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Abstract—With the proliferation of Internet-of-Things and continuous growth in the number of web services at the Internet-scale, the
service recommendation is becoming a challenge nowadays. One of the prime aspects influencing the service recommendation is the
Quality-of-Service (QoS) parameter, which depicts the performance of a web service. In general, the service provider furnishes the
value of the QoS parameters during service deployment. However, in reality, the QoS values of service vary across different users, time,
locations, etc. Therefore, estimating the QoS value of service before its execution is an important task, and thus the QoS prediction
has gained significant research attention. Multiple approaches are available in the literature for predicting service QoS. However, these
approaches are yet to reach the desired accuracy level. In this paper, we study the QoS prediction problem across different users, and
propose a novel solution by taking into account the contextual information of both services and users. Our proposal includes two key
steps: (a) hybrid filtering and (b) hierarchical prediction mechanism. On the one hand, the hybrid filtering method aims to obtain a set of
similar users and services, given a target user and a service. On the other hand, the goal of the hierarchical prediction mechanism is
to estimate the QoS value accurately by leveraging hierarchical neural-regression. We evaluate our framework on the publicly available
WS-DREAM datasets. The experimental results show the outperformance of our framework over the major state-of-the-art approaches.

Index Terms—Hierarchical Neural-Regression, Hierarchical Prediction, Hybrid Filtering, Quality of Service (QoS) Prediction.
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1 INTRODUCTION

Services computing is becoming an emerging field of re-
search with the focus shift towards Everything-as-a-Service
(XaaS). With the proliferation of Internet-of-Things (IoT),
Machine to Machine (M2M) communication and smart tech-
nologies, the number of web services is increasing day by
day. The massive growth of the number of functionally
equivalent services introduces a challenge to the service
recommendation research. Numerous ways exist in the lit-
erature to recommend the services for a specific task. For
example, the service recommendation can be accomplished
based on user preferences [1], where the user specifies a set
of criteria on which the recommender engine chooses the set
of services. Sometimes, the performance of the web services
becomes the principal concern, and the recommendation is
made based on the QoS parameters of the services [2], [3].
Often, the cost of the services [4] is solely responsible for
recommending the services. Seldom, the feature provided
by the services [5] becomes the criteria for recommendation.

In this paper, we concentrate on the QoS parameters
for recommending the services. The set of QoS parameters
has been widely adopted to differentiate the functionally
equivalent services in terms of their quality. Therefore,
the QoS parameter often plays a crucial role in service
recommendation. One of the fundamental challenge with
QoS-based service recommendation is to obtain the exact
QoS value of service before its execution. In general, the
service provider supplies the QoS values of a service during
its deployment. However, the QoS values of service often
fluctuate depending on various factors, such as users, time,
locations, etc. Therefore, determining the QoS value of ser-
vice is an essential requirement, which drives our work in
this paper.
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A significant amount of work has been carried out in
the literature to address the QoS prediction problem. One of
the principal techniques for QoS prediction is collaborative
filtering [6], [7], [8], [9]. The main idea of this technique is
to predict the QoS value of a target service to be invoked
by a user on the basis of QoS values of a set of similar
services invoked by a set of similar users. The collaborative
filtering is primarily of two types: memory-based and model-
based. The memory-based collaborative filtering [2], [3], [9],
[10], [11] is further classified into two different categories:
user-based and service-based. In the user-based collaborative
filtering [12], the main idea is to obtain a set of users similar
to the target user before predicting the target QoS value,
whereas, for the service-based collaborative filtering [13], the
target QoS prediction is performed by taking into account
the set of similar services. To improve the QoS prediction
accuracy further, both the user-based and service-based
collaborative filtering are combined to predict the target QoS
value [2], [3], [6], [7], [8], [10], [14]. However, the memory-
based technique suffers from the sparsity problem, which is
the major limitation of this technique.

To overcome the limitation of memory-based ap-
proaches, the model-based collaborative filtering has been
introduced, where different models can be learned accord-
ing to the characteristics of the datasets for QoS value pre-
diction. The matrix factorization [15], [16], [17] is one of the
popular model-based QoS prediction techniques, where the
QoS prediction is done based on a decomposition of a user-
service matrix into low-rank matrices and followed by its
reconstruction. As an improvement of matrix factorization,
the regularization has been introduced further [18], [19],
[20]. Regression is another approach for model-based QoS
prediction [21], [22]. A few variations of regression models
[23], [24] have also been proposed in this context to improve
prediction accuracy. Another group of studies combined
both memory-based and model-based techniques to obtain
better prediction accuracy. For example, collaborative filter-
ing can be combined with neural regression [25] to predict
the target QoS value. However, the prediction accuracy is
still not up to the mark, which we address in this paper.

ar
X

iv
:2

00
1.

09
89

7v
1 

 [
cs

.I
R

] 
 1

3 
Ja

n 
20

20



2

Here, we propose a novel framework CAHPHF for QoS
prediction. The crux of our proposal is to incorporate the
contextual information of users and services while predict-
ing the QoS value of a target service to be invoked by a
target user. Sometimes, the contextual information carries
some additional knowledge about users or services, which
may be essential to improve the prediction accuracy. This
fact motivates us to undertake this proposal.

Our proposed CAHPHF is a combination of memory-
based and model-based techniques, and comprises two key
phases: hybrid filtering followed by hierarchical prediction.
In the hybrid filtering phase, we combine user-based and
service-based modules by leveraging the contextual infor-
mation of users or services. In the hierarchical prediction
phase, we first handle the sparsity problem by filling up
the matrix using collaborative filtering/matrix factorization.
We then employ a hierarchical neural-regression module to
predict the target QoS parameter. The hierarchical neural-
regression module comprises two layers: while the first layer
predicts the target QoS value, the second layer attempts to
increase the prediction accuracy.

We now briefly mention the major contributions below.
(i) We present a new framework (CAHPHF) to predict

the QoS value of a service to be invoked by a user while
improving the prediction accuracy as compared to the state-
of-the-art approaches.

(ii) Our CAHPHF, on the one hand, takes advantage
of the memory-based approaches by adopting filtering. On
the other hand, it leverages model-based approaches by
introducing a hierarchical prediction mechanism.

(iii) We propose hybrid filtering, which is a combination
of user-intensive and service-intensive filtering modules. In
the user-intensive filtering module, the user is more influ-
ential than the services, whereas, in the service-intensive
filtering module, the service has more impact than the user.
Each of the user and service-intensive modules is again
a combination of user-based and service-based filtering.
Additionally, in this user/service-based filtering, we consol-
idate contextual information with the similarity information
of the users/services intending to increase the accuracy.

(iv) A hierarchical prediction mechanism for QoS pre-
diction is also proposed here. In this mechanism, we first
focus on predicting the QoS value of the target service to be
invoked by the target user. We then concentrate on reducing
the error obtained by our framework.

(v) We performed an extensive empirical study on the
publicly available datasets WS-DREAM [26], [27]. We also
analyzed the impact of context-sensitivity of users/services
on prediction.

The rest of the paper is organized as follows. Section 2
presents the overview of the problem with its formulation.
Section 3 discusses the proposed framework in detail. Sec-
tion 4 analyzes the experimental results. Section 5 presents
literature review. Finally, Section 6 concludes this paper.

2 OVERVIEW AND PROBLEM FORMULATION

In this section, we formalize our problem. We begin with
defining the notion of the QoS invocation log below.

Definition 2.1. [QoS Invocation Log:] The QoS invocation
log Q is a 2-dimensional matrix, where each entry Q[i, j] ∈ R+

of the matrix represents the value of the QoS parameter q of the
service sj when invoked by the user ui. �

It may be noted that most of the time, the QoS invocation
log is a sparse matrix. If a user ui invoked a service sj
in the past, the corresponding QoS value is recorded in

TABLE 1. Example of QoS invocation log

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
u1 5.98 0.22 0.23 0 ∗ 0.22 0.52 0.45 0.56 0.38 0
u2 2.13 0.26 0.27 0.25 0.25 0 0.65 0.64 0.43 0.72
u3 0.85 0 0.37 0.35 0.35 0.11 0.64 0 0.64 1.21
u4 0.69 0.22 0.23 0.22 0 0.34 0.76 0 0.37 0.55
u5 0.86 0 0.23 0.22 0.22 0.36 0.83 0.86 0.37 0.61
u6 1.83 0.25 0 0.26 0.23 0 0.89 0.92 0.42 0.86
u7 0.81 0.24 0.25 0.23 0.23 0.25 0 0.91 0.43 0
u8 0 0.24 0.25 0 0.26 0.33 0.59 0 0.42 1.85
u9 2.05 0.21 0 0.20 0.2 0.43 0.45 0.71 06 0.64
u10 0.86 0 0.22 0.2 0.19 0.38 0.59 0.62 0 0.49

the QoS invocation log and represented by the entry of
Q[i, j]. However, if a user ui never invoked a service sj
in the past, the corresponding entry in QoS invocation log
is represented by 0. In other words, Q[i, j] = 0 implies the
user ui has never invoked the service sj .

