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Abstract—We develop a novel framework for efficiently and effectively discovering crowdsourced services that move in close
proximity to a user over a period of time. We introduce a moving crowdsourced service model which is modelled as a moving
region. We propose a deep reinforcement learning-based composition approach to select and compose moving loT services
considering quality parameters. Additionally, we develop a parallel flock-based service discovery algorithm as a ground-truth
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1 INTRODUCTION

He crowdsharing economy is an emerging dynamic
Tecosystem where people create new on-demand ser-
vices through sharing or exchanging resources to achieve
mutually beneficial goals [1l]. This new type of economy
has the potential to be applied in a diverse range of
sectors, including tourism and hospitality, labor and service
platforms, mobility and logistics [2]. Two well-known
examples of are Uber [l and Airbnb | The foundations of
this emerging economy are anchored in crowdsourcing and
crowdsharing [3]]. In crowdsourcing environments, crowds
need a medium to interact and produce results. A wide
variety of devices are used to facilitate certain types of
crowdsourcing [4], [5]. In particular, Internet of Things
(IoT) devices are usually used to allow the crowd to provide
and use services. We define services as an abstraction that
transforms IoT data into actionable information [6]. In
that respect and more formally, a service is defined by
its functional and non-functional attributes. A functional
attribute is usually defined as what a service provides, i.e.,
the purpose of the service. Non-functional attributes are
qualities attached to service provisioning, i.e., Quality of
Service (QoS). For example, a functional attribute of an
airline service is reservation. A non-functional attribute of
this service is the price which would be attached to the
reservation.

A moving crowdsourced IoT service is a service provided
by an IoT device moving in time, space, or both. An exam-
ple of such services is a WiFi hotspot provided by a person
through their smartphone. This type of crowdsourced IoT
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Fig. 1. WiFi Hotspot Sharing Scenario.

services is characterised by their spatio-temporal aspects.
The spatio-temporal properties refer to the location/space
and time/period in which crowdsourced services are pro-
visioned and consumed. We use moving IoT service and
mobile loT service interchangeably.

Mobility is an important and intrinsic part of the non-
functional aspect of crowdsourced services. The mobility of
IoT devices provides opportunities to dynamically extend
service coverage to larger spaces and at flexible times.
Mobility, however, presents key challenges in terms of
qualitative factors (e.g., availability) if the aim is to provide
users with the best quality of experience. In this respect,
we focus on the spatio-temporal aspects as key parameters
to query moving crowdsourced services.

We identify two key types of crowdsourced services with
regard to spatial location: fixed and moving. A fixed crowd-
sourced service refers to services which are permanent in
space during the time period of the service provisioning.
For example, Diana may share her WiFi hotspot while she
is sitting at a coffee shop. In contrast, moving crowdsourced
service is not tied to any specific location at any point in
time. For example, Diana may share her WiFi hotspot as
she moves from one location to another when strolling in
the city. More specifically, we assume that a fixed hotspot
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service will remain available (in terms of time and location)
when selected by a service consumer and throughout the
provisioning of the service. However, for moving hotspot
services, the availability and location can change during
service provisioning. Additionally, crowdsourced services
have another dimension, i.e., they may also be deterministic
or non-deterministic. A crowdsourced IoT service is Deter-
ministic if time period and availability at a certain location
are known in advance. A crowdsourced IoT service is Non-
deterministic if time period and location availability are not
known in advance.

There has been a large body of research on service selec-
tion and composition in mobile environment [7], [8]], (O],
[LO]. Most existing methods focus on service selection and
composition based on Quality of Service (QoS) parameters
[L1] and energy consumption [12]], [13]. They do not take
into account the mobility of a user or service provider.
There are only a few works that address the mobility-aware
service selection problem [14], [15]. However, these works
do not consider the composition of mobile IoT services
while both IoT service provider and consumer are moving
together.

We identify the following research challenges. The first
challenge is connectivity which is an intrinsic part of
moving crowdsourced service discovery. A moving service
should stay connected with a service provider, i.e., be
within connectivity proximity of the provider. This requires
determining co-movement patterns. We propose a parallel
flock-based service discovery to find co-movement services.
The parallel flock-based approach is based on a spatio-
temporal MapReduce to efficiently find flock patterns [16].
We first apply a temporal map step to prune sub-trajectories
of moving services with regards to a user trajectory. We
then deploy a spatial map step to filter candidate moving
services which are located within a circular region of a
user trajectory. The second challenge is service conti-
nuity to connect to the next moving service as an IoT
service provider and a user is not necessarily sharing all
their route. Therefore, an effective composition approach
is required to select an optimal set of available moving
crowdsourced services which ensure the service continuity.
Most existing trajectory similarity joins approaches are
time-interval based [17], [18] and their methods are not
applicable to continuous temporal matching as they retrieve
approximate results. Little work [19] addresses the issue
of continuous nearest neighbour joins on big trajectory
datasets. The key difference with our approach is the need
to select continuous sub-trajectories considering a range
of QoS parameters. We propose a Deep Reinforcement
Learning-based composition algorithm to find and compose
valid candidate moving services which overlap with the
user trajectory. Third challenge is indexing. Existing co-
movement discovery methods usually rely on centralized
index methods like R-tree. [20]] shows that the performance
of the existing co-movement discovery methods like flock
[L6], convoy [21], swarm [22], group [23] and platoon [24]]
degrade dramatically as the dataset scales up. As a result,
creating and maintaining an index in parallel computing

like MapReduce cannot be effective [20]. To address this
we propose a pruning approach that aims at diverting the
algorithm from selecting invalid services without the need
to index them.

The contribution of the paper is summarized as follows:

e We propose a spatio-temporal model for moving
crowdsourced loT services. Our previous work in [25]]
and [26] proposed a selection and composition model
for fixed crowdsourced services based on spatio-
temporal features. We also proposed a temporal non-
deterministic service discovery approach. In this work,
we focus on deterministic moving services.

