 1; 2; . . . ; nÞ denotes the identified ith rule; n is the total
668number of rules; and the checkmark (@) under each rule indi-
669cates that the corresponding action should be taken. The
670details of actions are provided in Table 10, where w is the
671weight of baggage; price means economy class fare; op
672means the monthly charge; call and datamean the call dura-
673tion and data usage, respectively; freeCall and freeData

TABLE 5
Plan C

Plan details Monthly charge (CNY)

op1C op2C op3C op4C op5C op6C op7C op8C op9C op10C op11C

Basic Free calls (min) 50 50 240 320 420 510 700 900 1250 1950 3000
Free data (MB) 150 300 300 400 500 650 750 950 1300 2000 3000
Free incoming calls Domestic (including video calls)

Extra Incoming calls (CNY/min) 0.25 0.20 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Data (CNY/KB) 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4 3E-4
Video calls (CNY/min) 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

TABLE 6
Hourly Parking Rates

Actual parking hours Weekday Saturday and sunday

Motorcycle Car: 2-door coupe Car: others Motorcycle Car: 2-door coupe Car: others

(0.0,2.0] $4.00 $4.50 $5.00 $5.00 $6.00 $7.00
(2.0,4.0] $5.00 $5.50 $6.00 $6.50 $7.50 $8.50
(4.0,24.0] $6.00 $6.50 $7.00 $8.00 $9.00 $10.00

TABLE 7
Decision Table for ACMS

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24

class 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
destination 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
isStudent N N N N N N Y Y Y Y Y Y N N N N N N Y Y Y Y Y Y
isOverload N N N N N N N N N N N N Y Y Y Y Y Y Y Y Y Y Y Y

f1;1 @ @ @ @ @ @ @ @ @ @ @ @
f1;2 @ @
f1;3 @ @
f1;4 @ @
f1;5 @ @
f1;6 @ @ @
f1;7 @
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674 mean the free calls and free data, respectively; and baseFee
675 means the cost before the discount. In Table 7, the condition
676 for calculating the cost of the baggage includes class (0: first
677 class; 1: business class; and 2: economy class), isStudent (Y:
678 the passenger is a student; and N: the passenger is not a stu-
679 dent), isOverload (Y: the baggage exceeds the free carry-on
680 weight limit; and N: the baggage does not exceed the free
681 carry-on weight limit.), and Destination (0: domestic flight;
682 and 1: international flight). In Table 8, conditions that influ-
683 ence cell-phone bills include plan (A: plan A; B: plan B; and
684 C: plan C) and option y under plan x, represented as opyx,
685 where x 2 fA;B;Cg, and y 2 fwj1 � w � 11 ^ w 2 Zg. In
686 Table 9, conditions that affect the parking fee include the
687 type of vehicle (0: motorcycle; 1: 2-door coupe; and 2: others),
688 day of week (0: weekday; and 1: saturday or sunday), and dis-
689 count information (0: customers provide a discount coupon;
690 1: the estimated hours of parking and the actual hours of

691parking fall into the same time range; and 2: estimated
692hours and the actual hours are in different time ranges).
693As can be seen from the description above, because the DT
694considers all parameters, and identifies their invalid combina-
695tions, it can provide a systematic and efficient way to partition
696an input domain into disjoint subdomains, and then generate
697test cases. In practice, each DT rule condition entry corre-
698sponds to a partition in which test cases cover some paths—
699thus, the faults in those paths have a chance of being detected.

7004.4.2 Initial Test Profile

701Because test cases may be generated randomly during the test
702process, a feasible method is to use a uniform probability dis-
703tribution as the initial testing profile. On the other hand, test-
704ers may also use past experience to help guide selection of a
705different probability distribution as the initial profile. In our
706experiment, we used a uniform probability distribution for
707the initial test profile. The initial test profiles of each web ser-
708vice are summarized in Table 11, where < si; pi > means
709that the probability of selecting partition si is pi.

