
1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Evaluation Goals for Online Process Mining: a
Concept Drift Perspective

Paolo Ceravolo , Gabriel Marques Tavares , Sylvio Barbon Junior , and Ernesto Damiani

Abstract—Online process mining refers to a class of techniques for analyzing in real-time event streams generated by the execution of
business processes. These techniques are crucial in the reactive monitoring of business processes, timely resource allocation and
detection/prevention of dysfunctional behavior. Many interesting advances have been made by the research community in recent years,
but there is no consensus on the exact set of properties these techniques have to achieve. This paper fills the gap by identifying a set
of evaluation goals for online process mining and examining their fulfillment in the state of the art. We discuss parameters and
techniques regulating the balance between conflicting goals and outline research needed for their improvement. Concept drift detection
is crucial in this sense but, as demonstrated by our experiments, it is only partially supported by current solutions.

Index Terms—Online Process Mining, Event Stream, Requirements and Goals, Concept Drift.

F

1 INTRODUCTION

P ROCESS Mining (PM) is a set of data science techniques
focused on the analysis of event logs [1]. Events are

recorded when executing a Business Process and collected
into cases, i.e. end to end sequences of events relevant to
the same process instance. Traditional PM algorithms were
designed to work offline, analyzing historical batches of logs
gathering the complete course of cases, if necessary with
multiple passes of analysis. This is, however, insufficient,
from a business standpoint, when the real-time assessment
of processes is crucial to timely manage resources and
quickly react to dysfunctional behaviors [2]. Today’s fast-
changing market requires systematic adjustments of pro-
cesses in response to changes in the organization’s operating
system or to trends emerging from the environment [3].

Recently, the notion of online PM has emerged in refer-
ence to analytics capable of handling real-time event streams
[4], [5]. An event stream differs from an event log because it
is an unbounded sequence of events ingested one-by-one
and allowing for limited actions in terms of iteration and
memory or time consumption [6].

Traditional (offline) PM techniques cover three main
tasks: process discovery where a new model is inferred based
on the information contained in the event log; conformance
checking where a model is compared with the event log, to
analyze possible deviations; process enhancement where the
model is updated to reach better performance results [1]. In
recent years, researchers have achieved significant results in
proposing adaptations to classic offline techniques to handle
online processing, mainly for process discovery [5], [7], [8],

• P. Ceravolo and G. M. Tavares are with the Università degli Studi di
Milano, Italy.
E-mail: {paolo.ceravolo,gabriel.tavares}@unimi.it

• S. Barbon Junior is with Londrina State University (UEL), Londrina,
Brazil.
E-mail: barbon@uel.br

• E. Damiani is with the Cyber-Physical Systems Center, Khalifa Univer-
sity, Abu Dhabi, UAE
E-mail: ernesto.damiani@ku.ac.ae

Manuscript received April 19, 2005; revised August 26, 2015.

[9], [10], [11], [12] and conformance checking [13], [14], [15],
[16], [17], [18].

An assumption of several works is that online PM algo-
rithms have to control time and space complexity, avoiding
to exceed memory capacity, even dealing with logs that
potentially tend to infinite size. In contrast, lower memory
consumption is, in general, associated with lower accuracy;
thus, the trade-off between these two dimensions should be
controlled by algorithms, but little work has addressed this
issue [10].

A major goal related to online PM is to get a real-time
response over executed activities, minimizing the latency
of reaction to deviant behavior. This requires inspecting
incoming events quickly and incrementally, ideally event by
event in one pass, still, a few incremental algorithms are
available in the literature [10], [19]. In fact, the offline PM
algorithms presuppose complete cases and it may be hard to
convert them into incremental procedures [20].

Another crucial goal is Concept Drift Detection (CDD).
Event streams are often non-stationary. The quality of a dis-
covered model may change over time, and, by consequence,
the validity of the conformance tests formerly executed is
jeopardized. Techniques for detecting quality drifts in PM
have been proposed [5], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35] but seldom applied to
drive online updates or only partially able to fit the real-time
constraint [20]. Also, there is no consensus on the criteria
used to detect concept drift. Some approaches drive concept
updates using a constant criterion [5], [26], [30], while others
apply a variety of statistical tests to trigger it [24], [28],
[30], [35]. Moreover, data streams are typically assumed as
accurate and free of noise but this assumption is generally
wrong. A cleansing stage, filtering out spurious events, may
be required to improve the quality of the analysis [25], [36],
[37] or pre-processing is required to ingest event data into
the right level of abstraction [38].

These aforementioned goals are typically addressed in
isolation thus the translation into functional and non-
functional goals of the online PM problem is not uniform

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-4988-0702
https://orcid.org/0000-0002-9557-6496

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

in the literature. This lack of common ground in terms of re-
quirements and evaluation goals harms the assessment and
benchmarking of online PM techniques. This paper aims at
filling the gap by identifying a set of requirements pertinent
to online PM. In our work, the state of the art is reviewed by
a literature-based analysis of the requirements different ap-
proaches can issue. More specifically, we identify two design
dimensions that require a balance between their conflicting
goals. One dimension is represented by the relationship
between memory consumption and accuracy, and the other
by the relationship between response latency and frequency
of runs. We also observe that handling multiple goals and
addressing their conflicts requires integrating concept drift
techniques. Progressing in this direction is essential to a
better understanding of the topic. For this reason our work
aims at:

• Identifying a set of goals of online PM to clarify
the conflicting implications of different design ap-
proaches and the role of CDD in conciliating them.

• Proposing a benchmark dataset of event streams incor-
porating concept drift and incomplete cases.

• Performing an initial assessment of online PM tech-
niques for CDD using quantitative measures for ac-
curacy and scalability in memory consumption.

More specifically, the paper is organized as follows. Sec-
tion 2 sets the foundations by presenting standard concepts
used in PM and stream research. Section 3 proposes a set
of requirements and goals for online PM algorithms. The
section also reviews the approaches currently proposed in
the literature investigating the requirements they support.
Section 4 introduces a set of synthetic event streams cre-
ated to simulate various online scenarios, thus, providing
researchers with ways to compare CDD support in different
online PM algorithms. Section 4 performs then experiments
to compare current CDD techniques and analyzes their
implications regarding the proposed requirements, with
particular attention to the relationship between accuracy
and memory consumption. Lastly, Section 5 concludes the
paper and discusses subsequent steps for online PM.

2 PRELIMINARIES

2.1 Process Mining Definitions

This section provides the basic concepts we are going to use
throughout the paper.

An Event Log is a collection of events generated in tempo-
ral sequence and stored as tuples, i.e. recorded values from
a set of attributes. Events are aggregated by case, i.e. the
end to end execution of a business process. For the sake of
classification, all cases performing the same sequence can be
considered equal. A unique end to end sequence is therefore
referred to as a trace.

Definition 1 (Event, Attribute). Let Σ be the event universe,
i.e. the set of all possible event identifiers; Σ∗ denotes the set of all
sequences over Σ. Events may have various attributes, such as
timestamp, activity, resource, associated cost,
and others. Let AN be the set of attribute names. For any event
e ∈ Σ and an attribute n ∈ AN , then #n(e) is the value of
attribute n for event e. Typically values are restricted to a domain.

For example, #activity ∈ A, where A is the universe of the legal
activities of a business process, e.g. {a, b, c, d, e}.

Definition 2 (Trace, Subtrace). A trace is a non-empty sequence
of events t ∈ Σ∗ where each event appears only once and time is
non-decreasing, i.e. for 1 ≤ i < j ≤ |t| : t(i) 6= t(j). With abuse
of notation we refer at the activity name of an event #activity(e)
as the event itself. Thus 〈a, b, d〉 denotes a trace of three subse-
quent events. An event can also be denoted by its position in the
sequence as ei with en the last event of a trace. A trace can also be
denoted as a function generating the corresponding event for each
position of its sequence: t(i→ n) 7→ 〈ei, ..., en〉. A subtrace is a
sequence t(i→ j) where 0 < i ≤ j < n.

Definition 3 (Case, Event Log). LetC be the case universe, that
is, the set of all possible identifiers of a business case execution.
C is the domain of an attribute case ∈ AN . We denote a case
ci ∈ C as 〈a, b, d〉ci , meaning that all events share the same case.
For example, for ci we have #case(e1) = #case(e2) = #case(e3).
An event log L is a set of cases L ⊆ Σ∗ where each event appears
only once in the log, i.e. for any two different cases the intersection
of their events is empty.

Given an Event Log L, we refer to its behavior as the set
of traces that are required to represent all the cases in L.

Definition 4 (Event Log behavior). An event log L can be
viewed as the multiset of traces induced by the cases in L.
Formally, L := {t|∃ci ∈ L, ci(i → n) = t(i → n)}. The
behavior of L can be viewed as the set of the distinct elements of
L, formally BL = support(L).

An event log L is then a multiset because multiple cases
can generate the same trace, while its behavior BL is the set
of distinct traces induced by the cases.

Given a Model M , we refer to its behavior as the set of
traces that can be generated from the model. In the presence
of iterations, this set can be potentially infinite.

Definition 5 (Process Model behavior). Given a process model
M , we refer to its behavior BM ⊆ Σ∗ as the set of traces that can
be generated by its execution.

Several quality measures can be defined in order to
assess the accuracy of a model. These measures assess the
appropriateness of a model against an event log considering
their behavior.

Definition 6 (Appropriateness). Appropriateness is a function
a(BL,BM) or a(BM,BL) that measures aptness of ensuring
that the BL is present in the BM versus ensuring that the BM is
restrained to what observed in the BL.

Our definitions of behavior and appropriateness are
abstract enough to be valid regardless of the specific im-
plementations adopted in algorithms.

2.2 Process Mining Tasks

Discovering a model M from L implies to identify an
appropriate generative representation of L, as a model can
generate multiple traces based on the optional paths it
describes. Many algorithms have been proposed, differing
in terms of their underlying computational schema and data
structure, and their resulting process modeling formalism.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Most algorithms address the control-flow perspective, i.e.
the model is expected to generate the behaviors observed in
L. More recently, researchers have started targeting other
perspectives such as data, resources, and time. We refer
to [39] the reader interested in a detailed overview of
process discovery algorithms. In the online setting, research
approaches have principally focused on the control-flow
perspective, with algorithms generating Petri nets [5], [7],
[8], [10] as well as Declare models [11], [40]. This is then the
perspective we consider in our definitions.

Definition 7 (Process discovery). A process discovery algo-
rithm construct a process model from an event log and can thus
be seen as a function δ : BL 7→ BM.

When discovering a process model, different criteria can
set the appropriateness of a representation. More specifi-
cally, Fitness and Precision have been largely used in the
literature. The notion of fitness is aimed at capturing the
extent of the behavior in L that can be generated using M .
If we trust on M , it can be used to detect anomalous traces
in L. The notion of precision is aimed at capturing the extent
of the behavior in M that is not observed in L. A precise
model does not generate more behavior than the observed.

Definition 8 (Fitness). Fitness is a function f(BL,BM) that
quantifies which part of the behavior observed in L can be repro-
duced in M . In abstract terms it can be defined as f(BL,BM) =
BL∩BM
BL

.

Definition 9 (Precision). Precision is a function p(BM,BL)
that quantifies which part of the behavior that can be produced in
M cannot be observed in L. In abstract terms it can be defined as
p(BM,BL) = BM∩BL

BM
.

Given that the set of traces characterizing a process
model behavior may be infinite, the metrics proposed in the
literature for fitness and precision work by approximations.
Our definition is abstract as it does not specify how the
comparison between the behavior in L and M is imple-
mented. Indeed, defining an effective procedure requires
addressing complex aspects, such as accounting the partial
alignment between a trace and a model or confronting the
finite behavior recorded on traces with the infinite behavior
of the model [41]. These tasks are typically addressed using
multi-pass analysis, meaning the offline PM measures of
appropriateness cannot match the event stream criteria.