« We design a novel solution based on deep reinforce-
ment learning to support effective discovery and com-
position without using an index.

o We devise a ground-truth, called parallel flock-based
moving crowdsourced service discovery, using Apache
Spark. This is used to measure the accuracy of the
proposed discovery model in terms of service discov-
ery in each timestep. The algorithm is based on a
spatio-temporal MapReduce. After the spatio-temporal
filtering is conducted, we retrieve the valid candidates
and feed them to our deep reinforcement learning-
based composition approach.

« We conduct a set of extensive experiments on two
real datasets. The results show the efficiency and
effectiveness of the approach in terms of accuracy,
learning speed and scalability in comparison with the
ground-truth.

The rest of the paper is organized as follows: Section
2 surveys related work. Section 3 introduces our system
model and states the problem of crowdsourced moving
service composition. Section 4 presents the deep rein-
forcement learning-based composition algorithm. Section 5
provides the ground-truth approach. Section 6 reports our
experimental results. Section 7 concludes the related work
and highlights future work.

Motivation Scenario

Scenario 1: WiFi tethering may be a connection option
when free public WiFi is not available or effective due
to low connection speed and limited capacity. In WiFi
tethering, the crowd can switch on their [oT devices” WiFi
hotspot and share their data balance to other devices for
some rewards. As a result, WiFi hotspot can be crowd-
sourced. IoT devices can be anything the crowd has and
is connected to the Internet. Generally, IoT devices can be
divided into two main categories: fixed and mobile. Fixed
IoT devices are referred to devices that typically do not
move, e.g., smart fridge, smart TV, etc. Mobile devices are
devices that are inherently made to be carried by people,
such as smartwatches, and smartphones. Wearables are a
subset of mobile IoT devices. They are special IoT devices
that are meant to be worn (e.g., smart shoes and smart
shirts). It is predicted that wearables in the near future
would become ubiquitous [27]].
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We consider WiFi hotspot sharing as one of the repre-
sentatives of crowdsourced IoT services. For instance, it
can be leveraged to offer a range of crowdsourced services
such as WiFi-coverage travel planning for cost-effective
media streaming. In this regard, crowdsourced WiFi hotspot
services are provided by smartphones which are moving in
space and time through a mobile application. For example,
Open Garde created an application that lets users share
and consume the Internet among each other. They use a
monetary incentive, where providers set the price per MB
and consumers pay according to their usage.

The trajectories of the services are deterministic. De-
terministic trajectories refer to the a-priori knowledge of
the trajectories. It is assumed that there is a platform that
incentivizes WiFi hotspot providers to move to specified
areas and share their resources [28|]. Therefore, the WiFi
hotspot providers are assumed to follow certain trajecto-
ries that have been assigned. In particular, we focus on
the trajectories of pedestrians. We also assume that WiFi
hotspot services will overlay digital maps. We propose to
reformulate the research problem of moving crowdsourced
10T service selection and composition as finding the optimal
composition of WiFi hotspot moving services which provide
the best quality of experience to fulfill users’ specific
requirements/expectations (e.g., watching online videos and
signal strength) (Fig. [I).

Scenario 2: Providing convenient power to IoT users is
a valuable service to help them to stay connected. Wire-
less energy transfer technologies [29] transforms the way
people charge their IoT devices and enables energy sharing
between mobile IoT devices seamlessly from a distance. We
consider crowdsourcing energy as a service scenario which
has the potential to create a green environment [30]]. For
example, someone wearing smartshoes that have generated
energy through walking can share the harvested green
energy with other IoT devices wirelessly within a range.
This can also enable users to recharge their smartphones as
they move.

2 RELATED WORK

We provide an overview of the relevant research in relation
to the selection and composition of crowdsourced moving
services. We first present a review of mobile crowdsourcing
frameworks. We then review previous studies on service
composition. Finally, we survey co-movement discovery
approaches.

2.1

Crowdsourcing aims at outsourcing tasks to the crowd
for faster and efficient execution. Crowdsourced tasks
may require specific requirements compared to others.
For example, computing tasks require the crowd to have
computers with enough processing power. Spatial tasks
are tasks that require specific spatial attributes from the
crowd for successful task fulfillment. For example, spatial

Mobile Crowdsourcing
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tasks may require the crowd to be physically located at
certain locations and collect data. Others may require the
crowd to move between different locations to fulfill their
task. Crowdsourcing spatial tasks are often referred to
as Mobile Crowdsourcing. Mobile crowdsourcing typically
involves a crowd with mobile devices (e.g., smartphones
and smartwatches) to satisfy the spatial requirements by the
tasks. There have been several works in the area of mobile
crowdsourcing. In this section we focus on two types of
mobile crowdsourcing: (1) spatial crowdsourcing [, [31],
and (2) urban crowdsourcing [32], [33].

In spatial crowdsourcing, the outsourced tasks are typi-
cally designated with specific locations. The crowd should
execute the tasks at the specified locations. CrowdSens-
ing@Place (CSP) [34] is one example of spatial crowd-
sourcing. CSP aims at labeling places into categories (e.g.,
cafe or restaurants). It leverages spatial data, user trajec-
tories, and sampled audio clips and images to achieve
this. Another framework is proposed in [35] that tries
to find a suitable set of users to answer location-based
queries. Location-based services (e.g., Foursquare) are used
to answer queries instead of relying on spatial task as-
signments to users. It is worth noting that despite many
works proposed on spatial crowdsourcing, there has been
little attention to spatio-temporal crowdsourcing.

Urban crowdsourcing aims at detecting users’ transporta-
tion modes using collected spatio-temporal and acceleration
data [32]. The work in [36] and [37] proposes mobile
crowdsourcing approaches that use commuters trajectories
to predict real-time arrival of buses. A new platform,
namely OneBusAway, is proposed in [38] to predict the
real-time arrival time of buses. OneBusAway collects users’
comments and feedback through Twitter, blogs and bug
trackers. Another approach is proposed in [39] to accu-
rately identify the “right” crowdsourced sensors to answer
a particular journey planning request. In particular, an
unsupervised learning approach is introduced to select and
cluster the right mobile crowdsourced sensors based on
common patterns in their trajectories.

