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Abstract—Delivering cloud-like computing facilities at the network edge provides computing services with ultra-low-latency access,

yielding highly responsive computing services to application requests. The concept of fog computing has emerged as a computing

paradigm that adds layers of computing nodes between the edge and the cloud, also known asmicro data centers, cloudlets, or fog

nodes. Based on this premise, this article proposes a component-based service scheduler in a cloud-fog computing infrastructure

comprising several layers of fog nodes between the edge and the cloud. The proposed scheduler aims to satisfy the application’s

latency requirements by deciding which services components should be moved upwards in the fog-cloud hierarchy to alleviate

computing workloads at the network edge. One communication-aware policy is introduced for resource allocation to enforce resource

access prioritization among applications. We evaluate the proposal using the well-known iFogSim simulator. Results suggest that the

proposed component-based scheduling algorithm can reduce average delays for application services with stricter latency requirements

while still reducing the total network usage when applications exchange data between the components. Results have shown that our

policy was able to, on average, reduce the overload impact on the network usage by approximately 11 percent compared to the best

allocation policy in the literature while maintaining acceptable delays for latency-sensitive applications.

Index Terms—Fog computing, cloud computing, Internet of Things, allocation
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1 INTRODUCTION

CLOUD computing is indeed a consolidated paradigm that
leveraged the industry of the Internet of Things (IoT).

Applications, which usually require a lot of computing capa-
bilities to run, have been successfully performed “in the
cloud” using offloading capabilities [1]. This practice is an
effort that offloads (hence the name) most of the application’s
workload to a remote data center facility for intensive data
processing. This action significantly improves the computing
resources of IoT devices facing high computation dem-
ands [2]. Particularly, offloading has been useful for
resource-hungry applications that span the Big Data con-
cept [3], which habitually generate a large volume of data at
different velocity and variety [4]. However, the reliance on
computation capabilities outside of edge devices is not ideal
for those applications that require tightly controlled delays
(latency) on the data transfer time with remote resources. As
cloud data centers are ordinarily localized far away from the
devices situated at the edge of the network, a degradation in
the application’s quality of service is likely to occur, therefore
putting the user’s quality of experience at critical risk [5].

When using cloud-based assistant services such as Siri or
Alexa, for instance, the user can tolerate up to a few seconds of
delay without experiencing a quality of service degrada-
tion [6]. However, applicationswith complex video and audio
processing, such as online gaming [7] and other interactive
services, a delay of a few tens of milliseconds can expose the
application’s performance to severe quality decay, making it
unusable for activities that require prompt real-time
responses because crucial actions can be lagged or frozen [8].
Indeed, the use of traditional cloud computing methodology
for edge devices is undoubtedly a poor strategy to put
latency-sensitive applications into the offloading practice [9].
Clearly, the Achilles’ heel here is in terms of the network
latency on the end-to-end communication channel between
the IoT application (situated at the network edge) and the
cloud data centers (confined at the network core) [10].

The fog computing concept emerged recently to address
this issue. It attempts to mitigate the relatively high latency
from using traditional cloud computing resources to per-
form the offloading procedure for delay-critical services [7],
[11]. It introduces cloud-like computing services very close
to end-devices, in an infrastructure that places small data
centers (also called as cloudlets [10] or fog nodes [12]) in the
network between the edge and the core. A generic model of
a fog computing network considers the deployment of sev-
eral layers of fog nodes from the edge to the core, compos-
ing a hierarchy of computing nodes [8] (Fig. 1). The higher a
fog node is localized in the hierarchy, the larger its comput-
ing capacity is, since it should cover a broader set of users
downwards the hierarchy. Analogously, the lower a fog
node is established in the hierarchy, the closer to the edge it
will be situated, thus presenting lower communication
delays to edge devices. As shown in [1], [2], [3], [5], [7], [8],

� Maycon Leone Maciel Peixoto is with the Federal University of Bahia
(UFBA), and Institute of Computing, University of Campinas (Unicamp),
Sao Paulo 13083-970, Brazil. E-mail: maycon.leone@ufba.br.

� Thiago A. L. Genez is with the European Molecular Biology Laboratory,
European Bioinformatics Institute, Wellcome Genome Campus, Hinxton,
Cambridgeshire CB10 1SD, U.K. E-mail: thiagogenez@ebi.ac.uk.

� Luiz F. Bittencourt is with the Institute of Computing, University of
Campinas (Unicamp), S~ao Paulo 13083-970, Brazil. E-mail: bit@ic.unicamp.br.

Manuscript received 30 Sept. 2020; revised 12 Apr. 2021; accepted 6 May 2021.
Date of publication 11 May 2021; date of current version 7 Oct. 2022.
(Corresponding author: Maycon Leone Maciel Peixoto.)
Digital Object Identifier no. 10.1109/TSC.2021.3079110

2824 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4851-5228
https://orcid.org/0000-0002-4851-5228
https://orcid.org/0000-0002-4851-5228
https://orcid.org/0000-0002-4851-5228
https://orcid.org/0000-0002-4851-5228
https://orcid.org/0000-0001-6305-9059
https://orcid.org/0000-0001-6305-9059
https://orcid.org/0000-0001-6305-9059
https://orcid.org/0000-0001-6305-9059
https://orcid.org/0000-0001-6305-9059
mailto:maycon.leone@ufba.br
mailto:thiagogenez@ebi.ac.uk
mailto:bit@ic.unicamp.br


[12], fog computing has indeed great potential for delay-
critical applications in performing offloading without hav-
ing strong service performance degradation.

The deployment of cloud-like computing services closer
to users introduces significant resource management issues
that are still open [2]. For instance, due to the physical prox-
imity of multi-tiered fog nodes to the network edge, this
environment introduces challenges to control the latency
for applications with different latency requirements. As the
lower cloudlets in the hierarchy have lower computing
capacity when compared to the higher ones, applications
presenting tight-delay requirements should have resources
allocated on these cloudlets to perform the offloading. In
comparison, applications having loose-delays requirements
can offload to higher cloudlets or even directly to the cloud.
These aspects and trade-offs between the cloudlet location
in the hierarchy and applications’ latency requirements
need to be considered by a new design of algorithms to (i)
yield proper resource allocation in fog computing, (ii) bal-
ance the workloads among all the cloudlets, and (iii) satisfy
the overall applications’ latency requirements. This paper’s
contributions focus on addressing these three issues for a
multi-layered fog computing environment and latency-sen-
sitive applications.

This paper proposes a resource allocation scheduling
algorithm for a fog-cloud hierarchy with multiple cloudlet
layers, or tiers, considering applications composed of serv-
ices that can have heterogeneous delay requirements. Our
proposed algorithm examines each latency-sensitive appli-
cation as a composition of modules service components that
communicate with each other through data transfers. Mod-
ules can execute away from each other, which introduces
delays in response times. When a cloudlet is overloaded,
the proposed algorithm decides which application’s module
should be moved upwards in the fog-cloud hierarchy to sat-
isfy latency requirements while reducing the delay experi-
enced by application users. The migration of workloads
carried out by our proposed approach is based on the char-
acteristics of the applications’ data dependencies.

The novelty of this paper is the proposal of a communica-
tion-aware scheduling policy in amulti-layered fog network.

Based on a component allocation policy from the literature,
Edgewards [2], [8], [13], we proposed one policy in this paper:
Communication Based – Edgewards (CB-E). In comparisonwith
our previous work [8] and the literature, the contributions of
this paper are four-fold:

(1) We propose a communication-aware scheduling pol-
icy for a fog-cloud computing system, namely Com-
munication Based & Edgewards (CB-E);

(2) We consider a fog-cloud hierarchy topology in our
experiment comprising three levels: two layers of
cloudlets (or fog nodes) and a cloud layer;

(3) We evaluate our proposed policy using two types of
common component-based services for the IoT
industry, such as a latency-sensitive online game
and a delay-tolerant video surveillance network;

(4) We evaluate and demonstrate the effectiveness of
our proposed policy using the well-established Fog
Computing Simulator known as iFogSim [13].