7104.4.3 Constants

711In the experiments, we were interested in exploring the rela-
712tionship between the number of partitions and the DRT

TABLE 10
Formulas of the Actions in Table 7 	 9

Web Service Formulas

f1;1 ¼ 0
f1;2 ¼ ðw� 25Þ � price� 1:5%
f1;3 ¼ ðw� 35Þ � price� 1:5%

ACMS f1;4 ¼ ðw� 25Þ � price� 1:5%
f1;5 ¼ ðw� 47Þ � price� 1:5%
f1;6 ¼ ðw� 37Þ � price� 1:5%
f1;7 ¼ ðw� 27Þ � price� 1:5%

f2;1 ¼ opþ ðcall� freeCallÞ � 0:25
þ ðdata� freeDataÞ � 0:0003

CUBS f2;2 ¼ opþ ðcall� freeCallÞ � 0:20
þ ðdata� freeDataÞ � 0:0003

f2;3 ¼ opþ ðcall� freeCallÞ � 0:15
þ ðdata� freeDataÞ � 0:0003

f3;1 ¼ baseFee� 50%
CUBS f3;2 ¼ baseFee� ð1� 40%Þ

f3;3 ¼ baseFee� ð1þ 20%Þ

TABLE 8
Decision Table for CUBS

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

plan A A A B B B B B B C C C C C C C C C C C
option op1A op2A op3A op1B op2B op3B op4B op5B op6B op1C op2C op3C op4C op5C op6C op7C op8C op9C op10C op11C

f2;1 @ @ @
f2;2 @ @ @ @ @ @
f2;3 @ @ @ @ @ @ @ @ @ @ @

TABLE 9
Decision Table for PBS

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

vehicle 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
time 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
discount 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2

f3;1 @ @ @ @ @ @
f3;2 @ @ @ @ @ @
f3;3 @ @ @ @ @ @

TABLE 11
Initial Test Profile for Subject Web Services

Actual parking Hourly parking Initial test

hours rates profile

ACMS 24 f s1;
1
24

� �
; s2;

1
24

� �
; . . . ; s24;

1
24

� �g
7 f s1;

1
7

� �
; s2;

1
7

� �
; . . . ; s7;

1
7

� �g
CUBS 20 f s1;

1
20

� �
; s2;

1
20

� �
; . . . ; s20;

1
20

� �g
3 f s1;

1
3

� �
; s2;

1
3

� �
; . . . ; s3;

1
3

� �g
PBS 18 f s1;

1
18

� �
; s2;

1
18

� �
; . . . ; s18;

1
18

� �g
3 f s1;

1
3

� �
; s2;

1
3

� �
; . . . ; s3;

1
3

� �g
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713 strategy parameter ", and therefore selected a set of parame-
714 ter values: " 2 f1:0E-05; 5:0E-05; 1:0E-04; 5:0E-04; 1:0E-03;
715 5:0E-03; 1:0E-02; 5:0E-02; 1:0E-01; 2E-01; 3E-01; 4E-01; 5E-01g.
716 It should be noted that " ¼ 5E-01 is already a large value.
717 Consider the following scenario. For PBS, when the test is
718 carried out under partition scheme 2, if " ¼ 7:5E-01 and a
719 uniform probability distribution is used as the testing pro-
720 file (that is, pi ¼ 1=3) , then suppose that the first test case
721 belonging to c1 is executed and does not reveal any faults,
722 then, according to Formula (3), the value of p1 would
723 become 0. It is important, therefore, that the initial value of
724 " should not be set too large.

725 4.5 Experimental Environment

726 Our experiments were conducted on a virtual machine
727 running the Ubuntu 11.06 64-bit operating system, with
728 two CPUs, and a memory of 2GB. The test scripts were
729 written in Java. To ensure statistically reliable values [34]
730 of the metrics (F-measure, F2-measure, T-measure, F-time,
731 F2-time, and T-time), each testing session was repeated
732 30 times with 30 different seeds, and the average value
733 calculated.