We investigate in our work the concept of mobile crowd-
sourced services that combines mobile crowdsourcing and
the service paradigm. We show that mobile crowdsourced
services offer more efficient techniques for processing
spatio-temporal sensor data.

2.2 Service Composition

Mobile crowdsourcing aspires to provide a platform where
moving users act as service providers offering crowd-
sourced services for a smart city. Only a few studies have
focused on crowdsourcing as a service [8l], [40], [41],
[42]. For example, in [8] a CrowdService framework is
developed to provide crowd worker and crowd intelligence
as crowd services via mobile crowdsourcing. A composition
approach is developed based on Genetic Algorithm (GA) to
provide near-optimal composite services. [43] introduces a
crowdsourced service platform called sensing as a service
(S?aaS). In this platform, mobile service providers or
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smartphone users can request sensing services if they have
fulfilled previous sensing tasks [44]]. Furthermore, several
crowdsourced service composition frameworks have been
proposed to select and compose crowdsourced services. In
[45]], an agent-based crowd service composition framework
is proposed in a scenario of purchasing a secondhand
laptop. The framework takes into account users’ constraints
including the response time and the cost to select and
compose crowdsourced services. A crowdsourced service
framework is proposed for composing energy services [15].
A new temporal composition algorithm which is a variation
of a fractional knapsack algorithm is developed to compose
crowdsourced energy services to satisfy a user’s energy
requirement. However, the studies above assume that the
crowdsourced services are fixed in space and time.

A service composition approach is proposed in [11]
while considering the service’s QoS and mobility. The
mobility-aware QoS notion is built using the service invo-
cations’ mobility model, which describes the performance
of a service. On the other hand, only one QoS criterion
i.e., location-sensitive response time is taken into account
to select an optimal service composition plan in [9] and
[L1]. A Mobile Service Sharing Community (MSSC) is
proposed in [9] for moving service users and providers.
Additionally, a composition approach for mobile service
is introduced based on Krill-Herd algorithm for finding
optimal response time. In [[14], a mobility-aware service
selection approach is proposed that takes into account a
user’s movement path. The selection algorithm is modelled
based on GA and simulated annealing algorithm. The
proposed approach reduces the response time of the service
request by selecting appropriate edge servers as the user
moves. A three-tier [oT service composition framework that
takes into account spatio-temporal and energy constraints
is proposed in [13l]. In this framework, an IoT service
composition algorithm is developed that adopts GA, Ant
Colony Optimization, and Particle Swarm Optimization to
find an optimal composition plan while reducing network
energy consumption. In contrast to the above studies, we
propose a service composition approach where both service
provider and user are moving together.

There are some composition approaches that integrate
service selection and compositions with Reinforcement
Learning RL [46], [47], [48]. In [49], a novel multicriteria-
driven reinforcement learning algorithm is proposed for
dynamic Web service composition which adapts Random-
ized Reinforcement Learning (RRL) [50]. The proposed
approach enables continuous adjustment of the service com-
position through learning about the quality of new services
and exploring new composition plans while optimizing
multiple criteria and satisfying users’ constraints. There are
two RL-based service composition algorithms [51]], [52]
which are not efficient for large scale service composition.
In [53], a new model for the large-scale adaptive service
composition based on Multi-Agent Reinforcement Learning
(MARL) is introduced. The model utilizes the coordination
equilibrium and fictitious play process to ensure the con-
vergence of the agent to a unique equilibrium. The previous
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Fig. 2. Moving crowdsourced service model.

approaches are applied in web service composition. In
contrast, our approach is based on spatio-temporal aspects
of moving IoT services.

2.3 Co-Movement Discovery

There exist many studies to discover similar co-movement
patterns including flock [54], [L6], convoy [21], swarm [22]
and moving clusters [55]. A flock pattern refers to a group
of at least m > 1 objects moving together within a user-
defined disk with radius r for at least £k > 1 consecutive
timestamps. In the flock pattern discovery, moving objects
are clustered based on a disk-based region. A key challenge
in flock pattern is the selection of proper disk size. Larger
disk size may capture wrong objects and a smaller radius
may miss some objects. To overcome this challenge, a
convoy pattern is introduced to cluster moving objects
using a density-based clustering method like DBSCAN
[S6]. Instead of staying within a disk, moving objects of a
convoy are connected based on the density. While flock and
convoy patterns have a temporal consecutiveness constraint,
swarm and moving cluster patterns relax this constraint
through accepting short-term deviations. However, it is not
required to have unique (i.e., same) objects throughout the
timestamps in moving cluster pattern. Swarm, group [23]]
and platoon [24] adopt different pruning techniques relying
on depth-first search which are not efficient in parallel
processing [20]. Most existing methods rely on centralized
indexing methods built on top of the whole dataset which
may not be effective and efficient in parallel computing
[20]. We focus on the parallel discovery of moving flock
patterns without using an indexing method.

3 SYSTEM MODEL AND PROBLEM FORMU-
LATION

In this section, we first formally model crowdsourced
moving services by moving regions. We then formulate
the problem of selecting and composing the best candidate
moving services with respect to their deterministic behavior.

3.1 Problem Formulation

Definition 1: Moving Crowdsourced Service M S. A mov-
ing crowdsourced service M S is a tuple of < id, F, Q >
where
e id is a unique service identifier,
e F' is a function offered by MJS, e.g., providing a
moving WiFi hotspot. The function of the moving
service represents a moving service’s coverage in
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space and time. We define the coverage as a moving
region which is described by a tuple of < T, Ry, (p;)
> where

— T is a service trajectory which is a sequence of
timestamped samples {< ¢;, z;, y; >, 1 < i < k},
where z; is longitude and y; is latitude and ¢; is
a timestamp.

