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TAPESTRY: A De-centralized Service for
Trusted Interaction Online

Yifan Yang, Daniel Cooper, John Collomosse, Constantin C. Drăgan, Mark Manulis,
Jamie Steane, Arthi Manohar, Jo Briggs, Helen Jones, Wendy Moncur

Abstract—We present a novel de-centralised service for proving the provenance of online digital identity, exposed as an assistive tool
to help non-expert users make better decisions about whom to trust online. Our service harnesses the digital personhood (DP); the
longitudinal and multi-modal signals created through users’ lifelong digital interactions, as a basis for evidencing the provenance of
identity. We describe how users may exchange trust evidence derived from their DP, in a granular and privacy-preserving manner, with
other users in order to demonstrate coherence and longevity in their behaviour online. This is enabled through a novel secure
infrastructure combining hybrid on- and off-chain storage combined with deep learning for DP analytics and visualization. We show
how our tools enable users to make more effective decisions on whether to trust unknown third parties online, and also to spot
behavioural deviations in their own social media footprints indicative of account hijacking.

Index Terms—Decentralised Trust, Online Identity, Artificial Intelligence, Interaction Design.
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1 INTRODUCTION

ONLINE fraud and scams are sharply on the increase,
costing the global economy in excess of US$3 trillion

in 2018 [?], and are often perpetrated through ephemeral
false identities. Users struggle to make decisions on who
to trust online, exposing themselves to risks from inappro-
priate over-disclosure of personal data. This motivates new
techniques for determining the provenance and trustwor-
thiness of digital identities – people, businesses or services
– encountered online.

This paper reports on the outcomes of two years’ work
on the TAPESTRY project (EPSRC EP/N02799X/1), focusing
upon a novel decentralised service that harnesses the com-
plex longitudinal and multi-modal signals within citizens’
digitally mediated interactions (for example, on social me-
dia) to support safe online interactions. The signals created
via digital platforms – photos shared, comments left, posts
‘liked’ etc. – weave a complex ‘tapestry’ reflecting our
relationships, personality and identity, referred to as the
‘Digital Personhood’ (DP). Commodification of the DP now
fuels a billion-dollar industry in which machine learning
is increasingly utilised to help make sense of, and extract
value from, the deluge of DP data siloed for example within
social platforms. In this work we exploit the DP for social
good; through a platform (herein referred to as ’TAPESTRY’
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1) that empowers users to share ‘trust evidence’ of their
DP in a granular, privacy preserving manner, in order
to prove the provenance of their digital identity and so
engender trust online. Our system enables a move away
from a centralized, siloed model for personal data (and
derived trust evidence) to a secure decentralised model
that leverages distributed ledger technology (DLT), enabling
users to retain agency over their data and to whom it is
disclosed. Notably, TAPESTRY does not seek to make trust
decisions on behalf of users. It is a decision support service,
that enables granular exchange of trust evidence and its
visualization in a summary form, to enable better human
decisions to be made on trust.

We draw distinction between the problem of proving
identity (authentication), and the problem tackled here, of
proving the provenance of a digital identity. Online security
is typically reliant on traditional representations of identity,
taking simple pseudonyms or email addresses ’at face value’
as users interact with one another or with digital services.
We are now entering a new era in which citizens will con-
struct a DP from childhood, comprising rich lifelong digital
trails from social media and interactions with technology [?].
Those accumulated signals offer an increasingly viable way
to prove the veracity of a digital identity. Leveraging the DP
for this purpose poses significant challenges around signal
processing, privacy, information security and infrastructure.
Further challenges arise by designing the service for non-
experts, who may have low levels of digital literacy -
especially around numeracy. A fundamental tenet of the
TAPESTRY platform is the preservation of the end-user
as the owner of their trust decisions; we do not wish to
develop a ‘trust traffic light’ or trust scoring system. Rather
we wish to summarise in an intuitive way the trust evidence
disclosed from one user to another, in order to support

1. Please note the distinction between our TAPESTRY project and
platform and Zhao et al.’s Tapestry model for service deployment [?].
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strong decision making around trust using that evidence.
TAPESTRY tackles these challenges through three novel
technical contributions:

1) A secure data architecture combining off-chain
storage of encrypted trust evidence derived from
the DP, backed by an unpermissioned proof-of-
work (PoW) blockchain to ensure the integrity and
provenance of that evidence. The architecture incor-
porates a symmetric key sharing scheme, enabling
granular disclosure of trust evidence. This provides
users with agency over whom evidence is disclosed
to, as well as control over the time periods and kinds
of DP activity disclosed. (Secs. ??, ??).

2) A machine learning (ML) algorithm to irreversibly
gist DP activity into compact descriptors that serve
as the basic unit of trust evidence for sharing in
the platform. We propose a deep neural network
(DNN) to extract this evidence through a combi-
nation of semantic embedding and temporal mod-
elling, enabling behavioural deviation to be detected
over time. This in turn enables quantification of the
regularity and temporal coherence of trust evidence
which, combined with assurances over provenance
and integrity from the blockchain, serves as the ba-
sis for users to make better trust decisions (Sec. ??).
Although in principle trust evidence may be ex-
tracted from any social media modality, the scope
of this paper focuses on textual posts from Twitter.

3) A data visualisation technique for representing the
regularity and coherence of the trust evidence dis-
closed by a user within a single static image. The
design of the visualisation is evaluated and shown
to enable non-expert users to quickly make accurate
determinations of the trustworthiness of a digital
identity previously unknown to them (Sec. ??).

In order to evaluate our technical prototype of the
TAPESTRY service, we explore two user-centric case studies
where valid trust judgements and the avoidance of either
fraud or victimisation are desirable for users.

First, we explore the efficacy of TAPESTRY to help users
to detect fraudulent profiles in the context of crowdfunding
within the video games industry. An early account of this
evaluation experiment was given in a short workshop paper
at IEEE Vizsec 2018 [?], but without any of the technical
functionality operating behind the service, or discussion of
the platform. Crowdfunding is a common vehicle by which
small video games studios obtain financial support for
new projects, and an online interaction in which investors
must consider the trustworthiness of pitchers as a primary
factor in making an investment [?]. We developed a con-
trolled, workshop based evaluation of TAPESTRY in which
the platform was used as an aid to investment decision-
making within a mocked-up crowdfunding scenario. In this
scenario, we used TAPESTRY to visualize trust evidence
derived from real-world DPs of games developers, and
artificial profiles fabricated and curated in the months prior
to the study. We show that whilst TAPESTRY users do not
make materially different trust decisions in terms of their
accuracy (distinguishing the provenance of fake versus real
identities), they are able to do so significantly more quickly

using TAPESTRY, leading to advantages when making deci-
sions online in time-pressured and information-overloaded
situations.