Example 2.1. Consider Table 1 representing the QoS invocation
log Q for a set of 10 users U and a set of 10 services S . Here,
we consider the response time as the QoS parameter. Q[i, j]
represents the value of the response time (in millisecond) of sj ∈ S
invoked by ui ∈ U . For example, Q[1, 1] = 5.98 represents the
value of the response time of s1 invoked by u1. �

2.1 Problem Formulation
We are given:
— a set of users U = {u1, u2, . . . , un}
— ∀ui ∈ U , a contextual information αi = (φi, ψi). In

this paper, we consider the location information as the
contextual information of a user. αi is represented by a
2-tuple, where φi and ψi represent the latitude and the
longitude of the user respectively.

— a set of services S = {s1, s2, . . . , sm}
— ∀si ∈ S , a contextual information βi = (φi, ψi). Here

also we consider the location information as the contex-
tual information. Similar to αi, βi is also represented by
a 2-tuple, where φi and ψi represent the latitude and
the longitude of the service respectively.

— ∀ui ∈ U , a set of services Si ⊆ S invoked by ui
— ∀si ∈ S , a set of users Ui ⊆ U invoked si
— a QoS parameter q of the services
— a QoS invocation log Q
— a target user ut1 and a target service st2

The objective of this work is to estimate accurately the QoS
value (say, target QoS value) of st2 when it is to be invoked
by ut1 .

Example 2.2. In Example 2.1, the objective of the QoS prediction
problem is to predict the value of the response time of s4 to be
invoked by u1 (marked as ∗ in Table 1). �

3 DETAILED METHODOLOGY

In this section, we discuss our solution framework to predict
the target QoS value. Fig. 1 depicts the architecture of our
framework (CAHPHF). The CAHPHF comprises two key
steps, a hybrid filtering method followed by a hierarchical
prediction mechanism, which are elaborated in the next two
subsections.

3.1 Hybrid Filtering Method
This is the first phase of CAHPHF (referred to Block1 of Fig.
1). Given a target user and a target service, in this phase, we
filter the set of users and the services considering different
perspectives and principles.

We first consider two different aspects of filtering:
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Block2: Hierarchical Prediction Mechanism

Block21: Filling Sparsity

Block22: Prediction using Hierarchical Neural-Regression

Collaborative Filtering Collaborative FilteringMatrix Factorization Matrix Factorization

Block1: Hybrid Filtering Method

Block11: User Intensive Model Block12: Service Intensive Model

Block111: User Filtering Block121: Service Filtering

Block112: Service Filtering Block122: User Filtering

Block1113: Context-Sensitivity-Based Filtering

Block1123: Context-Sensitivity-Based Filtering

Block1213: Context-Sensitivity-Based Filtering

Block1223: Context-Sensitivity-Based Filtering

Block1111:

Context-Aware
Filtering

Block1112:

Similarity-based
Filtering

Block1121:

Context-Aware
Filtering

Block1122:

Similarity-based
Filtering

Block1211:

Context-Aware
Filtering

Block1212:

Similarity-based
Filtering

Block1221:

Context-Aware
Filtering

Block1222:

Similarity-based
Filtering

Predicted QoS value of the target service for the target user (Q[t1, t2])

Qm′
1
×n Qm′′

1
×n

Qm1×n

Qm1×n′
1

Qm1×n′′
1

Qm1×n1

Qm×n′
2

Qm×n′′
2

Qm×n2

Qm′
2
×n2

Qm′′
2
×n2

Qm2×n2

Q1
m1×n1

Q2
m1×n1

Q1
m2×n2

Q2
m2×n2

A target user (ut1 ), A target service (st2 )

QoS invocation log (Qm×n),
Contextual information of user and service (Cm, Cn),

Fig. 1: Our solution framework (CAHPHF)

• User-intensive filtering: In this case, we first filter the set
of users and by leveraging refined user information, we
filter the set of services.

• Service-intensive filtering: In this case, we first filter the
set of services. We further filter the set of users utilizing
the filtered service information.

While filtering the users/services, we use two different
principles:
• Filtering based on contextual information of the users or

services;
• Filtering based on similarity information in terms of the

historical QoS record.
Once we obtain the filtered users/services from the above
two steps, we aggregate them by analyzing the context-
sensitivity of the users/services to generate the final set of
similar users/services, which is the output of the hybrid
filtering.

We now illustrate each of the techniques mentioned
above. We begin with discussing different filtering princi-
ples. We then elaborate on the inclusion of each of these
approaches in our user-intensive and service-intensive fil-
tering methods.

3.1.1 Context-Aware Filtering
As mentioned earlier in Section 2.1, we use the location
information of the users/services as the contextual infor-
mation in this paper. More specifically, we use latitude

and longitude to refer to the location. Before discussing
the details of context-aware filtering, we first define the
contextual distance between two users/services. Here, we
use the Haversine distance [28] function to refer to the
contextual distance.

Definition 3.1. [Haversine Distance HD(γi, γj)]: Given the
location of two users/services γi and γj , the Haversine distance is
computed as:

HD(γi, γj) =

2r × arcsin

√
sin2

(
φj − φi

2

)
+ cos(φi)cos(φj)sin2

(
ψj − ψi

2

) (1)

where γi = (φi, ψi), γj = (φj , ψj); either γi, γj ∈
{α1, α2, . . . , αn} or γi, γj ∈ {β1, β2, . . . , βm}. r is the radius
of the earth (≈ 6371 km) and arcsin represents inverse sine
function. �

Given a set of users/services and a target user/service,
we compute a set of users/services similar to the target
user/service in terms of contextual distance. Algorithm 1
presents the formal algorithm for computing the contextu-
ally similar users/services.

The main idea of Algorithm 1 is to generate a clus-
ter containing all the users/services similar to the target
user/service in terms of contextual distance. A tunable
threshold parameter Tuc (or T sc ) is chosen to filter the set
of users (or services) to obtain the set of contextually similar
users Uct1 (or services Sct2 ). If the distance between two users
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Algorithm 1 ClusteringBasedOnContextualInformation
1: Input: A set of users U (services S), a target user ut1 (target service st2 )
2: Output: A set of users Uc

t1
⊆ U (services Sc

t2
⊆ S) similar to ut1

(st2 )
3: Uc

t1
= {ut1

} (or Sc
t2

= {st2}); Υ = NULL;
4: for each ui ∈ Uc

t1
(or si ∈ Sc

t2
) and ui /∈ Υ (or si /∈ Υ) do

5: Υ← Υ ∪ {ui} (or Υ← Υ ∪ {si});
6: for each uj ∈ U \ Uc

t1
(or sj ∈ S \ Sc

t2
) do

7: if HD(αi, αj) ≤ Tu
c (or HD(βi, βj) ≤ T s

c ) then
8: Uc

t1
← Uc

t1
∪ {uj} (or Sc

t2
← Sc

t2
∪ {sj});

9: end if
10: end for
11: end for
12: return Uc

t1
(or Sc

t2
);

ui ∈ Uct1 and uj ∈ (U \ Uct1) (or two services si ∈ Sct2
and sj ∈ (S \ Sct2)) is less than Tuc (or T sc ), we add uj
(or sj) to Uct1 (or Sct2 ). We start with the target user (or
service) and add it to Uct1 (or Sct2 ). Once a new user ui
(or service si) is added to Uct1 (or Sct2 ), we follow the same
procedure for ui (or si) as well. The algorithm terminates
when there is no new user/service to be added. It may
be noted that once the algorithm terminates, Uct1 (or Sct2 )
contains the set of users (or services) similar to the target
user (or service), either directly or transitively. Here, we
consider the transitive similarity, as this is required in the
hierarchical prediction module to fill up the sparse matrix.
We now consider a lemma with its proof as below.

Lemma 1. ∀ui ∈ Uct1 , Uci = Uct1 , where Uci is the set of users
similar to ui in terms of contextual distance. �

Proof. Consider ui ∈ Uct1 . To prove Uci = Uct1 , we need to
show ∀uj ∈ Uci , uj ∈ Uct1 and ∀uj ∈ Uct1 , uj ∈ Uci . Now con-
sider a user uj( 6= ui) ∈ Uci . This implies uj is either directly
or transitively similar to ui in terms of contextual distance.
Again, ui ∈ Uct1 , and Haversine distance is commutative
(i.e., HD(αi, αt1) = HD(αt1 , αi)) imply uj is similar to ut
(i.e., uj is similar to ui and ui is similar to ut1 , thereby uj is
similar to ut1 ). This in turn implies that ∀uj ∈ Uci , uj ∈ Uct1 .

Now consider a user uj(6= ui) ∈ Uct1 . This implies uj
is either directly or transitively similar to ut1 in terms of
contextual distance according to Algorithm 1. ui is also
similar to ut1 , since, ui ∈ Uct1 . From the transitive property
of Algorithm 1 and the commutative property of Haversine
distance, we can conclude uj is also similar to ui (i.e., uj is
similar to ut1 and ui is similar to ut1 , thereby, uj is similar
to ui). This implies, ∀uj ∈ Uct1 , uj ∈ Uci .
∀uj ∈ Uci , uj ∈ Uct1 implies Uci ⊆ Uct1 . Again, ∀uj ∈ Uct1 ,

uj ∈ Uci implies Uct1 ⊆ U
c
i . Both of them together imply

Uci = Uct1 . Hence, the above lemma is true.

