Loading [a11y]/accessibility-menu.js
Privacy-Preserving QoS Forecasting in Mobile Edge Environments | IEEE Journals & Magazine | IEEE Xplore

Privacy-Preserving QoS Forecasting in Mobile Edge Environments


Abstract:

Mobile Edge Computing is an emerging technology offering low latency responses by deploying edge servers near mobile devices. We propose a novel privacy-preserving QoS fo...Show More

Abstract:

Mobile Edge Computing is an emerging technology offering low latency responses by deploying edge servers near mobile devices. We propose a novel privacy-preserving QoS forecasting approach – Edge-Laplace QoS (QoS forecasting with Laplace noise in mobile Edge environments) to address the challenges of user mobility and information leakage encountered by QoS forecasting in mobile edge environments. Edge-Laplace QoS is able to accurately and efficiently forecast Quality of Service (QoS) of various Web Services, while effectively protecting user privacy in mobile edge environments. We employ an improved differential privacy method to add dynamic disguises to the original QoS data in the edge environment to protect user data privacy. A collaborative filtering method is adopted to retrieve similar users’ accessing records based on geographic locations of their accessed servers for QoS forecasting. We conduct a set of experiments using several public network data sets. The results show that the efficiency of Edge-Laplace QoS is superior to traditional forecasting approaches. Edge-Laplace QoS is also validated to be more suitable for edge environments than traditional privacy-preserving approaches.
Published in: IEEE Transactions on Services Computing ( Volume: 15, Issue: 2, 01 March-April 2022)
Page(s): 1103 - 1117
Date of Publication: 28 February 2020

ISSN Information:

Funding Agency:


References

References is not available for this document.