This paper is organized as follows. Section 2 discusses
related work. Sections 3 and 4 introduces definitions, con-
cepts and models used in this paper, while Section 5
describes the proposed algorithm. Section 6 covers the eval-
uation setup and Section 7 presents the results of simulation
carried out to assess the proposal’s performance against
other approaches. Finally, Section 8 concludes the paper.

2 RELATED WORK

Fog-aware mechanisms to implement efficient resource
management for applications with different levels of latency
requirements is indeed a challenging task [5]. Several efforts
have addressed this body of work to provide a latency-
driven fog computing environment for IoT applications
using one fog layer only between the edge and the cloud (as
illustrated the fog-cloud topology in Fig. 1) [3], [4], [8], [9],
[10], [14], [15]. Effective mechanisms addressing stacked fog
layers (also known as cloudlet, micro data centers, or fog nodes)
is still an open issue [2].

An architecture for mobile computing to place computing
and storage nodes at the Internet’s edge close to users is pro-
posed by Satyanarayanan et al. in [10]. The new vision of
mobile computing in mid-2009 has endeavored to free
mobile devices from a severe limitation of computing capa-
bilities, allowing resource-hungry applications to use cloud-
like computing service that would be free of delay, instabil-
ity, congestion and WAN failures. Since then, Satyanar-
ayanan et al. have been advancing this body of work to
emphasize the importance of having cloudlets at the network
edge to emerge the industry investment and research interest
in edge computing [4]. Still, none of them has discussed the
importance of deploying multi-layers of fog nodes between
the edge and the cloud to manage the requirements of appli-
cationswith heterogeneous tolerance levels of latency.

To emphasize the effectiveness of having one layer of
cloudlets between the edge and the cloud, Bittencourt et al.
have introduced in [3] three simple resources allocation poli-
cies in fog computing, namely First-Come First-Served (FCFS),
Delay-priority and Concurrent. According to the authors, even
bringing the cloud closer to users, the potential overloads in
cloudlets upon incorrect policy enforcement can negatively

Fig. 1. Multi-level fog computing architecture: Fog-enabled services and
their components can be run at any layer of the hierarchy. Upper layers
offer more computing capacity, but also increased delay to the edge.
Network characteristics (topology, bandwidth, delay, etc.) between devi-
ces depend on underlying network connectivity of different Internet Ser-
vice/Telecom providers (adapted from [2]).
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impact applications’ quality of service. The authors empha-
sized that robust allocation strategies in fog computing-
based systems are also needed formobility-sensitive applica-
tions on top of latency-driven resourcemanagement.

Charântola et al. proposed in [8] a scheduling algorithm
for a fog-cloud environment considering only a single layer
of cloudlets. The authors assume each application as a set of
modules (components) that communicate with each other to
complete a job. As expected, modules that are far away from
each other introduce delays in the job completion time. The
authors proposed an algorithm to allocate/schedule resour-
ces on the fog-cloud infrastructure according to the applica-
tion delay requirement to mitigate this issue. In this paper,
however, we introduce an efficient scheduling algorithm for
real-time applications, such as online games and video track-
ing surveillance, for multi-tiered cloudlet infrastructures.

Shah-Mansouri et al. studied in [9] the problem of
resource allocation for IoT application in a hierarchical com-
puting paradigm, including one layer of fog nodes and the
remote computing services from the cloud. Due to the fog
nodes’ limited computing capabilities to satisfy all the
resource requests from the IoT applications, they addressed
the problem using a competitive game approach to allocate
resources efficiently. Munir et al. proposed in [16] a fog-
cloud computing architecture for IoT applications. They
proposed an energy-efficient reconfigurable architecture
that can adapt to the workload performed at a given time.
The authors emphasized the benefits of using their proposal
architecture for future IoT industry sectors, such as the
intelligent transport system, when merging the benefits of
fog and cloud computing paradigms.

In [17], Ali et al. present an NGSA-II adaptation to fog-
cloud environments, where a centralized decision-maker acts
to optimize the tasks allocation throughout the distributed
system. Similarly, Aburukba [15]models a centralized optimi-
zation using Genetic Algorithms for IoT applications, focus-
ing on minimizing latencies. In this work, we propose the
decision-making to occur in a distributed fashion, with local
decisions focused on the communication weights of tasks in
an application loop, which improves scalability but, on the
other hand, neglects global optimization objectives. Both
approaches can be complementary in a real-world scenario if
they are designed to cooperate in a large fog-cloud scenario.

Although the three works mentioned above advance the
adoption of fog computing for latency-sensitive IoT applica-
tions, they only consider a scenario including one layer of
cloudlet between the edge of the network and the cloud.
Still, there is a gap of research in this area – which this paper
attempts to cope with – to consider several layers of cloudlet
nodes between the edge and the cloud, composing the fog-
cloud hierarchy illustrated in Fig. 1. In doing so, resource
allocation management becomes a task even harder to solve
when handling resource allocation requests from applica-
tions with different latency requirements. In this paper, we
proposed that workloads are smartly moved towards the
cloud to satisfy the latency requirements as the delay meas-
urements become higher.

Recently, Souza et al. attempted to embrace this research
gap in [14] by proposing an architecture consisting of a
dual-cloudlet layer in a fog-cloud computing environment
for IoT applications. The authors aimed to diminish the

necessity of demanding further cloud resources preventing
the applications to face high delays on the resource access
from the cloud. Still, their proposed mechanism cannot
cope with latency-sensitive applications with different pri-
ority for delays, as we address in this paper. Moreover, the
study proposed in this paper can handle as many levels of
cloudlet as the fog-cloud hierarchy presents.

3 FOG COMPUTING KEY CONCEPTS

3.1 Fog-Cloud Hierarchy Topology

The Fog Computing concept emerged to introduce small
data centers, or cloudlets, closer to the user at the network
edge [2], [18], [19]. It attempts to dodge the high latency in
the communication channels between the edge and the
cloud while still supplying cloud-like features close to edge
devices. The Fog Computing architecture works as a “glue”
that fastens the cloud closer to the edge by placing cloudlets
(micro data centers) at the network providers’ access points
(which are utilized by edge devices to connect to the Inter-
net). This model can be adapted to consider some levels of
computing capacity nodes (cloudlets) placed between the
edge and the cloud, composing a fog-cloud hierarchy of sev-
eral levels [8]. Multi-level Fog computing is a complemen-
tary of the traditional architecture (which contains one
cloudlet level) to enhance the performance services, reduc-
ing delay, energy consumption and network usage in IoT
environment [20]. The higher a fog node (cloudlet) is in the
network hierarchy, the larger its computing capacity is,
once it should satisfy a broader set of users downwards the
hierarchy. The lower a fog node is in this hierarchy, the
closer it is to the network edge, hence presenting lower
communication delays to devices [8]. Fig. 1 illustrated an
example of a fog-cloud hierarchy. The key features here
include heterogeneity support, geographical distribution,
location awareness, ultra-low latency, support of real-time
and large-scale IoT applications.