The same lemma is applicable for context-aware service
filtering too, i.e., ∀si ∈ Sct2 , Sci = Sct2 , where Sci is the set
of services similar to si in terms of contextual distance.

3.1.2 Similarity-based Filtering
The objective of this module is to obtain a set of
users/services correlated to the target user/service in terms
of their past QoS invocation histories. In this paper, we use
cosine similarity function [29] to compute the correlation
between two users/services as defined below.

Definition 3.2. [Cosine Similarity Measure]: Given 2 users
ui and uj (or 2 services si and sj) and their past QoS records
from the QoS invocation log, the cosine similarity between the
two users (or services) is defined in Equation 2 (or Equation 3).

CSM(ui, uj) =

∑
sk∈Si∩Sj

(Q[i, k]×Q[j, k])√ ∑
sk∈Si

(Q[i, k])2 ×
√ ∑

sk∈Sj
(Q[j, k])2

(2)

Algorithm 2 ClusteringBasedOnSimilarity
1: Input: A set of users U (services S), a target user ut1 (target service st2 ) and

QoS invocation log Q
2: Output: A set of users Us

t1
⊆ U (services Ss

t2
⊆ S) similar to ut1 (st2 )

3: Us
t1

= {ut1} (or Ss
t2

= {st2}); Υ = φ;
4: for each uj ∈ Us

t1
(or sj ∈ Ss

t2
) and uj /∈ Υ (or sj /∈ Υ) do

5: Υ← Υ ∪ {uj} (or Υ← Υ ∪ {sj});
6: for For each ui ∈ (U \ Us

t1
) (or si ∈ (S \ Ss

t2
)) do

7: if CS(ui, uj) ≥ Tu
s (or CS(si, sj) ≥ T s

s ) then
8: Us

t1
← Us

t1
∪ {ui} (or Ss

t2
← Ss

t2
∪ {si});

9: end if
10: end for
11: end for
12: return Us

t1
(or Ss

t2
);

CSM(si, sj) =

∑
uk∈Ui∩Uj

(Q[k, i]×Q[k, j])√ ∑
uk∈Ui

(Q[k, i])2 ×
√ ∑

uk∈Uj
(Q[k, j])2

(3)

Algorithm 2 demonstrates the formal algorithm for gen-
erating the set of users/services correlated to the target
user/service. Algorithm 2 is similar to Algorithm 1. The
only difference is that instead of using Haversine distance
function, cosine similarity measure is employed here. Sim-
ilar to Algorithm 1, here also we use an external threshold
parameter Tus (or T ss ) to filter the set of users/services. Like
context-aware filtering (referred to Lemma 1), the similarity-
based filtering also has the same characteristics as stated by
Lemma 2.

Lemma 2. ∀ui ∈ Ust1 , Usi = Ust1 , where Usi is the set of users
correlated to ui in terms of cosine similarity. �

It may be noted that the cosine similarity measure is also
commutative. Therefore, using similar proof for Lemma 1,
we can prove Lemma 2 as well. The same lemma is also
applicable for similarity-based service filtering.

3.1.3 Context-Sensitivity-based Filtering
The goal of this module is to aggregate the results obtained
by both context-aware filtering and similarity-based filtering
modules by analyzing the context-sensitivity. Once we have
a set of contextually similar users Uct1 (or services Sct2 ) and a
set of correlated users Ust1 (or services Sst2 ) in terms of their
past QoS records, the next objective is to aggregate them.
The aggregation is performed on the basis of the similarity
between these two sets. If the set of common users (or
services) between Uct1 and Ust1 (or, Sct2 and Sst2 ) is more than a
given threshold Tucs (or, T scs), this implies the QoS invocation
pattern of the target user (or service) is context sensitive.
In this case, we proceed with the intersection set. Other-
wise, we proceed with set of correlated users/services. We
now mathematically define, the filtering based on context-
sensitivity as below.

Ucst1 =

{
Uct1 ∩ U

s
t1 , if Uct1 ∩ U

s
t1 ≥ T

u
cs

Ust1 , otherwise
(4)

Scst2 =

{
Sct2 ∩ S

s
t2 , if Sct2 ∩ S

s
t2 ≥ T

s
cs

Sst2 , otherwise
(5)

We now prove the following lemma for filtering based on
context-sensitivity, as follows.

Lemma 3. ∀ui ∈ Ucst1 , Ucsi = Ucst1 , where Ucsi is the set of users
similar to ui based on context-sensitivity. �

Proof. Consider ∀ui ∈ Ucst1 . Now, from Lemma 1, we have
Uci = Uct1 and from Lemma 2, we have Usi = Ust1 . Using the
same threshold Tucs, as considered in Equation 4, we have
Ucsi = Ucst1 . Hence, the above lemma is valid.
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Similar to the above two filtering techniques, Lemma 3 is
also valid for service filtering based on context-sensitivity.

We now discuss the user-intensive and service-intensive
filterings in the next two subsections involving the filter-
ing modules (i.e., context-aware, similarity-based, context-
sensitivity-based) discussed above.

3.1.4 User-Intensive Filtering
Given a target service and a target user, in this step (referred
to Block11 of Fig. 1), we first compute a set of users similar
to the target user. Once we obtain the set of similar users,
employing this information, we generate a set of services
similar to the target service. Since in this filtering, we are
leveraging the relevant user information to compute the set
of similar services, this filtering is referred to user-intensive.
We now demonstrate this approach in details.

As discussed earlier, the user-intensive filtering module
comprises of two basic blocks: (a) Block111: user filtering
block and (b) Block112: service filtering block (referred to
Fig. 1). The main purpose of the user filtering block is to filter
the set of users. Given a target user ut1 , the context-aware
filtering and the similarity-based filtering are performed
independently on the set of users, as discussed in Sections
3.1.1 and 3.1.2, to generate a set of contextually similar
users Uct1 and the set of correlated users Ust1 , respectively.
Once both the filterings are done, on the basis of context-
sensitivity, Uct1 and Ust1 are aggregated to obtain the final
set of similar users Ucst1 . Using the information of Ucst1 , the
service filtering is performed similarly. Given a target service
st2 , context-aware filtering and similarity-based filtering are
performed first on the set of services to generate a set of
contextually similar services Sct2 and the set of correlated
services Sst2 , respectively. Finally, on the basis of context-
sensitivity, Scst2 is generated from Sct2 and Sst2 . Algorithm 3
presents the formal algorithm for user-intensive filtering.

Algorithm 3 UserIntensiveFiltering
1: Input: A set of users U , A set of services S, a target user ut1

, a target service
st2 , and the QoS invocation log Q

2: Output: A filtered set of users Uui
t1

and a filtered set of services Sui
t2

, and the
modified QoS invocation log Qui

3: Uc
t1
← ClusteringBasedOnContextualInformation(U, ut1

);
4: Us

t1
← ClusteringBasedOnSimilarity(U, ut1

,Q);
5: Ucs

t1
← FilteringBasedOnContextSensitivity(Uc

t1
,Us

t1
); . description of this

algorithm is discussed in Section 3.1.3
6: Q′ui ← The set of rows from Q corresponding to the users in Ucs

t1
;

7: Sc
t2
← ClusteringBasedOnContextualInformation(S, st2 );

8: Ss
t2
← ClusteringBasedOnSimilarity(S, st2 ,Q

′
ui);

9: Scs
t2
← FilteringBasedOnContextSensitivity(Sc

t2
,Ss

t2
);

10: Qui ← The set of columns from Q′ui corresponding to the services in Scs
t2

;
11: Uui

t1
← Ucs

t1
; Sui

t2
← Scs

t2
;

12: return Uui
t1

, Sui
t2

, Qui;

3.1.5 Service-Intensive Filtering
Given a target service and a target user, here (referred to
Block12 of Fig. 1), initially, we compute a set of services
similar to the target service. We then leverage related service
information to obtain a set of users similar to the target
user. Since in this filtering, we are utilizing relevant service
information to compute the set of similar users, this filter-
ing is termed as service-intensive. Algorithm 4 presents the
formal algorithm for service-intensive filtering. Algorithm 4
is similar to Algorithm 3, where the only difference is in the
sequence of the user and service-intensive filterings. The set
of services, in this case, is filtered before the set of users.
Once we have the set of filtered users and services, we
employ this information to predict the target QoS value. In
the next section, we discuss our prediction mechanism.