- Ry, (p;) is the specific coverage region that is
offered by M S. Without loss of generality, the
moving region is represented by a circular area
which is centered at p; with the radius r at £,

e () is a set of QoS attributes ¢; ( e.g., capacity).

Fig. |2| shows a moving crowdsourced service model in a
3D space.

Definition 2: User Trajectory T,. A user trajectory is
the path that is traveled by a user which is a set of k time-
stamped samples T,,={ < ut;, ux;, uy; >, 1 <i <k }.

Definition 3: Spatial Candidate Pair. Given a set of mov-
ing services T = {MS1, M Ss, ..., MS,}, a user trajectory
T, = {up1,upa, ..., up, } where up;=( uxz;, uy; ), a search
radius 74, a moving service is formed as a spatial candidate
pair cp;, for a given timestep ¢; if its location M Si.p; at t;
is inside a disk region Dy, (center = up;(t;), radius = rs).
The service is inside the disk if the Euclidean or Harvestine
distance d(T,.up;, M Sk.p;) between two points of user tra-
jectory Tu.up? and service trajectory M .Sy pfl at timestep
t; is less than r;. Without loss of generality, our method can
be extended for other distance metrics including network
distance and Manhattan distance. The range distance 7
reflects the maximum spatial proximity allowed.

Definition 4: Valid Candidate Moving Service. A moving
service M S; is a valid candidate service for a given user
trajectory if it is paired with the user trajectory over
w consecutive timesteps, where w > 0, ie., Cyg, =
{epr,,cpiys-cpiy }s ta <tp < ...<ty, and |a — b = 1.

For example, in Fig. [3] we plot six timestep snapshots
of a user moving in an arbitrary trajectory. Spatio-temporal
neighbour search of a user trajectory at timestep wuty is
M S, and M S,, while M S5 is not a valid candidate moving
service. Services in spatial proximity of a user are grouped
in circles.

We use the following assumptions in our problem for-
mulation:

e One moving service can only serve one user at any
point in time.

« A moving service moves between any two consecutive
timestamps t; and t;.; with a constant speed. As a
result, we can determine the position of the moving
service at any given time in the time interval [¢;,¢;41].
As long as the function of finding the moving service’s
location is constant time, other speed functions could
be considered.

« Radii of all coverage regions of services are fixed to a
single value. Therefore, we consider the region around
each user’s trajectory point to find overlapped services.

o The maximum spatial proximity equals the radius of
fixed WiFi hotspot coverage (e.g., 20 m).

L ] . . .
®  Points of a user’s trajectory T, Points of moving service M S;

Points of moving service MS, € Points of moving service MS,

Fig. 3. Anexample of valid candidate moving services.

Fig. 4. Strength Model.

o We focus on deterministic moving crowdsourced ser-
vices. A deterministic environment can be achieved
using several incentive-based approaches (e.g., [S7I,
580, [59], [60], [28]. For example, our work in [28]
proposes a framework that encourages the movement
of crowdsourced IoT service providers from over-
supplied regions to under-supplied regions.

Problem Definition. Given a set of moving crowd-
sourced services T = {MSy,MSs,....MS,}, a user
trajectory T, and a search radius r, as input, the prob-
lem is formulated as finding the “optimal” composition
plan that gives the best trade-offs among multiple QoS
criteria i.e., a high QoS while maintaining a low number
of disconnections. The output is a composition plan C'P
which is a sequence of moving crowdsourced services
CP ={51,5,,...,S,} if f S; is a valid candidate moving
service for a given user trajectory (see Definition 4).

3.2 QoS Model for Moving Crowdsourced Service

A key challenge is to find a service that offers a better qual-
ity due to the diversity of moving services. QoS parameters
are used to distinguish among moving services. It is worth
noting that the proposed quality model is extensible. A new
QoS parameter (either generic or domain-specific) may be
added without fundamentally altering the underlying com-
putation mechanisms. For example, in the crowdsourced
energy service scenario, we could use energy-related QoS
parameters including Transmission Success Rate and De-
liverable Energy Capacity which are proposed in [30] to
distinguish among energy services. In our WiFi hotspot
scenario, we use one quality attribute that we proposed in
[23] capacity.
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Capacity (cap): Capacity represents the maximum for the
information transmission data rate. SNR Shannon-Hartley
theorem [61] is used to model the capacity. In our model,
the capacity is directly proportional to the signal strength.
The better signal strength is, the higher Signal-to-Noise-
Ratio (SNR) i.e., less error is. We assume that the error
rate is fixed. Hence, increasing the capacity increases the
signal strength, which leads to more successful transmis-
sions. Given a moving crowdsourced service M.S, qcqp i8
computed as follows.

B
Qeap = EZOQQ(I + Str) (1)

where B is the total available bandwidth and K is the
maximum number of concurrent requests that a moving
service MS can support. Total available bandwidth is
assumed to be equally allocated between different IoT
service users. Signal strength str represents the sensing
region of a moving crowdsourced service. The strength is
computed based on the distance between the user trajectory
point T,.p; = (uz,uy) and the moving service point
MS.p; = (MS.x,MS.y) at timestep ¢;. For instance, as
the user moves closer to the WiFi hotspot, the perceived
WiFi signal gets stronger. The str is based on the expo-
nential attenuation probabilistic coverage model [62]] which
is computed as follows.

