
TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX 1

TNDP: Tensor-based Network Distance
Prediction with Confidence Intervals

Haojun Huang, Li Li, Geyong Min, Wang Miao, Yingying Zhu, and Yangming Zhao

Abstract—The knowledge of network distances, in the form of delay or latency, for example, is beneficial to a number of distributed
applications. Notice that it is difficult and expensive to implement global network measurements to obtain network distance, a feasible
idea is to predict unknown distances by introducing network coordinates with limited network measurements. The existing solutions
always represent the unknown network distances in a rather unique number. However, research and applications indicate that the
real network distances are hard to be accurately figured out and changes subtly in an interval over time with the dynamic network
environments. Accordingly, this paper proposes a tensor-based network distance prediction (TNDP) approach to represent network
distance with confidence intervals, by exploiting the random distance tensor and distributed matrix factorization. With a small set of
network measurements among the nodes selected randomly, a distance matrix tensor has been established and factorized into the
product of two location matrixes with the adaptive SGD-based learning solution. By introducing the important training determinants,
including weight matrix, regularization coefficient, and minibatch gradient descent with the exponential decay rates, the unknown
distances among nodes can be accurately inferred in the forms of confidence intervals, with quick convergence and less overfitting.
Extensive experimental simulations on a wide variety of available data sets demonstrate that TNDP is superior to other approaches in
terms of accuracy for network distance prediction.

Index Terms—Network distance prediction, network measurements, network tensor, matrix factorization, training, confidence intervals.

F

1 INTRODUCTION

IN current networks, there are a large number of
distributed applications, such as content distribution

networks (CDNs) [1], overlay networks [2], and peer-to-
peer file sharing [3], that could provide the same many-
to-one services for users. The users can benefit from
choosing the applications that provide them services if
the network distances to them are known in advance. For
instance, a client would enjoy downloading the desired
video from many candidate CDN servers that have
the highest bandwidth to them subject to the known
network distances. However, due to the high cost of
network measurements and severe traffic congestion, it
is infeasible to always actively probe end-to-end network
distances among all the network entities [4], [5], [6].
Accordingly, it is urgent to design alternative approaches
to understand the network distances for ever-incresing
distributed applications.

Network distance prediction has been considered as
a promising solution to fulfil this requirement [4], [7].
The main idea is to exploit the limited network distances
among a small set of node-pairs, in the form of either
one-way delay or more often Round-Trip Time (RTT),
to predict unknown distances among other node-pairs,

H. Huang, L. Li and Y. Zhu are with School of Electronic Information and
Communications, Huazhong University of Science and Technology, Wuhan
430074, China. Email: {hjhuang,lil4,yyzhu}@hust.edu.cn.
G. Min and W. Miao are with Department of Computer Science, University
of Exeter, Exeter, EX4 4QF, UK. Email: {g.min, Wang.Miao}@exeter.ac.uk.
Y. Zhao is with Department of Computer Science and Engineering, University
at Buffalo, Buffalo, NY 14260 2500, USA. Email: yangming@buffalo.edu.
Manuscript received May 31, 2021; revised March. 10, 2021 (Corresponding
author: Yingying Zhu).

where direct measurements are not performed. Over the
past years, a large number of approaches have been
developed [8], [7], [9], [10], [11], [12], [13], [14], [15] to
predict network distance by introducing network coordi-
nates. These approaches can be fell under two categories:
Euclidean embedding and Non-Euclidean embedding
(see more details in Section 5). Note that Non-Euclidean
embedding, for example, matrix factorization, can re-
construct the network distances more precisely than
Euclidean embedding [8], [12], in this paper we mainly
investigate the Non-Euclidean network distance predic-
tion for different distributed applications. The current
Non-Euclidean solutions focus on the prediction of the
unknown network distances among nodes based on the
known node locations. However, there are at least two
limitations existing in these solutions.

Firstly, how to exploit the known locations of a set
of nodes, for example, a few anchor nodes or ordinary
nodes with learned locations, to infer the locations of
other nodes in a distributed manner. Most current ap-
proaches such as [10], [12] are based on the centralized
design concept, and thus are heavily dependent on the
fixed anchor nodes to work. However, in reality, due
to their random motion, node distribution, and network
network congestion [16], etc, the network measurements
always cannot be implemented for each ordinary node
to obtain its location. It is prerequisite to design a
distributed mechanism that can exploit alternative nodes
with known locations as the anchor nodes for ordinary
node localization.