Algorithm 4 ServiceIntensiveFiltering
1: Input: A set of users U , A set of services S, a target user ut1 , a target service
st2 , and the QoS invocation log Q

2: Output: A filtered set of users Usi
t1

and a filtered set of services Ssi
t2

, and the
modified QoS invocation log Qsi

3: Sc
t2
← ClusteringBasedOnContextualInformation(S, st2 );

4: Ss
t2
← ClusteringBasedOnSimilarity(S, st2 ,Q);

5: Scs
t2
← FilteringBasedOnContextSensitivity(Sc

t2
,Ss

t2
); . description of this

algorithm is discussed in Section 3.1.3
6: Q′si ← The set of columns from Q corresponding to the services in Scs

t2
;

7: Uc
t1
← ClusteringBasedOnContextualInformation(U, ut1 );

8: Us
t1
← ClusteringBasedOnSimilarity(U, ut1 ,Q

′
si);

9: Ucs
t1
← FilteringBasedOnContextSensitivity(Uc

t1
,Us

t1
);

10: Qsi ← The set of rows from Q′si corresponding to the users in Ucs
t1

;
11: Usi

t1
← Ucs

t1
; Ssi

t2
← Scs

t2
;

12: return Usi
t1

, Ssi
t2

, Qsi;

3.2 Hierarchical Prediction Mechanism

This is the second phase of our framework (referred to
Block2 of Fig. 1). The main focus of this module is to
predict the target QoS value. We employ a hierarchical
neural network-based regression model to predict the QoS
value. It may be noted that the filtered QoS invocation log,
which is used by the neural regression module to predict
the QoS value, is mostly a sparse matrix. Therefore, in the
hierarchical prediction module, our first task is to fill up the
absent QoS values in the sparse matrix before feeding it to
the hierarchical neural network.

3.2.1 Filling Sparsity

The goal of this module is to fill up the sparse invocation
log matrix. In this paper, we employ collaborative filtering
[2] and matrix factorization [30] to fill up the sparse matrix.
We now briefly discuss these two approaches below.

3.2.1.1 Collaborative Filtering (CF): Collaborative fil-
tering is one of the main approaches for QoS prediction.
We first discuss the collaborative filtering method to fill
up the filtered QoS invocation log matrix (Qui) obtained
after user-intensive filtering. For every Qui[i, j] = 0, we
perform collaborative filtering. It may be noted that we do
not need to filter the set of users/services anymore, since
we have already performed filtering on the set of users and
services in the hybrid filtering module. Moreover, it is clear
from Lemma 3, if we wish to filter the set of users/services
again using our hybrid filtering module, the number of
users/services will not reduce any further. Therefore, in
collaborative filtering, we only need to predict the QoS
value, which is done using the following two steps: (a)
average QoS computation and (b) calculation of deviation.
In the average QoS calculation, we take the weighted col-
umn average corresponding to service sj , where the cosine
similarity measures between ui and every other user in Uuit
are used as the weights. Equation 6 shows the average QoS
calculation for Qui[i, j], as denoted by qavgij .

q
avg
ij =

∑
uk∈U

ui
t

(
CSM(ui, uk)×Qui[k, j]

)
∑

uk∈U
ui
t

CSM(ui, uk)
(6)

After having the average QoS value, we compute the devia-
tion for accurate prediction. Here, we compute the deviation
of the predicted value obtained by Equation 6 from the
actual value across all services in Suit and invoked by ui. The
weighted average of the deviation, considering the cosine
similarity measures between sj and every other service in
Suit as the weights, is adjusted to qavgij to obtain the predicted
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value ofQui[i, j], as denoted by qpredij . Equation 7 shows the
computation for deviation.

q
pred
ij =



qavg
ij +

∑
sk∈S

ui
t &

Qui[i,k] 6=0

(
CSM(sj,sk)×|qavg

ik
−Qui[i,k]|

)
∑

sk∈S
ui
t &

Qui[i,k] 6=0

CSM(sj,sk)


, if (qavg

ik −Qui[i, k]) ≤ 0qavg
ij −

∑
sk∈S

ui
t &

Qui[i,k]6=0

(
CSM(sj,sk)×|qavg

ik
−Qui[i,k]|

)
∑

sk∈S
ui
t &

Qui[i,k]6=0

CSM(sj,sk)


, otherwise

(7)

Finally, after employing the collaborative filtering to fill
up every zero entry of Qui, we have the modified QoS
invocation log Qcfui , as defined below:

Qcf
ui [i, j] =

{
Qui[i, j] , if Qui[i, j] 6= 0

qpredij , otherwise
(8)

The collaborative filtering to fill up Qsi obtained af-
ter service-intensive filtering is exactly same as in user-
intensive case. For every Qsi[i, j] = 0, the collaborative
filtering is performed. Equations 9 and 10 show the com-
putations of average QoS value and deviation for each zero
entry in Qsi, respectively.

r
avg
ij =

∑
sk∈S

si
t

(CSM(sj , sk)×Qsi[i, k])

∑
sk∈S

si
t

CSM(sj , sk)
(9)

r
pred
ij =



ravg
ij +

∑
uk∈U

si
t &

Qsi[k,j] 6=0

(
CSM(ui,uk)×|ravg

kj
−Qsi[k,j]|

)

∑
uk∈U

si
t &

Qsi[k,j] 6=0

CSM(ui,uk)


, if (ravg

kj −Qsi[k, j]) ≤ 0ravg
ij −

∑
uk∈U

si
t &

Qsi[k,j]6=0

(
CSM(ui,uk)×|ravg

kj
−Qsi[k,j]|

)

∑
uk∈U

si
t &

Qsi[k,j]6=0

CSM(ui,uk)


, otherwise

(10)

Finally, after applying collaborative filtering on every zero
entry of Qsi, we have the modified QoS invocation log Qcfsi ,
as defined below:

Qcf
si [i, j] =

{
Qsi[i, j] , if Qsi[i, j] 6= 0

rpredij , otherwise
(11)

3.2.1.2 Matrix Factorization (MaF): Here, we employed
the classical matrix factorization method [31] to generate
modified QoS invocation logs Qmfui and Qmfsi by filling up
Qui and Qsi, respectively.

It may be noted that after filling Qui and Qsi, we now
have 4 filled up matrices Qcfui , Q

cf
si , Qmfui , and Qmfsi , which

are used to predict the target QoS value using hierarchical
neural regression. In the next part, we discuss the hierarchi-
cal neural regression.

Block222: Neural Regression Level-1 (NRL-1)

NR1

Q[t1, t2]

Block22: Prediction using Hierarchical Neural Regression

Q1
m1×n1

,Q2
m1×n1

,Q1
m2×n2

,Q2
m2×n2

Neural Regression Level-2 (NRL-2) MAE-based Aggregation (MAE-Ag)

Generate data to preapare training dataset for Block223

Block221: Controller

Block223: Aggregator

NR2 NR3 NR4

Fig. 2: Block diagram of hierarchical neural regression (in-
side view of Block22 of Fig. 1)

3.2.2 Prediction using Hierarchical Neural Regression
This is the final phase of our framework, where we employ
hierarchical neural network-based regression to predict the
QoS value (referred to Fig. 2). The hierarchical neural re-
gression module comprises of 2 key blocks: (a) Block222:
Level-1 neural regression block (NRL-1), and (b) Block223:
aggregator block (referred to Fig. 2). In addition to these two
blocks, the hierarchical neural regression module contains
another block, called controller (Block221), which mainly
controls the aggregator block with the help of NRL-1. In
NRL-1, we have 4 neural networks which are used to predict
the target QoS values from Qcfui , Q

cf
si , Qmfui , and Qmfsi ,

respectively. The aggregator block, then, aggregates the 4
QoS values obtained from NRL-1 with intending to increase
the QoS prediction accuracy. In the aggregator module, we
have 2 blocks, a Level-2 neural regression (NRL-2) block and
a mean absolute error (MAE)-based aggregation (MAE-Ag)
block. We invoke one of these two blocks, which is decided
by the controller block on the basis of certain criteria as
discussed latter in this section. We now describe each of the
blocks of hierarchical neural regression module in details.
We begin with describing Block222.

3.2.2.1 Neural Regression Level-1 (NRL-1): This is one of
the major components of the hierarchical neural regression
(referred to Block222 of Fig. 2). The module consists of 4
neural regression blocks NR1, NR2, NR3, and NR4. The goal
of these 4 blocks is to predict the target QoS value from 4
QoS invocation log matrices obtained from Block21 of Fig.
1. Before going to the further details of NRL-1, we first
describe the basic architecture of neural regression.
• Neural Regression (NR): In this paper, we employ

a neural network-based regression module to predict the
target QoS value. At the top of the NR module, a linear
regression [32] layer is used to predict the missing QoS
value. The objective of the linear regression is to gen-

erate a linear curve h(X) as defined: h(X) =
n∑
i=0

θixi,

where X = (x1, x2, . . . , xn) is a vector on the training
dataset and x0 = 1. The set θ = {θ0, θ1, . . . θn} is the
set of parameters required to be optimized to predict the
QoS value accurately on the test dataset. It may be noted
that θ0 represents the bias. To learn the value of each
θi ∈ θ, a cost function J(θ) is used, which is defined as:
J(θ) = 1

|TrD|
∑

Xi∈TrD
(h(Xi)− yi)2, where yi is the target

value for the input vector Xi and TrD be the training
dataset. To obtain the value of each θi ∈ θ, J(θ) needs to
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be minimized, which actually represents the mean squared
error (MSE). Here, we employ a feed-forward neural net-
work with backpropagation [33] to obtain the values of θ.
To optimize the cost function of the neural network, we use
stochastic gradient descent (SGD) with momentum [33].

We now demonstrate the input-output of each of the
4 NR blocks below. Given a target user ut1 , a target ser-
vice st2 , a set of users Uf ∈ {Uuit1 ,U

si
t1 }, a set of ser-

vices Sf ∈ {Suit2 ,S
si
t2} and a QoS invocation log matrix

Qf ∈ {Qcfui ,Q
cf
si ,Q

mf
ui ,Q

mf
si }, the training-testing setup of

each NR block is discussed below.
• Training Data: For each user ui( 6= ut1) ∈ Uf , the QoS

invocation record vector from Qf containing the QoS
values for each service in Sf is used as a training data.
In other word, each row, except the one corresponding
to ut1 , of Qf is used as a training data of the neural
regression.