Second, we explore the efficiency of TAPESTRY to help
users detect unusual patterns of behaviour within their own
DPs, pointing to unauthorized use (or account ’hijacking’).
Again our goal is not to automatically raise an alarm or
classify this behaviour, but to visually gist the trust evidence
derived from a social media profile and the Digital Person-
hood that underpins it. When accustomed to the visual ’look
and feel’ of TAPESTRY visualisations of this trust evidence,
we show that users can perceive deviations from the norm
and so spot unusual patterns in online activities posted
under their DP.

2 RELATED WORK

Open authentication models (e.g. OAuth2) exist for estab-
lishing cross-site login without credential sharing, relying
upon a trusted identity provider (e.g. Google, Facebook)
to approve access to a digital identity. In addition, there
is a range of services which help to establish trust, for
both named and anonymous/pseudonymous users. For
example, Escrow is a contractual arrangement used within
the Dark Web, facilitated via a third party, which engen-
ders trust between buyer and seller for crypto-currency
transactions [?]. However, TAPESTRY is not proposing yet
another access control solution or service for hosting digital
identities or the DP, or for facilitating trusted transactions.
Rather, TAPESTRY proposes an entirely new kind of service
through which one may verify the trustworthiness of a dig-
ital identity through evidence derived from signals within
an identity’s DP.

2.1 Signals for Online Trust
The nature of trust is complex. It is ’...a psychological
state comprising the intention to accept vulnerability based
upon positive expectations of the intentions or behaviours
of another’ [?]. Importantly, this definition positions risk
as naturally co-existing with trust: an individual accepts
that the other party in an interaction may or may not act
in the expected manner, but believes that their intentions
are good. Offline, judgments about trust are informed by
routinely available emotional and behavioural cues [?], [?],
[?]. Online, these cues are usually absent. However, recent
work indicates that there are alternate factors that may
inform trust judgments [?], [?].

In the context of our crowdfunding case study of
TAPESTRY (c.f. Sec. 7.2), prior work indicates that these
alternate factors include (i) ‘herding’, where (e.g.) poten-
tial investors are reassured by the behaviour of previous
investors, on the assumption that if others are doing some-
thing, it must be the rational thing to do [?], [?] and (ii)
‘social proof’, where (e.g.) less-expert investors are encour-
aged to invest later in a campaign by the involvement of
early investors who are experts in product development or
financial investment [?]. A further factor is social engage-
ment. For example, trust is generated when creators of a
crowdfunding campaign provide investors with updates on
positive progress towards published goals [?]. This reas-
sures investors and – indicative of trust – increases their
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investment [?], [?]. Trust is also generated when creators
link their social media accounts [?]: investors likely feel that
the creator has nothing to hide. Although such observations
exist in the literature, including in an earlier account of
our crowdfunding experiment as work-in-progress paper
at IEEE Vizsec [?], TAPESTRY is unique in aggregating
evidence from such sources to aid the user in their decision
making on trust.

2.2 Social Media Analytics for Trust

Research increasingly explores opportunities for authenti-
cation of identity, making use of DP-related data on (e.g.)
users’ behaviours, activities, social media posts and search
histories [?], [?]. Such data play a crucial role across many
digital economy services including user profiling [?], per-
sonality [?] and crowdfunding [?]. Therefore, it is vitally
important to protect DP by early detection of any malicious
activities in social media feeds, to prevent economic or
reputational harm. There exists various research methods
in social media analytics for trust. Chalapathy et al. [?]
and Yu et al. [?] explore detection of abnormal behaviours
from regular group patterns, while Kang et al. [?] detect
anomalous events through use of relationship graphs which
model social network activities. In [?], the authors use social
graph and text information to detect fraudulent comments
in online review systems. Phua et al. [?] focus on structural
metadata within posted social activities, instead of con-
tent. However, modeling users’ behavioural norms in social
media over longitudinal time periods, as well as visually
representing this analysis to end-users, remains an open
challenge that our research aims to address.

2.3 Trust and Identity over Blockchain

Blockchain’s innovation is in its facilitation of direct transfer
of unique digital property (e.g. currency, data, certificates)
– previously reliant on third party intermediaries [?], [?].
This promotes ‘trustless trust’ [?] whereby exchanges are
‘unidirectionally’ trustworthy, and ‘interpersonal trust’ –
trust in another online agent – is replaced through the
technology’s functionality of transparency, codification and
immutability as a cryptographic audit trail [?]. However,
while Blockchain brings significant trust-related function-
ality, many questions remain for end users about (i) how
to demonstrate and prove such trust to an end user, and
(ii) if – and if so how – a blockchain service enables this
over existing intermediaries. Elsden et al. [?] catalogued
over 200 blockchain applications and found that amongst
identity management systems, most digital identities were
provided by a third party (e.g Facebook or email account) or
required supplementary state-backed documentation (pass-
port, social security numbers etc.) to prove an identity.
Amongst ’self-sovereign’ digital identity Blockchain ser-
vices, where a user issues and controls their own identity,
many involved biometrics (e.g. fingerprint or iris scan)
supported by other personal information (email address,
bank details etc.). Dunphy and Petitcolas’s in-depth review
of identity management models using DLT [?] also found a
prevalence of reliance on intermediaries, with the authors
additionally summarising current UK and EU regulatory

Fig. 1. TAPESTRY System architecture. Data is collected on subjects via
the blue path. Digital activities (such as social media interactions) are
captured on opt-in basis via a web browser extension. Trust evidence
is derived from those activities via a deep neural network (DNN) and
encrypted using a secret key. Keys differ between activities and change
over time. Encrypted evidence is stored within a data lake, alongside
metadata identifying the owner, timestamp and type of activity. A hash
of that metadata serves as a unique ID to that evidence. The encrypted
evidence is hashed alongside its unique ID within a proof-of-work
blockchain. The green path enables a verifier to check the provenance
of a subject by requesting disclosure of the relevant decryption keys.
Encrypted evidence is requested from the lake; the provenance of that
evidence is checked via the blockchain and it is decrypted. Analysis
of the DNN signals yields a visualisation gisting the relevant period of
activity that helps the user make a trust decision on the subject.

challenges i. e. ‘know your customer’; anti-money launder-
ing; and data protection. There are additional challenges of
supporting the demonstration of the technology’s unique
trust-supporting benefits, and of communicating DP data
in a visual form that supports intelligibility amongst non-
expert users. TAPESTRY addresses this challenge through
designing visualisations of trust evidence collected from
social media, that communicate the coherence (and by ex-
tension, provenance) of the DP without disclosing specifics
about a subject’s past activities. Related to TAPESTRY’s
ability to evidence social media activity in a privacy pre-
serving manner are distributed privacy-preserving social
networks, such as Safebook [?] and early attempts to realize
the functionalities of a social network using cryptographic
techniques [?], [?]. The focus of these approaches has been
on the privacy of users, and allowing them full control
over their data. Thus, these approaches involve allowing
the user to alter their data after previously committing to
it. By contrast, TAPESTRY provides an immutable record
of past social media activity, that a user may share to
evidence the provenance of their digital identity. The use
of Blockchain to provide such a service – analogous to a
de-centralised credit reference for identity – is unique to
TAPESTRY and addresses emerging concerns among the
general public around the risks to privacy and security of
siloing data within centralised services or organisations.