2.3 Stream Mining Definitions
Formally, a data stream is an ordered pair (s,∆) where: s is a
sequence of tuples and ∆ is a sequence of positive real time-
intervals. Unfortunately, data stream analytic techniques
[42], [43] cannot be readily applied in detecting business
process behavior [43] due to a mismatch at the represen-
tation level. While stream analysis typically works at the
event level, PM operates at the case level, where multiple
events compose a trace. Nevertheless, in an event stream
two subsequent events may belong to different cases then
online PM algorithms are assumed to analyze events in two
distinct stages. During the ingestion stage, a stream is read
one event per time. During the processing stage, cases and
traces are reconstructed and PM analytics are run. Also, in
common to data stream analysis, online PM has to assume

that the incoming flow of data is continuous and fast, i.e. the
amount of memory that can be used during data analysis is
much smaller than the entire series [42]. For this reason, a
limited span of the stream is considered during analysis.
Whatever this span is defined using memory space, time, or
other conditions, we can refer to it as a window of analysis
W . The behavior of the event stream can then be captured
by comparing two distinct windows Wa and Wb.

Definition 10 (Window of analysis). A window of analysis
W can be defined using its start time Ws and its end time We.
In comparing two windows Wa and Wb we can say that Wa
precedes Wb, formally Wa ≺Wb, if Wae < Wbe. LW denotes
the projection of an event log L to a window W .

The ability to use a window of analysis is crucial to
online PM and can be used together with metrics measuring
the appropriateness of a model to assess the conditions for
triggering updates. This identifies a set of properties that
must apply to any online solution.

2.3.1 Properties of Online Process Mining.
Given that analysis is executed on two different windows
(Wa ≺ Wb | Wb \ Wa 6= ∅) ∧ |Wa| = |Wb|, i.e.
Wb includes or excludes at least one behavior but the
total number of observed behaviors does not change, the
following properties should hold.

Axiom 1. (BLWb ∩ BM) \ (BLWa ∩ BM) > ∅ =⇒
f(BLWb,BM) > f(BLWa,BM),
p(BM,BLWb) > p(BM,BLWa).

Axiom 2. (BLWb ∩ BM) \ (BLWa ∩ BM) = ∅ =⇒
f(BLWb,BM) = f(BLWa,BM),
p(BM,BLWb) = p(BM,BLWa).

Axiom 3. (BLWb ∩ BM) \ (BLWa ∩ BM) < ∅ =⇒
f(BLWb,BM) < f(BLWa,BM),
p(BM,BLWb) < p(BM,BLWa).

These axioms support important indications in terms of
constraints applying to online PM tasks. First of all, process
discovery must be rerun only if the process loses quality
(Axiom 3). Conformance checking must be replayed each
time the balance between L and M changes (Axioms 1
and 3). Finally, we have conditions where no update of the
analysis is required (Axiom 2). This tells us that CDD is a
general requirement for online PM.

2.3.2 Types of concept drift.
Static approaches have access to the complete data set. Thus,
after a discovery procedure, the appropriateness of traces in
front of the model is completely determined. In event stream
processing, the appropriateness of traces changes over time,
creating an additional challenge. In traditional data mining
applications, concept drift is identified when in two separate
points in time a concept, i.e. the true relation between a tuple,
a feature vector, and its associated class, changes [43]. In
online PM, drifts occur when the appropriateness between
the model and the event stream changes creating, over time,
the need for a model update. Otherwise, the model loses its
representational power. This phenomenon manifests itself
in different forms, Figure 1 shows the four main types of
concept drift identified in the literature [44]:

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

• Sudden: concepts change abruptly.
• Recurring: changes appear seasonally over time, i.e.

with recurring incidence.
• Gradual: concepts change by a gradual degradation,

their quality decreases initially in delimited contexts
to finally apply to the entire stream.

• Incremental: many small-scale intermediate changes
are observed, i.e. an initial concept suffers several
mutations until it becomes a different concept.

Sudden Drift

Recurring Drift

Gradual Drift

Incremental Drift

Concept A

Concept B

Various Concepts

Fig. 1: Distributions of concepts for different drift types.
Each drift type has its own transition period and charac-
teristic. The image shows an initial concept A that after
a transition is replaced by concept B. As an example, the
incremental drift has a transition composed of several dif-
ferent behaviors that change at a fast rate until it stabilizes.

As observed in [45], current process discovery algo-
rithms behave poorly when logs incorporate drifts: causal
relations between events may appear and disappear, or even
reverse, and therefore cannot be resolved. Experiments have
demonstrated that concept drift produces a significant drop
in the accuracy of PM algorithms [27]. Approaches to detect
concept drift in event logs have been proposed [5], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35]. Nonetheless, they are not strongly linked to online PM
approaches and mainly take aim at a single evaluation goal.
In Sections 3.2.3 and 4.4, we propose a detailed evaluation
of the CDD techniques today available, highlighting their
limitations and discussing directions for progressing the
field.

3 FRAMING THE ONLINE PROCESS MINING STATE
OF THE ART

In this section, we discuss the goals motivating organiza-
tions in introducing online PM and their relationship to
solutions proposed in the literature.

3.1 Requirements of Online Process Mining
Different from offline PM, focused on observing a static log,
online PM aims at leveraging insights about cases during
their execution [46]. We come, then, by a base requirement
discriminating what enters in our discussion.

R0: Analysis must process data streams. The solutions
relevant to online PM must provide algorithms designed to
ingest data streams. Data samples in a stream, potentially

unbounded in size, demand for one-pass reading of not
arranged flow of data [47], [48]. An architecture ingesting
data streams and accumulating events, to feed algorithms
working in batch mode, is for us out of scope. Also, we
do not drive our attention to approaches focusing on
improving the scalability of PM algorithms by exploiting
task decomposition and parallelization [49], [50].

In the following, we show that the goals motivating
the adoption of online PM are different and conflict with
one another. Depending on the levels of satisfaction to
be achieved for each goal, a trade-off can be identified.
However, two conflicting goals cannot achieve their
individual maximum levels of satisfaction at the same time.
After listing these goals, we review the impact of current
online PM approaches on them.

G1: Minimize memory consumption. As data streams
are potentially infinite, and often characterized by high
generation rates, an online analysis must minimize the
amount of memory required during processing. A basic
approach to address this goal is removing data out of the
capacity of the available memory. This implies that the
window of analysis Wi is periodically updated. However,
reducing the size of the data sample can seriously affect
accuracy [5] (G4). Strategies for removing the less relevant
recorded tuples are then studied, taking inspiration from
the memory-friendly algorithms for stream mining used
in machine learning [51]. CDD is proposed as a way of
selecting relevant or irrelevant tuples to be maintained in
memory [52]. The need for a trade-off between memory
consumption and accuracy typically brings to a relaxed
version of this goal, i.e. it must be possible to bound the amount
of memory to a given capacity.

G2: Minimize response latency. One of the reasons
for performing online analysis is to quickly react to
events, e.g. for anomaly or fraud detection. If an executing
business process is deviating from the expected behavior,
an alert must be generated in time to analyze the case
and coordinate a response. It follows that online analysis
have to run on incomplete cases ci(i → j), continuously
assessing their appropriateness to a model: a(BL,BM). It
is, however, evident that this affects the consumption of
computational resources (G3). Lightweight representations
for models and cases, together with single-pass evaluation
of appropriateness metrics are then crucial challenges to be
faced in order to achieve this goal.

G3: Minimize the number of runs. Online analysis
should consume computational resources only when its
execution can change the inferences arising from data. In
general, the achievement of this goal is in opposition to G2,
which requires the analysis is constantly running. However,
it is reasonable to equip algorithms to find a trade-off.
Imposing a constant scheme for updating the model or
not supporting updates at all is not appropriate in online
settings. As observed in Section 2.3.1, the flow of an event
stream can bring to conditions either requiring to update
the analysis or not. Some memory-friendly approaches are
grounded on this idea [43]. It follows, CDD is crucial to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

identify the appropriate moment for updating the analysis.

G4: Optimize accuracy. Even when implementing an
online approach, it should be required to achieve levels
of accuracy comparable to that of offline methods. In PM,
accuracy is expressed by the appropriateness a(BM,BL). In
this sense, accuracy is, in general, positively affected by the
number of events considered during the analysis, the more
events we use to discover M the more overlap with L we
are likely to represent. That is, needless to say, the inverse of
what G1 requires. In addition, accuracy is positively affected
by updates of the analysis [27]. As previously discussed,
updates can arise from continuous incremental algorithms
[53] (G2) or can be handled when the model is losing
precision (G3), that implies being able to react to different
types of concept drift [52]. A challenge to be faced when
conciliating real-time response (G2) and accuracy is to have
available lightweight representations resulting in accurate
analysis even with fast access to data structures [20].

3.2 Requirement Satisfaction in Online Process Mining

We will now describe two design dimensions that require
a balance between conflicting goals. Each dimension is
represented by the two apogean goals connected by inverse
relationships. One dimension is defined by the couple G1-
G4 and the other by G2-G3. However, as stated previously,
G4 is also dependent on G2-G3. A schematic representation
of the conflicting dimensions in online PM is illustrated in
Fig. 2.

Fig. 2: Conflicting dimensions in online PM: G1 (minimize
memory consumption), G2 (minimize response latency), G3
(minimize runs) and G4 (optimize accuracy).

In the following paragraphs, we illustrate different ap-
proaches and discuss how they support and control the
achievement of previously set goals. Often the relationship
between conflicting goals is not made explicitly, and rarely
parameters for controlling the trade-off between goals are
made available by current PM solutions. To review the
literature, we use a three-level scale.

• Full support (3). The method is designed to address
the goal in all its aspects.

• Partial support (–). The method addresses the goal but
does not satisfy all its aspects.

• No support (7). The method ignores the goal or cannot
address it.

If the literature does not provide sufficient information
to estimate the impact on a goal, we do not include it in the
discussion. Figure 3 offers a summary of our review using
radar charts.

3.2.1 Approaches to Online Process Discovery
The most studied online procedures relate to Process
Discovery (PD). They mostly focus on bounding memory
consumption, though other goals are also discussed in the
literature.

Events accumulation. The first works addressing online
PM are [45], [54]. They both focus on process discovery
and identify that concept drift has to drive updates. This
implicitly addresses G3 as a computational task will run
only if events follow new distributions. However, they rely
on offline process discovery analysis, and for this reason,
do not meet 7R0. In [54], the events are accumulated
capturing all the behavior observed in the event stream,
then, using a sliding window, a statistical test verifies if
significant changes are recorded and eventually calls an
offline procedure to update the model. In [45] the events
accumulated are used to generate an abstract interpretation
of their behavior using a convex polyhedron that offers
an upper approximation. When new cases are acquired,
online analysis matches them with the polyhedron to
estimate their divergence to the previously observed
behavior, supporting the online assessment of concept drift.
If a drift is detected, the polyhedron can be recalculated
using an offline procedure. The problem of bounding the
memory usage is not addressed (7G1), moreover, the time
of accumulation implies a delay in the response (7G2).

Sliding window. The sliding window method offers the
simplest approach to bound the memory capacity based on
maintaining only the last n events of the stream. However,
this approach is very limited. It does not guaranty the new
behavior is captured (7G4) nor the memory capacity is met
(–G1) as both these dimensions are dynamically evolving.
In principle, extending the span of the window positively
impacts accuracy but, at the same time, negatively affects
memory usage and response time, which is by definition
dependent on the dimension of the window (7G2).
Moreover, the runs of analysis are predefined and cannot be
controlled (7G3). Therefore, the validity of the approach is
restrained to domains characterized by constant periodicity
of updates and monotonic behavior. Actually, the approach
is mentioned by different authors [10], [11], [45], [54] but
not proposed as a solution.

Adaptive buckets. The natural evolution of the sliding
window approach is developing memory-friendly strate-
gies, e.g. maintaining buckets of memory based on selec-
tive counting of events. Sticky Sampling and Lossy Counting
are examples of, respectively probabilistic and determinis-
tic, algorithms for computing item frequency over a data
stream [55].