734 4.6 Threats To Validity

735 4.6.1 Internal Validity

736 A threat to internal validity is related to the implementations
737 of the testing techniques, which involved a moderate amount
738 of programmingwork. However, our codewas cross-checked
739 by different individuals, and we are confident that all techni-
740 queswere correctly implemented.

741 4.6.2 External Validity

742 The possible threat to external validity is related to the
743 subject programs and seeded faults under evaluation.
744 Although the three subject web services are not very com-
745 plex, they do implement real-life business scenarios of
746 diverse application domains. Furthermore, 18 distinct
747 faults were used to evaluate the performance. These faults
748 cover different types of mutation operators and require an
749 average of more than 20 randomly generated test cases to
750 be detected. Although we have tried to improve the gener-
751 alisability of the findings by applying different partitioning
752 granularities, and 13 kinds of parameters, we anticipate
753 that the evaluation results may vary slightly with different
754 subject web services.

755 4.6.3 Construct Validity

756 The metrics used in our study are simple in concept and
757 straightforward to apply, and hence there should be little
758 threat to the construct validity.

759 4.6.4 Conclusion Validity

760 As reported for empirical studies in the field of software engi-
761 neering [34], at least 30 observations are necessary to ensure
762 the statistical significance of results. Accordingly, we have
763 run a sufficient number of trials to ensure the reliability of our
764 experimental results. Furthermore, as will be discussed in
765 Section 5,we also conducted statistical tests to confirm the sig-
766 nificance of the results.

7675 EXPERIMENTAL RESULTS

7685.1 RQ1: Fault Detection Effectiveness

769F-, F2-, and T-measure results for ACMS, CUBS, and PBS are
770shown using boxplots in Figs. 3, 4, and 5, where the DRT

Fig. 3. F-measure boxplots for each web service.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. X, XXXXX 2019



IEE
E P

ro
of

771 parameter " was set to the optimal values, as described in
772 Section 5.2. The experimental results of DRT with other val-
773 ues of " are shown in Appendix B, available in the online
774 supplemental material. In each boxplot, the upper and
775 lower bounds of the box represent the third and first
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831832quartiles of the metric, respectively; the middle line repre-
833sents the median value; the upper and lower whiskers
834mark, respectively, the largest and smallest data within the
835range of 
1:5� IQR (where IQR is the interquartile range);
836outliers beyond the IQR are denoted with hollow circles;

Fig. 4. F2-measure boxplots for each web service. Fig. 5. T-measure boxplots for each web service.
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838 metric.
839 It can be observed from the figures that, in an overwhelm-
840 ing majority of cases, DRT was the best performer in terms of
841 F-, F2-, and T-measure, followed by AT, RPT, and RT. On the
842 other hand, RT may be the best performer occasionally or the
843 worst performer in terms of F-, F2-, and T-measure, which
844 means that the fault detection effectiveness of RT is not stable.
845 In contrast, DRT and AT show a relatively stable fault detec-
846 tion effectiveness. We also conducted statistical testing to
847 verify the significance of this observation, using the Holm-
848 Bonferroni method [30] (with p-value equal to 0.05) to deter-
849 mine which pairs of testing techniques had significant
850 differences. The statistical data are shown in Table 12, where
851 each cell gives the number of scenarios where the technique
852 above (in the table) performed better than one to the left. For
853 example, the “6” in the top right cell of Table 12 indicates that,
854 of 6 scenarios (two partition schemes � three web services),
855 DRT had lower T-measure scores than RT for 6, with the fault-
856 detection capabilities of these two techniques being signifi-
857 cantly different.
858 Table 12 clearly shows that the differences between pairs
859 of testing techniques are all significant.