3 OVERVIEW OF THE TAPESTRY SERVICE

The TAPESTRY service collects signals derived from the
digital activities of a user (the ’subject’) on an opt-in basis,
and enables that subject to securely share those signals
with another user (the ‘verifier’) in order to demonstrate
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the provenance of that subject’s identity. We assume that
these signals or ‘trust evidence’ (TE) are collected over
longitudinal time periods from a rich tapestry of activities
such as social media posts on various social platforms.

The verifier will determine what kinds of TE are suffi-
cient to make a human decision on the trustworthiness of a
user according to their use context.

The nature and quantity of trust evidence (TE) requested
may vary considerably between contexts. For example, on
an online dating forum, or a ride-sharing service, a verifier
might request evidence of a year of TE on several social
media platforms in order to make their trust decision about
the subject e.g. to support a proposal to meet in person
(high risk). The same user wishing to make a small donation
or investment in a crowd-sourcing campaign online might
request TE only from a single platform for a few months
(lower risk). It is a matter for the subject to decide whether
to disclose the requested TE (i.e. pass to the verified the
relevant decryption keys) and indeed the act of declining to
do so creates in itself a signal for the verifier to make their
human trust decision.

This ‘challenge’ protocol for TE driven by the verifier is
a design decision explicitly made to build in flexibility for a
wide gamut of possible socio-technical interactions that may
be mediated via TAPESTRY.

3.1 Privacy Attributes

In order to provide privacy to TAPESTRY users, TE is
derived through a one-way hashing function that creates
a compact, privacy-preserving gist of the semantic con-
tent of an activity (for example the text or image posted).
TAPESTRY utilises a deep neural network (DNN) to per-
form this distillation in order to prevent content from being
recovered from TE, yet enabling two pieces of TE to be
compared to quantify the similarity of the content that
generated it. The details of this process are described further
within Sec. ??. Thus a subject may share evidence of an
activity, such as a social media post, without providing the
content of that post to the verifier. Furthermore, TE is stored
within the platform in an encrypted form using a secret
key held by the subject. A different key is used for each
TE generated from each type of activity (Facebook photo
post, Twitter text post) and is changed periodically. When
a subject agrees to disclose TE to a verifier, they do so by
sharing the relevant keys. Key generation and sharing, as
well as the broader encryption scheme within TAPESTRY, is
discussed in Sec. ??.

Since the volume of TE (e. g. spanning months or years
of DP) requested of a subject is typically large, TAPESTRY
creates a visual gist (’visualisation’) of the TE in order to
make it comprehensible to the verifier. The design of the
visualisation is discussed in Sec. ??. The core information
communicated via the visualisation is the coherence of the
user’s digital history, derived from the timestamps and sim-
ilarities of the TE shared by the subject. The verifier is able
to make a human decision as to whether the user is trust-
worthy, by having sight of this visualisation, in combination
with other external factors such as social norms prevailing
in their use context. At no point is an automated decision
offered to the verifier as to the trustworthiness of the user,

nor is the subject’s decision to share TE made automatically.
Rather, TAPESTRY acts as a privacy preserving conduit for
the request and supply of TE.

3.2 De-centralised Trust Model

TAPESTRY is designed around a decentralised trust model,
without reliance upon third-parties to vouch for the in-
tegrity and provenance of TE. This trust model is facilitated
via a proof-of-work (PoW) Blockchain.

Recent changes in legislation (e.g. the European GDPR
[?]) mean that users have the right to request that their
personal data be deleted from any systems controlled by
third-parties. In the case of TAPESTRY this meant that raw
data from user activities could not be stored on-chain, as
this could not be later removed. Storing only the encrypted
vectors from the machine learning models, would also not
comply due to the nature of the computations involved,
which create an alternative digital representation of the
user’s behavior, thus personally identifiable information.
Storing the personally identifiable information off-chain,
within one or more independent data lakes (DLs), provides
a method of data capture that facilitates recovering data
for verification purposes, and can be deleted at the user’s
request.

TAPESTRY therefore uses a hybrid system of on- and
off-chain storage for TE; see Fig. ??. A cloud service (of
which many independently operated services are assumed
to exist) maintains the DL into which the subject commits
encrypted TE alongside plaintext metadata that identifies
the user uniquely, along with the timestamp and type of
activity. A SHA-256 hash of the encrypted TE is stored
within a PoW blockchain, keyed by a hash of the metadata
(computed also via SHA-256) which serves as a unique
identifier to the TE record in the DL. In practice, a block
committed to the PoW chain contains many such pairs.
Fig. ?? summarises the interactions between the subject, the
DL and the Blockchain during collection of TE. Note that
the keys used to encrypt TE are different from the standard
cryptographic public/private key pair used within a PoW
system (here, Ethereum) to commit blocks to the Blockchain.
The public key (or ’wallet address’) serves also as a unique
ID of the user on the sytem (c.f. pk in Sec. ??).

On-chain hashing enables the verifier to check the prove-
nance of TE, prior to decrypting and visualizing that ev-
idence for human judgement. The hash of the encrypted
evidence received is compared to that stored immutably
within the Blockchain. This guards against an attack via
fabrication of TE by the DL provider. The PoW Blockchain
is implemented via Ethereum, and a smart contract to fetch
(i. e. search and retrieve) and to commit (append) data to the
Blockchain is provided. Failure to verify the provenance of
the data, or to decrypt the data into a parseable form (e. g.
due to an invalid secret key supplied by the subject) results
in an immediate rejection of the TE and strongly implies
an untrustworthy interaction. Fig. ?? summarises the inter-
actions between the verifier, subject, DL (one pictured) and
the public Blockchain during sharing and verification of TE.