Secondly, how to more accurately represent the un-
known network distances. The network distance be-

2 TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX

TABLE 1: Comparison of solutions for addressing the
existing challenges in network distance prediction

Existing
solutions

Challenge 1 Challenge 2
Centralization Distance

Euclidean
GNP Yes Uniqueness
PIC Yes Uniqueness

Non-
Euclidean

HYP No Uniqueness
IDES Yes Uniqueness
DMF No Uniqueness

DMFSGD No Uniqueness
RMF No Uniqueness

TNDP No Confidence interval

tween two nodes in current solutions commonly is
computed as an unique number, derived from the
locations of nodes in Euclidean and non-Euclidean
space. However, relevant studies [8], [7], [17], [5] show
that the network distance relies on multiple factors
like delay, bandwidth and data flow, and further-
more, there are often multiple paths between node
pairs. One uniqueness can no longer represent the
real network distances. Fig. 1 illustrates a concrete
example, in which network distance d(i, j) between
nodes i and j can be computed as the length of
paths 1, 2 or 3, i.e., d(i, j)=d(i, a1)+d(a1, a2)+d(a2, j),
or d(i, j)=d(i, b1)+d(b1, j), or d(i, j)=d(i, c1)+d(c1, j). With
different path states, the traffic would be carried by one
of these three paths, and hence, the users will experience
various network distances. This means that the network
distances among reachable nodes cannot be represented
by an unique value only, but confidence intervals are
more appropriate.

In order to address above issues, in this paper, we pro-
pose a tensor-based network distance prediction (TNDP)
approach with confidence intervals, by introducing the
random distance tensor and distributed coordinate fit-
ting with the adaptive stochastic gradient descent (SGD)
based learning. The unknown network distance between
two reachable nodes in our solution is represented as a
confidence interval rather than an unique number. Thus,
TNDP can work in different distributed occasions to
fulfill the individual requirements of users, with the help
of the randomly selected reference nodes with known
locations. The comparisons between TNDP and related
approaches to address existing challenges are illustrated
in TABLE 1. Simulation results show that TNDP pro-
vides better performance than the previous approaches
in the accuracy of distance prediction.

In this paper, we make the distinct contributions as
follows.
• With a small set of network measurements among

randomly selected nodes, a distance matrix tensor
has been established to provide enough data sam-
ples to infer unknown network distances, without
additional measurement overhead.

• A novel adaptive SGD-based learning solution for
matrix factorization, by introducing the important
training determinants, including weight matrix, reg-

ularization coefficient, and minibatch gradient de-
scent with the exponential decay rates, is proposed
to quickly factorize each network matrix, included
in distance tensor, to derive the locations of the un-
known network distances. It is adaptive, distributed,
and feasible with less error, less overfitting and
quick convergence, enabling to obtain the unknown
network distances more efficiently than traditional
approaches.

• The unknown network distances have been pre-
sented in the form of confidence intervals, thereby
can figure out the real network distances as far as
possible. To the best of our knowledge, this solution
is the first of its kind proposed in the literature and
takes prospective insights to predict the network
distances.

• Extensive simulations are conducted in various sce-
narios, referring to data sets, neighbor nodes, net-
work dimensions, learning rate scenario, and regu-
larization coefficient, to evaluate the performance of
TNDP. Related results show that TNDP outperforms
the previous approaches in the accuracy of distance
prediction.

a1 a2

b1

c1

Path 1 Path 2 Path 3

i j

Fig. 1: The various network distances between two reach-
able nodes along multiple paths.

The rest of the paper is organized as follows. Sec-
tion 2 presents the critical basic knowledge, including
the distance matrix factorization, distance tensor, and
problem formulations with confidence intervals, to help
understand TNDP. Section 3 describes the details of
TNDP. Section 4 presents and analyses the results of ex-
tensive simulations to validate the performance of TNDP
in network distance prediction. Section 5 describes the
related work. Finally, Section 6 concludes this paper.

2 BACKGROUND KNOWLEDGE

This section describes the important knowledge, which
is essential to understand TNDP. We first present the
distributed distance matrix factorization, and then elabo-
rate the distance tensor for network distance expression.
Finally, the problem formulation on network distance
prediction is given. To improve the readability, the main
parameters and notations used in this paper are listed
in TABLE 2.