860 5.2 RQ2: Relationship between Partition Number
861 and ""

862 In Section 3.2, we analyzed the relationship between the
863 number of partitions and the DRT parameter ". In this sec-
864 tion, we show that our theoretical analysis provides useful
865 guidance to testers to set the value of ".
866 Weused threeweb services to validate our theoretical anal-
867 ysis. Before starting the test, it is necessary to know the failure
868 rate ui of partition si. From Tables 2, 3, 4 and 5, it can be
869 observed that the values of some parameters (such as the bag-
870 gageweight, the call duration, and parking duration) are such
871 that the total number of test case values in a partition could be
872 infinite. For such a situation, we approximate the failure rate
873 ui of si by 1=ki (where ki is the total number of test cases exe-
874 cuted before revealing a fault). According to Formula (19), the
875 theoretically optimal values of " in each scenario for each web
876 service are shown in Table 13,where "� denotes the theoretical
877 value of ". We ran a series of experiments with the parameters
878 set according to those in Table 13: The F-, F2-, and T-measure
879 results for each program are shown in Fig. 6, where "�1 and "�2
880 denote the theoretical values of parameter " in the two differ-
881 ent partition schemes, respectively. For ease of presentation
882 and understanding, we used log100ð1:0E05� "Þ for the

883horizontal axis in Fig. 6. Apart from the DRT strategy parame-
884ter ", all other experimental settings remained the same as in
885Section 5.1.
886From Fig. 6, we have the following observations:

887� In most scenarios, the DRT strategy with theoreti-
888cally optimum parameter value performs best. Fur-
889thermore, the DRT strategy performs better when
890the parameter values are near the theoretically opti-
891mum value than when not.
892� From Fig. 6a, it can be observed that the DRT strategy
893with larger parameter values performs better than
894with the theoretically optimum value, in terms of the
895F-measure. The main reason for this is that, for this
896scenario, the maximum failure rate (uM ¼ 4:781E � 3)
897is large and the number of partitions is small: When
898the parameter value is large, the probability of select-
899ing partitions with lower failure rates is quickly
900reduced, and the probability of selecting partitions
901with larger failure rates is quickly increased, according
902to Formulas (3) and (4).

9035.3 RQ3: Fault Detection Efficiency

904The F-, F2-, and T-time results for ACMS, CUBS, and PBS are
905summarized in Table 14, where the values of DRT parame-
906ters for the subject web services are the same as those in
907Section 5.1. The F-, F2-, and T-time results of DRT with dif-
908ferent parameter values are summarized in Appendix B,
909available in the online supplemental material. It can be
910observed from the table that, in general, DRT had the best
911performance; RPT marginally outperforms RT; and AT had
912the worst performance.
913As was done for the F-, F2-, and T-measure data, we used
914the Holm-Bonferroni method to check the difference between
915each pair of testing strategies in terms of F-time, F2-time, and
916T-time, as shown in Table 15. Table 15 shows that: a) DRTwas
917significantly better thanAT in terms of F-/F2-/T-time; b) DRT
918was significantly better than RT and RPT in terms of
919F2-/T-time; and c) DRT marginally outperformed RT and
920RPT in terms of F-time. In other words, the additional compu-
921tation incurred in DRT by updating the test profile is compen-
922sated for in terms of test execution savings.
923In summary, theDRT strategy is considered the best testing
924technique across this three metrics, RPT marginally outper-
925formed RT, andDRT, RPT, and RT significantly outperformed
926AT.

TABLE 12
Number of Scenarios Where the Technique on the
Top Row has a Lower Metric (F-/F2-/T-Measure)
Score Than the Technique on the Left Column

F-measure F2-measure T-measure

RT RPT AT DRT RT RPT AT DRT RT RPT AT DRT

RT — 4 5 5 — 4 5 6 — 6 6 6
RPT 2 — 6 6 2 — 5 6 0 — 6 6
AT 1 0 — 4 1 1 — 6 0 0 — 5
DRT 1 0 2 — 0 0 0 — 0 0 1 —

TABLE 13
Theoretical Optimal Values of DRT Parameter

Web Partition umin "�

service scheme

ACMS
1 5.452E-2 1.601E-1
2 2.797E-3 1.102E-4

CUBS
1 1.193E-3 5.702E-5
2 1.397E-3 1.734E-5

PBS
1 1.760E-3 1.118E-4
2 1.492E-3 1.340E-5
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927 5.4 Summary