Lossy Counting with Budget is an adaptive version of the
Lossy Counting algorithm that was successfully adapted
to PM. The idea is to store events in buckets and count
how many times an event is observed. When the maximum

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

available memory (the budget) is reached, infrequent events
are removed from memory (3G1). The accuracy of the
analysis is controlled by an error margin ε that sizes the
memory budget to be used. However, it is not possible to
define a deterministic function mapping memory usage and
accuracy (–G4) [10]. The approach requires, in any case, a
separate algorithm to run process updates with an intrinsic
delay in generating up-to-date responses (7G2), and nothing
guarantees the updates will run consistently to axioms intro-
duced in Section 2.3.1 (7G3). Moreover, these approaches do
not offer support for all the drift types presented in Section
2.3.2.

The idea was originally proposed in [7] and improved
in terms of memory consumption in [8]. The latter work
introduces heuristics for memory pruning based on a decay
factor applied both on events and cases. The approach
was also applied to declarative process discovery [11], [40],
where the model is expressed in terms of a set of constraints
that cannot be violated during the process execution. Each
constraint can be associated with an independent learner,
reducing the response time required to update the model.
In [36], the authors proposed a general framework to feed
the abstract representations adopted by existing process
discovery algorithms with event streams. All the algorithms
investigated in the framework adapt their memory usage
based on the current capacity.

Different authors put forward the idea that concept
drift can drive the updates of memory buckets. However,
some of the CDD techniques are unable to identify specific
classes of drift such as incremental and recurring [5], [26],
[30], while the advanced techniques that were proven to
detect them adopt temporally extended tests that work with
windows of significant size [24], [30], [32], [35] (–G3). In
general, concept drift positively affects accuracy since, when
updating the model, better conformance with incoming
events is obtained [27] but, again, it is unclear which classes
of drift can be effectively detected with memory-friendly
approaches (–G4). We will go back to this issue in Section
4.4.

Incremental model updates. The most efficient way of
limiting memory usage in stream processing is adopting
incremental algorithms that consume events in a single step.
This implies that no backtracking is possible and events can
be deleted after being consumed (3G1). The incremental
approach is also the best solution to minimize response
latency because the analysis can be executed in real-time
(3G2). However, the consumption of computational re-
sources is continuous (7G3), and accuracy may be unsatis-
factory in non-stationary environments where concept drift
is recurring, because past behavior cannot be used to shape
the model (–G4). Accuracy can be improved by keeping
the results of incremental updates in buckets of memory
and constructing a synoptic representation of the observed
data stream. This is, however, a trade-off solution where
both G1 and G2 are partially satisfied, due to the need
of introducing auxiliary procedures besides the incremental
model updates.

To the best of our knowledge, the only approaches
using this strategy in online PM are [10], [20]. Barbon et al.
[20] incrementally update a process model graph (PMG)

to obtain a reliable process model. The PMG is maintained
throughout stream processing with specific checkpoints
triggering refresh and release statements of allocated
resources. Similarly, Leno et al. [10] idea is to incrementally
update an abstract representation bounding its size by the
memory budget. The abstract representation is constructed
by a directly follow graph with nodes representing activities
and arcs representing direct follow relations between
activities. The last event of every executing case is kept
in memory, this way, any incoming event can be attached
to the graph by a direct follow relation with its preceding
event. Moreover, arcs and nodes are annotated with
their observed frequencies thus, if the size of the graph
exceeds the available memory, the less representative
elements can be removed. The authors compared different
deletion strategies with the Lossy Counting with Budget
algorithm presented in [7], concluding that their approach
outperforms it in terms of the amount of memory required
to get high levels of accuracy. This confirms that the
trade-off between memory and accuracy is a key parameter
of configuration for online PM. Nonetheless, the relationship
between memory consumption and accuracy and the
impact that the emergence of concept drifts may have is not
clarified in the literature.

Trace clustering. In [31], various trace clustering tech-
niques are tested for detecting concept drift. If a drift is de-
tected, a model update can be executed, keeping the model
aligned to the event log. However, the connection with event
streams processing is not studied. In [19] process discovery
is addressed using a sliding window approach (3G1). The
authors boost this approach by interlaying a density-based
clustering procedure that interconnects multiple online PM
tasks. A lightweight abstract representation of cases, sup-
porting incomplete cases, is adopted to group cases in
clusters constructed using density-based boundaries. Each
time a new event is ingested, clusters are updated. Period-
ically, based on the dimension of the sliding window, the
process model is updated (7G2). This clustering procedure
allows, however, to identify anomalous cases and to capture
concept drift with positive impacts on accuracy (–G4) and
resource consumption (–G3), as dysfunctional cases are
pruned from the model update procedure. The approach,
however, requires to express drifts in terms of a distance
between traces and cannot cope with PM appropriateness
measures. For this reason, it does not offer full coverage of
the axioms in Section 2.3.1.

3.2.2 Approaches to Online Conformance Checking
Approaches to online Conformance Checking (CC)
essentially focus on supporting real-time analysis (G2).
Memory consumption and accuracy are left in their natural
inversional relationship or are managed using solutions
discussed in Section 3.2.1.

Event accumulation. Traditional offline CC uses the
token-based replay technique, where previously executed
cases are replayed over the model. Each executed activity
corresponds to firing a token. Consumed, missed, and
remaining tokens are counted to create conformance
statistics. The most critical aspect of these replay techniques

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

is that multiple alignments between a case and a model
(corresponding to different starting points for log replay)
are possible, and computing the optimal alignment is
challenging from a computational point of view [56].
Even if, recently, general approximation schemata for
alignment have been proposed [57], these approaches
require to backtrack cases, and, for this reason, make
memory bounding difficult (7G1). Moreover, they do not
support the analysis of incomplete cases (7G2). Namely,
these approaches rely on offline procedures and, thus, do
not enter our comparative review (7R0).

Pre-computation. Another strategy proposed to support
online CC is based on the pre-computation of all the
possible deviations on top of a model. In particular, in [13]
a Petri net is converted into a transition system decorated
with arcs describing the possible deviations from the model.
Transitions representing deviations are associated with a
cost, while transitions allowed by the model have no cost.
By this approach, it is possible to compute conformance
in real-time (3G2). However, the requirements imposed
in terms of memory consumption are high and difficult
to be parameterized (7G1). The impact on model update
and accuracy is not discussed by the authors, except for
references to papers adopting the Lossy Counting with Budget
approach (–G4). It can be, however, generally remarked that
the approach imposes significant effort on model update
(7G3), making hard to use CDD with a negative impact on
accuracy for non-stationary environments.

Prefix-based. In order to address the problem of
computing the conformance of incomplete cases, in [17] an
approach for assessing the optimal alignment of sub-traces
is proposed. This goes in the direction of supporting
conformance checking in real-time (3G2), as, in principle,
each new event can trigger the analysis. However, the
approach is intrinsically related to the backtracking
procedures required for alignment. The authors are aware
of this problem and propose either Random Sampling with
Reservoir [58] or Decay-based data structures [59], similarly to
the solutions provided respectively in [7], [10] for process
discovery. This way it is possible to manage the trade-
off between memory consumption (3G1) and accuracy
(–G4). It is clear that CDD in non-stationary environments
is a precondition to not lose accuracy. Despite that, no
specific effort was dedicated to the interconnection of
these prefix-based approaches and CDD; thus, there is no
guarantee that the axioms introduced in Section 2.3.1 can
be matched (7G3).

Constraint-based. One pass conformance checking can
be achieved using declarative constraints, i.e. relationships
between the sequential order of activities that must be
respected during the execution (typically expressed using
linear temporal logic). In [60], a set of finite-state automata
are proposed to validate declarative constraints. The authors
show that online validation of these constraints is possible
at the cost of clearly identifying the validity of the inferred
conditions that can pass from different states given by the
combination of violated/fulfilled, permanent/temporary
conditions. The approach is designed to support real-

time conformance checking at an event level (3G2), i.e.
supporting incomplete cases. Resource consumption is
less significant than in other approaches because the
analysis can be localized to the set of constraints that
are activated by the case under analysis. This positively
impacts memory consumption during analysis (3G1),
moreover, analysis run only if a constraint is matched
(–G3). Accuracy is guaranteed if the set of constraints
used is updated, which can be achieved using an approach
based on adaptive buckets (–G4) [11]. However, this is
clearly in counterbalance with G3, and no specific method
for managing this balance is proposed. The experimental
analysis we run shows that this approach, in practical terms,
does not scale, due to the relevant number of cross-checks
it imposes.

Trace clustering. The approach presented in [19] uses
density-based clustering to calculate, event by event, how
similar a case is to the process model. This is a simplified
conformance checking measure that can be computed in
real-time (3G2). The accuracy is, however, non-optimal as
the adopted metrics do not have the same potential of
methods that use backtracking procedures because they do
not exploit the generalization power of model-aware replay
procedures (–G4). Memory consumption is controlled by
the sliding window, adopted to buffer incoming events
(3G1). Resource consumption is partially limited by the
identification in real-time of dysfunctional cases that are
pruned from conformance checking procedures (–G3).

3.2.3 Concept drift detection

CDD was identified as a central issue already in the first
works addressing online PM [45], [54]. The sliding window
approach is, in general, adopted to track the latest process
behavior. This makes it challenging to manage the balance
between accuracy and memory management (G1-G4). Static
window size is sometimes used [26], [30], the bias associated
with the selected window size is then reflected on the results
obtained by these solutions. To improve the accuracy of
change-point detection, statistical tests were introduced to
set the optimal size of the window of analysis [24], [61],
but disregarding then memory management. As not all
the proposed procedures can effectively identify specific
classes of drift, such as incremental and recurring, statistical
tests were also exploited to create robust detection tech-
niques [24], [30]. Other approaches have improved change
detection by isolating the behavioral properties impacted
by changes [32], [35]. This allows going further change-
point detection offering an explanation and a description of
the detected changes. Advanced techniques, however, come
at the cost of higher memory consumption. The control
flow perspective is the most adopted, even if approaches
focusing on temporal drifts are available [33], [34].

A general critical point to highlight is that CDD tech-
niques are not specifically integrated with online PM tasks.
Indeed, when two techniques adopt a different represen-
tation of the process behavior, their integration implies
a higher consumption of resources (G3). Another critical
aspect is that noise may be confused with concept drift if not
appropriately filtered out [36], [37] (G4). Also, most CDD

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

G1

G2

G4

G3

G1

G2

G4

G3

G1

G2

G4

G3

PD: sliding window PD: adaptive buckets PD: adaptive buckets with concept drift
G1

G2

G4

G3

G1

G2

G4

G3

G1

G2

G4

G3

PD: incremental model update PD: trace clustering CC: trace clustering
G1

G2

G4

G3

G1

G2

G4

G3

G1

G2

G4

G3

CC: pre-computation CC: prefix-based CC: constraint-based

Fig. 3: Levels of control over goals, G1 (minimize memory consumption), G2 (minimize response latency), G3 (minimize
runs) and G4 (optimize accuracy) by Process Discovery (PD) and Conformance Checking (CC) approaches.

cannot cope with incomplete cases, an important require-
ment for implementing real-time response (G2).

In Section 4, we experimentally compare the perfor-
mances of different CDD approaches. We then limit our
review to solutions that were implemented in open source
software and are available for execution.

The first drift detection PM approach implemented in
open-source software is by Bose et al. [21]. The authors
proposed an offline analysis of the event log, meaning
that the log is consumed in a batch procedure. From the
event log the relationships between activities, such as the
follows or precedes relations are extracted. Then, two non-
overlapping windows go through the event log. Finally, a
statistical test is applied to compare the populations of both
windows. Concept drift is found when the distributions of
the populations are different.

Using a clustering algorithm as a kernel, Zheng et al.
[62] introduced a three-stage approach to detect concept
drifts from event logs. First, the log is converted into a
relation matrix by extracting direct succession and weak
order relations from traces. Then, each relation is checked
for variation trends to obtain candidate change points.
Lastly, the candidate change points are clustered using the
DBSCAN algorithm [63] and combined into real change
points.

In Yeshchenko et al. [32], the authors propose a tech-
nique for drift detection and visualization using Declare

constraints and time series analysis [64]. Declare is a declara-
tive process specification used to represent process behavior
based on temporal rules, e.g. in which conditions activities
may (or may not) be executed [65]. The approach starts
by splitting the event log into sub-logs, where a set of
Declare constraints are computed. Then, multi-variate time
series representing constraints confidence are extracted and
clustered. Each cluster is analyzed for change detection in
the relation between constraints, highlighting the overall
and behavior-specific drifts. The last step of the approach
creates charts for a visual analysis of the detected drifts.