• Input Vector: For each training data, the QoS invocation
record vector containing the QoS value of each service
si ∈ Sf \ {st2} is used as the input vector for neural
regression.

• The Target Value: For each training data corresponding
user ui(6= ut1), the QoS value of st2 , i.e., Qf [i, t2] is
used as the target value of the neural regression.

• Test Input Vector: For the user ut1 , the QoS invoca-
tion record vector corresponding to each service si ∈
Sf \ {st2} is used as the test input vector of the neural
regression.

• Test Output: Finally, the test output is the value of
Qf [t1, t2] to be predicted.

It may be noted that NR1 and NR2 work on Qcfui and
Qmfui , respectively corresponding to the user set Uuit1 and
service set Suit2 , while NR3 and NR4 work on Qcfsi and
Qmfsi , respectively corresponding to the user set Usit1 and
service set Ssit2 . Consider Qcfui [t1, t2],Qmfui [t1, t2],Qcfsi [t1, t2],

and Qmfsi [t1, t2] are the 4 outputs predicted by the 4 NR
modules of Block222.

3.2.2.2 Controller Module: This is the first component
(referred to Block221 of Fig. 2) of the hierarchical neural
regression module. The objective of this module is to decide
which component of the aggregator module to be executed
and accordingly, either prepare the training dataset for NRL-
2 or generate a dataset for MAE-Ag. The function of the
controller is formally presented in Algorithm 5.

Given 4 QoS invocation log matricesQcfui ,Q
cf
si ,Q

mf
ui , and

Qmfsi generated by Block21, the controller module first check
if it is feasible to generate the dataset to train NRL-2. The
essential idea behind NRL-2 is to compare the predicted
values generated by the 4 NR blocks of NRL-1 with the
actual QoS value. The comparison is possible only if the
4 NR blocks of NRL-1 can predict some QoS values, which
are already available to the hierarchical neural regression
module. The objective of the controller module is to choose a
few entries from QNR =

(
Qcfui ∩Q

cf
si ∩Q

mf
ui ∩Q

mf
si

)
to be

predicted by the 4 NR blocks of NRL-1 and to be compared
the predicted values with the actual QoS value by NRL-2.
Therefore, to train the NRL-2, sufficient entries are required
inQNR. A given threshold Td is used to check whetherQNR
has sufficient entries to train NRL-2. If QNR has sufficient
entries to train NRL-2, the controller chooses a random Td
number of entries from QNR and execute 4 NR blocks of
NRL-1 to obtain the predicted values. Once the predicted
values from the NRL-1 are available, the controller module
activates NRL-2 to obtain a more accurate predicted value.

Algorithm 5 Controller

1: Input: Qcf
ui ,Q

cf
si ,Q

mf
ui , and Qmf

si

2: if |Qcf
ui ∩ Q

cf
si ∩ Q

mf
ui ∩ Q

mf
si | ≥ Td then

3: Λ← NULL;
4: QNR ← Random Td entries from

(
Qcf

ui ∩ Q
cf
si ∩ Q

mf
ui ∩ Q

mf
si

)
;

5: for each qij ∈ QNR do
6: ϕ1 ← Predict the value of qij using NR1;
7: ϕ2 ← Predict the value of qij using NR2;
8: ϕ3 ← Predict the value of qij using NR3;
9: ϕ4 ← Predict the value of qij using NR4;

10: Λ← Λ ∪ (ϕ1, ϕ2, ϕ3, ϕ4, qij);
11: end for
12: Execute NRL-2 with training data Λ;
13: else
14: Λ1 ← NULL;Λ2 ← NULL;Λ3 ← NULL;Λ4 ← NULL;
15: Q1

Ag ← Random Td entries from Qcf
ui ;

16: for each qij ∈ Q1
Ag do

17: ϕ1 ← Predict the value of qij using NR1; Λ1 ← Λ1 ∪ (ϕ1, qij);
18: end for
19: Q2

Ag ← Random Td entries from Qmf
ui ;

20: for each qij ∈ Q2
Ag do

21: ϕ2 ← Predict the value of qij using NR2; Λ2 ← Λ2 ∪ (ϕ2, qij);
22: end for
23: Q3

Ag ← Random Td entries from Qmf
si ;

24: for each qij ∈ Q3
Ag do

25: ϕ3 ← Predict the value of qij using NR3; Λ3 ← Λ3 ∪ (ϕ3, qij);
26: end for
27: Q4

Ag ← Random Td entries from Qcf
si ;

28: for each qij ∈ Q4
Ag do

29: ϕ4 ← Predict the value of qij using NR4; Λ4 ← Λ4 ∪ (ϕ4, qij);
30: end for
31: Execute MAE-Ag with (Λ1, Λ2, Λ3, Λ4);
32: end if

However, if QNR does not have sufficient entries to train
the NRL-2, the controller activates the MAE-Ag. In this
case, to compute the MAE value of each NR block of NRL-
1, the controller chooses Td random entries from each of
Qcfui ,Q

cf
si ,Q

mf
ui , and Qmfsi and executes the 4 NR blocks to

obtain their MAE values. Finally, the controller activates
MAE-Ag. The details of both the blocks of Block223 are
discussed below.

3.2.2.3 Aggregator Module: This is the second major
component of the hierarchical neural regression module
(referred to Block223 of Fig. 2). The objective of this module
is to generate a single predicted output by combining the
4 predicted values Qcfui [t1, t2],Qcfsi [t1, t2],Qmfui [t1, t2], and
Qmfsi [t1, t2] obtained from the previous level while minimiz-
ing the prediction error. The aggregator module comprises
of two components: (a) a Level-2 neural regression module
(NRL-2) and (b) a MAE-based aggregation module (MAE-
Ag). We now explain each of these two modules in details.

3.2.2.3.1 Neural Regression Level-2 (NRL-2): The objec-
tive of this module is to increase the prediction accuracy
while aggregating the 4 predicted values obtained from
NRL-1. Given a training dataset Λ, and the 4 predicted val-
ues Qcfui [t1, t2],Qcfsi [t1, t2],Qmfui [t1, t2], and Qmfsi [t1, t2] ob-
tained from Block222 as input, the training-testing setup of
NRL-2 is discussed below:
• Training Data: Each tuple ϑ ∈ Λ, generated by Algo-

rithm 5, is used as a training data.
• Input Vector: The input vector contains the first 4 ele-

ments of ϑ ∈ Λ.
• The Target Value: The last element of ϑ ∈ Λ is used as

the target value.
• Test Vector: The tuple (Qcfui [t1, t2],Qcfsi [t1, t2],
Qmfui [t1, t2], Qmfsi [t1, t2]) is used as the test vector.

• Test Output: The test output is the value of Qf [t1, t2],
which is to be predicted by Level-2 neural regression.

3.2.2.3.2 MAE-based Aggregation (MAE-Ag): The ob-
jective of this block is to compute the minimum MAE
value among the 4 MAE values obtained from the 4 NR
blocks of NRL-1 and accordingly chooses the NR block (say,
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Algorithm 6 MAE BasedAggregation
1: Input: (Λ1, Λ2, Λ3, Λ4)
2: Output: The predicted value for Qf [t1, t2]
3: Compute MAE1, MAE2, MAE3 and MAE4 from Λ1, Λ2, Λ3, and Λ4 respec-

tively;
4: MAEmin ← min(MAE1,MAE2,MAE3,MAE4);
5: MinNR← The NR block of NRL-1 generated MAEmin;
6: Return the predicted value generated by MinNR;

MinNR block) generating the minimum MAE among the
MAE values generated by all 4 NR blocks. Finally, MAE-
Ag outputs the predicted value obtained by MinNR block,
which is the final output of our framework. Algorithm 6
formally presents the MAE-Ag block.

In the following section, we provide rigorous experi-
mental studies to justify the necessity of each block of our
framework.

4 EXPERIMENTAL RESULTS
In this section, we present the experimental results with
analysis. We implemented our proposed framework in
MATLAB R2019b. All experiments were executed on the
MATLAB Online1 server.

4.1 DataSets
We used 2 datasets WS-DREAM-1 [26] and WS-DREAM-2
[27] to analyze the performance of our framework.

(a) WS-DREAM-1: The first dataset contains 5825 ser-
vices and 339 users. The location of each user and service
is also provided in the dataset. The dataset comprises 2 QoS
parameters: response time (RT) and throughput (TP). For
each QoS parameter, the QoS invocation log with dimension
339× 5825 is also given. We used both the QoS parameters
to validate our approach.

(b) WS-DREAM-2: The second dataset contains 4500
services, 142 users, and 64 time slices. However, this dataset
does not contain any contextual information. Similar to WS-
DREAM-1, this dataset also comprises 2 QoS parameters:
response time and throughput. For each QoS parameter, the
QoS invocation log is also provided. For each time slice, we
extracted the user-service matrix with dimension 142×4500.
We performed the experiment on 64 different matrices and
recorded the average QoS prediction accuracy.