The computing hierarchy in the fog-cloud infrastructure
can offer a broader range of service levels for IoT applica-
tions that cannot be supported only by systems comprising
cloud computing. While fog computing provides reduced
latencies for latency-sensitive applications running at the
network edge, it also avoids pushing traffic (upwards in the
hierarchy) for processing at the cloud, hence reducing traffic
congestion in the network core [2]. However, the synergy
between IoT, cloud, and fog comes at a price: more complex
and sophisticated resource management and scheduling
mechanisms are required to make the whole system work
properly [3]. Hence, new challenges to be overcome arises,
e.g., dynamically deciding in which level of the fog hierar-
chy a workload should be offloaded to the cloud for proc-
essed to meet its quality of service requirements.

This paper contributes to advance research in this topic
by proposing resource allocation policies for this highly dis-
tributed computing hierarchy. The Fog hierarchy is orga-
nized according to the number of micro data centers levels
(cloudlets or fog nodes) amongst the edge and the cloud.
The hierarchies considered in this paper are as follows:

� Single-Level fog-cloud topology: A single-level topology
comprises one cloudlet layer between the edge and
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the cloud for offloading purposes. By using this tra-
ditional fog computing layout, if the cloudlet is not
sufficient to cope a new workload due to the lack of
resource availability, for instance, the workload is
transferred for processing directly at the cloud layer
– where is assumed to have infinite computing
resources available.

� Multi-Level fog-cloud topology: In a multilevel topol-
ogy, the fog-cloud infrastructure layout comprises
several layers of cloudlets between the edge and the
cloud. In this setup, if a cloudlet is almost over-
loaded or it is operating at maximum capacity,
incoming workloads are assigned for processing to
the next cloudlet layer above in the hierarchy. This
process repeats upwards until the workloads achieve
the last layer, i.e., the cloud layer.

In a multi-level hierarchy, the scheduler needs to be dis-
tributed in the hierarchy setup [21]. Therefore, in the sched-
uling algorithms studied in this paper, a scheduler’s
decision is local, based on the current load of the cloudlet. If
overloaded, the services components can be forwarded to
the next level in the hierarchy. In this way, load state syn-
chronization among cloudlets at different levels is not nec-
essary, improving scalability.

3.2 Resource Allocation Policies for Fog Computing

The applications running in a fog-cloud environment pose a
challenge in coordinating the resources allocated and allo-
cating the resources for incoming workloads. As data in
IoT-Fog-Cloud infrastructures must traverse one or more
cloudlet tiers, policies are introduced to describe rules and
protocols on how this resource allocation problem must be
addressed in this type of distributed system running highly
heterogeneous and dynamic applications. To that end, a
resource allocation policy must accommodate incoming
applications considering busy cloudlets while satisfying
each application request’s requirements concerning net-
working delays. The iFogSim [13] – used later in the evalua-
tion of this paper – is a well-known simulator for modeling
Internet of things, Edge and Fog Computing environments.
iFogSim is developed on the top of the CloudSim simula-
tor [22], which is a largely adopted tool for modeling resour-
ces management approaches in Cloud Computing
environments. Extending CloudSim, iFogSim allows the use
of different scheduling policies in a fog-cloud scenario. In
this paper, we consider the following policies: mapping,
cloud only, and edgewards. These policies work as follows:

� Mapping: The mapping strategy allocates (maps)
application workloads to a specific cloudlet in the
hierarchy without measuring to see if sufficient
computational resources will be available to meet
the request’s requirements. As a result, if the cloud-
let becomes busy running previously allocated work-
loads, this policy does not re-schedule workloads for
executions on upward cloudlets in the fog-cloud lay-
out. In sequential dispatch, the mapped requests
may have either to wait for a long time until suffi-
cient computational power becomes available to sat-
isfy the workload computation requirements. Or, in
the case of concurrent dispatch, the mapped requests

have their turnaround times profoundly impacted
by concurrency as the overloaded computing resour-
ces are failing to provide enough computing power
for every workload to run smoothly.

� Cloud Only: The cloud-only placement strategy is
based on the traditional cloud-based implementation
of applications. All workloads of an application run
in remote cloud data centers – the higher layer in the
fog-cloud hierarchy. This strategy is useful in a sce-
nario where resources are not available in any cloud-
let layer, and inbound applications workloads need
to be offloaded to the cloud for further processing.
As expected, this approach has the disadvantage of
high latency in communication between the edge
and the cloud since the cloud is – networking speak-
ing – further away from the edge than the resources
of intermediate cloudlets in the fog-cloud hierarchy.

� Edgewards: The edge-ward strategy attempts to allo-
cate resources for incoming application requests on
cloudlets as close as possible to the network’s edge.
However, if the cloudlet is not computationally pow-
erful enough to satisfy the request’s requirements,
either because it is overloaded or does not have
enough computing capacity at all, the policy iterates
from the bottom towards the top in the fog-cloud
hierarchy to find enough available resource in a
cloudlet for allocation. In the worst-case scenario, all
cloudlets are fully occupied, and this policy will
have the same result as cloud only.

4 SYSTEM AND APPLICATION MODELS

In order to demonstrate how scheduling latency-critical
services can be performed in a multi-layer fog considering
the location and different application classes, we have used
two types of services from [13]: a delay-tolerant video surveil-
lance network and a latency-sensitive online game. We briefly
present how these two services are modeled and their
importance in the context of our experimentation.

4.1 Video Surveillance Object Tracking – VSOT

Resource availability is a stringent requirement to process a
massive amount of data stream from multi-cameras over a
long period of time. These resources are fundamental to
store and process all data to, for example, track objects.
Tracking analysis includes finding irregular events and
notifying users when such activities are detected.

Data generated by a smart video surveillance environ-
ment software often comes from multiple cameras, which
produce large quantities of a data stream in short intervals.
These large amounts of data are sent to a fog-cloud based
system for detecting and tracking objects. The process of
tracing a moving object is initiated by calculating the proper
horizontal and vertical position of the camera, including
image details regarding the zoom and brightness intensities
for more effective coverage of the tracked objects.

Fig. 2 depicts the application model used in this paper in
our VSOT environment. Table 1 shows the VSOT software
comprising five components, while Table 2 presents the five
types of VSOT state transitions between them. First, for
instance, the camera provides the raw video data to the
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motion detection componentm1, which is embedded within
the camera device. When a motion is detected, the motion
detection component m1 sends the video data stream to the
object detection component m2. Next, m2 compares the cur-
rent object with data previously captured. If this object is
not already being traced previously, m2 triggers a trace acti-
vation for the current object, providing an initial calculation
of that object’s positioning coordinates in the image. Then,
the object is sent to the object tracking component m4 that
uses the created coordinates and adjusts the camera’s pan
control parameters at the componentm5, which periodically
keeps updating the parameters of the object tracing data is
updated by m4. Finally, the detected objects are sent to the
user interface m3 using fractions of the video where the
object is present.

Each arc in the Fig. 2 is represented by a direction (U :
Upload or D: Download) and an amount of data (bytes)
transmitted throughout components. Arc labels may also
include two compulsory additional parameters: selectivity (S)
and periodicity (P ). For example, the arc st3 shows an action of
uploading (U) fromm2 tom3 with 2000 bytes. It also presents
a selectivity of 0.05, indicating the proportion of st3 genera-
tion concerning the total of edges st2 is inputting in the com-
ponent m2; therefore, the amount of data arriving at m3 is
100. Moreover, in this example, st5 is the only arc periodically
generated (exist) with a 100ms interval, representing the peri-
odic download act fromm4 tom5. Arcs containing the param-
eter P are emitted at regular intervals. For more details of the
VSOT app, please see [8].

4.2 Electroencephalography Tractor Beam Game

Interactive gaming presents latency requirements that can
be fulfilled by computing at the edge. For example, Deut-
sche Telekom is preparing an Edge-native gaming experien-
ces [23], showing the applicability of edge in such scenarios.