1 0< pdis(Ty.piy MSp;) < R, @)
e~k pdis(Ty.p;, MS.p;) > R
where d = pdis(T,.pi, MS.p;) — R. and

pdis(T,.pi, MS.p;) is the perpendicular distance from
the crowdsourced service center point M S.p; to a user
trajectory point T),.p; (Fig. f). R. is a confident radius
and k is a decay factor which determines the rate of
the signal attenuation with regard to the distance. R,
and k parameters can have different values based on the
sensor types and the operation environment which can be
obtained through experiments. The strength str is within
the range of (0,1]. If the user trajectory point is within the
distance of R, the strength is 1 which means full signal.
In the interval (R — R.) where Ry = pdis(T,.p;, M S.p;),
the value of str exponentially approaches zero as the
perpendicular distance increases. In our model, str # 0
because a valid candidate crowdsourced service point is
paired with a user trajectory point which means that the
value of pdis is not beyond R, (Fig. ).

The QoS value of a full composite moving crowdsourced
IoT service is computed by calculating the average of the
capacities of all its component moving services.

4 DEEP REINFORCEMENT LEARNING-
BASED COMPOSITION ALGORITHM

The proposed framework aims at finding the optimal service
composition for a given moving consumer. The framework
neither assumes nor requires consumers to change their
trajectories for better services. Simply put, the composition
plan is obtained by identifying the set of services that

intersects with the consumer’s trajectory. Performing the
selection in real-time may disrupt the user experience for
consumers. For example, if we assume a consumer that
wishes to use a WiFi hotspot for watching videos. The
playback may be interrupted every now and then whenever
the device is looking for a new service. Therefore, we
opt for ahead of time service selection to minimize the
interruption overhead.

One single moving service may not fully cover a user
trajectory as the user may not necessarily share their entire
route with said moving service. As a result, we need
to compose candidate moving services to satisfy a user’s
requirements and ensure service continuity. In this section,
we present our approach for selecting and composing all
candidate moving services. We leverage Deep Reinforce-
ment Learning DRL to find and compose valid candidate
services overlapping with the user trajectory. Reinforce-
ment Learning is a subclass of machine learning, where
an agent learns about an environment’s behavior through
explorations. The main reason for our choice to DRL is its
ability to discover the “cumulative” optimal set of service
trajectories, given the trajectory segments of a user. The
DRL does that by assigning rewards for every action the
agent invokes. In our work, the actions are the service
segments that a user can use. The agent’s role is to pick
the next service segment that would maximize the overall
reward. Therefore, the agent should not only consider the
current service and user trajectory segments to make the
selection but also future service and user segments. DRL
offers a way for the agent to predict the “future” (i.e.,
unknown knowledge) by learning the behavior of the envi-
ronment through explorations. The agent is the composition
algorithm which determines the optimal combination of
candidate moving services over time. An environment is
characterized by its set of states (S) and actions (A). In
our work, the environment is the combination of service
trajectories and a single user trajectory, (see Fig. ). A
user trajectory consists of a series of samples i.e. states.
Each sample is a tuple: < wut,ux,uy >, where ut is
the timestamp, ux is the longitude coordinate, and uy is
the latitude coordinate. The services trajectories dataset
comprises a series of records representing different samples
< t,x,y > for different services. A sample in the services
trajectories dataset contains the same information as a user
trajectory sample with the addition of a service ID and
QoS attributes (see Definition 1). At any given time, the
environment has a current state s € S i.e. the current
user trajectory sample that is reported to the agent. The
agent selects an action (a € A) i.e., a valid candidate
moving IoT service to invoke on the environment. Upon
action invocation, the environment generates a reward ()
based on the action and its current state. Additionally, the
environment changes its state according to the invoked
action and previous state. The reward and next state are
reported back to the agent i.e., composer.

More formally, we define a composite moving service as
follows.

Definition 5: Composite Moving Crowdsourced Service.
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(d.2) The environment fetches next user’s trajectory
sample as the next state.

(a) The agent requests the initial state & a list of available (b.1) The environment fetches the first user’s sample

candidate moving services from the environment.

and sends it to the agent as the initial state.

(c) Perform an action by selecting a moving service ID.

Users’ Trajectories
Uty, uxy, uyy
Uuty, uxz, Uy,
Uty, UXp, UYp

Services Trajectories

next state to the agent.

(e) The environment sends the computed reward and

i1, X1,1 Y11
t1,2, X1,2) V1,2
210 X2,10 V2,1

tons Xps Yon

(b.2) The environment fetches the candidate moving
service IDs and passes them as actions to the agent.

(d.1) The environment checks the moving service samples
with the selected moving service ID. The environment
also computes the reward based on the current state's x
and y, and the selected moving service's x and y.

Fig. 5. Reinforcement learning for moving crowdsourced service composition.

A composite moving service CS is a sequence of com-
ponent moving services, which is defined as a 5-tuple of
< 59,s8,59,A9(s), R9 > where

o SY is a finite set of states i.e., samples < ¢, z,y > that
are observed by an agent g;

e s§ € SY9 is the initial state of the agent g and
the execution of the composite moving service starts
from this state. Here the initial state is the first user
trajectory sample.

e s C 59 is the set of terminal states where the
execution of a composite service terminates upon
arriving at one of the states. The terminal state is the
last sample of a user trajectory.

o A9(s) is the set of actions that are taken at each state
s. Here we replace the actions with valid candidate
moving services (see Definition 4). At each state, we
have a set of moving services that could be selected
and executed.

e RR9 is the reward function when a moving service is
invoked. There are multiple QoS objectives which the
agent wants to achieve. The user receives the reward
i.e., desired QoS when the agent moves to the next
state s from s’. Therefore, the reward is computed
using the QoS of a composite service.

The composition algorithm aims at finding the optimal
policy (7*) which is defined as the procedure for selecting
candidate moving services (i.e., the action to be invoked by
the agent in each state). This guides the agent toward an
optimal set of moving services that gives the best trade-offs
among multiple QoS criteria i.e., maximum accumulated

reward. More formally, the optimal policy is expressed as
follows:

3)

where s € S is the environment’s state and ¢ € A is an
optimal moving service (i.e., action) to invoke. Obtaining
the optimal policy is achieved by solving the Q-value
function:

Q(s,a) =r(s,a) + ’yZn}La/XQi(s’, qls,a 4

7 (s)=a

where Q(s,a) is the accumulated QoS reward, given an
agent starting at state s and invoking action a, r(s,a) is
the instantaneous reward when invoking action a at state s,
and + is a discounting factor.