Differently from previous techniques, Ostovar et al. [28]
perform natively over a stream of events. The authors de-
scribe process behavior using α+ relations. An α+ relation
is characterized by a set of rules capturing the relation
insisting between two activities, where the follows or precedes
relations are the most representative [66]. Then, statistical
tests over two consecutive sliding windows are performed.
Moreover, the approach proposes a trade-off between ac-
curacy and drift detection latency. For that, windows with
adaptive sizes are adopted.

Tavares et al. [19] introduce a framework support-
ing multiple online PM tasks, including concept drift and
anomaly detection. The framework models the business
process as a graph and extracts case features based on graph
distances. The features consider trace and inter-activity
time between events as case descriptors. With the use of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

DenStream [67], case descriptors are clustered in an online
fashion. Drifts are found once new clusters, which represent
core behavior, are discovered in the stream.

Table 1 presents the requirements and goals supported
by currently available drift detection techniques. Only Os-
tovar et al. [28] and Tavares et al. [19] satisfy the online
processing premises (3R0), ingesting event streams in a
native way. Bose et al. [21], Yeshchenko et al. [32] and Zheng
et al. [62] pre-process the event log and group events into
cases. Then, they simulate a stream of traces (7R0).

Bose et al. [21], Ostovar et al. [28], Yeshchenko et al. [32]
and Zheng et al. [62] approaches impose a boundary to the
window of analysis. As stated in Section 3.2.1, these tech-
niques minimize the amount of memory used as only the
last n events in the event stream are maintained (3G1). At
the same time, these methods present limitations regarding
accuracy since there is a bias associated with the arbitrary
dimension selected for windows. This drawback can be
counterbalanced with window size tuning, leveraging the
accuracy in specific scenarios (–G4).

Additionally, the response latency is associated with the
window size. Since there is a minimum window size that
yields acceptable results, the response time has a boundary.
Bose et al. [21], Yeshchenko et al. [32] and Zheng et al. [62]
approaches lack fast response to new events as they do not
deal incomplete cases (7G2). For Ostovar et al. [28], the
boundary can be reached by hyperparameter tuning (–G2).
Moreover, the windows slide according to new events in the
stream. This means that a single event stays in the window
for at least s iterations, where s is the window size. Hence,
s runs over each event are performed (7G3).

The solution presented in Tavares et al. [19] consumes
events in a single step as they arrive in the stream.
Hence, events are deleted after consumption, saving mem-
ory (3G1). Concerning CC the approach has a real-time
response because each received event is clustered in the fea-
ture space (3G2). Contrary PD has a latency that depends
on the window size adopted (7G2). The technique maintains
case descriptors in memory for some time, consequently
running over cases more than once. However, these latter
aspects can be partially controlled with the hyperparameters
configurations, either minimizing the number of runs (–G3)
or leveraging accuracy (–G4).

On a general note, it is clear that all methods reviewed
here prioritize G1, as memory consumption is a key require-
ment when dealing with potentially infinite data streams.
The same is observed in traditional data streams literature
[43]. However, as seen in Table 1, there is still a need for
methods that can satisfy multiple goals or provide explicit
support to calibrate their balance.

The analysis we proposed offers interesting insights but
is limited by the fact that we performed a literature-based
review insisting on qualitative aspects. In Section 4 we take
one step further by introducing quantitative methods to
compare CDD approaches.

4 EXPERIMENTAL ANALYSIS

As stated in the Process Mining Manifesto [1], it is still
difficult to compare different PM tools and techniques.
This problem is aggravated by the variety of goals one

TABLE 1: Requirement (R0) and goals met by the Concept
Drift Detection techniques analyzed. G1 (minimize memory
consumption), G2 (minimize response latency), G3 (mini-
mize runs) and G4 (optimize accuracy). 3, – and 7 represent
full, partial and no support, respectively.

Technique R0 G1 G2 G3 G4
Bose et al. [21] 7 3 7 7 –

Ostovar et al. [28] 3 3 – 7 –
Tavares et al. [19] 3 3 – – –

Yeshchenko et al. [32] 7 3 7 7 –
Zheng et al. [62] 7 3 7 7 –

can consider when assessing PM. Therefore, one of the
challenges in PM research is to provide reliable benchmark
datasets consisting of representative scenarios. In addition,
identifying quantitative metrics is a pre-requisite to imple-
ment strategies conciliating conflicting goals and optimizing
online PM algorithms. In this Section, we contribute to these
aims by proposing an experimental analysis of the five CDD
tools [19], [21], [28], [32], [62] we reviewed in Section 3.2.3.

The first stage of our experimental analysis consists of
identifying the goals to be assessed. We focused on the G1-
G4 (memory-accuracy) dimension, the most discussed in the
literature. Accuracy is calculated focusing on the ability to
detect drifts by the five tools we consider (Section 4.2). To
make the comparison fair, we developed an ad-hoc synthetic
log not previously tested by the tools (Section 4.1). The abil-
ity to limit memory consumption is assessed by executing
a scalability analysis of their memory usage (Section 4.3).
Observing how memory consumption varies with logs of
increasing sizes provides us with a means for comparing
tools running under different software frameworks. The
results we obtained are finally discussed in Section 4.4.

4.1 Incorporating Drifts in a Synthetic Event Stream
Despite the availability of PM event logs from a public
repository1, the majority of them was not created for event
stream scenarios, and none fits the purpose of this study.
Maaradji et al. [68] proposed 72 synthetic event logs for
online PM. Although the datasets simulated concept drifts
in business event logs, they do not comprehend the vast
set of variables of a streaming scenario: (i) there is only one
drift type explored (sudden), (ii) only one perspective (trace)
and (iii) no noise was inducted. By ignoring other drift types
(incremental, gradual, and recurring) and perspectives, such
as time, the proposed event logs are limited for testing online
PM techniques, i.e. they only represent a limited number
of the possible scenarios in online environments. Therefore,
inspired by [68], we created synthetic event logs following
similar guidelines towards the exploration of additional
drift configurations.

Our synthetic event logs incorporate the four drift types
identified in the literature [44], articulated according to
control-flow and time perspectives. The event logs are
publicly available for further adoptions [69]. A business
process for assessing loan applications [70] was used as the
base business process. Other variants were generated by
perturbing the base process with change patterns. Figure

1. https://data.4tu.nl/repository/collection:event logs synthetic

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

https://data.4tu.nl/repository/collection:event_logs_synthetic

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

4 shows this initial process, using Latin letters to label
the 15 activities that compose it. In [68] the authors used
twelve simple change patterns from [71] to emulate differ-
ent deviations of the original base model. Table 2 show
the change patterns, which consist of adding, removing,
looping, swapping, or parallelizing fragments. Moreover,
the changes are organized into three categories: insertion (I),
resequentialization (R) and optionalization (O), also shown
in Table 2. To create more complex drifts, we randomly
combined three simple change patterns from different cat-
egories, building a composite change pattern, e.g. “IRO”,
which consists of the combination of insertion, resequential-
ization, and optionalization simple change patterns. Thus,
the proposed change patterns were applied with a broader
set of constraints and combinations to extend the degree of
variability addressed in the benchmark. The main goal is to
provide a wide range of event streams where CDD can be
exhaustively represented. BPMN modeller2 and BIMP3 were
used as supporting tools to model the process and simulate
the event stream log, respectively.

TABLE 2: Simple control-flow change patterns [68].

Code Simple change pattern Category
cb Make fragment skippable/non-skippable O
cd Synchronize two fragments R
cf Make two fragments conditional/sequential R
cp Duplicate fragment I
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R

pm Move fragment into/out of parallel branch I
re Add/remove fragment I
rp Substitute fragmen I
sw Swap two fragments I

All event streams share a few common characteristics:
(i) the arrival rate of cases is fixed to 20 minutes, i.e. after
every 20 minutes an event from a new case arrives in the
stream; (ii) the time distribution between events of the same
case follows a normal distribution. For baseline behavior,
the mean time was set to 30 minutes, and the standard
variation to 3 minutes. While for drifted behavior the mean
and standard variation were 5 and 0.5 minutes, respectively;
(iii) for time drifts, the model used in a single event stream is
the same, i.e. the drift happens only in the time perspective;
this way, we avoid introducing other factors; (iv) all drifts
were created with 100, 500 or 1000 cases; (v) noise was
introduced in the event stream for all the trace drifts. The
noise consisted of removing either the first or the last half
of the trace. Then, different percentages were applied (5%,
10%, 15%, and 20%) in relation to the total stream size. Note
that standard cases were swapped for anomalous ones, this
way preserving the event stream size. The drift types we
injected are implemented in the following way:

• Sudden drift. The first half of the stream is composed
of the baseline model, and the second half is com-
posed of the drifted model. The same idea applies
for trace and time drifts (for time drifts, the change
is only in the time distribution and not the actual
model).

2. https://demo.bpmn.io
3. http://bimp.cs.ut.ee

• Recurring drift. For streams sizes of 100 traces, cases
follow the division 33–33–34. The initial and the last
groups come from the baseline, and the inner one is
the drifted behavior, i.e. the baseline behavior starts
the stream, fades after 33 traces, and reappears for
the last 34 traces; the same applies for time drifts.
For 500 and 1000 traces, the division is 167–167–166
and 330–330–340, respectively.

• Gradual drift. One concept slowly takes place over
another. This way, 20% of the stream was dedicated
to the transition between concepts where one concept
fades while the other increase it probability to be
observed.

• Incremental drift. For the trace perspective, an inter-
mediate model between the baseline and the drift
model is required. Only complex change patterns
were used because it was possible to create in-
termediate models from them, whereas, for simple
change patterns, the same is not possible since the
simple change is already the final form of drift.
This way, 20% of the stream log was dedicated
to the intermediate behavior, so the division was
40–20–40 (baseline–intermediate model–incremental
drift). The same applies for the other sizes following
the proportion. For the time perspective, all change
patterns were used since the time drifts disregard the
trace model. The transition state (20% of the stream
log) was subdivided into four parts where standard
time distribution decreases 5 minutes between them,
following the incremental change of time.

When combining all drift types and perspectives, a total
of 942 event streams were generated following the widely
used MXML format [72]. The file names follow the pattern:
[A] [B] [C] [D] [E]. The letters used to compose the event
stream names refer to the following values: four drift types:
A ∈ {gradual, incremental, recurring, sudden}; two perspec-
tives: B ∈ {time, trace}; five noise percentage variations: C ∈
{0, 5, 10, 15, 20}; three different number of cases: D ∈ {100,
500, 1000}; 16 patterns: E ∈ {baseline, cb, cd, cf, cp, IOR,
IRO, lp, OIR, pl, pm, re, RIO, ROI, rp, sw}.

4.2 Evaluating Concept Drift Detection
As previously mentioned, our experiments used the avail-
able software for drift detection in PM, which includes: Bose
et al. [21], Ostovar et al. [28], Tavares et al. [19], Yeshchenko
et al. [32] and Zheng et al. [62]. Evaluating CDD methods
for PM is a complex task as there are no established metrics
to assess performance. However, as proposing metrics is
out of the scope of this paper, we adopted two traditional
regression metrics: Mean Squared Error (MSE) and Root
Mean Squared Logarithmic Error (RMSLE), expressed in
Equations 1 and 2. For both equations, assume that n is
the number of predictions, Y is the predicted value, and
Ŷ is the real value. Thus, in our setup, n is the number of
event streams (942), Ŷi is 1 (as each event stream contains
one concept drift) and Yi is the predicted number of drifts
for an event stream Li.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (1)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

https://demo.bpmn.io
http://bimp.cs.ut.ee

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

AX

C B

X

D E

F

G X

H

I J X

K

L

X M X

N

O

Fig. 4: BPMN model that represents the common behavior. Drifts are applied to this base model.