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 3

n1

n2

n3

n4

n6

n5

n1
n2
n3
n4
n5
n6

n1 n2 n3 n4 n5 n6
0.0 0.2 2.6 ‐1.0 121.3107.2

0.2 0.0 ‐1.0 133.9133.6109.4

2.6 2.6 0.0 112.3112.9143.7

121.4133.9112.3 0.0 0.3 ‐1.0

121.3133.6112.9 0.3 0.0 51.5

107.2109.4143.7 ‐1.0 51.5 0.0 𝑋

(a) Distance measurement (b) 6×6 distance matrix D (c) Matrix factorization (d) 6×6 factorized matrix 𝐷

n1
n2
n3
n4
n5
n6

n1 n2 n3 n4 n5 n6
3.4 3.1 3.9 122.9121.6103.8

0.7 0.0 1.4 131.3129.7109.4

4.9 4.7 5.2 112.1110.9 95.4

121.5132.5112.9 0.0 0.0 50.6

120.9131.9112.4 1.3 1.2 51.4

102.6111.6 95.7 50.7 50.2 85.0

10.6 0.3

11.3 0.0

9.6 0.4

0.0 11.3

0.1 11.3

4.4 9.6

0.1 0.0 0.1 11.6 11.5 9.7

10.7 11.7 10.0 0.0 0.0 4.5

𝑌

Fig. 2: Matrix-factorization-based network distance prediction among 6 nodes, illustrated in (a), with missing
distances in the form of delay. The missing distances d14, d23, d46 and d64 are represented with the length of
−1.0 in (b) for facilitating matrix factorization, and given by in (d) through DMFSGD-based matrix factorization in
(c) over data set PlanetLab490 [18].

TABLE 2: The important parameters and notations
Symbol Meaning
dij/d̂ij The measured/estimated distance from nodes i to j

D
n× n distance matrix formed by network distances
among n nodes

RD1..Dk Distance tensor including k matrix D1,...,Dk

X n× d matrix storing d basis vectors of D
Y n× d matrix storing d linear coefficients of D
xi The d-dimensional incoming vector of node i in X

yi The d-dimensional outgoing vector of node i in Y

(xi, yi)
The location of node i derived from distance matrix
factorization

d̄ij/σ2
ij Mean value and variance of k predicted distances

β1/β2
Two exponential decay rates w.r.t. the gradient and
the squared gradient

2.1 Distributed Distance Matrix Factorization

It is considered that the measurement network distances
dij (1≤i, j≤n) among n nodes selected randomly can be
constructed an n×n distance matrix D, where a small
number of elements are unknown. In order to recover the
missing elements, we can factorize D into the product of
two n×m (m�n) matrixes X and Y [19], [20], i.e.,

D =

d11 ... d1n
...
dn1 ... dnn

≈ D̂ = XY T

=

x11 ... x1m
...
xn1 ... xnm

y11 ... y1m
...
yn1 ... ynm

T .
(1)

Fig. 2 illustrates such a common matrix-factorization-
based network distance prediction among 6 nodes with
missing distances. Denote xi = [xi1, ..., xim] and yi =
[yi1, ..., yim]. Let xi and yi stand for the incoming vector
and outgoing vector of node i, respectively. Built on Eq.
(1), the unknown or known distance dij between two

arbitrary reachable nodes i and j can be estimated as

dij ≈ d̂ij = xiy
T
j =

m∑
k=1

xikyjk. (2)

Generally speaking, this can be achieved by minimiz-
ing

F (D,X, Y,W) =

n∑
i,j=1

wijf(dij , xiy
T
j), (3)

where W represents a weight matrix with wij= 1 when
dij is measured and 0 otherwise, and f(dij , d̂ij), the
square loss function, is given as follows:

f(dij , d̂ij) = (dij − d̂ij)2. (4)

There are a number of existing optimization methods
like Newton algorithms or Gradient Descent, which can
be used to achieve this goal along the negative gradient
direction of f(dij , d̂ij) [21], [22] while will result in large
errors on the unseen data used in learning due to over-
fitting [23]. The absolute errors of distance prediction in
Fig. 2 have up to [0.1, 48.3]ms. An efficient solution that
addresses this issue is to regularize the previous norms
of X and Y , by introducing the following regularization
coefficient:

F (D,X, Y,W, λ) =

n∑
i,j=1

wijf(dij , xiy
T
j)

+ λ(

n∑
i=1

xix
T
i +

n∑
i=1

yiy
T
i).

(5)

The additional term represents the regularization which
controls the norm of X and Y to prevent overfitting, and
λ is the regularization coefficient. We decompose Eq. (5)
into two subproblems,

fi,in =

n∑
j=1

wijf(dij , xiy
T
j) + λxix

T
i ,

fi,out =

n∑
j=1

wijf(dji, xjy
T
i) + λyiy

T
i .