Finding the optimal policy directly using Equation [] is
impractical due to a potentially large number of states and
actions. As a result, the number of state-action combina-
tions increases drastically which in turn leads to exponential
time complexity. Therefore, Neural Networks are used in
conjunction with Equation [4] to build a policy model. The
use of Neural Networks to find the optimal policy is referred
to it as Q-Learning. The inputs to the Neural Network are
the different parameters defining a particular state s, and
its outputs are all possible actions that the agent can take.

Q-learning has two main phases: exploration and ex-
ploitation. In the exploration phase, the agent selects ran-
dom actions and keeps records of the resulting rewards and
next states. The collected records are then fed into a Neural
Network to train the policy. During the exploitation phase,
the agent uses the trained model to predict the next action



IEEE TRANSACTIONS ON SERVICES COMPUTING

User

Moving services

Trajectory
I o ® 0 Candidate pairs Candidate moving services
bl uty o @& O O: '@ @ ut MS,, MSs T, MS, MS, MS;
uty
/ I ut, le) " Yeo) 0. o rYols] ut, MS;, MS,
) \ uty
\. By e [l o) xel le) 'Y Yei uts MSy, MS,, MS; uty
/ uty o e ° 0 e® O uts MS,, MS, uty }
| | e o e o 0 <, 000 utg|  MS;, MSs uts
o b
| O e o
MS;, MS, MS, M's4
(a) RDD: dataset (b) Temporal mapper (c) Spatial mapper (d) Reduce by key (e) Candidate set

Fig. 6. Workflow of parallel flock-based moving crowdsourced service discovery.

Algorithm 1 Reinforcement Learning-based Composition
Training Algorithm

Input: A set of sampled moving service trajectories T, a
set of sampled user trajectories 7, and the radius r
Output: A model for policy =

1: // Initialization

2: e+ 1.0

3: model < create an initial neural network model

4: memory <+ []

5: env < initialize environment using 7’

6: // Model Training

7. for t, € T, do

8: for i < 1 to repetition do

9: env.current_user = t,

10: state < t,

11: if random() < ¢ then

12: action < pick a random service id from T
13: else

14: action < predict the next action using

model and state
15: end if
16: reward, next_state < act on env using
action

17: store next_state and reward in memory

18: end for

19: if memory is full then

20: train model using data in memory

21: € = €x0.995 // gradually decreasing exploration
22: end if

23: end for

24: return model

to take. It is worth noting that in the exploitation phase,
the agent keeps exploring to adjust the trained model for
higher accuracies.

Fig. | summarizes the process. An agent starts by
requesting the initial state of the environment (step (a)).
The environment fetches the first user trajectory sample
and reports it as its current state (step (b.1)). Additionally,
the environment fetches the list of service IDs and reports
them to the agent as possible actions to invoke (step (b.2)).
During exploration, the agent randomly invokes an action
(by selecting a valid candidate moving service ID) on

the environment (step (c)). The environment computes the
reward based on the invoked action. We set the reward as
the QoS provided by the selected candidate moving service
(step (d.1)). The environment updates its current state by
setting it to the next user trajectory sample (step (d.2)). The
next state and reward are sent to the agent (step (e)). The
agent continues invoking actions until all samples in the
user trajectories are visited. Upon traversing all samples of
a user trajectory, the environment resets itself (by setting
its state to the first user trajectory sample), and the process
repeats. Note that several user trajectories should be used
to increase the prediction accuracy of the generated model.
Two cases have not been addressed in our previous
scenario: (1) no valid candidate moving services for a given
user trajectory sample, and (2) an agent selects a moving
service that is not a valid candidate (i.e., does not overlap
either in time or space with the current user trajectory
sample). To resolve the first case, we introduce the concept
of a dummy service. A dummy service essentially means
that there are no valid candidate moving services for a
particular user trajectory sample. The goal of a dummy
service is to divert the agent from selecting an invalid
candidate moving service when no overlapping services are
found. Accomplishing this is carried out by giving a lower
reward value whenever the dummy service is selected, e.g.,
-1 as opposed to [0 - 1] for normal reward values. Resolving
the second case is achieved by penalizing the agent when
an invalid moving service is selected, e.g., -10. By this, an
agent will always favor selecting the dummy service over
an invalid one since it has a higher reward value.
Algorithm [I] summarizes the training phase of the ap-
proach. The algorithm starts by initializing the parameters
(Lines 1-5). Initially, the reinforcement learning agent per-
forms exploration only. The exploration to exploitation ratio
is controlled by changing € (1.0 for full exploration and 0.0
for full exploitation). A neural network model is created
with random weights in Line 3. The algorithm also ini-
tializes an empty space that represents the agent’s memory
(Line 4). The memory stores information that the agent
collects during exploration. More specifically, the memory
holds every action the agent takes on the environment.
Additionally, it stores the rewards the environment assigns
for the taken actions. Finally, the environment is set up



IEEE TRANSACTIONS ON SERVICES COMPUTING

using the provided service trajectories 75 (Line 5). The
environment uses the service trajectories 7 to determine
its set of possible actions as well as the reward for each
taken action.