RMSLE =

√√√√ 1

n

n∑
i=1

(log (Yi + 1)− log (Ŷi + 1))2 (2)

MSE (Equation 1) measures the average of the squares of
the errors of an estimator, i.e. the distance between predicted
and real values. Thus, MSE quantifies the quality of an
estimator by evaluating both the variance and the bias of
the predictor. RMSLE (Equation 2) considers the logarithm
of predicted and real values and is this way more robust to
outliers, as the penalization for out of the curve predictions
is lower. More specifically, RMSLE penalized an underesti-
mation more than an overestimation. For both metrics, the
closer to 0 a score is, the better the algorithm is performing.

Table 3 presents MSE and RMSLE scores of each tool
regarding concept drift detection. Yeshchenko et al. [32],
Zheng et al. [62] and Bose et al. [21] were the least perform-
ing methods in both metrics. All three approaches have in
common the offline assessment of features. As for Bose et al.
[21], one of the first CDD methods, the techniques applied
were still preliminary. Moreover, the experiments only used
standard hyperparameters, which may have impacted the
performance. However, the non-adaptive behavior of the
approaches comes to light because the techniques were not
able to adapt itself to concept drifts. Furthermore, for Bose et
al. [21], its placement in MSE is closer to the best-performing
algorithms, while in RMSLE, it is closer to Zheng et al. [62].
This shows a tendency of underestimation on drift detec-
tion, as RMSLE punishes more heavily underestimations.
Yeshchenko et al. [32] clearly had the worst performance,
mainly in MSE. An important aspect of online processing
is to deal with incomplete traces, which is not addressed
in this method. The high standard deviation shows that the
method tends to predict a massive number of drifts.

TABLE 3: MSE and RMSLE scores for different approaches
using the 942 synthetic event streams proposed. The stan-
dard deviation (σ) is shown in parentheses. The best perfor-
mances are highlighted.

Approach MSE (σ) RMSLE (σ)
Bose et al. [21] 1.34 (7.48) 0.68 (0.16)
Ostovar et al. [28] 0.69 (0.52) 0.51 (0.31)
Tavares et al. [19] 0.95 (3.63) 0.4 (0.33)
Yeshchenko et al. [32] 12.01 (16.05) 0.94 (0.33)
Zheng et al. [62] 6.09 (7.98) 0.74 (0.28)

Ostovar et al. [28] and Tavares et al. [19] present an inter-
esting relation between their performances. From the MSE

perspective, Ostovar et al. [28] is better, but from RMSLE
Tavares et al. [19] is better. This means that the Tavares et
al. [19] method is more sensible as it usually mispredicts
more than Ostovar et al. [28], according to MSE. However,
Tavares et al. [19] mispredictions tend to overestimate the
number of drifts while Ostovar et al. [28] tend to underes-
timate it, according to RMSLE. This behavior is explained
by how both methods detect drifts. Ostovar et al. [28] is
grounded in the application of a statistical test over two non-
overlapping windows. Thus, the trace distribution within
the two windows has to be different enough to trigger a
drift from a statistical analysis. On the other hand, Tavares
et al. [19] uses an online clustering technique (DenStream) to
support the detection of new common behavior, interpreted
as a drift, thus being more sensitive to change detection.

It emerges that in evaluating CDD methods for online
PM, it is crucial to determine which is more negative
between underestimation and overestimation. Another im-
portant note is that no metric captures the behavior of an
online PM method completely, as different metrics evaluate
different aspects. Hence, a necessity for dedicated metrics
for online PM is exposed by the results.

Furthermore, we analyzed drift detection according to
different characteristics of the event streams. Table 4 shows
the results given two perspectives: trace and time. Generally,
the algorithms follow similar performances in both metrics.
We can see that Yeshchenko et al. [32] and Zheng et al. [62]
were the only methods with better performances when de-
tecting time-related drifts than trace-related drifts. Though
the approaches do not explicitly handle time, the process be-
havior is also shaped by the events’ time distribution, which
affects the CDD. Contrarily, the other three approaches
had better performance at detecting trace-related drifts. We
expected Tavares et al. [19] to outperform the other methods
in time-related drifts as this method extracts time features
from cases. RMSLE confirms this assumption while MSE
does not, which also reveals how the metrics might affect
interpretation. Moreover, though Ostovar et al. [28] had the
best MSE time-related drift detection, it was only the third-
best in RMSLE. For trace-related drifts, Ostovar et al. [28]
was better in MSE ranking while Tavares et al. [19] was
better in RMSLE.

Further, we investigated the capability of the studied ap-
proaches in detecting different drift types (Table 5). Though
most techniques only claim to identify the sudden drift type,
they were able to detect other types satisfactorily. A possible
explanation is that even with small changes over time, at
one point, the behavior will become entirely different from

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

TABLE 4: MSE and RMSLE scores for different approaches
per perspective using the 942 synthetic event streams pro-
posed. The standard deviation (σ) is shown in parentheses.
The best performances are highlighted.

Perspective Approach MSE (σ) RMSLE (σ)

trace

Bose et al. [21] 0.98 (0.39) 0.68 (0.14)
Ostovar et al. [28] 0.65 (0.49) 0.49 (0.31)
Tavares et al. [19] 0.88 (3.54) 0.37 (0.31)
Yeshchenko et al. [32] 12.53 (16.47) 0.95 (0.33)
Zheng et al. [62] 6.98 (8.61) 0.78 (0.29)

time

Bose et al. [21] 2.76 (16.47) 0.7 (0.21)
Ostovar et al. [28] 0.85 (0.56) 0.6 (0.28)
Tavares et al. [19] 1.2 (3.98) 0.49 (0.36)
Yeshchenko et al. [32] 10 (14.08) 0.89 (0.31)
Zheng et al. [62] 2.6 (2.84) 0.56 (0.19)

the reference. In any case, Bose et al. [21], Zheng et al. [62]
and Ostovar et al. [28] were better at detecting sudden drifts
than the other types. Yeshchenko et al. [32] and Tavares et
al. [19] were better at detecting gradual drifts. Yeshchenko
et al. [32] profited from the Declare constraints, correctly
modeling the small changes of behavior. Tavares et al. [19]
benefited from the constant adapting characteristic, which
is implemented by the online clustering phase. As new
events arrive, they slowly change the feature space, hence,
gradual drifts become easier to detect. Another interesting
observation is that Ostovar et al. [28] shows a high decay
in performance when detecting recurring drifts. Such a phe-
nomenon is probably due to the tool detecting two sudden
drifts instead of a recurring behavior. Thus, it was penalized
by the scoring metrics. The same can be stated for Tavares et
al. [19] in incremental drifts, which presents a considerably
lower performance, mainly in MSE. The incremental drift
is composed of several small-scale changes, which probably
were detected as several drifts by the approach instead of a
single one.

TABLE 5: MSE and RMSLE scores for different approaches
per drift type using the 942 synthetic event streams pro-
posed. The standard deviation (σ) is shown in parentheses.
The best performances are highlighted.

Drift type Approach MSE (σ) RMSLE (σ)

gradual

Bose et al. [21] 1.07 (1.07) 0.68 (0.13)
Ostovar et al. [28] 0.62 (0.64) 0.51 (0.34)
Tavares et al. [19] 0.36 (0.9) 0.36 (0.3)
Yeshchenko et al. [32] 11.73 (16.06) 0.92 (0.33)
Zheng et al. [62] 6.71 (7.8) 0.77 (0.29)

incremental

Bose et al. [21] 1.63 (4.08) 0.7 (0.16)
Ostovar et al. [28] 0.64 (0.48) 0.51 (0.31)
Tavares et al. [19] 2.47 (8.41) 0.49 (0.4)
Yeshchenko et al. [32] 12.57 (16.44) 0.95 (0.33)
Zheng et al. [62] 5.71 (7.58) 0.72 (0.28)

recurring

Bose et al. [21] 1.88 (13.55) 0.7 (0.13)
Ostovar et al. [28] 1.0 (0.0) 0.55 (0.14)
Tavares et al. [19] 1.19 (2.99) 0.42 (0.33)
Yeshchenko et al. [32] 11.94 (15.39) 0.94 (0.32)
Zheng et al. [62] 7.11 (8.3) 0.78 (0.3)

sudden

Bose et al. [21] 0.93 (0.33) 0.66 (0.19)
Ostovar et al. [28] 0.46 (0.5) 0.47 (0.35)
Tavares et al. [19] 0.6 (1.53) 0.37 (0.31)
Yeshchenko et al. [32] 12.11 (16.49) 0.94 (0.32)
Zheng et al. [62] 4.62 (7.78) 0.66 (0.24)

Most techniques were stable when tested with noisy
streams, as shown in Table 6. According to MSE, Bose et
al. [21] had a worse performance when the stream contains

no noise. In other configurations, its performance is very
stable. Yeshchenko et al. [32] and Zheng et al. [62] did
not perform well for streams with 5% of anomalous cases,
which might be due to configuration settings. Note that
both approaches assess all traces at once, so their anomaly
detection methods are impractical in online scenarios. Dif-
ferently, Ostovar et al. [28] and Tavares et al. [19] worst
performances are in noiseless streams. This might be due
to the approaches identifying less frequent behavior as
outliers, thus triggering less change points when no noise
is applied. However, as the noise percentage increases, both
approaches’ performances increase. Moreover, Tavares et al.
[19] readily identify anomalous or incomplete traces, which
positively affect the accuracy in event streams with noise,
according to RMSLE.

TABLE 6: MSE and RMSLE scores for different approaches
per noise percentage type using the 942 synthetic event
streams proposed. The standard deviation (σ) is shown in
parentheses. The best performance is highlighted.

Noise Approach MSE (σ) RMSLE (σ)

0%

Bose et al. [21] 1.94 (12.37) 0.68 (0.21)
Ostovar et al. [28] 0.77 (0.56) 0.56 (0.3)
Tavares et al. [19] 1.06 (3.7) 0.44 (0.35)
Yeshchenko et al. [32] 10.68 (15) 0.9 (0.32)
Zheng et al. [62] 3.59 (3.39) 0.63 (0.22)

5%

Bose et al. [21] 0.97 (0.16) 0.68 (0.12)
Ostovar et al. [28] 0.64 (0.48) 0.49 (0.3)
Tavares et al. [19] 0.94 (5.3) 0.36 (0.31)
Yeshchenko et al. [32] 13.41 (17.28) 0.96 (0.34)
Zheng et al. [62] 13.29 (15.28) 0.94 (0.38)

10%

Bose et al. [21] 1.03 (0.67) 0.69 (0.1)
Ostovar et al. [28] 0.65 (0.48) 0.49 (0.3)
Tavares et al. [19] 0.91 (3.09) 0.37 (0.32)
Yeshchenko et al. [32] 12.67 (16.5) 0.95 (0.33)
Zheng et al. [62] 6.81 (6.23) 0.78 (0.28)

15%

Bose et al. [21] 0.99 (0.31) 0.68 (0.12)
Ostovar et al. [28] 0.63 (0.48) 0.48 (0.31)
Tavares et al. [19] 0.73 (1.89) 0.36 (0.3)
Yeshchenko et al. [32] 12.83 (16.64) 0.95 (0.33)
Zheng et al. [62] 5.13 (4.4) 0.72 (0.24)

20%

Bose et al. [21] 0.99 (0.31) 0.68 (0.13)
Ostovar et al. [28] 0.63 (0.48) 0.49 (0.31)
Tavares et al. [19] 0.95 (3.23) 0.38 (0.32)
Yeshchenko et al. [32] 12.17 (15.8) 0.94 (0.32)
Zheng et al. [62] 4.83 (3.67) 0.71 (0.23)

Regarding stream size, the approaches vary their behav-
iors widely, according to Table 7 (note that stream sizes
are expressed in number of traces). This happens because
window size parameters heavily influence change point
detection. Table 7 shows that Tavares et al. [19] performed
better as the stream size increases. Due to Tavares et al.
[19] constantly adapting approach, smaller streams are more
difficult to handle as the number of traces is not enough to
characterize a drift. Contrarily, Yeshchenko et al. [32] and
Zheng et al. [62] best performances are for smaller streams.
Ostovar et al. [28] dealt better with stream composed of
500 traces, which might be due to configuration settings.
Interestingly, Ostovar et al. [28], Yeshchenko et al. [32] and
Zheng et al. [62] have a standard deviation of 0 for both
metrics when the stream size is 100. We noticed that Ostovar
et al. [28] and Yeshchenko et al. [32] detected no drifts in
all streams with 100 traces, while Zheng et al. [62] always
detected two drifts for the same size. This explains the low

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

standard deviation and also why Zheng et al. [62] has a
better RMSLE, as this metric heavily punishes underestima-
tions.