Electroencephalography Tractor Beam Game (EEGTBG)
is a latency-critical application where the player wears a spe-
cial headset connected to her/his smartphone. The objective

of this game is to gather some items by concentrating on
them. The application running on a user’s smartphone pro-
cesses the EEG signals produced by the headset. The player
who has a better concentration score on an item can grab it to
herself/himself. The more concentrated the players are, the
more things they will attract to themselves. Real-time proc-
essing and ultra-low delays are the desired specifications for
this game to work accurately, and therefore they are the cru-
cial application requirements.

The five components of EEGTBG are shown in Fig. 3.
Table 3 shows all the EEGTBG components, while Table 4
presents the EEGTBG state transitions between them. The first
EEGTBG’s component is the EEG Sensorm1. This component
is responsible for sending the concentration data from the
user headset to the Client componentm2, which is running on
the user phone. After the m2 has received the concentration
data, it checks for any inconsistencies. It sends the data to the
Concentration Calculator componentm4 (running outside the
user’s phone) to obtain the player concentration level score.
The concentration level score is calculated based on signals
collected from the client headset. After that, m2 gets the con-
centration level results from other players by requesting the
data from the Coordinator component m5. All these data

Fig. 2. Diagram of the components and edges representing the commu-
nication of the VSOTapp – Figure adapted from [13].

TABLE 1
VSOTComponents

Index Component Name

m1 Motion Detector

m2 Object Detector

m3 User Interface

m4 Object Tracker

m5 PTZ Control

TABLE 2
VSOT State Transitions

Arc Action Name

st1 Raw Video Stream

st2 Motion Video Stream

st3 Detected Object

st4 Object Location

st5 PTZ Parameters

Fig. 3. Diagram of the components and edges representing the commu-
nication of the EEGTBG app – Figure adapted from [8].

TABLE 3
EEGTBG Components

Index component Name

m1 EEG Sensor

m2 Client

m3 Display Actuator

m4 Concentration Calculator

m5 Coordinator

2828 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2022



(local and global players) are transmitted to Display Actuator
componentm3 that displays the game’s current state.

The arcs with their respective directions (Up or Down)
and the number of transmitted bytes are represented in
Fig. 3. For instance, the arc st4 has a selectivity of 0.9, while
arcs st6 and st7 are periodically generated with a time inter-
val of 100 ms. For more details of the EEGTBG app, please
see [13].

5 SCHEDULING MECHANISMS

Let D ¼ fd1; d2; . . .g be a set of edge devices connected to
access points (e.g., WiFi or LTE/5G) of the fog-cloud hierar-
chy infrastructure. Also, let A ¼ fa1; a2; . . .g be a set of
applications running in the fog system by those devices. As
discussed in Section 4, each application of A is represented
by a directed graph Gai ¼ ðVai ; EaiÞ, where Vai comprises
the set of the app ai’s components, and Eai depicts the set of
directed arcs connecting them. The fog-cloud hierarchy is
represented by the overall set of computing resources R ¼
fr11; r12; . . . ; rji ; . . . ; rkn�1; r

k
ng, with 1 � i � n and 1 � j � k,

where n and k are the indices representing, respectively, the
unique identification number for resources and cloudlets.
Each resource rji of R has a connectivity vector B represent-
ing the available bandwidth with every resources in the fog
scenario; i.e., rja:B½rkb � � 0 and rjaB:½rja� ¼ 1; 8rja; rkb 2 R. If rja
and rkb are unreachable, then rja:B½rkb � ¼ rkb :B½rja� ¼ 0. All
model parameters are shown in Table 5.

5.1 Previous Work

We consider two decision-making processes from our previ-
ous work [3], namely prioritization policy and component allo-
cation policy. The former focuses on choosing which
application(s) have the highest priority to stay closer to the
edge. This policy is modeled using a simple ranking mecha-
nism, as detailed in [3]. On the other hand, the latter con-
cerns choosing which application components should be
moved upwards in the fog-cloud hierarchy when a resource
cannot handle all incoming requests. These two decision-
making rules are then individually combined to compose
the scheduling approaches (discussed later in this section),
which is used to distribute the tasks over the fog-cloud
infrastructure. We briefly describe the details of the prioriti-
zation & component allocation policies before diving into
the scheduling approaches.

5.1.1 Prioritization Policy

The prioritization concentrates on determining which appli-
cation(s) have the highest priority to stay closer to the edge,
taking advantage of having low latency with the user and
offer a quality of service accordingly. Three prioritization
flavors are considered for this policy. They are as follows:

� Concurrent: This policy is actually a no-prioritization
scheme. Application requests that arrive at a cloudlet
are simply allocated to such a cloudlet without
checking its capacity or current usage upon applica-
tion computational demand request.

� First Come-First Served (FCFS): Until there are no
more computing resources available in the cloudlet,
application requests are served in the order of their
arrival. When the cloudlet becomes full, i.e., the
remaining CPU capacity is smaller than application
requirements), applications requests are moved
upwards in the cloud-fog hierarchy. The upwards
movement follows another policy, as we describe in
Section 5.1.2.

� Delay Priority: An application requiring lower delay
are prioritized and scheduled first at the (lowest)
cloudlet level if it is not full. The next class of appli-
cation requests is scheduled in the cloudlet until
there is a resource available. Otherwise, the applica-
tion is moved upwards according to a policy chosen
for this action, as we described in Section 5.1.2.

5.1.2 Component Allocation Policy

The component allocation policy decides how the applica-
tion components are moved up in the fog-cloud hierarchy.
Derived from [13], two allocation approaches are consid-
ered for this policy in this paper:

� Edgewards: This policy then iterates on the hierarchy
towards the cloud and tries to place the application
component on alternative cloudlets, reaching the
cloud if none cloudlet is available. The application
components that have data dependency from the

TABLE 4
EEGTBG State Transitions

Arc Action

st1 EEG

st2 Self state update

st3 Global state update

st4 Sensor

st5 Concentration

st6 Player game state

st7 Global game state

TABLE 5
Table of the Model Parameters

Devices Parameters Description

D ¼ fd1; d2; . . .g Set of devices connected to access
points

Application Parameters Description

A ¼ fa1; a2; . . . ; akg Set of applications deployed by
the devices

Gai ¼ ðVai ; EaiÞ Graph representing the
application ai

Vai Set of the app ai’s components
Eai Set of directed arcs connecting ai’s

components

Fog-cloud parameters Description

R ¼ fr11; . . . ; rji ; . . . ; rkng Set of computing resources in the
hierarchy

n Resource id
k Cloudlet id
rji :B Associated Bandwidth Vector
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component that is supposed to be migrated are also
moved upwards in the hierarchy toward the cloud. It
means that all the components are grouped and
moved up to reduce the delay communication among
them. Previously allocated application instances are
also migrated towards the cloud. This action collabo-
rates to free up space in the cloudlets for future alloca-
tion requests.

� Individual: Unlike Edgewards, which moves all
application components together upwards in the
hierarchy, this policy focuses on choosing individual
components to move upwards. Thus, without having
the overhead of migrating all application compo-
nents, this policy can offer low delays for real-time
applications that seek a better quality of service.

5.1.3 Scheduling Mechanisms

In our previous works [3], [8], we combined the prioritiza-
tion and allocation policies to yield the scheduling mecha-
nisms. Four were developed and are described below:

� FCFS & Edgewards (FCFS-E): This mechanism com-
bines the FCFS prioritization policy with the edge-
wards component allocation policy. To this end, the
first application to arrive at the cloudlet has priority
to remain at the cloudlet, and when incoming appli-
cation arrives and not enough free resources are
available, all components of previously allocated
application instances are grouped and moved
upwards.