For experimental analysis, we divided each dataset into
training, validation and testing sets. The size of the training
dataset to be x% indicates (100 − x)% entries of our QoS
invocation log were randomly made as 0. The remaining
(100−x)% entries are subdivided into validation and testing
set into 1 : 2 ratio.

We randomly chose 200 instances from the testing
dataset for performance analysis. Each experiment was
performed in 5 episodes for a given training dataset to
find the prediction accuracy. Finally, the average result was
calculated and reported in this paper.

4.2 Comparison Metric
We used the following two metrics to analyze our experi-
mental results.
Definition 4.1. [Mean Absolute Error (MAE)]: MAE is the
arithmetic mean of the absolute difference between the predicted
QoS value and the actual QoS value of a service invoked by a user
over the testing dataset.

MAE =
1

|TD|
∑

qij∈TD

∣∣∣qij − qpredij

∣∣∣ (12)

1. https://matlab.mathworks.com

where qij is the actual QoS value, qpredij is the predicted QoS
value, and TD is the testing dataset. �

Definition 4.2. [Improvement I(M1,M2)]: Given two MAE
values obtained by two methods M1 and M2, the improvement of
M1 with respect to M2 is defined as:

I(M1,M2) =
MAE2 −MAE1

MAE2

× 100% (13)

where MAE1 and MAE2 are the MAE values obtained by
methods M1 and M2, respectively. �

4.3 Comparison Methods

We compare CAHPHF with a set of state-of-the-art meth-
ods followed by some intermediate methods to justify the
performance of CAHPHF.

4.3.1 State-of-the-Art Methods

We compared the performance of CAHPHF with the follow-
ing state-of-the-art approaches.

(i) UPCC [12]: This method exercised a user-based col-
laborative filtering approach for QoS prediction, where only
the set of users similar to the target users were generated
before applying the prediction strategy.

(ii) IPCC [13]: In this method, service-based collabo-
rative filtering was applied for QoS prediction. The main
idea in this work was to obtain a set of services similar to
the target services first, followed by applying a prediction
strategy.

(iii) WSRec [10]: This method combined both the strate-
gies as demonstrated in UPCC and IPCC.

(iv) NRCF [9]: This method used normal recovery col-
laborative filtering to improve prediction accuracy.

(v) RACF [11]: This method also used collaborative
filtering approach. Here, a ratio-based similarity metric was
considered to compute the similarity, and the result was
calculated by the similar users or similar services.

(vi) RECF [2]: A reinforced collaborative filtering ap-
proach was used in this work to predict the QoS value. This
method integrated both user-based and service-based simi-
larity information into a singleton collaborative filtering.

(vii) MF [20]: An extended matrix factorization-based
approach was adopted in this work for prediction.

(viii) HDOP [34]: This method used multi-linear-
algebra-based concepts of tensor for QoS value prediction.
Tensor decomposition and reconstruction optimization al-
gorithms were used to predict the QoS value.

(ix) TA [30]: This approach integrated time series
ARIMA and GARCH models to predict the QoS value.

(x) NMF [35]: This approach proposed a non-negative
matrix factorization method.

(xi) PMF [36]: This paper proposed a probabilistic matrix
factorization method.

(xii) NIMF [15]: This approach proposed a user col-
laboration followed by a neighborhood-integrated matrix
factorization for personalized QoS value prediction.

(xiii) CNR [25]: This method considered both user-
intensive and service-intensive filtering in the filtering stage,
and finally aggregated the output using the intersection
between the set of users and services obtained from two
different filtering methods. For prediction, this approach
used neural regression to estimate the QoS value.

https://matlab.mathworks.com
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4.3.2 Intermediate Methods
We compared the performance of CAHPHF with the fol-
lowing intermediate methods, which is actually the ablation
study of our system.

(i) User-intensive Matrix Factorization (UMF): In this
approach, context-sensitive user-intensive filtering is per-
formed first. Finally, matrix factorization is used on the
filtered QoS invocation log matrix to predict the target QoS
value.

(ii) Service-intensive Matrix Factorization (SMF): This
approach is similar to UMF. The only difference is here,
instead of applying the user-intensive filtering, the service-
intensive filtering is adopted. In SMF, the context-sensitive
service-intensive filtering is performed first, followed by a
matrix factorization method to predict the QoS value.

(iii) User-intensive Collaborative Filtering (UCF): Here,
the context-sensitive user-intensive filtering is performed
first. Finally, collaborative filtering is used on the filtered
QoS invocation log matrix to predict the target QoS value.

(iv) Service-intensive Collaborative Filtering (SCF):
Here, the context-sensitive service-intensive filtering is per-
formed first. Collaborative filtering is then employed to
predict the desired QoS value.

(v) User-intensive Neural Regression (UNR): Similar to
the UMF and UCF, in this approach, the context-sensitive
user-intensive filtering is performed at the initial phase.
However, unlike other methods, here, neural network-based
regression is used on the filtered QoS invocation log matrix
to predict the target QoS value.

(vi) Service-intensive Neural Regression (SNR): This
approach is similar to UNR. The only difference is, in the
filtering stage of this approach, the context-sensitive service-
intensive filtering is performed.

(vii) User-intensive Matrix factorization with Neural
Regression (UMNR): This approach is similar to UNR.
However, in this approach, before applying neural network-
based regression to predict the QoS value, matrix factoriza-
tion is used to fill up the sparse matrix.

(viii) Service-intensive Matrix factorization with Neu-
ral Regression (SMNR): This approach is similar to SNR.
However, like UMNR, in this approach, before applying
neural network-based regression to predict the QoS value,
matrix factorization is used to fill up the sparse matrix.

(ix) User-intensive Collaborative Neural Regression
(UCNR): Unlike UMNR, here, before applying neural
network-based regression to predict the QoS value, collabo-
rative filtering is used to fill up the sparse matrix.

(x) Service-intensive Collaborative Neural Regres-
sion (SCNR): Unlike SMNR, here, before applying neural
network-based regression to predict the QoS value, collabo-
rative filtering is used to fill up the sparse matrix like UCNR.

(xi) CAHPHF Without NRL-1 (CAHPHFWoNN): This
method is identical to the CAHPHF method except for
one segment. In CAHPHFWoNN, instead of using NRL-1,
collaborative filtering and matrix factorization are used to
generate the training and testing dataset for NRL-2.

(xii) CAHPHF with minimum MAE (CAHPHF-MAE):
This method is also similar to the CAHPHF method except
for one portion. In CAHPHF-MAE, instead of using NRL-2,
here, MAE-based aggregation method is used in Block223

of Fig. 2 to reduce error.
(xiii) User-intensive Collaborative Neural Regression

Without Contextual Filtering (UCNRWoCF): This method
is similar to the UCNR without contextual filtering.

(xiv) Service-intensive Collaborative Neural Regres-
sion Without Contextual Filtering (SCNRWoCF): This
method is similar to the SCNR without contextual filtering.

(xv) User-intensive Matrix factorization with Neural
Regression Without Contextual Filtering (UMNRWoCF):
This method is similar to the UMNR without contextual
filtering.

(xvi) Service-intensive Matrix factorization with Neu-
ral Regression Without Contextual Filtering (SMNR-
WoCF): This method is similar to the SMNR without con-
textual filtering.

(xvii) CAHPHF Without Contextual Filtering (CAHPH-
FWoCF): This method is similar to the CAHPHF without
contextual filtering.

4.4 Configuration of CAHPHF
In this subsection, we discuss the configuration used for
CAHPHF method. We set the tunable parameters empiri-
cally from our validation dataset.
• Configuration of Hybrid Filtering: Here, a set of

threshold parameters, more precisely 12 threshold param-
eters, is required. All these threshold parameters are data-
driven.

The hybrid filtering comprises of 3 different filtering
techniques. For context-aware filtering, the threshold values
were chosen as:

Tu
c = median (HD(αt, αi)) , over all users ui ∈ U (14)

T s
c = median(HD(βt, βi)), over all services si ∈ S (15)

where αt, βt are the contextual information of ut and st
respectively.

For similarity-based filtering, the threshold parameters
were chosen as follows.

Tu
s = max

0.5× max
ui∈U
ui 6=ut

(CSM(ut, ui)) ,median (CSM(ut, ui))


(16)

T s
s = max

0.5× max
si∈S
si 6=st

(CSM(st, si)) ,median (CSM(st, si))


(17)

where the median was computed across U for user filtering
and S for service filtering. As a matter of fact, the median
of the similarity values can be 0, since the cosine similarity
value varies from 0 to 1. Therefore, Equations 16 and 17 are
different from Equations 14 and 15.

For context-sensitivity-based filtering, we used half of the
cardinality value of the set of users or services obtained after
similarity-based filtering.