(6)

4 TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX

By minimizing both fi,in and fi,out, the locations, re-
ferring to the unknown distance dij , can be obtained
at a sever, which is responsible for network distance
prediction.

2.2 Distance Tensor for Network Distance Prediction

Matrix factorization can be used to predict the net-
work distance, represented in an uniqueness [12], [8].
However, in reality, the network distance between two
nodes always changes with time, depending on network
flow, measurement strategies and node mobility, etc.,
and should be a series of variations. Based on this
observation, we introduce distance tensor for all network
distance estimations. In order to facilitate understanding,
we first define the tensor as follows.

X

Y

k

𝐴
0 2 3
2 0 1
3 4.7 0

0 3 3
 3.1 0 1

4 1 0

 0 3 3.2
 4 0 3
 2 1 0

D1 D2 D3

Fig. 3: A distance tensor A∈R3×3×3, where there exist 3
3× 3 distance matrices and k=3.

Definition 1: A tensor, also known as Nth-order/N -
way tensor, multidimensional array, N -way or N -mode
array, is defined as higher-order generalization of a
vector and a matrix, which are referred to as the first-
order and second-order tensors, respectively, and de-
noted by A∈RI1×I2×...×IN . Here, N , called way or mode,
denotes the order of A. The element of A is denoted by
ai1,i2,...,iN , in ∈ 1, 2, ..., in, 1 ≤ n ≤ N .

Fig. 3 illustrates an example of a distance tensor A
∈R3×3×3. Built upon Eq. (1), dij , the missing entry in
n×n distance matrices, can be derived through k dis-
tance matrix factorization. Let Dl (1≤l≤k) denote the i-th
n×n distance matrix. Then, we have

dij ∈ RD1×D2×...×Dk . (7)

Built upon Eq. (5), each Dl can be factorized into the
form of XlY

T
l . Let xl,i and yl,i denote the l-th incoming

vector and outgoing vector of node i, respectively, ob-
tained from the matrix factorization of Dl. Then, there
are k incoming vectors and outgoing vectors, i.e., x1,i,
x2,i, · · · , xk,i, and y1,i, y2,i, · · · , yk,i for node i. Similarly,
node j will obtain k incoming vectors and outgoing
vectors, i.e., x1,j , x2,j , · · · , xk,j , and y1,j , y2,j , · · · , yk,j . Let

[dij]l denote the l-th predicted distance between nodes i
and j, and dij stand for average distance of k different
dij . Thus,

dij =

∑k
l=1[dij]l
k

. (8)

Similar to [20], the distances dij and d̄ij follow Gaus-
sian distribution, and can be given as follows:

dij − d̄ij
σ/
√
k
∼ N(0, 1). (9)

Let µij and νij denote the upper and lower bounds of
the predicted distance between nodes i and j. Given a
(1− η) confidence level, we have

P (µij < dij < νij) = 1− η. (10)

Following Gaussian distribution, we have

P (| d̄ij − dij
σij/
√
k
| < uη/2) = 1− η, (11)

where uη/2 denotes the number that the probability is
greater than or smaller than η/2. Then, µij and νij can
be computed as follows:

µij = d̄ij − uη/2

√
σ2
ij

k
,

νij = d̄ij + uη/2

√
σ2
ij

k
.

(12)

This means that the confidence interval of dij can be
represented as [µij , νij], obtain from Eq. (12).

2.3 Problem Formulation
Given the fore-mentioned network models and nota-
tions, we can formulate the network distance prediction
for missing entry dij in D as the problem to find out
a confidence interval through distributed and adaptive
distance matrix factorization.

Specifically, node i, which intends to know the dis-
tance to node j, first launches k network measurements
among more than (n−1) nodes (including j) selected
randomly. This means that an n× n× k distance tensor,
with k network matrices D1, · · · , Dk, has been estab-
lished. Then, TNDP performs multiple matrix factor-
ization with adaptive SGD-based approaches, by min-
imizing Eq.(5). After that, the incoming vector xl,i and
outgoing vector yl,j of nodes i and j, respectively, in the
l-th matrix factorization can be given in the form of

xl,i = arg min
n∑
j=1

wij(Dij − xl,iyTl,j)2,

yl,j = arg min

n∑
i=1

wji (Dji − xl,jyTl,i)2.
(13)

Built on Eq. (2), it is easy to obtain the l-th predicted
network distance dij . Thus, the average distance dij of