Given the complex security model employed to ensure
secure data transmission and storage, it is plausible that
user error could cause the loss of the keys, rendering their
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Subject Data Lake DLT

Receive
user activity

Calculate
vector

Encrypt and
sign vector

Submit data

Submit
smart

contract
transaction

Transaction
stored in

new block

Transaction hash

Fig. 2. Sequence diagram of the collection of trust evidence (TE) from a
subject. TE is generated locally, in the form of a vector distilled from raw
content via a deep neural network (DNN). The vector is encrypted, then
sent to the data lake (DL) which stores the encrypted TE off-chain and
records a hash of it within a new block in the PoW Blockchain (DLT).

TAPESTRY data inaccessible. Users could wish to share
their keys with a trusted third party key store, which could
provide their keys when required or even act as a facilitator
during the verification process. This optional step is analo-
gous to sharing the private keys of cryptocurrency wallets
with a centralised brokering service.

4 EXTRACTING TRUST EVIDENCE

We now describe the process through which users’ activities
are distilled from explicit content and transformed into trust
evidence (TE). Our approach is based on the hypothesis that
people have consistent (or slowly evolving) behavior and
personal interests over longitudinal time periods [?], [?]. De-
viations from this normative behavior pattern indicate either
a non-natural (fake) account e. g. as a vehicle for spam or
online scam, or a legitimate account that has been hijacked
for similar purpose resulting in abnormal characteristics in
the timeline.

A central assumption of TAPESTRY is that longitudinal
normative behaviour can be used as trust evidence to prove
the provenance of an online identity. The use of a distributed
ledger (blockchain) enables us to prove that such evidence
is created contemporaneously, and cannot be ‘back filled’ to
create an artificial history of interactions for a user (‘sub-
ject’). Thus if a user behaves in a consistent manner for a
considerable length of time, this is a strong signal of prove-
nance and may influence a user (in the ‘verifier’ role) to
trust the subject. Of course fake accounts may be created to
exhibit consistent behaviour; the assumption in TAPESTRY
is that creation of such behaviour over long time periods

Subject Verifier Data Lake DLT

Share keys
for date
range

Request activities

Return n activities

Validate
signatures

Calculate
SHA256
hashes

Request hash for activity

Return hash

Compare
hashes

Decrypt
vectors

Produce
visualisation

loop n
times

Fig. 3. Sequence diagram of the process by which a verifier determines
the trustworthiness of a subject. The subject shares relevant secret keys
with the verifier, enabling encrypted TE vectors to be retrieved from the
data lake, verified for provenance against the Blockchain (DLT), and
decrypted. The vectors are converted into a visualisation to aid the
verifier’s trust decision.

would be prohibitively expensive, and that automating such
a process would leave a tell-tale behavioural signature of its
own.

We tackle the problem of detecting deviation from be-
havioral norms as an outlier/anomaly detection task. Our
goal is therefore to reduce the content of a post to a com-
pact, real-valued vector (the TE) such that similar semantic
content maps to similar TE. In this work, we present our
deep neural network (DNN) based method to detect coher-
ent/incoherent activities on the Twitter social media plat-
form via analysis of text within a subject’s posts. We make
the assumption that the identity has not be compromised at
the time it enrolls to TAPESTRY and begins contributing
trust evidence to protect their identity. Through a com-
bination of semantic embedding and temporal modelling,
we map activity content to TE and leverage the temporal
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coherence of TE to help prove the provenance of a digital
identity.

4.1 Data pre-processing
User-generated content (UGC) on social media is often a
mixture of texts, special characters, hashtags, emojis and
links. This kind of raw data is not directly suitable for
machine learning methods. In natural language processing,
a pre-processing step is necessary to clean the data to
normalize it for the learning process. In this paper, we
consider only meaningful texts and focus on topic analysis.
We first remove special characters and retain only texts in
a tweet. We then apply successive operations, including
tokenization, stop words removal and stemming (e.g. con-
verting words such as ’running’ to ’run’), and lemmatisation
(e.g. converting variants such as ’better’ to simple canonical
words such as ’good’).

4.2 Topic Word Modeling
’Word embedding’ is a distributed representation of words,
incorporating semantic information [?] that is learned from a
large corpus of text (all tweets in the collected data set in our
case). ’Topical modeling’ [?] extracts a distribution of words
as topics, and a distribution of topics as documents. We
implemented topic word embeddings, as proposed in [?],
to capture contextual information in the given document. A
topic word embedding is considered as a word-topic pair
< wi, ti >. We considered all the tweets from one user as a
document. The learned feature can enhance discrimination
between words in different contexts and styles. A tweet
embedding is the average of all topic word embeddings
derived from the words in the tweet.

4.3 Temporal Coherence via Long-Short Term Memory
The application of Deep Learning [?] is proving highly
effective in making sense of signals in computer vision [?],
natural language [?] and robotics [?]. We apply a DNN to
learn features for each user in a temporal window, denoted
as user embedding. The user embedding is regarded as a
temporal pattern of tweets in a fixed time window.

Thus user posting behaviour over a time window is
characterised by the distribution of such data points in the
embedding, derived from the content of posts. This distri-
bution may be contributed to by a single user, or (if a jointly
managed account) by several users; there is no difference
to the algorithm which considers only the resultant distri-
bution. When posts over a particularly timeframe deviate
from this distribution significantly, then the behaviour is
considered anomalous.

The Long-Short Term Memory (‘LSTM’) model [?] is
a recurrent neural network used to model and predict
time-series data. We built a sequence model to capture
the coherence activities using an LSTM model and trained
to extract the user’s behavior norm based on their ‘daily
story’, e.g. as played out on social media or through other
online activity. We implemented a bi-directional LSTM to
model the temporal coherence on a daily and weekly basis
across the captured Twitter data (temporal segment). We
adopted a two-layer bidirectional LSTM, followed by two

fully connected layers. The input of LSTM is the topic word
embedding and the output is a daily or weekly tweets
embedding.

4.4 Triplet network for TE Embedding

In order to compare TE from activities over time, it is
necessary to learn a metric embedding in which norms
may be computed to quantify deviations in the topic word
embedding over time.

Triplet DNNs have been used more broadly to learn
such embeddings for information retrieval e. g. for visual
search [?], [?] and we similarly perform supervised learning
of the TE embedding using a triplet network strategy [?].
The objective of this network structure is to map TE within
the topic word embedding to a metric embedding in which
similar TE samples are pushed together and dissimilar
samples pushed away from each other in the learned space.
Here, similar samples are the temporal segments from one
individual, and dissimilar samples are the ones from differ-
ent individuals. The method proved efficient in identifying
different individuals based on their temporal features, as
learned by the prior LSTM step. We tested the method to
detect compromised moments of an account, by randomly
selecting a time step on one user’s time-line feed. We then
replaced the Tweets after the time point by the tweets from
another user in order to simulate anomalous accounts, in
order to provide negative exemplars for training.