TABLE 7: MSE and RMSLE scores for different approaches
per stream size type using the 942 synthetic event streams
proposed. The standard deviation (σ) is shown in parenthe-
ses. The best performances are highlighted.

Size Approach MSE (σ) RMSLE (σ)

100

Bose et al. [21] 1 (0.2) 0.69 (0.07)
Ostovar et al. [28] 1 (0) 0.69 (0)
Tavares et al. [19] 1.42 (5.07) 0.55 (0.35)
Yeshchenko et al. [32] 1 (0) 0.69 (0)
Zheng et al. [62] 1 (0) 0.41 (0)

500

Bose et al. [21] 1.21 (2.36) 0.68 (0.15)
Ostovar et al. [28] 0.42 (0.49) 0.35 (0.27)
Tavares et al. [19] 0.75 (2.54) 0.32 (0.28)
Yeshchenko et al. [32] 3.48 (1.15) 0.65 (0.12)
Zheng et al. [62] 6.58 (3.17) 0.81 (0.18)

1000

Bose et al. [21] 1.81 (12.72) 0.68 (0.21)
Ostovar et al. [28] 0.65 (0.62) 0.44 (0.29)
Tavares et al. [19] 0.68 (2.66) 0.26 (0.25)
Yeshchenko et al. [32] 31.55 (13.98) 1.31 (0.2)
Zheng et al. [62] 10.69 (11.57) 0.9 (0.3)

Though evaluating online PM methods is still a chal-
lenge for future research, our experiments supported the
identification of some patterns relating each approach to its
performances. The MSE and RMSLE metrics enabled to un-
cover the propensity to overestimation or underestimation
in algorithms, but other perspectives could be investigated
by adopting different metrics. In a general view, Bose et
al. [21] presented stable results when submitted to streams
with different characteristics. Such behavior is positively
affected by the offline assessment of traces. Zheng et al.
[62] was more affected by different perspectives, meaning
that it performs better for specific scenarios. The same
phenomenon was observed in Yeshchenko et al. [32], though
its overall performance is weaker when compared to the
other methods. Ostovar et al. [28] had the best overall MSE
and generally was not very affected by different stream
configurations. The same applies to Tavares et al. [19], which
overall had the best RMSLE scores. Regarding drift types,
most approaches state that they can detect only sudden
drifts. However, our experiments demonstrated that detect-
ing other drifts is feasible, meaning that different drift types
have commonalities within them. The change-point detec-
tion of recurring drift is confirmed as the most challenging.

4.3 Scalability Analysis on Memory Consumption
The experiments went further investigating memory con-
sumption using a quantitative method. Accurately profiling
memory is a difficult task, as the evaluated tools are avail-
able in different formats and languages. Tavares et al. [19],
Yeshchenko et al. [32] and Zheng et al. [62] are available
in Python code, this way, their memory consumption is
measured by profiling Python methods. Ostovar et al. [28]
is available as a standalone tool written in Java. To capture
its memory consumption, we assessed the process identifi-
cation generated by the execution of the tool. Finally, Bose
et al. [21] is available as a plug-in in the ProM framework4.

4. http://www.promtools.org/

We profiled memory as the difference between the memory
consumption when the plug-in is executed with the memory
consumption of the framework in standby.

The absolute values that can be measured are biased by
several factors and cannot be used for comparison. Thus,
the solution we proposed is focused around a scalability
analysis that offers us the field for the comparative evalua-
tion of the recorded results. The goal of this experiment is
to evaluate how each algorithm scales with event streams of
different sizes. Five event streams with a different number of
cases were used, making it possible to observe the evolving
trend in memory consumption each different approach has.
We performed 30 runs of all algorithms for each stream.
Memory consumption was measured in megabytes (MB),
while time was measured in seconds. The absolute values
we recorded measure both memory and time consumption
(Table 8). Memory and time consumption increases are
presented using a logarithmic view in Figures 5 and 6,
respectively.

2500 12500 25000 37500 50000
Event Stream Size (number of cases)

102

103

Lo
ga

rit
hm

ic
M

em
or

y
In

cr
ea

se

Bose et al. [21]
Zheng et al. [61]
Ostovar et al. [28]
Tavares et al. [19]
Yeshchenko et al. [32]

Fig. 5: Logarithmic memory consumption increase for dif-
ferent stream sizes.

2500 12500 25000 37500 50000
Event Stream Size (number of cases)

100

101

102

103

104

105

Lo
ga

rit
hm

ic
Ti

m
e

In
cr

ea
se

Bose et al. [21]
Zheng et al. [61]
Ostovar et al. [28]
Tavares et al. [19]
Yeshchenko et al. [32]

Fig. 6: Logarithmic time consumption increase for different
stream sizes.

Table 8 reports the mean and the standard variation of
the absolute values recorded in our experiments. As the
results show, there is a clear pattern where Zheng et al. [62]
approach was the best performing time-wise while Tavares
et al. [19] approach had the best performance memory-wise.

According to the time perspective, Zheng et al. [62]
outperforms the other methods because (i) it applies an
offline analysis, accessing the complete stream at once, and
(ii) performs fewer steps in order to detect drifts. This way,
it has an advantage against more robust and sophisticated

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

http://www.promtools.org/

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

TABLE 8: Memory and time consumption of the evaluated
algorithms given several stream sizes. The standard devia-
tion (σ) is shown in parentheses. The best performances are
highlighted.

Cases Approach Memory in MB (σ) Time in sec. (σ)

2500

Bose et al. [21] 439.78 (58.1) 9.66 (0.23)
Ostovar et al. [28] 494.25 (22.69) 11.12 (0.19)
Tavares et al. [19] 73.68 (0.22) 7.11 (0.13)
Yeshchenko et al. [32] 209.61 (0.31) 27.9 (0.76)
Zheng et al. [62] 174.35 (0.13) 0.52 (0.004)

12500

Bose et al. [21] 706.81 (88.89) 52.98 (4.86)
Ostovar et al. [28] 1087.61 (27.77) 29.42 (0.84)
Tavares et al. [19] 107.25 (0.23) 32.13 (0.85)
Yeshchenko et al. [32] 391.98 (0.01) 321.04 (2.49)
Zheng et al. [62] 667.11 (0.15) 2.67 (0.03)

25000

Bose et al. [21] 1400.67 (147.27) 103.16 (14.83)
Ostovar et al. [28] 1560.71 (42.25) 54.13 (1.58)
Tavares et al. [19] 151.29 (1.03) 62.49 (0.93)
Yeshchenko et al. [32] 874.87 (1.86) 3698.62 (24.36)
Zheng et al. [62] 1282.1 (0.1) 5.43 (0.06)

37500

Bose et al. [21] 1946.71 (158.87) 127.6 (2.29)
Ostovar et al. [28] 1743.43 (61.28) 95.13 (5.62)
Tavares et al. [19] 193.42 (0.26) 93.29 (2.01)
Yeshchenko et al. [32] 1432.66 (9.27) 42491.12 (98.07)
Zheng et al. [62] 1890.49 (0.17) 8.38 (0.09)

50000

Bose et al. [21] 2330.23 (178.84) 165.53 (9.44)
Ostovar et al. [28] 1963.08 (19.75) 132.44 (3.24)
Tavares et al. [19] 242.7 (3.51) 122.4 (2.9)
Yeshchenko et al. [32] 1832.87 (16.66) 487899.6 (463.11)
Zheng et al. [62] 2497.23 (0.14) 11.18 (0.14)

methods. Regarding memory, both Zheng et al. [62] and
Bose et al. [21] methods consume more memory since they
are offline, and thus, they load all the events into the mem-
ory instantly. Yeshchenko et al. [32] does not suffer as much
since it creates sub-logs, diminishing memory consumption.
It is also possible to see that in smaller streams, Zheng et al.
[62] completes the analysis using less memory than Ostovar
et al. [28]. However, as the stream size grows, Zheng et al.
[62] suffers from scalability issues because it loads all events
at once. Tavares et al. [19] performed better memory-wise.
This is a direct result of the method being stream grounded
and consuming events only once as the stream arrives.
Tavares et al. [19] outperforms Ostovar et al. [28] because
the latter uses a window-based approach and passes several
times over the same data, leveraging memory consumption.

Figures 5 and 6 show how the methods scale when
dealing with larger streams. Tavares et al. [19] is the ap-
proach that better scales as event stream size increases,
a direct result of ingesting stream events without storing
them in memory. This behavior is interesting for online
settings where events are expected to arrive at high rates.
A similar trend was expected from Ostovar et al. [28] since
it is also an online method, however, its behavior is similar
to offline methods, which load all the events to memory
at once. For time scaling, Zheng et al. [62] exhibited the
best performance. Bose et al. [21], Ostovar et al. [28] and
Tavares et al. [19] demonstrated a very similar behavior in
time scalability. Finally, Yeshchenko et al. [32] showed the
worst scaling performance time-wise as the method applies
several processing steps, and as the data size increases, the
processing time tends to increase exponentially.

4.4 Discussion

Although there was no hyperparameter tuning, our experi-
ments aimed at understanding if the current solutions meet

online PM goals. Moreover, the synthetic event logs cover
a complex set of scenarios, exploring the approaches from
different points of view: drift type, perspective, noise per-
centage, and event stream size. Furthermore, it is important
to notice that Bose et al. [21], Yeshchenko et al. [32] and
Zheng et al. [62] do not meet a key requirement (7R0) since
the methods pre-process the event stream to create an event
log.

Regarding accuracy the experiments provided a clear
ranking of the examined methods (G4). This is achieved
by assessing the statistical significance of the differences
in their scores. For that, Friedman’s statistical test and
the Nemenyi post-hoc analysis were used [73]. We decide
to compare the approaches using RMSLE, that punishes
underestimation, as we think than in online PM reactiveness
is crucial and potential changes cannot be disregarded by
a monitoring algorithm. Figure 7 shows the results of this
test. If the difference between any two instances is higher
than the critical difference (CD), then it can be concluded
that their performance is statistically different. According to
Figure 7, there is a statistical difference between all methods,
meaning that the presented ranking is maintained for all
event streams tested. Tavares et al. [19] outperforms the
other approaches statistically, corroborating with previous
score results. Then, it is followed by Ostovar et al. [28],
showing that online methods tend to perform better as they
take into account event streams characteristics. Following,
though Zheng et al. [62] and Bose et al. [21] performed
closely in some scenarios, it can be statistically stated that
Zheng et al. [62] has a better overall performance. Further-
more, Yeshchenko et al. [32] ranks as the least significant
approach, which is also supported by Table 3.

CD = 0.20

1 2 3 4 5

Tavares et al. [19]
Ostovar et al. [28]

Yeshchenko et al. [32]
Bose et al. [21]

Zheng et al. [62]

Fig. 7: Analysis of the RMSLE scores of the different meth-
ods according to the Friedman and Nemenyi test. Tavares et
al. [19] was statistically superior to the others.

We also applied the Friedman statistical test to comple-
ment our analysis of memory and time consumption (G1).
The results are presented in Figures 8 and 9. Tavares et al.
[19] always perform better than the other approaches. This
way, it is positioned as the best algorithm in this compar-
ison. The next approach is Yeshchenko et al. [32], which
diminishes memory consumption by applying sub-logs. The
other methods do not present a statistical difference between
them, meaning that their memory consumption is similar in
these experiments. The statistical test corroborates with the
analysis of Table 8 as Tavares et al. [19] has the best memory
performance in all configurations, followed by Yeshchenko
et al. [32] in most cases, while Bose et al. [21], Ostovar et
al. [28] and Zheng et al. [62] change positions in different
configurations.