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 5

i j

i j

i j
i j

D1

D2

Dk

Adaptive SGD‐based matrix
factorization

Distance prediction with
confidence intervals

Network distance tensor
establishment

𝑑 ∈ ℝ ⋯ 𝐷 𝑋𝑌 𝐷

Input Output Input Output

(a) (b) (c)

𝐷

𝐷

𝐷

𝐷

𝐷

𝐷

�̅� 𝑑 𝑘⁄

𝑑 ∈ 𝑢 , 𝑣

𝑑

𝑑

𝑑

𝑢 �̅� 𝜒
𝜎
𝑘

𝑣 �̅� 𝜒
𝜎
𝑘

Fig. 4: The architecture of TNDP, which consists of three steps: Distance tensor establishment, the adaptive SGD-
based matrix factorization, and distance prediction with confidence intervals. The network measurement among
more than n nodes have been implemented to establish an n×n×k distance tensor RD1×D2×...×Dk in (a), where
network distance dij is missing. Each distance matrix Dl (1≤l≤k) has been factorized into the product two n×m
(m�n) matrixes Xl and Yl through the adaptive training in (b). Finally, the missing distance dij has been derived
from Eqs. (8) and (12) with a confidence interval [µij , νij] in (c).

k distances between nodes i and j, i.e., [dij]1, [dij]2,· · · ,
[dij]k can be obtained, built on Eq. (6). Following Eq. (12),
we can find out the upper and lower bounds, i.e., µij
and νij , of the predicted distance dij with the available
measurement data, referring to nodes i, j, and more than
(n−2) other nodes randomly selected in the network.
This means that unknown distance dij between nodes i
and j can be represented the confidence interval [µij , νij].

3 TNDP: TENSOR-BASED NETWORK DIS-
TANCE PREDICTION

This section mainly introduces TNDP in detail for net-
work distance prediction with confidence intervals. First,
the architecture of TNDP is provided, and then both the
daptive SGD-based network distance prediction and its
variant with confidence intervals are presented.

3.1 Architecture Overview
The main idea of TNDP is to predict the unknown
network distances with confidence intervals by intro-
ducing the distance matrix tensor and adaptive SGD-
based matrix factorization. Specifically, a number of
network measurement among a random set of nodes,
which are reachable to the desired two nodes, have been
implemented to establish a network distance tensor, and

adaptive SGD-based solutions have been leveraged to
factorize it such that the unknown distances can be in-
ferred approximatively from it in the form of confidence
intervals.

Fig. 4 illustrates the operations of TNDP. It works
as follows. Initially, TNDP begins from establishing a
network distance tensor RD1×D2×...×Dk , which has k n∗n
distance matrices D1,D2,...,Dk while missing some ele-
ments, by performing no more than k network measure-
ments among more than n nodes. Then, each network
matrix has been factorized into two smaller network
matrices to find the approximate locations for the desired
nodes, with the SGD-based learning solutions by in-
troducing weight matrix, regularization coefficient, and
minibatch gradient descent with the exponential decay
rates. Finally, the unknown distance dij can be obtained
in the form of a confidence interval [µij , νij], which are
derived from Eqs. (8) and (12). This can ensure that the
confidence interval of an unknown distance is derived
for the many-to-one services distributed applications.
The details of TNDP are presented below.

3.2 Distance Tensor Establishment

In order to establish an n×n×k network distance tensor
dij∈ RD1×D2×...×Dk , node i first sends a probe packet to

6 TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX

the unreachable node j via broadcast, where direct net-
work measurement between them cannot be performed.
Once receiving this packet, each node l, who is its p-
hop neighbor, adds the arriving time tl−1,l to the packet
header, and then forwards it to its neighbors and source
node i. Meanwhile, it initiates a new packet to desired
node j. Each forwarder, who receives this packet, will
repeat this action as node l.

Through this way, there will be more than n nodes
that participate in the network measurement. Finally,
each forwarder, including node i, will send the feedback
packet to a server, which is responsible for matrix factor-
ization and confidence interval calculations for distance
prediction. Once receiving this packet, this server will
begin to establish an n×n×k network distance tensor
dij∈ RD1×D2×...×Dk . Each Dl (1≤l≤k) will consist of
n∗n distances among n nodes. Let S(Di, Dj) denote the
number of the same nodes included in both Di and
Dj . In order to reduce the measurement overhead, two
adjacent distance matrices Di and Di+1 satisfy

0 < S(Di, Di+1) ≤ n− 1,

Di 6= Di+1,

dij /∈ Di ∪Di+1.