Tu
cs = 0.5× |Uc| (18)

T s
cs = 0.5× |Sc| (19)

• Configuration of NRL-1: Here, 4 neural networks
are used. In our experiment, each neural network consisted
of 2 hidden layers comprising of 256 and 128 neurons
respectively. We used the following hyper-parameters for
each neural network. The learning rate was set to 0.01 with
momentum 0.9. The training was performed up to 50 epochs
or up to a minimum gradient of 10−5.
• Configuration of NRL-2: Only 1 neural network

is used in NRL-2 for which we used the following con-
figuration. The network comprised of only 1 hidden layer
with 2 neurons. Among the hyper-parameters, the learning
rate was set to 0.01 with momentum 0.9. The training was
performed up to 1000 epochs or up to a minimum gradient
of 10−5. The cardinality of the training dataset to train NRL-
2 was taken as 200.

We provide a rigorous analysis of parameter tuning
latter in this section.
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TABLE 2. Performance of CAHPHF and comparison with various state-of-the-art methods over WS-DREAM-1 [26]

QoS |TrD| MAE
I(CAHPHF, CNR)

UPCC IPCC WSRec MF NRCF RACF RECF CNR CAHPHF

RT
10% 0.6063 0.7 0.6394 0.5103 0.5312 0.4937 0.4332 0.2597 0.059 77.28%
20% 0.5379 0.5351 0.5024 0.4981 0.4607 0.4208 0.3946 0.1711 0.0419 75.51%
30% 0.5084 0.4783 0.4571 0.4632 0.4296 0.3997 0.3789 0.0968 0.0399 58.78%

QoS |TrD| UPCC IPCC WSRec NMF PMF NIMF CAHPHF I(CAHPHF, NIMF)

TP
5% 26.123 29.265 25.8755 25.752 19.9034 17.9297 7.907 55.90%
10% 21.2695 27.3993 19.9754 17.8411 16.1755 16.0542 5.98 62.75%
20% 17.5546 25.0273 16.0762 15.2516 14.6694 13.7099 4.189 69.45%

|TrD|: Size of Training Data

TABLE 3. Comparison between CAHPHFWoCF with vari-
ous state-of-the-art methods over WS-DREAM-2 [27]

QoS |TrD| MAE
I

MF TA HDOP CAHPHFWoCF

RT
10% 0.4987 0.6013 0.3076 0.1187 61.41%
20% 0.4495 0.5994 0.2276 0.0758 66.70%
50% 0.4013 0.4877 0.1237 0.0326 73.65%

TP
10% 16.3214 17.2365 13.2578 4.897 63.06%
20% 14.1478 15.0994 10.1276 4.101 59.51%
50% 14.9013 14.9870 10.0037 3.561 64.40%

|TrD|: Size of Training Data, I : I(CAHPHFWoCF, HDOP)

4.5 Experimental Analysis
In Table 2, we present the performance of our CAHPHF
in terms of MAE considering the response time (RT) and
throughput (TP) individually as the QoS parameter over
WS-DREAM-1. Along with the performance study of CAH-
PHF, Table 2 shows a comparative study with the major
state-of-the-art approaches.

In WS-DREAM-2, the contextual information of the users
and services are not present. Therefore, instead of CAHPHF,
Table 3 shows the comparison between CAHPHFWoCF and
the major state-of-the-art approaches considering RT and TP
individually over WS-DREAM-2.

From the experimental results, we have the following
observations:

(i) As evident from Tables 2 and 3, our methods performed
the best as compared to the major state-of-the-art ap-
proaches for both the QoS parameters RT and TP. The
last columns of the above tables show the improvement
of our method over the second-best method of Tables
2 and 3. On average our framework achieves 65.7%
improvement as compared to the second-best state-of-
the-art method of Tables 2 and 3.

(ii) It is observed from Fig.s 3 (a) and (b) that MAE value
decreases and thus, the prediction accuracy improves
with the increase in the size of the training dataset.

From now on we show the experimental results on response
time of WS-DREAM-1, since for the rest of the datasets,
similar trends are observed.

Fig. 4 shows the comparison between CAHPHF and the
intermediate methods (referred to Section 4.3.2). As evident
from Fig. 4, CAHPHF produced the best results compared to

(a) (b)

Fig. 3: Change in MAE with respect to the size of training
dataset over (a) RT, (b) TP

Fig. 4: Comparison with intermediate methods

all the intermediate methods. The significance of each block
of CAHPHF is discussed below.

(i) UNR and SNR are better than UMF, SMF, UCF, and SCF,
which signifies the importance of the neural regression
used in our framework.

(ii) UMNR, SMNR, UCNR, and SCNR are better than UNR
and SNR, which clearly establishes the requirement of
our hierarchical prediction strategy, more specifically
the need for filling up the sparse matrix.

(iii) CAHPHF is better than UMNR, SMNR, UCNR, and
SCNR, which signifies the requirement of the hierar-
chical neural regression (more specifically, Block223)
module and as well as hybrid filtering.

(iv) CAHPHF is also better than CAHPHFWoNN, which
also signifies the requirement of the hierarchical neural
regression (more specifically, Block222) module.

(v) Finally, CAHPHF is better than CAHPHF-MAE, which
clearly shows the importance of the Level-2 neural
regression module.

Fig. 5: Context-sensitivity analysis
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4.5.1 Context-Sensitivity Analysis
Fig. 5 shows the significance of context-sensitive filtering
used in our approach. We compared our proposed method
with the intermediate methods without context sensitive
filtering (referred to Section 4.3.2). As evident from Fig. 5,
CAHPHF outperformed the rest of the methods. Here, we
have the following observations:

(i) CAHPHFWoCF is better than SCNRWoCF, SMNR-
WoCF, UCNRWoCF, and UMNRWoCF, which implies
the significance of our hybrid filtering module.

(ii) As CAHPHF is better than CAHPHFWoCF, it implies
that the context sensitivity analysis is quite impactful
in our framework.

4.5.2 Impact of Tunable Parameters
In this subsection, we show the impact of tunable pa-
rameters on the prediction accuracy of CAHPHF. In this
analysis, for each experiment, we varied one parameter at
a time, while keeping the rest of the parameters as constant,
same as discussed in Section 4.4. We begin with discussing
the impact of the threshold parameter required in hybrid
filtering module on the prediction accuracy.

4.5.2.1 Impact of Threshold Parameter: Before analyzing
the impact of the threshold parameters on the prediction
accuracy, we first discuss the tuning of these parameters. In
this experiment, we chose a variable k (0 ≤ k ≤ 1) to tune
the threshold parameters, as explained below.

(i) In context aware filtering, the set of users/services
to be filtered was sorted in descending order based on their
contextual distances from the target user/service. From the
sorted list, the contextual distance (say, λHk ) between the
(d|Γ| × ke)th user/service and the target user/service was
chosen as threshold (i.e., Tuc /T sc ), where Γ be the set of
users/services to be filtered. It may be noted, by varying
k, we obtained different values of Tuc /T sc .

(ii) In similarity-based filtering, the set of users/services
to be filtered was sorted in ascending order based on their
cosine similarity values with the target user/service. From
the sorted list, the cosine similarity value (say, λCk ) of the
(d|Γ| × ke)th user/service with the target user/service was
chosen as the threshold (i.e., Tus /T ss ), where Γ is the set of
users/services to be filtered. Finally, max(λCk , λ

C
max×k) was

chosen as the value of Tus /T ss , where λCmax is the maximum
cosine similarity value across all users/services with the
target user/service.

(iii) For context sensitive filtering, the threshold Tucs/T
s
cs

was chosen as kth fraction of the cardinality of the set of
users/services obtained after similarity-based filtering.

It may be noted that λH0.5, λ
C
0.5 represent the median

values, and the value of k was 0.5 in Equations 18, 19.

Fig. 6: Change in MAE with respect to variable k, when the
size of training dataset = 30%

Fig. 6 shows the change in MAE with respect to k. As
evident from Fig. 6, for k = 0.5, the least MAE value
was obtained, which we used in our experiment. It may
be noted, as we increased the value of k beyond 0.5, the
MAE value reduced, because of the following fact. Due to a
high value of k, the values of the threshold parameters were
also very high. Therefore, the filtered set of users/services
contained only a few numbers of users/services, which was
insufficient to train the neural network in the latter part
of our framework. On the other hand, for lower values of
the threshold parameters, the filtered set of users/services
contained a large number of users/services, which in turn
impeded the objective of the filtering. Consequently, MAE
reduced with the decrease in the value of k.

4.5.2.2 Impact of training data size of NRL-2: It
may be observed, the size of the dataset to train NRL-2
(say, TrDNRL-2) has an impact on the prediction accuracy.
While Fig. 7(a) shows the change in MAE with increase in
TrDNRL-2, Fig. 7(b) shows the computation time required
by CAHPHF with the change in TrDNRL-2. It may be noted
further, the x-axis of Fig.s 7(a), (b) represent the training
data size of CAHPHF, whereas, the legends of the figures
represent the size of TrDNRL-2. As observed from Fig.s 7(a),
(b), the MAE value decreased with the increase in TrDNRL-2
while compromising the computation time. Clearly, we have
a trade-off between computation time and prediction ac-
curacy. Furthermore, we observe from Fig.s 7(a), (b) that
even our worst performance (i.e., the MAE value obtained
by CAHPHF when |TrDNRL-2| = 50) was better than the
state-of-the-art approaches of Table 2. Therefore, as per the
permitted time limit, the size of TrDNRL-2 is to be decided.