Fig. ?? illustrates our network architecture and the end-
to-end pipeline of our machine learning algorithm for TE
extraction. Given a set of n users U = {u1, u2, · · · , un},
each user has a sequence of k tweets ui = {T1, T2, · · · , Tk}.
The tweets are first pre-processed and projected from vari-
able length text strings to the topic embedding space.
The LSTM then learns a temporal feature of the tweets
for each temporal window, denoted as user embedding,
uei = {twe1, twe2, · · · , twek−w+1}, where w is the window
size. The learning strategy is a classification followed by a
triplet network fine-tuning. We use a single cross-entropy
loss LC for pre-training and a combined classification and
triplet loss LT based on L2 norm for fine-tuning [?]. In our
experiments we use n = 8000 and k = 800 to train the TE
embedding (c.f. Sec. ??).

5 PRIVACY AND INFORMATION SECURITY

In this section we elaborate on the data encryption and key
sharing features of the TAPESTRY platform, the security
properties they require and the security guarantees they
provide for the service. We follow the formalism of timeline
activity proofs (TAP) [?], where we have the user’s trust
evidence as an activity.

5.1 Entities and their roles

To enable formal security analysis of TAPESTRY, we model
the functionalities and security assumptions of its entities,
i.e. subjects, verifiers, and public ledger (data lake with PoW
blockchain).
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Fig. 4. Triplet LSTM architecture of our DNN projects users’ activities to
a high dimensional space where the generated content from the same
user are close to each other, which is used as TE. Textual content is first
transformed to a semantic embedding using a topic model and word
embedding. Temporal embedding is learned via LSTM reflecting social
media behavior over time. Initially the LSTM is trained as a classifier
to discriminate between users within a training corpus (under cross
entropy loss LC , yielding a ’user’ embedding) The embedding is then
fine-tuned to yield the final TE embedding space via triplet training
using sequences of real twitter posts (positives), and simulated fake
sequences created by other users), under a triplet loss LT .

Subjects: We model subjects (i. e. users) on whom data
is collected, using secret-public key pairs (sk, pk), with sk
used generically to contain all secret information required
by the user, i.e. signing keys and seed for derivation of
the encryption key. The public key pk is used as the public
identifier for the user, referred to in Sec. ?? as the user’s
unique ID. This key is analogous to a wallet address (e.g.
in Ethereum) and we allow the user to create multiple
identities, and thus, hold multiple key pairs. An assumption
of our system is that a physical identity cannot transfer
ownership or operation of such key pairs, thus grounding
the key pair as a basis for identity in TAPESTRY.

Public ledger with external database: We consider an
ideal version the public ledger that captures the function-
alities of the PoW blockchain from Sec. ??, while the data
lake is modelled as an external database. The public ledger
is assumed trusted and cannot be corrupted; assumption
that is standard for ideal formalization of the ledger. In real-
world deployment, this assumption can be realized by the
distributed and public nature of the PoW blockchains. The
external database is also trusted not to remove/add entries,
assumption easily enforced by the subject maintaining a
Merkle tree root over all his encrypted TE and plaintext
metadata.

Verifiers and Policies: Verifiers establish policies - state-
ments over different types of activities/TE in specific in-
tervals, that the subjects must satisfy. In TAPESTRY, all
policies are subjected to a human-based decision via the
visualization in Sec. ??. We model this aspect abstractly by
having the policy return a Boolean value (i.e. true or false) to
capture the verifier’s decision. While the verifier has access
to the TE or decryption keys for this TE, and is trusted to not
disclose them; the verification process can only be initiated
by the subject via the smart-contract in PoW blockchain, that
includes an interactive proof of ownership.

5.2 Form of Trust Evidence
A subject’s TE maintains a strict format: the subject’s public
identity pk (i. e. unique identified), the time it has been

registered time, the type of evidence type with any optional
descriptors [tags], the machine learning encoding (i. e. real-
valued vector) of the evidence data data, and a digital
signature σ to authenticate that it was submitted by the
subject pk. When the subject submits this trust evidence,
the data component is encrypted cdata, therefore:

TE = 〈pk, time, type, cdata, [tags], σ〉 .

Building Blocks: Our construction relies on pseudo-
random functions (PRF) [?] and digital signature (DS) [?] that
are existentially unforgeable under chosen message attacks (EUF-
CMA) [?]. Additionally, we consider a symmetric encryption
scheme (SE) with two security requirements: indistinguisha-
bility under chosen plaintext attacks (IND-CPA) and wrong key
detection (WKD) [?].

Key Management: The trust evidence data is en-
crypted with a symmetric encryption scheme, where the
encryption/decryption keys play an important part of the
policy verification. Our solution is to derive unique encryp-
tion keys for finite time periods and for each kind of activity;
in practice this could be as granular as a key per piece of TE.
We realize this by assigning a random PRF seed s to each
user, when they join our system. For TE, the encryption key
ek is build as:

ek = PRF(s,PRF(s, pk, time), type).

For a greater degree of granularity, we may consider count-
ing the same type of trust evidence received at the same
time duration: PRF(s, ek, count). Furthermore, this allows
for a granular disclosure of encryption keys only for the
trust evidence required by verifiers, without compromising
the security of the other trust evidence.

5.3 Security Properties
There are two security properties that our system satisfies:
data confidentiality that ensures the privacy of trust evi-
dence data after the subject has submitted it to the external
database associated with the ledger, and authentication policy
compliance where verifiers are only convinced by subjects
who actually satisfy verification policies. Formal definitions
are available in [?].

Data Confidentiality: Intuitively, this property ensures
that no information is revealed concerning the trust evi-
dence data that the subject is submitting, just by analyzing
entries in the ledger. This property is modeled by using
a probabilistic polynomial-time (PPT) adversary that is re-
quired to distinguish between two private activity encod-
ings by seeing an entry in the database that corresponds to
one of them. The entries differ only on the data component,
while the public key, the time, type and tags are the same for
both entries. Following the formalism of TAP, we use crypto-
graphic primitives that satisfy the security requirements of
TAP: IND-CPA for the symmetric encryption scheme, and
pseudo-randomness for PRF.