In a general note, our experiments confirm that the
online methods scale better. Offline methods tend to have
scalability problems due to memory limitations. Regard-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 15

CD=0.498

1 2 3 4 5

Tavares et al. [19]
Yeshchenko et al. [32]

Ostovar et al. [28]
Bose et al. [22]

Zheng et al. [62]

Fig. 8: Analysis of the memory consumption among the
different methods according to the Friedman and Nemenyi
test. Tavares et al. [19] consumes less memory. Yeshchenko
et al. [32] comes next while the other approaches do not
have a statistical difference.

CD=0.498

1 2 3 4 5

Zheng et al. [62]
Tavares et al. [19]

Yeshchenko et al. [32]
Bose et al. [21]

Ostovar et al. [28]

Fig. 9: Analysis of time consumption among the different
methods according to the Friedman and Nemenyi test.
Zheng et al. [62] was statistically superior to the others.

ing time-processing, though, the offline methods usually
perform better due to having access to the complete log.
However, in real streaming scenarios, their applicability is
impractical.

5 CONCLUSION

This paper highlights that the current research on online PM
lacks a shared comprehension of the requirements framing
this field. Different works target different requirements, the
explicit assertion of goals addressed by specific solutions
is not always available, parameters and techniques for
handling the trade-off between conflicting goals are rarely
proposed. Developing strategies for conciliating conflicting
goals, possibly at run-time, is essential to design optimal
and adaptive online PM algorithms.

This paper contains three main contributions to pro-
gressing the field. We identified a set of goals motivating
the adoption in organizations of online PM and underlined
their conflicting relationships. As emerged in the discussion,
CDD is an important pre-requirement of many stream pro-
cessing approaches. We then proposed a benchmark dataset
dedicated to online CDD, composed of a total of 942 event
streams. The event streams explore different characteristics
of an online scenario, such as drift types based both on
trace and time perspectives, cases of varied size and noise
percentage, including incomplete cases. We developed ex-
periments to quantitatively measure accuracy and memory
consumption highlighting initial insights for creating strate-
gies to trade-off conflicting goals. The window of analysis
significantly impacts all the conflicting goals we identified,
therefore adaptive and parametric methods, connected with PM
appropriateness metrics, are required for effectively handling
CDD. The impact of drift types did not emerge as a critical
issue for CDD, with the notable exception of recurring drifts
that will require the investigation of ad-hoc techniques.
Contrarily, stream size significantly affects both memory
consumption and accuracy, with memory-wise methods

that typically have worse accuracy for streams of small size,
due to the incremental learning procedures they implement.
Moreover, it emerged that within the same goal multiple
propensities can be considered and well suited metrics are
required to assess them. For example, algorithms focusing
on incremental analysis tend to overestimate drifts, while
algorithms exploiting statistical tests tend to underestimate
them.

Our future work will focus on the definition of quan-
titative metrics for assessing the entire set of goals and
requirements we identified and to develop more exhaustive
benchmarks.

REFERENCES

[1] W. van der Aalst, A. Adriansyah, A. K. A. de Medeiros, F. Arcieri,
T. Baier, T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen,
J. Buijs, A. Burattin, J. Carmona, M. Castellanos, J. Claes, J. Cook,
N. Costantini, F. Curbera, E. Damiani, M. de Leoni, P. Delias,
B. F. van Dongen, M. Dumas, S. Dustdar, D. Fahland, D. R.
Ferreira, W. Gaaloul, F. van Geffen, S. Goel, C. Günther, A. Guzzo,
P. Harmon, A. ter Hofstede, J. Hoogland, J. E. Ingvaldsen, K. Kato,
R. Kuhn, A. Kumar, M. La Rosa, F. Maggi, D. Malerba, R. S.
Mans, A. Manuel, M. McCreesh, P. Mello, J. Mendling, M. Mon-
tali, H. R. Motahari-Nezhad, M. zur Muehlen, J. Munoz-Gama,
L. Pontieri, J. Ribeiro, A. Rozinat, H. Seguel Pérez, R. Seguel Pérez,
M. Sepúlveda, J. Sinur, P. Soffer, M. Song, A. Sperduti, G. Stilo,
C. Stoel, K. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen,
G. Varvaressos, E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber,
M. Weidlich, T. Weijters, L. Wen, M. Westergaard, and M. Wynn,
“Process mining manifesto,” in Business Process Management Work-
shops, F. Daniel, K. Barkaoui, and S. Dustdar, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 169–194.

[2] M. Zur Muehlen and R. Shapiro, “Business process analytics,” in
Handbook on Business Process Management 2. Springer, 2015, pp.
243–263.

[3] P. Coughlan and D. Coghlan, “Action research for operations
management,” International journal of operations & production man-
agement, vol. 22, no. 2, pp. 220–240, 2002.

[4] A. Burattin, “Streaming process discovery and conformance
checking,” in Encyclopedia of Big Data Technologies. Springer, 2018.

[5] S. J. van Zelst, B. F. van Dongen, and W. M. van der Aalst, “Event
stream-based process discovery using abstract representations,”
Knowledge and Information Systems, vol. 54, no. 2, pp. 407–435, 2018.

[6] L. Rutkowski, M. Jaworski, and P. Duda, Basic Concepts of Data
Stream Mining. Cham: Springer International Publishing, 2020,
pp. 13–33.

[7] A. Burattin, A. Sperduti, and W. M. van der Aalst, “Control-flow
discovery from event streams,” in Evolutionary Computation (CEC),
2014 IEEE Congress on. IEEE, 2014, pp. 2420–2427.

[8] M. Hassani, S. Siccha, F. Richter, and T. Seidl, “Efficient process
discovery from event streams using sequential pattern mining,”
in 2015 IEEE Symposium Series on Computational Intelligence, Dec
2015, pp. 1366–1373.

[9] M. Hassani, S. J. van Zelst, and W. M. P. van der Aalst, “On
the application of sequential pattern mining primitives to process
discovery: Overview, outlook and opportunity identification,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 0, no. 0, p. e1315, 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1315

[10] V. Leno, A. Armas-Cervantes, M. Dumas, M. La Rosa,
and F. M. Maggi, “Discovering process maps from event
streams,” in Proceedings of the 2018 International Conference
on Software and System Process, ser. ICSSP ’18. New York,
NY, USA: ACM, 2018, pp. 86–95. [Online]. Available: http:
//doi.acm.org/10.1145/3202710.3203154

[11] F. M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti, “Online
process discovery to detect concept drifts in ltl-based declarative
process models,” in OTM Confederated International Conferences”
On the Move to Meaningful Internet Systems”. Springer, 2013, pp.
94–111.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1315
http://doi.acm.org/10.1145/3202710.3203154
http://doi.acm.org/10.1145/3202710.3203154

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 16

[12] F. Stertz and S. Rinderle-Ma, “Detecting and identifying data drifts
in process event streams based on process histories,” in Information
Systems Engineering in Responsible Information Systems, C. Cappiello
and M. Ruiz, Eds. Cham: Springer International Publishing, 2019,
pp. 240–252.

[13] A. Burattin and J. Carmona, “A framework for online conformance
checking,” in International Conference on Business Process Manage-
ment. Springer, 2017, pp. 165–177.

[14] A. Burattin, S. J. van Zelst, A. Armas-Cervantes, B. F. van Dongen,
and J. Carmona, “Online conformance checking using behavioural
patterns,” in Business Process Management, M. Weske, M. Montali,
I. Weber, and J. vom Brocke, Eds. Cham: Springer International
Publishing, 2018, pp. 250–267.

[15] P. Koenig, J. Mangler, and S. Rinderle-Ma, “Compliance
monitoring on process event streams from multiple sources,”
in 1st Int’l Conference on Process Mining, June 2019. [Online].
Available: http://eprints.cs.univie.ac.at/6066/

[16] G. M. Tavares, V. G. T. da Costa, V. E. Martins, P. Ceravolo,
and S. Barbon, Jr., “Anomaly detection in business process
based on data stream mining,” in Proceedings of the XIV
Brazilian Symposium on Information Systems, ser. SBSI’18. New
York, NY, USA: ACM, 2018, pp. 16:1–16:8. [Online]. Available:
http://doi.acm.org/10.1145/3229345.3229362

[17] S. J. van Zelst, A. Bolt, M. Hassani, B. F. van Dongen, and W. M. P.
van der Aalst, “Online conformance checking: relating event
streams to process models using prefix-alignments,” International
Journal of Data Science and Analytics, Oct 2017. [Online]. Available:
https://doi.org/10.1007/s41060-017-0078-6

[18] G. Tello, G. Gianini, R. Mizouni, and E. Damiani, “Machine
learning-based framework for log-lifting in business process min-
ing applications,” in International Conference on Business Process
Management. Springer, 2019, pp. 232–249.

[19] G. M. Tavares, S. Barbon Junior, P. Ceravolo, and E. Damiani,
“Overlapping analytic stages in online process mining,” in 2019
IEEE International Conference on Service Computing (SCC 2019), July
2019.

[20] S. Barbon Junior, G. M. Tavares, V. G. T. da Costa, P. Ceravolo,
and E. Damiani, “A framework for human-in-the-loop monitoring
of concept-drift detection in event log stream,” in Companion
Proceedings of the The Web Conference 2018, ser. WWW ’18.
Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2018, pp. 319–326.
[Online]. Available: https://doi.org/10.1145/3184558.3186343

[21] R. P. J. C. Bose, W. M. P. van der Aalst, I. liobait, and M. Pech-
enizkiy, “Dealing with concept drifts in process mining,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 1,
pp. 154–171, Jan 2014.

[22] R. P. J. C. Bose, W. M. P. van der Aalst, I. Žliobaitė, and M. Pech-
enizkiy, “Handling concept drift in process mining,” in Advanced
Information Systems Engineering, H. Mouratidis and C. Rolland,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
391–405.

[23] B. Hompes, J. C. Buijs, W. M. van der Aalst, P. Dixit, and J. Buur-
man, “Detecting changes in process behavior using comparative
case clustering,” in International Symposium on Data-Driven Process
Discovery and Analysis. Springer, 2015, pp. 54–75.

[24] J. Martjushev, R. P. J. C. Bose, and W. M. P. van der Aalst,
“Change point detection and dealing with gradual and multi-
order dynamics in process mining,” in Perspectives in Business
Informatics Research, R. Matulevičius and M. Dumas, Eds. Cham:
Springer International Publishing, 2015, pp. 161–178.

[25] A. Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar, “Detecting
sudden and gradual drifts in business processes from execu-
tion traces,” IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 10, pp. 2140–2154, Oct 2017.

[26] T. Li, T. He, Z. Wang, Y. Zhang, and D. Chu, “Unraveling process
evolution by handling concept drifts in process mining,” in 2017
IEEE International Conference on Services Computing (SCC). IEEE,
2017, pp. 442–449.

[27] M. Maisenbacher and M. Weidlich, “Handling concept drift in pre-
dictive process monitoring,” in 2017 IEEE International Conference
on Services Computing (SCC). IEEE, 2017, pp. 1–8.

[28] A. Ostovar, A. Maaradji, M. La Rosa, A. H. M. ter Hofstede, and
B. F. V. van Dongen, “Detecting drift from event streams of un-
predictable business processes,” in Conceptual Modeling, I. Comyn-
Wattiau, K. Tanaka, I.-Y. Song, S. Yamamoto, and M. Saeki, Eds.
Cham: Springer International Publishing, 2016, pp. 330–346.

[29] F. Stertz and S. Rinderle-Ma, “Process histories-detecting and
representing concept drifts based on event streams,” in OTM
Confederated International Conferences” On the Move to Meaningful
Internet Systems”. Springer, 2018, pp. 318–335.

[30] N. Liu, J. Huang, and L. Cui, “A framework for online process
concept drift detection from event streams,” in 2018 IEEE Inter-
national Conference on Services Computing (SCC). IEEE, 2018, pp.
105–112.

[31] F. Prathama, B. N. Yahya, D. D. Harjono, and E. Mahendrawathi,
“Trace clustering exploration for detecting sudden drift: A case
study in logistic process,” Procedia Computer Science, vol. 161, pp.
1122–1130, 2019.