The model is trained gradually while the agent is ex-
ploring the environment and exploiting its current model
(Lines 7 through 21). The agent at the beginning favors
exploring the environment over exploiting its model. The
algorithm loops through each user trajectory in 7, (Line
7). The state of the environment is set using the samples
in a given user trajectory. When the agent takes an action,
the environment sets its next state to the next sample in
the current user trajectory. We allow the environment to
exploit each user trajectory repetition times (Lines 8 - 10).
In other words, a state can be repeated several times. This
allows the agent to experiment with different actions given
the same state, and observe the rewards associated with
each state-action combination. The agent invokes an action
on the environment (Lines 11 - 15). The action is the service
to choose given a user trajectory sample. The taken action
is based on the value of €. The agent tends to take random
actions when ¢ has a high value (exploration). Conversely,
the agent uses its trained model to decide which action to
take. Upon each invoked action, the environment changes
its state and returns a reward to the agent (Line 16). The
reward is generated based on the QoS of the selected service
(i.e., the taken action). The reward and next state values are
stored in memory (Line 17). The collected actions, states,
and rewards in memory are used to train the model (Line
20). In other words, memory guides the training process
towards building a model that favors actions with higher
rewards. The value of € is decayed after each training
process (Line 21). Decaying ¢ makes the agent use the
trained model more, essentially leading the agent to invoke
actions that may have higher rewards.

It is worth mentioning that model training and storage is
carried out using edge servers. We assume edge servers
are conveniently set up to be accessed by moving IoT
services. Each edge server is responsible for serving a
small subset of moving devices. Therefore, storage and
processing overheads are negligible.

5 GROUND-TRUTH: PARALLEL FLOCK-
BASED MOVING SERVICE DISCOVERY

We propose a brute-force approach to find the optimal
composition of moving services for a given consumer
trajectory. Our approach is used in our experiments to
evaluate the accuracy of our deep reinforcement learning-
based composition algorithm proposed earlier. In other
words, the brute-force approach acts as a ground-truth
(baseline) to validate the results obtained using the deep
reinforcement learning-based algorithm.

The brute-force is the optimal solution as it performs
exhaustive search to find all possible co-moving services
with a given consumer’s trajectory. We achieve this by iden-
tifying co-movement patterns. Several studies have been
proposed to model moving objects including flock [54],

[16], convoy [21], swarm [22] and travelling companion
[63]. All of these group movement patterns require the
group to contain the same set of individuals during its
lifetime [64]. We opt for the flock pattern as it is the
most appropriate group movement pattern to describe our
WiFi hotspot sharing scenario due to the fixed size of
the radius (i.e., WiFi hotspot range). However, other co-
movement patterns may be more appropriate for other types
of applications.

Algorithm 2 Parallel Flock-Based Service Discovery Al-
gorithm
Input: A set of moving services ¢ , A user travel trajectory
T., Radius r
Output: A set of spatial candidate pairs
: C {}
compute a list of < ¢;,57}, > pairs of ¢
compute a list of timesteps < ut;, Ty, > pairs of T},
— Temporal Mapper Phase—
for all key-value pairs < t;,5T;, > do
left outer join based on timesteps ut;
end for
— Spatial Mapper Phase —
for all ¢; in key-value pairs < ¢;,S7T,, > do
find spatial candidate pairs based on r and T,
end for
— Reduce Phase—
: group-by ut;
Return spatial candidate pairs set

R A A R ol e

—_ = e =
R S T

We deploy a parallel moving service discovery approach.
We use Apache Spark as a platform for parallel discovery.
The Apache Spark employs MapReduce to handle the scal-
ability and fault tolerance issues. Fig. [ shows MapReduce
jobs which are performed in a sequential workflow. First,
the temporal map phase conducts temporal pruning of
moving services with regards to a user trajectory. In this
temporal mapper, timestamp and sampled location are re-
spectively treated as key and value for each moving service
trajectories. Since a user trajectory is important to find the
co-movement service, we filter moving service trajectories
based on a user trajectory’s timesteps. In this regard, we
use left outer join as a temporal filtering step to select all
moving services that include the user trajectory timesteps
(Lines 5-7 Algorithm [2)). Second, for each timestep of a
user trajectory, the spatial map phase is performed over all
filtered sub-trajectories of moving services. In the spatial
mapper, we retrieve all spatial candidate service pairs (see
Definition 2) whose points are inside a range distance r
of the user location point in each timestep. Finally, the
spatial mapper outputs candidate pairs in each timestep
of the user trajectory. It is represented by a list of key-
value pairs < ut;, ST; >, where ut; is the user’s timestep
and S7T; is a set of candidate moving service IDs that
are paired at ut; (Lines 9-11 Algorithm [2). For each
discovered candidate pairs, QoS values are computed. We
then extend the discovered candidate pairs to discovered
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Fig. 8. Accuracy on lllinois dataset.

candidate moving services. All candidate moving services
are validated based on Definition 3 and invalid candidates
are disregarded.

6 EXPERIMENTAL EVALUATIONS

We evaluate the accuracy and efficiency of our proposed
deep reinforcement learning-based composition algorithm.
We utilize our ground-truth approach discussed earlier to
validate the results and assess the accuracy of our algorithm.
We leverage real pedestrian trajectory datasets throughout
our experiments.

6.1 Experiment Setup

All experiments are conducted in a cluster with six nodes
on Amazon Web Services. We pick one master node and
five slave nodes. The master node has a dual-core processor
with 4GB memory. The slave nodes are identical, each
equipped with a 16-core processor and 64GB memory. We
configure the cluster into 15 Spark executors, each taking
19GB memory and 5 cores.

We use a dense fully connected network to train our
model. The inputs to the network are the parameters
defining a state whereas the outputs are the actions, which

the agent can take. Three hidden layers are used with 512
neurons each. The rectified linear unit (RelLLU) activation
function is used in all hidden layers. We use dropout with
probability 0.5 on all hidden layers to reduce overfitting.
The Q-learning’s discount factor vy is set to 0.9, whereas
the Neural Network’s learning rate is 0.001.

The reward function used by the deep learning-based
composition algorithm is based on the capacity QoS param-
eter. We assume that the Q-learning algorithm does not have
prior knowledge about QoS attributes of moving services
since they are computed based on the distance between a
user and a moving service. As a result, we rely on the Q-
Learning algorithm to learn the optimal execution policy.
We use 70% of the data in each dataset for the training set
and the remaining 30% for the test set.