� FCFS & Individual (FCFS-I): Similarly to the previous
mechanism, but in this case, application components
are moved upwards individually.

� Delay-Priority & Edgewards (DP-E): In this scheduling
mechanism, when there are not enough resources
available for the incoming application, the applica-
tion components with the lowest delay priority are
grouped and moved up together in the hierarchy.

� Delay-Priority & Individual (DP-I): Similar to the
above mechanism; but, components of the lowest
delay-priority application are moved individually.

In the next section, we advance in the discussion of
scheduling strategies. We describe the proposed scheduling
mechanism to perform the decision-making on which appli-
cation components run on which computing resources, con-
sidering the application computing requirements, the
resources capacity, and the data transfer between applica-
tion components.

5.2 Proposed Communication-Based Policy

In this paper, we are concerned with allocating resources
from the set of resources R to applications’ components
within the applications A. Our previous policies work well
in many scenarios, albeit real-time applications requiring
low delays may produce a smaller or unacceptable quality
of service for users of that application. The Delay Priority
Strategies (DP-E and DP-I) we created in [8] have success-
fully reduced delays. Still, these strategies have increased
the total network for applications that are network demand-
ing. For instance, in our previous experiments, the VSOT

components are always moved to the cloud to prioritize the
EEGBTG’s components.

To contour this issue, we propose in this paper a different
policy to move components upwards in the fog-cloud infra-
structure, focusing on the amount of data present in the
component’s dependencies. Aiming to reduce the network
impact on the application’s delay, the proposed communi-
cation-aware scheduling policy, called Communication Based
& Edgewards (CB-E) (Algorithm 1), generates all possible
sets of components that could be moved upwards in the
hierarchy (Algorithm 2) before triggering the migration of
the lowest impact set (Algorithm 3).

Algorithm 1. Communication Based& Edgewards (CB-E)

Require: Cloudlet c
Ensure: Set of modulesM moved upwards
1: S ¼ Component sets in c (Algorithm 2).
2: for all component setM 2 S do
3: CostM ¼ 0
4: for all componentm 2 M do
5: CostM ¼ CostMþ impact of M (Algorithm 3).
6: end for
7: end for
8: MoveM upwards whose CostM is minimum.

Algorithm 2. Component Sets Generation

Require: Cloudlet c
Ensure: Component sets S
1: S ¼ ;
2: for all componentms 2 C do
3: for all componentmt 2 c do
4: if =2 Up arc fromms tomt then
5: M ¼ fmsg
6: S ¼ S [ fMg
7: end if
8: end for
9: end for
10: Sold ¼ ;
11: while Sold ! ¼ S do
12: Sold ¼ S
13: for all setMs 2 S do
14: for all componentms 2 Ms do
15: for allms incoming edge e do
16: Mme ¼ fmsg [ fsourceðeÞg
17: S ¼ S [Mme

18: end for
19: end for
20: end for
21: end while

The proposed algorithm starts when a new application
request arrives, which is initially assigned to the cloudlet at
its access point. Note that, at this point, other existing appli-
cations are already running at the cloudlet and with compo-
nents potentially running at other levels of the fog-cloud
hierarchy. The proposed CB-E scheduling policy starts by
generating all component sets that could be moved
upwards (Algorithm 2). Starting from the cloudlet c at the
lowest level, it creates a collection of sets S containing a sin-
gleton for each component that is not the source of an arc to
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another component in the same cloudlet c (lines 2-10 in
Algorithm 2). Next, for each set added to S, the algorithm
searches for source components of edges which target is a
component in that set (lines 13-19). Then, for each compo-
nent that satisfies this condition, a new set is created with
this new component and the component from that set. This
process is iterated until no new set is created.

With the component set created by Algorithm 2, it is nec-
essary to compute the data transfers each component set
generates, which is used to compare the impact each set
could have on the overall network. The communication
impact Ie of an edge e is defined in Equation (1) as follows:

Ie ¼ b� s� Ta

p
; (1)

where b is the amount of bytes transferred from the edge
source to the target component, s is the edge selectivity
(how much data is sent out through the edge based on the
data from input edges), Ta is the periodicity at which the
application transmits data, and p is the periodicity of
edge e. The communication impact of a component m is
computed by Algorithm 3, which utilizes the sets computed
by Algorithm 1 in conjunction with Equation (1) to deter-
mine the communication impact of each component in a
component set.

Algorithm 3. Communication Impact for a Component
Setm

Require: Component setM ;m 2 M ; application arcs E.
Ensure: total impactm
1: total impactm ¼ 0
2: for all application edge e 2 E do
3: Ie ¼ b� s� Ta

p – Equation (1)
4: ifm is the source of e then
5: ifNo upward device has the target component of e then
6: if target component of e =2 M then
7: total impactm ¼ total impactþ Ie
8: end if
9: else
10: total impactm ¼ total impact� Ie
11: end if
12: end if
13: ifm is the target of e then
14: ifNoupward device has the source component of e then
15: if source component of e =2 M then
16: total impactm ¼ total impactþ Ie
17: end if
18: else
19: total impactm ¼ total impact� Ie
20: end if
21: end if
22: end for

5.3 Toy Example

To demonstrate the entire process described for the pro-
posed communication-based & Edgewards (CB-E) schedul-
ing policy, we illustrate a toy application example in Fig. 4
comprised of 4 application components, m1;m2;m3;m4,
running in three different locations (device, cloudlet, and

cloud), as shown in Table 6. Assume the cloudlet where the
components m2 and m3 are running is overloaded, the pro-
posed CB-E policy tries to relocate them upwards in the
hierarchy. Edge labels describe (i) the amount of data to be
transferred between components, (ii) data transfer indicator
(U for up and D for down in the hierarchy), (iii) respective
edge selectivity, and (iv) a standard periodicity of 10ms for
application edges.

According to Algorithm 2, the proposed CB-E policy
attempts to move the set of components that generate less
impact in the application loop (i.e., ðraw dataÞm1 ! m2

! m3 ! m4 ! m3 ! m1 ðprocessed dataÞ) and in the over-
all network bandwidth. As the cloud is traditionally further
away from the cloudlet, the proposed policy should avoid
migrating components to the cloud. Hence, a singleton (M)
comprisingm3 is initially created, sincem3 is not a source of
an arc to another component in the same location (cloudlet,
and m4 is in the cloud – see Table 6), and meanwhile com-
ponent m2 has an upward edge to m3 and both are running
in the same location (cloudlet), thus m2 has no singleton
created for itself. Next, in the loop iteration between lines 13-
19), a new set fm3;m2g is created, since m2 is the source of
an edge targeting m3. Finally, in the third iteration, no set is
created, resulting in the final set S ¼ S [ fMg ¼
ffm3g; fm3;m2gg. After Algorithm 2 finalizes, Algorithm 3
is called. For the setM1 ¼ fm3g:

� e3 will not transfer data to the cloud, thus its impact
ð�500Þð0:5Þ ¼ �250.

� e4 will not transfer data from the cloud, thus
ð�200Þð1Þ ¼ �200.

� e2 will start transfer data to the cloud, thus
ð450Þð1Þ ¼ 450.

� e5 will transfer data from the cloud, thus
ð200Þð2Þð1050Þ ¼ 40.

This results in a communication impact of ð�250Þ þ
ð�200Þ þ 450þ 40 ¼ 40 if the set M1 is moved to the cloud.
For the setM2 ¼ fm3;m2g, the impact is calculated as follows:

Fig. 4. Toy example application with four component nodes and five com-
munication edges.