[32] A. Yeshchenko, C. Di Ciccio, J. Mendling, and A. Polyvyanyy,
“Comprehensive process drift detection with visual analytics,” in
Conceptual Modeling, A. H. F. Laender, B. Pernici, E.-P. Lim, and
J. P. M. de Oliveira, Eds. Cham: Springer International Publishing,
2019, pp. 119–135.

[33] F. Richter and T. Seidl, “Looking into the tesseract: Time-drifts
in event streams using series of evolving rolling averages of
completion times,” Information Systems, vol. 84, pp. 265–282, 2019.

[34] I. Firouzian, M. Zahedi, and H. Hassanpour, “Investigation of the
effect of concept drift on data-aware remaining time prediction of
business processes,” International Journal of Nonlinear Analysis and
Applications, vol. 10, no. 2, pp. 153–166, 2019.

[35] A. Ostovar, S. J. Leemans, and M. L. Rosa, “Robust drift char-
acterization from event streams of business processes,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 14,
no. 3, pp. 1–57, 2020.

[36] S. J. van Zelst, M. Fani Sani, A. Ostovar, R. Conforti, and
M. La Rosa, “Filtering spurious events from event streams of
business processes,” in Advanced Information Systems Engineering,
J. Krogstie and H. A. Reijers, Eds. Cham: Springer International
Publishing, 2018, pp. 35–52.

[37] S. J. van Zelst, M. F. Sani, A. Ostovar, R. Conforti, and M. La Rosa,
“Detection and removal of infrequent behavior from event streams
of business processes,” Information Systems, p. 101451, 2019.

[38] S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider,
“Event abstraction in process mining: literature review and taxon-
omy,” Granular Computing, pp. 1–18.

[39] J. D. Weerdt, M. D. Backer, J. Vanthienen, and B. Baesens,
“A multi-dimensional quality assessment of state-of-the-
art process discovery algorithms using real-life event
logs,” Information Systems, vol. 37, no. 7, pp. 654 –
676, 2012. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0306437912000464

[40] A. Burattin, M. Cimitile, F. M. Maggi, and A. Sperduti, “Online
discovery of declarative process models from event streams,” IEEE
Transactions on services computing, vol. 8, no. 6, pp. 833–846, 2015.

[41] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas,
M. La Rosa, and D. Reissner, “Abstract-and-compare: A family of
scalable precision measures for automated process discovery,” in
Business Process Management, M. Weske, M. Montali, I. Weber, and
J. vom Brocke, Eds. Cham: Springer International Publishing,
2018, pp. 158–175.

[42] J. Gama, P. P. Rodrigues, E. Spinosa, and A. Carvalho, “Knowl-
edge Discovery from Data Streams,” Web Intelligence and Security
- Advances in Data and Text Mining Techniques for Detecting and
Preventing Terrorist Activities on the Web, pp. 125–138, 2010.

[43] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski,
and M. Woniak, “Ensemble learning for data stream
analysis: A survey,” Information Fusion, vol. 37, pp. 132 –
156, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1566253516302329

[44] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Comput. Surv., vol. 46, no. 4, pp. 44:1–44:37, Mar. 2014. [Online].
Available: http://doi.acm.org/10.1145/2523813

[45] J. Carmona and R. Gavaldà, “Online techniques for dealing with
concept drift in process mining,” in Advances in Intelligent Data
Analysis XI, J. Hollmén, F. Klawonn, and A. Tucker, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 90–102.

[46] M. Dumas and L. Garcı́a-Bañuelos, “Process mining reloaded:
Event structures as a unified representation of process models and
event logs,” in International Conference on Applications and Theory of
Petri Nets and Concurrency. Springer, 2015, pp. 33–48.

[47] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

http://eprints.cs.univie.ac.at/6066/
http://doi.acm.org/10.1145/3229345.3229362
https://doi.org/10.1007/s41060-017-0078-6
https://doi.org/10.1145/3184558.3186343
http://www.sciencedirect.com/science/article/pii/S0306437912000464
http://www.sciencedirect.com/science/article/pii/S0306437912000464
http://www.sciencedirect.com/science/article/pii/S1566253516302329
http://www.sciencedirect.com/science/article/pii/S1566253516302329
http://doi.acm.org/10.1145/2523813

1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3004532, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 17

streams: a review,” ACM Sigmod Record, vol. 34, no. 2, pp. 18–26,
2005.

[48] J. Gama and P. P. Rodrigues, “Data stream processing,” in Learning
from Data Streams. Springer, 2007, pp. 25–39.

[49] D. Redlich, T. Molka, W. Gilani, G. S. Blair, and A. Rashid,
“Scalable dynamic business process discovery with the constructs
competition miner.” in SIMPDA. Citeseer, 2014, pp. 91–107.

[50] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Scalable process discovery and conformance checking,” Software
& Systems Modeling, vol. 17, no. 2, pp. 599–631, May 2018.
[Online]. Available: https://doi.org/10.1007/s10270-016-0545-x

[51] V. G. T. da Costa, A. C. P. de Leon Ferreira, S. B. Junior et al.,
“Strict very fast decision tree: a memory conservative algorithm
for data stream mining,” Pattern Recognition Letters, vol. 116, pp.
22–28, 2018.

[52] D. Brzezinski and J. Stefanowski, “Reacting to different types of
concept drift: The accuracy updated ensemble algorithm,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 1,
pp. 81–94, 2014.

[53] R. Elwell and R. Polikar, “Incremental learning of concept drift
in nonstationary environments,” IEEE Transactions on Neural Net-
works, vol. 22, no. 10, pp. 1517–1531, 2011.

[54] P. Weber, P. Tino, and B. Bordbar, “Process mining in non-
stationary environments.” in European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning
(ESANN), 2012. [Online]. Available: https://www.i6doc.com/en/
book/?GCOI=28001100967420

[55] G. S. Manku and R. Motwani, “Approximate frequency counts
over data streams,” in Proceedings of the 28th International
Conference on Very Large Data Bases, ser. VLDB ’02. VLDB
Endowment, 2002, pp. 346–357. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1287369.1287400

[56] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst,
“Conformance checking using cost-based fitness analysis,” in 2011
IEEE 15th International Enterprise Distributed Object Computing Con-
ference, Aug 2011, pp. 55–64.

[57] F. Taymouri and J. Carmona, “A recursive paradigm for aligning
observed behavior of large structured process models,” in Business
Process Management, M. La Rosa, P. Loos, and O. Pastor, Eds.
Cham: Springer International Publishing, 2016, pp. 197–214.

[58] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans.
Math. Softw., vol. 11, no. 1, pp. 37–57, Mar. 1985. [Online].
Available: http://doi.acm.org/10.1145/3147.3165

[59] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu, “Forward
decay: A practical time decay model for streaming systems,” in
2009 IEEE 25th International Conference on Data Engineering, March
2009, pp. 138–149.

[60] F. M. Maggi, M. Montali, and W. M. P. van der Aalst, “An
operational decision support framework for monitoring business
constraints,” in Fundamental Approaches to Software Engineering,
J. de Lara and A. Zisman, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 146–162.

[61] W. Li, Y. Fan, W. Liu, M. Xin, H. Wang, and Q. Jin, “A self-adaptive
process mining algorithm based on information entropy to deal
with uncertain data,” IEEE Access, vol. 7, pp. 131 681–131 691, 2019.

[62] C. Zheng, L. Wen, and J. Wang, “Detecting process concept drifts
from event logs,” in On the Move to Meaningful Internet Systems.
OTM 2017 Conferences, H. Panetto, C. Debruyne, W. Gaaloul,
M. Papazoglou, A. Paschke, C. A. Ardagna, and R. Meersman,
Eds. Cham: Springer International Publishing, 2017, pp. 524–542.

[63] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise,” in Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, ser.
KDD’96. AAAI Press, 1996, pp. 226–231. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3001460.3001507

[64] A. Solti, L. Vana, and J. Mendling, “Time series petri net models,”
in International Symposium on Data-Driven Process Discovery and
Analysis. Springer, 2015, pp. 124–141.

[65] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer
Science - Research and Development, vol. 23, no. 2, pp. 99–113, 2009.
[Online]. Available: https://doi.org/10.1007/s00450-009-0057-9

[66] A. Alves De Medeiros, B. Dongen, van, W. Aalst, van der, and
A. Weijters, Process mining : extending the alpha-algorithm to mine
short loops, ser. BETA publicatie : working papers. Technische
Universiteit Eindhoven, 2004.

[67] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering
over an evolving data stream with noise,” in Proceedings of the 2006
SIAM international conference on data mining. SIAM, 2006, pp. 328–
339.

[68] A. Maaradji, M. Dumas, M. L. Rosa, and A. Ostovar,
“Fast and accurate business process drift detection,” in 13th
International Conference, BPM 2015, H. R. Motahari-Nezhad,
J. Recker, and M. Weidlich, Eds. Springer International
Publishing, March 2015, pp. 406–422. [Online]. Available:
https://eprints.qut.edu.au/83013/

[69] G. M. Tavares, S. Barbon, and P. Ceravolo, “Synthetic event
streams,” 2019. [Online]. Available: http://dx.doi.org/10.21227/
2kxd-m509

[70] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fun-
damentals of Business Process Management. Springer Publishing
Company, Incorporated, 2013.

[71] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features enhancing flexibility in process-aware
information systems,” Data & Knowledge Engineering, vol. 66,
no. 3, pp. 438 – 466, 2008. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0169023X0800058X

[72] B. F. van Dongen and W. M. P. van der Aalst, “A meta model for
process mining data,” in EMOI-INTEROP, 2005.

[73] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1248547.1248548

Paolo Ceravolo is an Associate Professor at
the Dipartimento di Informatica, Università degli
Studi di Milano. His research interests include
Data Representation and Integration, Business
Process Monitoring, Empirical Software Engi-
neering. On these topics, he has published sev-
eral scientific papers. As a data scientist, he
was involved in several international research
projects and innovative startups. The URL for his
web page is http://www.di.unimi.it/ceravolo

Gabriel Marques Tavares is a Ph.D. candidate
at the Università degli Studi di Milano. Graduated
at the Londrina State University (UEL), in 2014
he participated in an exchange program at the
University of Michigan. His research interests in-
clude Machine Learning for Online Process Min-
ing with particular attention to Process Discovery
and Concept Drift Detection. Currently, his explo-
ration has expanded for Anomaly Detection and
Conformance Checking.

Sylvio Barbon Junior is an Assistant Profes-
sor at the Computer Science Department, Lond-
rina State University (UEL), Brazil. His research
interests are focused on Pattern Recognition
and their applications, with several international
dissemination achieved on topics from Image
Processing, Text Mining, Stream Mining, and
Process Mining. The URL for his web page is
http://www.barbon.com.br

Ernesto Damiani is a Full Professor at the Uni-
versità degli Studi di Milano, where he leads the
SESAR research lab, and the leader of the Big
Data Initiative at the EBTIC/Khalifa University in
Abu Dhabi, UAE. He is the Principal Investigator
of several H2020 projects. He was a recipient of
the Chester-Sall Award from the IEEE IES Soci-
ety (2007). He was named ACM Distinguished
Scientist (2008) and received the Stephen S.
Yau Services Computing Award (2016).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2020.3004532

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.Authorized licensed use limited to: Universita degli Studi di Trieste. Downloaded on March 30,2022 at 08:11:38 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/s10270-016-0545-x
https://www.i6doc.com/en/book/?GCOI=28001100967420
https://www.i6doc.com/en/book/?GCOI=28001100967420
http://dl.acm.org/citation.cfm?id=1287369.1287400
http://dl.acm.org/citation.cfm?id=1287369.1287400
http://doi.acm.org/10.1145/3147.3165
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1007/s00450-009-0057-9
https://eprints.qut.edu.au/83013/
http://dx.doi.org/10.21227/2kxd-m509
http://dx.doi.org/10.21227/2kxd-m509
http://www.sciencedirect.com/science/article/pii/S0169023X0800058X
http://www.sciencedirect.com/science/article/pii/S0169023X0800058X
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://www.di.unimi.it/ceravolo
http://www.barbon.com.br