Authenticated Policy Compliance: This property en-
sures that a malicious user cannot impersonate an hon-
est subject, or fake the existence of trust evidence in the
database associated to the ledger. Therefore they cannot con-
vince an honest verifier that they are authorized and satisfy
their policy. We model this using a PPT adversary that can
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Fig. 5. Initial designs for the TAPESTRY visualisation prototyped with the
focus group. The two designs progressed for evolution and implemen-
tation in the service, based on user feedback, were the ‘slash’ and the
‘pie’ (shown second and fourth from left on the top row). The purpose
of the visualisation is to communicate the completeness of TE records
over the shared time period, and the coherence of activities generating
that TE i. e. to flag anomalous behaviour. In many of the initial designs,
these properties were reflected by spatial coverage and use of colour
respectively.

submit entries to the external database of a public ledger,
and is considered successful if they can convince an honest
verifier to accept the evidence when one of two conditions
is satisfied: either the adversary impersonated an honest
subject, or they provided a successful proof for a policy
that they do not satisfy. Following the formalism of TAP,
we use cryptographic primitives that satisfy the security
requirements of TAP: WKD for the symmetric encryption
scheme, EUF-CMA for the digital signature, and pseudo-
randomness for PRF.

5.4 Implementation details

Our cryptographic primitives are instantiated using the
implementation from the python library pynacl. Our PRF is
instantiated with the BLAKE2b [?]. In [?], it has been shown
that BLAKE2b satisfies the pseudo-randomness property
required by PRFs. Our DS uses the Ed25519 [?] implemen-
tation from [?] to instantiate the digital signature. Ed25519
offers existential unforgeability under chosen message at-
tacks. Our SE is instantiated with the Salsa20 and Poly1305
MAC [?]. In [?] it has been shown that this construction
satisfies IND-CPA. Moreover, the exact construction uses the
technique from [?], and therefore also satisfies WKD.

6 MAKING TRUST EVIDENCE COMPREHENSIBLE

TAPESTRY aims to visually communicate a gist of the
completeness and coherence of a subject’s TE over time, so
that a verifier can make an informed choice as to whether
to trust that subject. We rejected the security related motifs
(e.g. ticks, padlocks) that are often used in online systems
to signal the efficacy of a particular security function or do-
main of use; e.g. proportionate red-amber-green traffic light
scales as used for food packaging to indicate nutritional
content [?]; bronze, silver, gold hues often incorporated
into badge, certificate or star rating symbolism. Such tropes
convey trustworthiness as quantifiable and unequivocal (see
[?]). All visualisations are persuasive to an extent [?]; this

has serious design implications as TAPESTRY does not (vi-
sually) verify an online actor’s trustworthiness but aims to
support individuals in making their own judgments about
in whom and what to trust. Our intention is not to make
a trust decision, and then communicate that decision in a
vague way. Rather, our intent (via the visualization) is to
gist digital activity patterns over longitudinal time periods
into a visual snapshot that will alter appearance as activity
patterns are altered. The visualization acts as data to support
rather than make human trust decisions, as so must avoid
presenting a visual metaphor that implies a decision like a
dashboard or traffic light warning system.

6.1 Prototyping of Visualisations
User focus groups and lab-based workshops with user
experience (UX) designers informed early concept designs
for the visualisation. Our design inspirations were broad,
from Knightmare, a 1990s British TV quest gameshow for
children that manifested the health status of the characters
using pixelated computer graphics, to more conventional
information and data visualisation practices. From this we
then produced 12 initial designs we called ‘snowflake’;
‘slash’; ‘radiance’; ‘pie’; ‘T-bar’ (referring to TAPESTRY);
‘tiles’; ‘pixel face’; ‘Picasso’; ‘T’; ‘shield’; ‘eye’ and ‘pixel
head’ (see Fig. ??). We then rejected designs that could not
depict sufficient granularity of either the completeness or
coherence of TE over time. We also rejected designs that
did not readily scale down (i.e. for viewing on a small
screen) e. g. ‘pixel head’ inspired by Knightmare, the most
anthropomorphic of the designs. We also rejected ‘eye’ as
evocative of a surveillance system. We explored use of
colour and tone, both to enable additional granularity of
visual representation of the shared TE and with regard to
colour’s culturally situated function that could invite poten-
tially unintended meanings for some users. Additionally,
in terms of interpreting completeness of TE – within the
research team it became apparent that the computer scien-
tists associated lighter tone with more TE while designers
interpreted white areas of a design as an absence of TE
within a given time period. With these constraints in mind,
we selected to use the idioms of ‘slash’ and ‘pie’ as the
preliminary visualisations for further development.

6.2 Evolved Visualisation Designs
The final designs for the ‘pie’ and ‘slash’ TE visualisations
are shown in Fig. ??. The choice of two designs for the visu-
alisation reflect two use cases for deployment of TAPESTRY,
evaluated in Sec. ??.

Pie is based on a simple dial that lends itself to represent-
ing temporality and accumulation of DP over days, weeks,
months etc, across concentric circles, as though accumulated
TE is moving towards the core of the pie. This design is
used for the interpersonal trust case in which users are
required to make trust decisions on an a priori unknown
online business or service. We report on the efficacy of
the visualisation in this context within the video games
crowdfunding experiment of Sec. ??.

Slash meanwhile was intended to communicate intro-
spective trust, where users can check TE derived from their
own DP (i. e. act as both subject and verifier) to determine
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Fig. 6. Developed visualisations deployed in TAPESTRY. Left: Pie communicates interpersonal trust e. g. to help users determine whether to trust
an unknown business or service online. Concentric rings of the pie correspond to different granularities of time, and shading is used to communicate
coherence and volume of activity within the time period corresponding to each segment. Right: Slash communicates introspective trust e. g. to help
users determine if their social media account has been compromised. Each slash corresponds to a period of time, with backslashes indicating
anomalous (outlier) TE during that period. Shading is used to communicate volume of TE during that period, as with ‘pie’. Six instances of the
visualisations are displayed ranging from complete and coherent, to sparse TE over the time period requested by the verifier.

whether their online accounts have been hacked (Sec. ??.).
This required a design that could visually detail sudden dis-
sonance within an otherwise relatively uniform pattern of
DP as generated over time. A visual design analogy would
be a ladder in hosiery, or a dropped stitch in knitwear; these
draw the eye, despite their small scale, to solicit a feeling of
unease in the user to invite further investigation.

Both these visualisations necessitate some initial expla-
nation and guidance [?], though their intended meaning
will require learning only once [?]. This is addressed via
a tutorial during the initial user sign-up to the TAPESTRY
service.

7 EXPERIMENTAL EVALUATION

We evaluate the TAPESTRY service in two contexts. First, in-
trospective trust, which we evaluate in the context of social
media account hijacking; a user (‘verifier’) must determine
whether their social account has been compromised due to
anomalous posting behaviour. Second, interpersonal trust in
which a user (‘verifier’) must determine the trustworthiness
of another (‘subject’) online. We evaluate this in the domain
of rewards-based crowdfunding, where parties are typically
unknown to one another initially, and a trust judgement is
fundamental to deciding whether to invest. In both experi-
ments we have focused upon the Twitter platform, deriving
trust evidence from text in user posts.