We use two real pedestrian trajectory datasets. A single
trajectory in the datasets is represented with a series of
location samples. Each sample represents the location of a
person at a specific time. We use the trajectories in the two
datasets to represent WiFi hotspot moving services and user
trajectoriesﬂ The trajectories in the datasets are split into
two groups. The first group represents the available WiFi
hotspot moving services. The second group is considered
as the trajectories of the users. Throughout our experi-
ments, we use our proposed algorithm to perform service
selection and composition using the moving services and
user trajectories groups. In other words, for a given user
trajectory, our proposed algorithm aims at finding a subset
of moving services that intersect with the user trajectory
while maximizes the QoS. The two datasets are described
as follows:

o Indoor E] The dataset keeps visitors’ trajectories in the
ATC shopping center in Osaka. The visitors’ locations
are sampled every 0.03 - 0.06 seconds. In this dataset,
we replace sampled timestamps with global sequences
that start from 1 to find co-movement patterns. A fixed
sampling rate of 0.04 seconds is set, since trajectories
do not have synchronized sampled time. We adopt
linear interpolation to fill missing points. The dataset
contains 1,777,297,164 samples and 185,554 trajecto-
ries i.e. moving services.

e lllinois ﬂ The dataset holds six months trajectories
from the daily commute of two members in Argonne
National Laboratory of the University of Illinois at
Chicago. Each trajectory shows a continuous daily
trip of a member in Cook County and/or the Dupage
County of Illinois. We treat each trajectory as a
moving service. The member’s locations are strictly
sampled every second. There are 357,706 samples and
207 trajectories i.e. moving services.

To the best of our knowledge, there is limited research
investigating QoS-aware moving IoT service composition.
We compare the proposed deep reinforcement learning-

4. To the best of our knowledge, there are no publicly available
crowdsourced hotspot/energy environment datasets.

5. https://irc.atr.jp/crest2010_HRI/ATC_dataset

6. https://www.cs.uic.edu/ boxu/mp2p/gps_data.html
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Fig. 9. Computation time vs. No. of user trajectories.

based composition algorithm to the proposed ground-truth
approach to show the accuracy of the selection process.

6.2 Experiments results

In this section, we evaluate our deep reinforcement
learning-based composition algorithm from three aspects:
(1) accuracy; (2) scalability and (3) efficiency of learning.

Accuracy

In the first set of experiments, we study the accuracy of the
deep reinforcement learning-based composition algorithm
by comparing it to the ground-truth approach on two
real datasets. We evaluate the accuracy of the proposed
approach by comparing the deep reinforcement learning-
based composition algorithm in selecting valid candidate
moving services in each timestep and their corresponding
valid candidate moving services that are retrieved by the
ground-truth. The accuracy is the ratio between the number
of times an optimal service was selected cs to the total
number of available valid samples ns.
Accuracy = @ 5)
[ns|
Fig.[7| shows the accuracy (blue curve) and error (orange
curve) of the deep reinforcement learning-based composi-
tion algorithm on indoor dataset while varying the number
of user trajectories from 100 to 1,000. As mentioned earlier,
the accuracy (and error) results are obtained by validat-
ing the proposed approach results with the ground-truth
approach, which generates the best possible composition
plan (i.e., accuracy 100%). The results show the proposed
approach scores high accuracy. As can be seen, the accuracy
significantly increases until it reaches around 95% by 500
user trajectories and then it remains stable. As expected,
the accuracy is lower when the number of trajectories is
low. The reason is that the lower the samples are, the
less accurate the result is. Similarly, Fig. [8| shows that
the accuracy (blue curve) and error (orange curve) of the
composition algorithm on the Illinois dataset. The accuracy
increases until it reaches a high accuracy of around 93%
after 35 user trajectories.
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Fig. 10. Computation time vs. No. of user trajectories.
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Scalability

In the second set of experiments, we evaluate the scala-
bility of the proposed approach in terms of training and
selection computation time. Fig. [9]demonstrates the ground-
truth computation time in comparison with the Q-learning
model training time. As expected, the results show that the
ground-truth computation time is significantly lower than
the training time. On the other hand, Fig. [I(] illustrates
the computation time to find valid candidate services of
deep reinforcement learning-based composition algorithm
significantly outperforms the ground-truth (i.e. less than 0.1
Sec in Q-learning in comparison with close to 10,000 Sec
in ground-truth for 1000 services). This indicates that the
deep reinforcement learning-based composition algorithm
can select valid candidates much faster than the spatio-
temporal MapReduce approach.

Efficiency of learning

In the third set of experiments, we study the learning speed
with increasing the number of moving services on indoor
and Illinois datasets. Firstly, we vary the number of moving
services from 10,000 to 100,000 on the indoor dataset. The
results in Fig. [IT]illustrate how fast the algorithm converges
to the optimal composition plan during the learning phase.
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The convergence time increases polynomially with the
increasing number of moving services which is an expected
result. This is because the number of candidate moving
services that should be searched at each state increases
exponentially. Additionally, the convergence time increases
slower than the number of moving services. Secondly, we
vary the number of moving services from 50 to 150 on the
[llinois dataset. Fig. shows that the convergence time
increases with increasing the number of moving services.
The results also show that our model trains relatively fast
to find optimal composition plans (e.g., less than 30 min
for 150 services).

7 CONCLUSION

We proposed a crowdsourced IoT service framework to
select and compose moving crowdsourced IoT services
based on spatio-temporal factors. We developed a deep rein-
forcement learning-based algorithm to select and compose
moving services considering QoS parameters without using
an index. We also developed a spatio-temporal MapReduce
based on flock patterns using Apache Spark to discover
moving services as a ground-truth. Our experiments show
the scalability and high accuracy of the proposed approach
in comparison with the ground-truth. In our future work, we
develop and test our proposed approach on different motion
patterns, i.e., transportation modes. We also plan to ex-
tend the proposed framework to temporal non-deterministic
moving services.
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