TABLE 6
Toy Example Component

Index Component Name Location

m1 Component 1 Device

m2 Component 2 Cloudlet

m3 Component 3 Cloudlet

m4 Component 4 Cloud

PEIXOTO ETAL.: HIERARCHICAL SCHEDULING MECHANISMS IN MULTI-LEVEL FOG COMPUTING 2831



� e3 will not transfer data to the cloud, thus
ð�500Þð0:5Þ ¼ �250.

� e4 will not transfer data from the cloud, thus
ð�200Þð1Þ ¼ �200.

� e1 will transfer data to the cloud, thus ð500Þð1Þ ¼ 500.

� e5 will transfer data from the cloud, thus
ð200Þð2Þð1050Þ ¼ 40.

Thus, the communication impact for M2 ¼ 90. In this toy
example, the set which results in the lowest impact amount
of transmitting data to/from the cloud isM1 ¼ fm3g.

6 EVALUATION SETUP

Different module allocation policies were discussed in this
paper, considering the execution of applications in different
fog computing topologies. We have analyzed the impact on
the network consumption and runtime of the proposed
scheduling procedures. The key to the experimental evalua-
tion is the use of many hierarchical levels of cloudlets to run
the VSOT and EEGBTG applications. We use the iFogSim
simulator [13] to carry out this evaluation. iFogSim provides
only one level of cloudlets by applying the default configu-
ration. To analyze the impact of introducing more hierarchi-
cal levels of cloudlets, we have created extra levels of
cloudlets in iFogSim to measure the application’s network
usage and delays using the proposed scheduling mecha-
nisms. This evaluation aims to take full advantage of cloud-
lets capacity and keep more applications’ components
closer to the user instead of pushing them to the cloud. The
network and computing resources were modeled according
to the CloudSim and iFogSim primitives, reflecting applica-
tions with data dependencies and computing resources that
can become overloaded when concurrency occurs in the dis-
crete event simulator. Even though iFogSim does not
natively introduce mobility simulation in real-world maps,
its functionalities allowed us to evaluate the allocation poli-
cies when users leave one cloudlet and connect to another.
More complex mobility patterns can be studied using an
extension called MobFogSim [24].

It is also important to highlight that our proposed sched-
uler is ready to embrace multiple levels of cloudlets in the

cloud-fog hierarchy. In the simulation carried out in this
paper, we have used a scenario comprising three levels
(two layers of cloudlets and one cloud layer) to expose the
efficacy and robustness of our work. Further studies com-
prising more cloudlet layers are left as future work.

The evaluated mobility scenario is illustrated in Fig. 5.
There are 4 VSOT users with 2 VSOT applications each, con-
sisting of 8 VSOT applications running in only one cloudlet.
Moreover, the scenario also contains 12 users (devices) run-
ning the EEGTBG application. Each EEGTBG user has 2
instances of the EEGBTG game application running in his/
her device, totalizing 24 EEGTBG instances. The EEGTBG
users are initialized at the lowest level of cloudlets, and
then they are moved to Cloudlet 2. Fig. 5 illustrates only
one cloudlet level (i.e., Type A or B), but the experimental
evaluation was conducted using three different fog topolo-
gies, as illustrated in Fig. 6.

The hierarchical level type A shown in Fig. 6a presents a
single cloudlet with low processing capacity and close to
the user. It has a processing capacity of 2,000 MIPS (millions
of instructions per second) and was connected to a proxy
(service function) through a network link with 10,000 Kbps
of bandwidth and 75 milliseconds of latency. The devices
were connected to the cloudlet through a wireless network
link with 10,000 Kbps of bandwidth and four milliseconds
of latency. The hierarchical level type B depicted in Fig. 6b
has a cloudlet connected to proxy service function through
a network link with 10,000 Kbps of bandwidth and 50 milli-
seconds of latency. It has twice the processing power of A,
but it is located farther from the end-users, with 29 millisec-
onds of latency in communication with the devices. Lastly,
the hierarchical level type C illustrated in Fig. 6c brings
together the benefits of the previous A and B scenarios; that
is, one cloudlet with low processing capacity and close to
users, and another cloudlet slight farther from the network
edge (mobile devices) with more processing power and
closer to the cloud.

The proposed algorithmsmanage the VSOT and EEGTBG
applications’ component placement at the different fog-
cloud levels. It worthwhile to highlight that the VSOT appli-
cation is not delay-sensitive, but it is network demanding

Fig. 6. Fog-cloud hierarchical types.

Fig. 5. Mobility scenario: A total of 12 EEGTBG devices with 2 game
instances each move towards Cloudlet 2, where 8 cameras (VSOT) are
running.
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(i.e., a bandwidth-hungry application). Meanwhile, the
EEGTBG application is a real-time game, whichmeans that it
is delay-sensitive. For both applications, the loop delay con-
sists of the round-trip time for the execution of all compo-
nents until displaying the results on the devices’ screen.

Based on the scenario shown in Fig. 5, we have deployed
the simulation setups shown in Figs. 6a, 6b and 6c with eight
instances of the VSOT application and twenty four instances
of the EEGTBG application. The number of instances was
selected to create a bottleneck due to users’ mobility in terms
of light and heavy workloads in the cloudlet. After the simu-
lation has started, wemove the EEGTBG players, one by one,
from cloudlets 1 and 3 to cloudlet 2 as an act of emulating the
user mobility behavior. By doing so, we attempted to assess
any quality of service degradation resulting from poor
resource allocation. Since EEGTBG has low-latency require-
ments, we hypothesize that a player having its instance in a
cloudlet will only play against players whose EEGTBG
instancewould be allocated in the same cloudlet.

Note that the actual CPU time consumed by each applica-
tion component is not precisely known at the scheduling
stage because the scheduling decision-making process
occurs before runtime. When scheduling, strategies must
verify that the Cloudlet (at each Cloudlet level is the case
with Fig. 6c) has sufficient free CPU capacity to handle each
applicationmodule. At runtime phase, each application uses
at time ti the CPU capacityCi, which depends on the interac-
tion between modules – for example, how much data it
receives or sends to other modules. These estimations come
from the application description (see Section 4), which mod-
els the application as a directed graph and its attributes, as
commonly found in the scheduling literature [13], [25].

7 RESULTS

We shall discuss in this section a comprehensive set of
experiments to validate our proposed communication-
aware scheduling policies for a fog-cloud computing envi-
ronment: CommunicationBased & Edgewards (CB-E). The
experiment scenarios were set up using the parameters
depicted in Figs. 6a, 6b, and 6c. Each simulation was
repeated ten times to calculate the average time for both
metrics delay (in ms) and total network usage (in KB),
guaranteeing a statistically accurate result. Data generated
by the applications at the edge are transferred in the net-
work following a normal distribution, and the results pre-
sented in the graphs show a 95 percent confidence interval.

We have set up the scenarios using two distinct workload
types (one light and one heavy) to represent the user
demand in terms of the number of applications per cloudlet.

The light workload configuration consists of requests gener-
ated by four instances of the VSOT applications and up to
six instances of the EEGTBG applications. The heavy work-
load configuration consists of requests generated by four
instances of VSOT and up to twelve instances of EEGTBG.

As a reminder, the Table 7 shows the acronym and the
meaning of each algorithm used in this set of experiments.