7.1 Introspective Trust: Anomaly Detection
We first evaluate the efficacy of our proposed DNN ap-
proach (Sec. ??) for extracting trust evidence from social
activities (text-based Twitter posts). We evaluate the ability
of the approach to discriminate between the behaviour of
different users, and its ability to detect anomalies within the
social media feed of individual users. The experiments were
conducted using a public dataset of Twitter posts (‘tweets’)
gathered by Li et al. [?] initially comprising 50 million
tweets for 140,000 users. In our experiments, we study social
media footprints over longitudinal time periods and clean
the data by removing users with fewer than 800 tweets in
their timeline feeds. The remaining 8000 users form the basis
for our experiments.

Evaluating Trust Evidence (TE) Embedding
We justify our choice of a LSTM to learn a temporal model
for TE, via comparative evaluation against two state-of-the-
art DNN architectures; RNN and GRU. We evaluate all three
architectures as a user classification problem: the networks
are trained using 80% of the tweets of n = [500, 8000]
users and tested on the remainder. Accuracy is measured
as the number of times the system correctly identifies the
user among the n possibilities. Fig. ?? shows the result of
classification accuracy on all the three models as n increase.
The LSTM model outperforms the other two models in most
cases.

Evaluating Anomaly Detection
We compare the efficacy of our learned embedding at de-
tecting anomalies within a single user’s history of TE. For
this experiment we train the model on 80% of users, and
test on the remaining 20%. We compare several approaches
to detecting anomalies within the test partition:

1) One-class SVM (OCSVM) [?] computes a non-
linear boundary in a higher dimension space using
kernel method for data projection. . This method
allows for only positive data as ’one class’.

2) Isolation Forest (IF) [?] evaluates the isolation de-
gree of each data point using a random forest. This
algorithm focuses on separating the outliers from
the data points.

3) Local outliers factor (LOF) [?] is a distance-based
method using Euclidean distance considering the
density of neighborhood information.

4) Proposed method. We applied a distance based
method of outlier detection within the proposed
user embedding. We compute the distance between
each data point and the distribution of data within
the embedding corresponding from the first fraction
of user’s activity, which we consider representative
of the users’ behavioural norm. We consider dis-
tances larger than a selected threshold as outliers
(see subsec ?? for detail).

We simulate hijacking actions on users’ Twitter stream to
evaluate anomaly detection. Given a fraction (fh) hijacking
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Fig. 7. Mechanical Turk experiment evaluating the efficacy of the ‘slash’ visualisation for anomaly detection (introspective trust). MTurk workers
were presented with a series of four visualisations, each summarizing four weeks of trust evidence. Based on the series, they were asked which (if
any) of the visualisations appeared anomalous relative to the others, and thus implied that unusual activity was present in the social media feed.

Precision Recall F1-score
fh 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

OCSVM 0.43 0.46 0.48 0.44 0.46 0.48 0.43 0.46 0.47
IF 0.71 0.62 0.57 0.75 0.64 0.59 0.73 0.63 0.58

LOF 0.12 0.24 0.34 0.13 0.25 0.37 0.12 0.24 0.35
Ours 0.93 0.94 0.95 0.98 0.91 0.92 0.95 0.91 0.94

TABLE 1
Evaluating the ability of our embedding to perform anomaly detection.
Results compare our proposed approach to anomaly detection within

the learned embedding to two common baselines.

Fig. 8. Evaluating user discrimination without our DNN learned embed-
ding for trust evidence. Our temporal modelling approach (based on
LSTM) is compared to RNN and GRU sequence models. The experi-
ment is run for n = [500, 8000] corpus of users and accuracy measured
as the % of users correctly identified based on 20% of their TE.

length, we randomly replace a fraction of tweets in each
user’s feed by another user’s content. These replacements
create unusual behaviors that deviate from user’s activity
norm. Three baselines were selected to be representative
a spectrum of statistical approaches commonly used in
anomaly detection (SVM classification, random forests, den-
sity estimation). Table ?? quantifies the performance of our
proposed approach (in terms of both precision and recall)
against these baselines. Our proposed method – LSTM –
outperforms all the other methods regardless of the duration
of the period the account is hijacked for.

Synthesizing the Visualization (Slash)
The slash visualization comprises four rows of glyphs; each
glyph is a slash or a backslash representing coherent of

incoherent behaviour versus the user’s historic norm. Each
row comprises 10 glyphs, collectively representing a week of
Twitter activity and thus the visualization comprising four
rows (Fig. ??) comprises approximately a month of social
media activity. The user’s historic norm is modelled as a
Gaussian mixture model (GMM) fitted to the distribution of
historic tweets, each of which maps to a real-valued vector
within the TE embedding (Sec. ??). In our user study the dis-
tribution was built using the previous month of activity data
from Twitter. In order to determine if a glyph (representing
approximately 10% of a week’s activity) should indicate
coherence or not, we average the Mahalanobis distances
of all tweets in that period to GMM. If there is no activity
during the time period then no glyph is produced (a white
’gap’ is left in the visualization).

Comprehensibility of the visualisation
In order to evaluate if our proposed visualisation is un-
derstandable and helpful for non-expert users to detect
potential anomalies, we crowd-source evaluation on the
Amazon Mechanical Turk (MTurk) platform. MTurk was
used to recruit 92 non-technical participants with day to
day experience using social media sites. Fig. ?? depicts a
representative questionnaire. We provide a series of four
visualisations of a user’s activities, sampled at regular inter-
vals across their TE history. Each visualisation contains four
weeks’ of activities. Normal behaviors are represented by
forward slashes, while backward slashes represent unusual
behaviors detected by our proposed method in Section ??. A
blank position means no activities in that time-stamp. Based
on the series presented to them, the MTurk workers are
asked which (if any) of the visualisations appear anomalous
relative to the others, and thus imply that unusual activity
is present in the social media feed. The evaluation draws on
the online activity of 1000 users in our dataset. We excluded
data from users who had less than 4 weeks’ of activities in
their timeline, leaving us with 537 users whose activities are
represented by visualisations, and used in the evaluation as
MTurk tasks. Each task is assigned to 5 different workers.
A task is correctly detected if most (i.e. 3 out of 5) of the
MTurk workers make the correct decision. On average, each
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Fig. 9. Visualisation of two crowdfunders’ digital footprints: strong prove-
nance (left) and limited provenance (right). The TE requested by the
’verifier’ (participant) was fixed to a month with concentric circles repre-
sent daily tweet activity (inner) to four weeks of activity (outer).

worker spent around 1 minute per task, including reading
the instructions and submitting their decisions.