928 Based on the evaluation, we have the following observations:

929 � DRT outperformed RT, RPT, and AT, according to all
930 the applied metrics for all three studied web services.
931 DRT marginally outperformed AT in terms of the
932 F-, F2-, andT-measure, for all the studiedweb services.
933 Moreover, AT incurs heavier computational overhead,
934 and takes a significantly longer time. For instance, AT
935 required 32429.07ms to select and execute sufficient
936 test cases to detect all faults in CUBS, while DRT only
937 needed 30.21ms (Table 14). This indicates that among
938 RT, RPT, andAT, DRT should be chosen.
939 � DRT is more effective in terms of the F-, F2-, and
940 T-measure when the parameter settings are optimal
941 (according to the theoretical analysis): In most cases,
942 DRT has the best performance for all three web serv-
943 ices, according to these three metrics (F-measure,

944F2-measure, and T-measure) when following the
945guidelines for the parameter settings. This highlights
946the usefulness of the parameter-setting guidelines.
947We also note the following limitations:

948� While DRT outperformed RT and RPT in terms of
949fault detection effectiveness and efficiency, this was
950achieved at the cost of the additional effort required
951to set the partitions and test profiles.
952� Applying DRT involves setting parameters, which
953may not be trivial. Evenwhen following the theoretical
954guidelines.

9556 RELATED WORK

956In this section, we describe related work from two perspec-
957tives: related to testing techniques for web services; and
958related to improving RT and PT.

Fig. 6. Line charts of F-measure, F2-measure, and T-measure values for each web service (for both the theoretically optimum parameter value, and
other values.
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960 In recent years, a lot of effort has been made to test web
961 services [4], [13], [35], [36]. Test case generation or selection
962 is core to testing web services, and model-based [37] and
963 specification-based [38] techniques are two common app-
964 roaches. Beforemaking services available on the Internet, test-
965 ers can use model-based techniques to verify whether or not
966 the behavior of the WSUT meets their requirements. In these
967 techniques, test data can be generated from a data model that
968 specifies the inputs to the software—this data model can be
969 built before, or in parallel to, the software development
970 process. Verification methods using technologies such as
971 theorem-proving [39],models [40] andPetri-Nets [41] also exist.
972 All of the above approaches aim to generate test cases with-
973 out considering the impact of test case execution order on test
974 efficiency. In contrast, Bertolino et al. [42] proposed using the
975 category-partition method [43] with XML schemas to perform
976 XML-based partition testing. Because PT aims to find subsets of
977 all possible test cases to adequately test a system, it can help
978 reduce the required number of test cases. Our approach
979 involves software cybernetics and PT: In DRT, selection of a
980 partition is done according to the testing profile, which is
981 updated throughout the testing process. An advantage of DRT
982 is that partitions with larger failure rates have higher probabili-
983 ties of selection. Zhu and Zhang [44] proposed a collaborative
984 testing framework,where test tasks are completed using collab-
985 orating test services—a test service is a service assigned to per-
986 form a specific testing task. Our framework (Section 3.1) aims to
987 findmore faults in theWSUT, with the result of the current test
988 case execution providing feedback to the control system so that
989 the next test case selected has a greater chance to reveal faults.
990 Most web service testing techniques assume that the com-
991 puted output for any test case is verifiable, which is, however,
992 not always true in practice (a situation known as the oracle
993 problem [19]). Thus, many testing techniques may not be
994 applicable in some cases. To address the oracle problem for

995testing web services, Sun et al. [21] proposed a metamorphic
996testing [45], [46] approach that not only alleviates the oracle
997problem, but is also a practical and efficient option for testing
998web services. They conducted a case study that showed that
999up to 94.1 percent of seeded faults could be detected without
1000the need for oracles.