7.1 Hierarchical Level Type A

Fig. 7 shows an analysis of the loop delays on the VSOT and
EEGTBG applications for the six different scheduling mech-
anisms stated in Table 7. According to results using both
light and heavy workload shown in Fig. 7a, the scheduling
approaches DP-E, DP-I, and CB-E have higher average
delays than other scheduling mechanisms. Although this
slight increase in delay does not impact the VSOT applica-
tion, they have reduced the delay for the EEGTBG applica-
tions, as Fig. 7b illustrates. The reduction on the delay
caused by DP-E, DP-I, and CB-E occur due to the prioritiza-
tion-aware scheme for EEGTBG application’s components,
which is a delay-sensitive application. Another aspect about
EEGTBG is related to the naı̈ve concurrent policy, which
does not contain any prioritization design. It negatively
impacts the use of resources at the network edge, causing
massive delays into the EEGTBG application loop, espe-
cially when EEGTBG faces a heavy workload.

Fig. 8 shows the loop delays on the VSOT and EEGBTG
application using all the six scheduling mechanisms accord-
ing to the number of users that have moved in the fog-cloud
hierarchy. When only one EEGTBG player is moved to the
cloudlet, all six scheduling mechanisms have the same delay
results for both applications. However, when the second
EEGTBG player is moved to the cloudlet, the scheduling
mechanisms start to act on the application’s instances

Fig. 7. Application loop delays in Hierarchy A according to the scheduling
algorithms and the workload type.

TABLE 7
Algorithm’s Acronym

Acronym Definition

Concurrent Concurrent execution [3]
FCFS-E First-Come First Served & Edgewards from [3]
DP-E Delay-Priority & Edgewards from [3]
FCFS-I First-Come First Served & Individual from [3]
DP-I Delay-Priority & Individual from [3]
CB-E Proposed Communication Based & Edgewards

Fig. 8. Application loop delays according to the scheduling algorithms.
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differently. In order to maintain the delays as lower as possi-
ble for EEGTBG, DP-E, DP-I, and CB-E prioritize the EEGTBG
application request arrival, (Fig. 8b), moving the VSOT com-
ponents to the cloud. As a result, it increases the VSOT loop
delay (Figs. 8a) to an acceptable level of about 360 millisec-
onds for DP-E and CB-E, and about 150 milliseconds for DP-I.
However, CB-E reduces the VSOT delay after 11 users are
moved. Although EEGTBG application has the highest prior-
ity to be closer to the edge, cloudlet #1 enters an overloaded
state (after 11 users), which leads CB-E to move the EEGTBG
modules upwards in the fog-cloud hierarchy (cloudlet #2 and
cloud). At this point, VSOT modules have more resources
available in cloudlet #1, which reduces the delay for VSOT,
but increases the delay for EEGTBG.

According to the scheduling mechanism used in the eval-
uation, the decision to move the application’s components
to the cloud affects the total use of the network differently,
as detailed in Fig. 9. The impact of the scheduling mecha-
nisms on the total network usage is given by the total
amount of data transferred within all network links. As can
be seen in Fig. 9, among all scheduling mechanisms, the
concurrent scheduling mechanism has a lower total net-
work usage, because it maintains all components closer to
the users in the cloudlet, avoiding the communication
between the cloudlet and the cloud. However, the naive
decision imposed by the concurrent approach affects nega-
tively the loop delay results of the applications.

AlthoughDP-E, DP-I, andCB-E offer the lower loop delays
for the EEGTBG application, these scheduling mechanisms
use the network (bandwidth) more intensively. This occurs as
a result of the migration of the VSOT application components
(a network-intensive application) to the cloud when the
cloudlet is overloaded. Therefore, when the VSOT compo-
nents aremoved upwards in the fog-cloud hierarchy, the total
network usage is increased because of a large amount of data
stream is then transmitted from the devices to the cloud.

We notice in Fig. 9b that CB-E maintains the data trans-
mitted in the network as lower as possible, besides promot-
ing the EEGTBG components prioritization. A critical case
in point is when the 5th instance of EEGTBG is moved to
the cloud. In this particular case, the number of EEGTBG
application components in the cloudlet is increased, which
causes all VSOT application components to run currently
on the cloudlet. As a consequence, new component requests
of incoming VSOT application is sent straightaway to the
cloud, which leads to an increase in the use of the network.

Nevertheless, considering only the three delay-aware
scheduling mechanisms evaluated in this paper, CB-E trans-
mits on average 2.7 percent less data than DP-I and 17.2 per-
cent less data than DP-E.

7.2 Hierarchical Level Type B

The hierarchical level type B scenario has only one cloudlet
farther from the users’ devices when comparing to A,
impacting negatively delay-sensitive applications. In this
scenario, DP-E, DP-I, and CB-E repeat the same behavior of
prioritizing the delay EEGTBG (Fig. 10b) over VSOT
(Fig. 10a). Notably, these scheduling approaches reduce the
delay by more than 50 percent compared with the other
approaches for the EEGTBG scenario.

Fig. 11 shows the loop delays for the VSOT and EEGTBG
application using all scheduling mechanisms. When only
one EEGTBG player has been moved to the cloudlet, all
strategies have the same results for both types of applica-
tions. However, when the 2nd EEGTBG player is moved to
the cloudlet (see Fig. 11a), different scheduling mechanisms
start to impact the application performance. DP-E, DP-I,
and CB-E have increased the VSOT loop delays, while the
other approaches have maintained a low delay for this
application. In other words, DP-E, DP-I, and CB-E increased
the VSOT loop delay to an acceptable level of about 360
milliseconds while maintaining the EEGTBG delays as
lower as possible (Fig. 11b).

From the migration of the 7th user (see Fig. 11b), the con-
current schedulingmechanism brings resource contention to
the cloudlet, increasing the loop delay of EEGTBG applica-
tion. When the 8th user is moved (Fig. 11a), DP-E, DP-I and,
CB-E start offering the same delay result for VSOT applica-
tions. These results keep occurring until 12th user is moved.
When the 12th user is moved to the Cloudlet, the overloaded

Fig. 10. Application loop delays in Hierarchy B according to the schedul-
ing algorithms and the workload type.

Fig. 9. Network usage according to the scheduling algorithm in hierarchi-
cal type A.

Fig. 11. Application loop delays according to the scheduling algorithms.
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scenario leads the CB-E approach to balance the network
usage with the EEGTBG applications, but keeping the VSOT
components in the cloudlet, which decreases the delay for
VSOT applications. On the other hand, it causes a slight
increase in the delay for EEGTBG applications.

The scheduling decision also impacts the total network
usage. Fig. 12 shows the total amount of data transmitted in
the network for all different strategies. The concurrent
approach results in lower network usage, since it keeps all
modules in the cloudlet, making the communication to the
cloud unnecessary. However, as all applications are in the
same location, the concurrent strategy increases the average
delay due to concurrency in the cloudlet resources. When
we analyze only the three delay-aware strategies (DP-E,
DP-I, and CB-E), we can notice that they increased the net-
work usage as EEGTBG players arrived at cloudlet and
VSOT modules are moved upwards to the cloud.

Considering the average for light and heavy workloads
in Fig. 12, DP-E is the strategy that uses more the network
overall. Otherwise, the CB-E strategy is able to reduce the
application delay and transmit less data (2.3 percent less
than DP-E and 9.8 percent less than DP-I) on the network.

7.3 Hierarchical Level Type C

Unlike the previous topologies presented, the hierarchical
level type C has two cloudlet levels besides the cloud layer.
In this new case, as the concurrent scheduling mechanism
would use only the first level cloudlet in the hierarchical
type C, which has the same configuration as hierarchical
type A. Then, we removed from the set of experiments the
simulations using the concurrent approach when the hierar-
chical level type C scenario is employed.