7.2 Interpersonal Trust: Crowdfunding

We evaluate the performance of TAPESTRY in terms of
benefit to the human decision-making process when es-
tablishing the trustworthiness of an individual online. An
initial account of this experiment was given in the IEEE
Vizsec workshop as a short paper [?].

Mock Crowdfunding Campaign
We designed a user study that involved making a decision
on whether to invest in a (mock) crowdfunding campaign
for a video game start-up - a sector heavily reliant upon
such funding. In this context, a user (the ’verifier’) is invited
to make an investment by another user (the ’subject’) with-
out prior knowledge of that subject. Our video game was
offered for investment by eight crowdfunders on a mock
platform: these crowdfunders were a mix of four real games
industry professionals and four fake identities that had been
created two months prior to the study. We commissioned an
experienced video game narrative writer who mocked-up a
pitch for a new video game and an associated crowdfunding
campaign. We had gained the consent of the games develop-
ers to use their real profiles in the campaign. Meanwhile the
writer produced four fake profiles based on their knowledge
of the gaming industry. We created fake Twitter accounts for
the fake profiles and continually tweeted relevant game and
entrepreneur-related comments for two months prior to the
study to provide historic context. All eight crowdfunders
had one campaign web page hosted on a password pro-
tected micro-site, which included a description of the game
(constant across all candidates), a short biography for each
profile and a link to their Twitter account. The creation date
of the real and fake Twitter accounts was obfuscated.

Synthesizing the Visualization (Pie)
The Pie visualization comprises four concentric rings, each
segmented into twelve segments that are shaded to indicate
coherence of social media activity. Each ring represents
activity within a different time period, from inner ring to
outer: one day, one week, one fortnight (two weeks), four
weeks (approximatley one month) – all from the current
date. The segments represent one twelfth of that time period
and are shaded light to dark to indicate the degree of

coherence (lighter) or incoherence (darker, or absent) of
social posting behaviour versus the user’s historic norm.
The user’s historic norm is modelled as a Gaussian mixture
model (GMM) fitted to the distribution of the previous
month of tweets mapped to a real-valued vector within the
TE embedding (Sec. ??). When determining the darkness of
a segment, we shade inversely proportional to the average
of the Mahalanobis distances of all tweets in that period to
GMM. If there is no activity during the time period then the
segment is absent (a white ’gap’ is left in the visualization).

Experimental setting
The study was run in a closed workshop with 10 partic-
ipants recruited from the University campus population.
The 10 participants were aged 25-40 and gender balanced.
The recruited participants were non-technical, and had no
prior experience of crowd-funding nor specialist knowledge
of the games industry. After a briefing on the TAPESTRY
service, participants were invited to read the crowdfund-
ing campaigns, browse the background description and
biographies and invest a hypothetical $1000 ‘TAPESTRY
currency’ between the eight campaigns. We randomly split
the participant group into two groups of five; only one
group was provided with TAPESTRY visualisations on the
mock crowdfunding site (Fig. ??). Participants could use the
mock site or wider resources on the Internet to help them
to make decisions to allocate the money. The study lasted
35 minutes; participants were asked to make one decision
every 5 minutes using the knowledge they gleaned from
their full use of Internet resources.

Experiment results
We evaluated the participants’ performance based on their
investment results, comparing the amounts invested in real
and fake profiles for both groups. We consider investment in
a fake profile (i. e. scammer) a bad investment. Fig. ?? shows
that the accuracy of the investment results correlates to the
time taken in background research; the more participants
gathered information from their searches on the Internet, the
more accurately they made their investment. Given the time
limit, the TAPESTRY group used the visualisation tool to
quickly understand the games developers’ Twitter identity,
speeding up their search to establish legitimacy. We can
conclude that although participants reached similar, correct
decisions (in terms of discriminating their investment be-
tween genuine and fake developers) the time-to-task was
considerable shorter (approx. by half) for TAPESTRY users.

8 CONCLUSION

We presented TAPESTRY, a novel decentralised service that
enables users to determine the provenance of online identity
from their digital personhood (DP) in order to make better
decisions on who to trust online. We applied the TAPESTRY
service to two tasks; determining the trustworthiness of
another unknown individual (interpersonal trust), and de-
termining the integrity of one’s own social media feed
(introspective trust). We used machine learning techniques
to extract trust evidence from social media activities in a
privacy preserving manner, and a proof-of-work Blockchain
to store hashes of that evidence in order to underwrite its
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Fig. 10. Participants’ investment performance in the mock crowdfunding experiment. Top: the control group without TAPESTRY visualisation; Bottom:
with TAPESTRY. The users with access to TAPESTRY achieved similar or better accuracy in detecting fake profiles, at least twice as quickly.

provenance. Our service enabled users to then selectively
disclose trust evidence to one another in order to prove the
provenance of their identity. To improve comprehension of
the high volumes of evidence shared between users, we de-
signed visualization techniques to summarise that evidence.
We evaluated the end-to-end system using a mocked up
crowdfunding exercise run in a user workshop, and showed
that TAPESTRY enables people to make accurate trust deci-
sion faster than the control group who lacked access to the
service. We evaluated the end-to-end system for anomaly
detection and showed that TAPESTRY enabled users to
detect anomalies in a social media feed with accuracy of
∼ 94%.

Currently TAPESTRY is a prototype and future work
will explore at-scale deployment beyond workshop settings.
At scale, it will become necessary to run multiple data
lake services, with users distributed across different lakes.
This will add value to the PoW Blockchain which will
then be maintained across multiple lakes. At this stage, fur-
ther characterization of the performance of the TAPESTRY
Blockchain should be undertaken. In addition, the studies
in this paper focus on just a single social media modality
(text, from Twitter posts) and a scaled-up system would
explore multiple platforms and modalities. Nevertheless,
we do not believe at-scale deployment of TAPESTRY is
necessary to demonstrate the value in our hybrid on- and
off-chain architecture for identity provenance, and the novel
machine learning and visualization techniques developed
for the service.

TAPESTRY is underpinned by the requirement that users
who wish to interact online maintain an active digital per-
sonhood (DP) from which trust evidence may be derived.
Whilst we do require that users’ maintain a DP, we place
no requirement on the regularity with which users maintain
it (e.g. post). Afterall, if a user irregularly posts to social
media, and that is their behavioural norm, then this is
the pattern of behaviour that other users (verifiers) would
learn to expect from that user – or if monitoring one’s own
social media feed, the pattern one expects to see in the

visualization for that feed. Nevertheless the project raises
broader societal questions around digital inclusion should
be considered where individual may (e.g. due to age, or
personal choice) opt not to maintain a DP; one might lever-
age IoT or other digital interactions in place of social media
(as proposed here) in such circumstances.
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