4.5.2.3 Impact of Hyper-parameters of NR: Here, we
mainly discuss about 3 hyper-parameters of the neural
networks: (a) the number of epochs in each NR of NRL-
1, (b) the number of epochs in NRL-2, and (c) the number of
hidden layers of each NR in NRL-1. The other tunable pa-
rameters of the neural networks such as number of neurons

(a)

(b)

Fig. 7: Impact of training data size of NRL-2 on (a) MAE, (b)
computation time



12

(a)

(b)

Fig. 8: Impact of the number of epochs of each NR of NRL-1
on (a) MAE, (b) computation time

(a)

(b)

Fig. 9: Impact of the number of epochs of NRL-2 on (a) MAE,
(b) computation time

in each hidden layer, the learning rate, momentum, minimal
gradient value, etc. were also empirically decided.

Fig. 8(a) shows the change in MAE value with the in-
crease in the number of epochs of each NR of NRL-1, while
Fig. 8(b) shows the corresponding time to predict the QoS
value by CAHPHF. It is observed from Fig.s 8(a), (b), the
more time we spent to train the neural network, better was
the solution quality. This statement is true at-least up to a
certain number of epochs. Therefore, here also, we observed
the time-quality trade-off. However, along with achieving a
high prediction accuracy, our framework should be robust.
Therefore, considering the permitted time-limit, we need to
choose the number of epochs of each NR of NRL-1. It may
be noted, here also, in the worst case (i.e., the number of
epochs of each NR of NRL-1 = 10), the MAE value obtained

Fig. 10: Impact of the number of hidden layers of each NR of
NRL-1 on (a) MAE, (b) computation time, when the training
data size = 30%

by CAHPHF was better than the state-of-the-art approaches
of Table 2.

Similar to the Fig.s 8(a), (b), we show the time-quality
trade-off with respect to the number of epochs of NRL-2 in
Fig.s 9(a), (b). The previous analysis is also valid here.

Fig. 10 shows the change in MAE value with respect
to the number of hidden layers of each NR in NRL-1. The
primary and secondary vertical axes of Fig. 10 represent
MAE and computation time, respectively. As observed from
this figure, the MAE value decreases with an increase in the
number of hidden layers of the neural networks. However,
with the increase in the number of hidden layers of the
neural networks, computation time to generate the solution
also increases. Therefore, here also, the number of hidden
layers are chosen as per allowed time-limit.

In summary, our proposed CAHPHF, on the one hand,
outperformed the state-of-the-art methods in terms of pre-
diction accuracy, on the other hand, it generated the solution
in a reasonable time limit.

5 RELATED WORK

The QoS parameter plays a crucial role in various operations
of the services life cycle, e.g., service selection [37], [38], [39],
service composition [40], [41], [42], service recommendation
[2], [3]. The major limitation of most of these studies is
that the service QoS values are assumed to be known.
However, the QoS value of service often changes across
various factors, such as user [2], [11], time [3], location [15],
[18], [43], etc. Therefore, QoS prediction is an integral part
of a service life cycle.

The QoS prediction has been studied broadly in the
literature [44], [45], [46], [47], [48]. The collaborative filtering
is one of the major techniques to address the QoS prediction
problem. The collaborative filtering can be of two different
types: model-based and memory-based. The memory-based
collaborative filtering [2], [3], [7], [8], [9], [11] is further
classified into two categories: user-based and service-based.
In user-based collaborative filtering [6], [12], [15], the similar
users are taken into account to predict the QoS value,
while in service-based collaborative filtering [13], the similar
services are considered for QoS prediction. In this context,
various similarity measures have been used to obtain the
set of similar users or services, e.g., Pearson Correlation
Coefficient (PCC) [8], cosine similarity measure [25], etc.
Some enhanced similarity measures [3], [7] have also been
introduced to improve prediction accuracy. However, the
stand alone user-based or service-based collaborative filter-
ing may not be very effective concerning prediction accu-
racy, since it does not consider similar services (or, users) in
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TABLE 4. Brief literature review

State-of- Methods QoS Dimension
the-Art CF MaF Reg RT TP Time Location

[8] U + S X X
[2], [9], [11] U + S X

[7] U + S X X X X
[43] U + S X X X
[6] U X X X X
[3] U + S X X X
[15] U X X X X
[19] X X X
[24] X X X
[18] U + S X X X
[17] U + S X X X X X X
[25] U + S X X X
[23] X X X X
[45] U + S X X X
[12] U X X
[13] S X X
[20] U + S X X
[34] X X X X
[14] X X X X X
[49] X X X

U: user-based; S: service-based; Reg: regression

a user-based (or, service-based) approach, and therefore, the
prediction accuracy is not satisfactory. To achieve a higher
prediction accuracy, both the techniques are combined fur-
ther to predict the QoS values [2], [3], [7], [8]. However, the
prediction accuracy of memory-based collaborative filtering
approaches fall significantly for the sparse matrix.

To resolve the problem with the sparse matrix and to
improve the accuracy, a model-based collaborative approach
is implemented. In the model-based collaborative filtering, a
predefined model is adapted according to the given dataset.
One such method is matrix factorization [15], [17], [18],
[19], which is employed for solving the sparsity problem in
memory-based collaborative filtering technique. The matrix
factorization involves decomposing the QoS invocation log
matrix into a low-rank approximation that makes further
predictions. However, in the traditional matrix factorization
method, the predicted value lacks accuracy. Therefore, reg-
ularisation terms is included in the loss function of matrix
factorization [15], [18], [19], [20] to avoid overfitting [33] in
learning process and to improve the prediction accuracy.
To elevate this accuracy further, the collaborative filtering
method is integrated with the matrix factorization, where
the collaborative filtering utilizes the local information, and
the matrix factorization uses global information for value
prediction [15], [17], [18]. Sometimes, the matrix factoriza-
tion is combined with the recurrent neural network [17] to
obtain better results. In [17], a personalized LSTM (Long
Short-Term Memory)-based matrix factorization is proposed
to capture the temporal dependencies of both users and
services to timely update prediction model with data. Some
other approaches [15], [18] in the literature have used a few
other information (e.g., geographic location for neighbor-
hood similarity calculation) in addition to the matrix fac-
torization for improving accuracy level. On a similar note,
for multi-dimensional QoS prediction problem, a tensor de-
composition and reconstruction method [34] has been used
for QoS values prediction. Although, matrix factorization
can handle the sparsity problem, most of the times it suffers
from loss of information [19].

Another popular model-based technique is regression
[24]. In [23], [25], [50], the neural regression has been pro-
posed to obtain better accuracy. Some neural network-based
models exist in the literature to predict QoS value, e.g.,
back-propagation neural network [24], feed forward neural
network [25], neural network with radial basis function

[23], etc. Predicting QoS values only on the basis of neural
regression may not provide satisfactory outcome. Therefore,
improvisation of the regression method has been intro-
duced. For example, in [50], a clustering of similar users on
the basis of location along with the neural regression for QoS
prediction has been proposed. In [25], a neural regression
with filtering has been proposed, where a set of similar users
and services are generated first, and then neural regression
is employed to predict the QoS value. However, in [25], an
ad-hoc approach is used to handle the sparsity problem.
The authors in [45] has proposed QoS prediction with auto-
encoder, where there is a model entitled that combines both
model-based and memory-based approaches for QoS value
prediction. However, the predicted QoS value is yet to reach
the satisfactory level. Table 4 provides a briefing on the
reported works that addressed the prediction problem.

In contrast to the above approaches, our current paper
addresses the QoS prediction problem by taking advantage
of both the memory-based and model-based techniques.
The proposed framework is of two-folds, hybrid filtering,
followed by hierarchical prediction. Our filtering technique,
on the one side, combines both user-based and service-based
approaches, while on the other side, it is a coalition of
user-intensive and service-intensive models to capture the
priority of users and services. Moreover, to achieve bet-
ter accuracy, our filtering technique leverages the location
information of users and services. Furthermore, we apply
a clustering technique to obtain a set of similar context-
sensitive users and services. Our hierarchical prediction
mechanism takes advantage of the model-based approach.
To deal with the sparsity problem, we use collaborative
filtering along with the matrix factorization to fill up the
matrix. We then employ a hierarchical neural regression to
predict the QoS value. On the one hand, our hierarchical
neural regression fixes the QoS prediction problem. On the
other hand, it helps in reducing the error in prediction. Our
extensive experimental analysis also justifies the necessity
of each segment of our framework.

6 CONCLUSION
In this paper, we propose a hierarchical QoS prediction
mechanism with hybrid filtering by leveraging the contex-
tual information of users and services. Our approach takes
benefit of the memory-based strategies by consolidating fil-
tering and the model-based strategies by combining hierar-
chical prediction. Additionally, we handle the sparsity issue
by filling up the absent values in the matrix using collabo-
rative filtering and matrix factorization. Finally, we increase
the prediction accuracy by aggregating the predicted val-
ues obtained by user-intensive and service-intensive mod-
ules using hierarchical neural regression. We performed
extensive experiments on publicly available WS-DREAM
benchmark datasets. The experimental results show that the
proposed CAHPHF framework is better than the state-of-
the-art approaches in terms of prediction accuracy, while
justifying the requirement of each module of our frame-
work. In the future, we will endeavor to work on a time-
variant QoS prediction mechanism.
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