10016.2 Improving RT and PT

1002Based on the observation that failure-causing inputs tend to
1003cluster into contiguous regions in the input domain [10], [11],
1004muchwork has been done to improve RT [6], [7], [9]. Adaptive
1005random testing [7], [9] is a family of techniques based on ran-
1006dom testing that aim to improve the failure-detection effective-
1007ness by evenly spreading test cases throughout the input
1008domain. One well-known ART approach, FSCS-ART, selects a
1009next test input from the fixed-size candidate set of tests that is
1010farthest from all previously executed tests [47]. Many other
1011ART algorithms have also been proposed, including RRT [48],
1012DF-FSCS [49], andARTsum [50],with their effectiveness exam-
1013ined and validated through simulations and experiments.
1014Adaptive testing (AT) [8], [51], [52] takes advantage of
1015feedback information to control the execution process, and
1016has been shown to outperform RT and RPT in terms of the
1017T-measure and the number of detected faults, which means
1018that AT has higher efficiency and effectiveness than RT and
1019RPT. However, AT may require a rather long execution
1020time in practice. To alleviate this, Cai et al. [6] proposed
1021DRT, which uses testing information to dynamically adjust
1022the testing profile. There are several things that can impact
1023on DRT’s test efficiency. Yang et al. [32] proposed A-DRT,
1024which adjusts parameters during the testing process.

10257 CONCLUSION

1026In this paper, to address the challenges of testing SOA-based
1027applications, we have presented a dynamic random testing
1028(DRT) method for web services. Our method uses random
1029testing to generate test cases, and selects test cases fromdiffer-
1030ent partitions in accordance with a testing profile that is
1031dynamically updated in response to the test data collected. In
1032this way, the proposed method enjoys benefits from both ran-
1033dom testing and partition testing.
1034We proposed a framework that examines key issues when
1035applyingDRT to test web services, and developed a prototype
1036tomake themethod practical and effective. To guide testers to
1037correctly set the DRT parameters, we used a theoretical analy-
1038sis to study the relationships between the number of partitions
1039(m) and the probability adjusting factor ("). Three real web
1040services were used as experimental subjects to validate the

TABLE 14
F-time, F2-time, and T-time in ms for Subject Web Services

Partition Metric ACMS CUBS PBS

Scheme RT RPT AT DRT RT RPT AT DRT RT RPT AT DRT

F-time 0.43 0.57 0.49 0.23 0.82 0.91 140.13 0.95 0.81 0.85 22.25 0.68
1 F2-time 0.29 0.31 2.47 0.12 1.14 0.87 172.27 0.86 0.42 0.52 25.40 0.34

T-time 0.85 1.08 2.47 0.43 34.69 30.54 32429.07 30.21 4.12 3.83 289.04 3.20
F-time 0.43 0.33 15.53 0.24 0.82 0.75 16.82 0.87 0.81 0.66 12.99 0.49

2 F2-time 0.29 0.45 363.47 0.28 1.14 0.79 15.76 0.83 0.42 0.35 17.44 0.34
T-time 0.85 0.78 459.67 0.65 34.69 34.59 2666.17 36.49 4.12 2.98 200.54 2.26

TABLE 15
Number of Scenarios Where the Technique on the

Top Row has a Lower Metric (F-/F2-/T-Time)
Score Than the Technique on the Left Column

F-time F2-time T-time

RT RPT AT DRT RT RPT AT DRT RT RPT AT DRT

RT — 3 0 4 — 3 0 6 — 5 0 6
RPT 3 — 1 4 3 — 0 5 1 — 0 6
AT 6 5 — 6 6 6 — 6 6 6 — 6
DRT 2 2 0 — 0 1 0 — 0 0 0 —

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. X, XXXXX 2019
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1041 feasibility and effectiveness of our approach. Our experimen-
1042 tal results show that, in general, DRT has better performance
1043 than both RT and RPT, in terms of the F-, F2-, and T-measures,
1044 and always outperformswhen the " settings follow our guide-
1045 lines. In otherwords, our theoretical analysis can provide gen-
1046 uinely useful guidance to use DRT.
1047 In our future work, we plan to conduct experiments on
1048 more web services to further validate the effectiveness, and
1049 identify the limitations of our method.
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