Fig. 13b shows that, as the number of cloudlets (and resour-
ces closer to the users) increases, the EEGTBG applications
delay is not significantly affected by DP-E, DP-I, and CB-E
scheduling mechanisms. Likewise, the hierarchical level
type C represents a positive impact on the VSOT applica-
tion, offering more resources to run its modules closer to
the users. Fig. 13a shows that DP-E, DP-I, and CB-E were
able to slightly reduce delays for both light and heavy work-
loads when compared to the Figs. 7a and 10a.

DP-I offers the lowest average delay for EEGTBG appli-
cations, as illustrated in Figs. 13b and 14b. Due to the
increase in the amount of resources closer to the users’ devi-
ces in this scenario (Fig. 14a), DP-I maintains the EEGTBG
components in the cloudlet #1 and moves upwards to
cloudlet #2 the VSOT components. However, when the 9th
user is moved, there is no resource available in the cloudlet
#1 for more EEGTBG components applications, then, a few
EEGTBG components are moved upwards to cloudlet #2,
and all VSOT components moved upwards to the cloud. On
the other hand, in the 9th, 10th, and 11th EEGTBG user
arrivals, we notice an increasing in the network usage when
using CB-E as the VSOT components are moved to the
cloud (Fig. 13a). In fact, CB-E decides to compensate by
maintaining all VSOT components in cloudlet #1 when the
12th EEGTBG user arrives. Next, CB-E distributes the
EEGBTG components in cloudlet #2 and cloud, resulting in
an increased delay for EEGTBG applications (Fig. 13b).

Analyzing the total network usage in Fig. 15, CB-E
presents a reduction of 34.12 percent on data transmitted
when compared to DP-E. However, as a simple prioriti-
zation technique looks more efficient in a more resource-
ful scenario, DP-I is 10.8 percent better than CB-E in this
aspect.

Fig. 13. Application loop delays in Hierarchy C according to the schedul-
ing algorithms and the workload type.

Fig. 14. Application loop delays according to the scheduling algorithms.
Fig. 12. Network usage according to the scheduling algorithm in hierar-
chical type B.

Fig. 15. Network usage according to the scheduling algorithm in hierar-
chical type C.
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Regarding the network usage shown in Fig. 15, the topol-
ogy configuration C lessens the amount of data transmitted
on the network in the presence of more resources in terms
of the combination of two cloudlet levels, which avoids the
migration of components upwards to the cloud. For exam-
ple, CB-E in scenario type C represents 60 percent of net-
work usage when compared to scenario type A, and 27
percent, when compared to scenario type B. This behavior
occurs because CB-E makes heavy use of the network only
when strictly necessary, that is, when all cloudlets are over-
loaded and it moving VSOT modules upwards is indeed
unavoidable. The CB-E policy analyzes the communication
impact generated by moving each application module’s set
and concludes that moving only one type of module in these
circumstances is better because it causes less impact on the
use of the network.

7.4 Discussion

We presented in this paper the combinations of policies (pri-
oritization with component allocation) using three hierar-
chical layout types (Fig. 6) within the context of having a
fog architecture comprising two-levels of fog nodes between
the edge and the cloud. As the results show, it becomes clear
that these policies have a direct impact on applications’
quality of service, resulting in different behaviors according
to the application requirements and computing infrastruc-
ture characteristics.

Amulti-level fog hierarchy can achieve several benefits in
terms of network usage and delays. For instance, by using
the multi-level hierarchical type C, the network usage is
84.07 percent lower than the single-level hierarchical type A
and B.Moreover, the network delay in themulti-level hierar-
chical type Cwas mitigated by 41.14 percent. These numbers
emphasize the importance of addressing resource manage-
ment and analyses of multi-layered fog infrastructures
wisely. Aswe show, the employment of two types of applica-
tions (VSOT and EEGTBG) with different network require-
ments has given us insights on how the prioritization policy
flavor can impact the network consumption and average
delays differently. This impact is very likely to influence
(negatively) the quality of experience of applications running
on devices connected in a fog-based computing scenario.

The proposed communication-based scheduling policy
was able to show a good trade-off between the network
usage and delays when compared to a delay-priority alloca-
tion policy that does not take into account the communica-
tion between application components, especially when
heavyworkloads come into play. The use of solely delay-pri-
ority policy can, howsoever, achieve significant usability in
occasions when the fog infrastructure is facing lighter work-
loads, which may not be always the case. As we emphasize
in this paper, the combination of prioritization and commu-
nication-based policies alongwith state of the networkwork-
load is auspicious. Schedulingmechanisms aware of this can
provide a good trade-off between network usage and delays
in a scenario where dynamic and heterogeneous workloads
are present. The results shown in this paper corroborate this
statement. For instance, the hierarchical type C, which is
more resourceful due to the presence of two cloudlet levels,
enables the delay-priority only approach to achieve better

results for both metrics (delay and network usage). On the
other hand, the proposed CB-E mechanism outperformed
the delay-priority in the hierarchical types A and B, where
resources are more scarce, and making the system more
capable of facing a heavier workload on average. Also, in
this particular case, the proposed CB-E was able to maintain
a low delay for latency-sensitive applications, while reduc-
ing the total network usage (data transfer) between the com-
munication of application components. Results of which
would not be able to be achieved by using non-sophisticated
policies in the literature highlighted in Table 7.

If a multi-tier fog-cloud networking architecture would
be a reality for end-users today, the proposed CB-E schedul-
ing policy could assist the current massive increase of com-
puting workload at the network edge driven by the
coronavirus outbreak from the COVID-19 disease. In this
particular case, as the moment the world entered in lock-
down and people were forced to apply social distance meas-
ures and work from home, there was a significant increase
in the use of cloud-based, bandwidth-hungry and latency-
sensitive applications at the network edge. In a fog comput-
ing scenario comprising multiple cloudlet layers, the out-
come of this problem could be slightly different if the edge
users could appreciate an optimized fog-computing net-
work managed by communication-aware approaches. For
instance, our proposed CB-E allocation policy could be used
by telco service providers/operators to mitigate this over-
load issue during this time. Our proposed CB-E offered low
delay and low network usage by deciding which applica-
tion component should be moved from a cloudlet layer
upwards to the cloud to lessen potential network bottle-
necks and keep overall delays reduced.

8 CONCLUSION

The unprecedented number of applications running at the
edge of the network with vastly different requirements and
characteristics makes the resource allocation problem chal-
lenging. Sophisticated bandwidth-hungry applications
nowadays demand ultra-low latency requirements to oper-
ate correctly and satisfy the user quality of experience. Fog
computing has emerged to satisfy these network demands
and latency requirements by bringing cloud-like computing
capabilities directly to the network’s edge.

This paper has proposed a component allocation policy
to consider the data transfers between application compo-
nents in a fog computing architecture comprising several
layers of fog nodes between the edge and the cloud. A com-
munication-Based (CB-E) policy is proposed to determine
the best locations for the application components to run (at
the edge/fog node or the cloud) based on the amount of
data transferred between components. For instance, the pro-
posed CB-policy decides which application component
(already deployed) should be moved upwards in the cloud
or stay at the edge instead of dispatching the arriving appli-
cation component directly to the cloud.

We pointed out in this paper that the common Delay-
Priority (DP-I) resource allocation method from the litera-
ture has been successful in reducing network delay between
application components, albeit this method only slightly
reduces the network usage by the application components
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when data need to be transferred. To overcome this limita-
tion, our proposed Communication-based (CB-E) scheme
computes the best component(s) to be moved upwards in
the fog-cloud hierarchy based on data dependencies’ char-
acteristics. Because the proposed CB-E allocation method
focuses on the amount of data transferred between each
application component, our proposed approach overcomes
the existing DP-I technique.

We aim as future work to develop a combined, tunable
algorithm that combines aspects from both delay-priority
and communication-based policies.
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