(14)

This means that both Di and Di+1, illustrated in Fig.
4(a), will include most same nodes and distances, mainly
depending on the node density, to infer the unknown
distances. A same column (row) of two different matrices
Di and Di+1 within RD1×D2×...×Dk is supposed to corre-
spond to the network distances among the same nodes
at different time epochs, when Di and Di+1 have been
established, respectively. It is noticed that each aii∈Dl

(1≤i≤n) is set to be 0, similar to [12], [13], [8], while
without the need to be measured.

3.3 Adaptive SGD-based Matrix Factorization
Matrix factorization is concerned with the ability to
constantly learn its current results based on previous
ones following the design rules for solving various prob-
lems [24]. The solutions available for matrix factorization
include SGD [22], Momentum [25], Adam [26], etc. As
the basis of most matrix factorization schemes, all of
them have salient features, including randomly choosing
one training sample to update its parameter along the
negative gradients of the chosen sample, and the ability
to process large-scale measurement data dynamically.
However, each of them cannot achieve our desired goal
due to overfitting and slow convergence. Therefore, we
propose our adaptive SGD-based matrix factorization in
an alternating manner, and present it as follows.

Once receiving the created network distance tenser
RD1×D2,...,×Dk , the server begins to factorize each dis-
tance matrix Di into the production of Xi and Yi. Each
iteration for inferring the missing distance dij follows
the negative gradient directions of all chosen samples
from node i to node j [27]. It is unlikely to happen
that the outputs keep the same as the inputs at each

iteration. Therefore, we introduce an objective function
described in Eq. (5) that can quantify the error between
the output and input. In order to minimize the error,
some adjustable parameters like the weight matrix W
and regularization coefficient λ are also introduced.

To obtain two best Xl and Yl over Dl, we define the
regularized losses [fij]l and [fji]l with unreachable nodes
i and j as follows:{

[fij]l = f([dij]l, xl,iy
T
l,j) + λxl,ix

T
l,i,

[fji]l = f([dji]l, xl,jy
T
l,i) + λyl,iy

T
l,i.

(15)

Thus, the gradients of [fij]l and [fji]l can be computed
as

∂[fij]l
∂xl,i

=
∂f([dij]l, xl,iy

T
l,j)

∂xl,i
+ λxl,i,

∂[fji]l
∂yl,i

=
∂f([dji]l, xl,jy

T
l,i)

∂yl,i
+ λyl,i.

(16)

Along with the negative of ∂[fij]l
∂xl,i

and ∂[fji]l
∂yl,i

, both [fij]l
and [fji]l can be minimized, respectively, such that Eq.
(5) or Eq. (6) can be achieved.

To infer the missing elements more accurately, it re-
quires to train more samples simultaneously for each
parameter update as far as possible. Therefore, we in-
troduce the minibatch gradient descent rules w.r.t of fij
and fji and define as follows:

∂fij
∂xi

←
n∑
j=1

wij
∂fij
∂xi

,

∂fij
∂yi
←

n∑
j=1

wij
∂fij
∂yi

.

(17)

This means that the chosen samples to infer the missing
distance dij refer to all the distances to nodes i and j in
the given distance matrices.

Built on Eq. (4), the gradients of [fij]l and [fji]l are
∂[fij]l
∂xl,i

= −([dij]l − xl,iyTl,j)yl,j ,

∂[fji]l
∂yl,i

= −([dji]l − xl,jyTl,i)xl,i.
(18)

Then, the minibatch gradient descent rules w.r.t [fij]l and
[fji]l can be computed as

([dij]l − xl,iyTl,j)yl,j ←
n∑
j=1

wij([dij]l − xl,iyTl,j)yl,j ,

([dji]l − xl,jyTl,i)xl,i ←
n∑
j=1

wji([dji]l − xl,jyTl,i)xl,j .

(19)
In order to know the missing elements quickly, how

to choose a proper stepsize, ls, i.e., learning rate, which
controls the speed of learning, becomes a challenge to
be considered. Notice that too large or small stepsize
of learning would result in data overflow and converge
slowly, therefore it is required to design an adaptive step-
size to speed up the learning. One innovative approach

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 7

is to gradually decrease the value of ls so as to make
sure it converges quickly, by introducing the exponential
decay rates, similar to Adam [26]. Let β1 and β2 stand for
two exponential decay rates w.r.t. the gradient and the
squared gradient, and denote βm1 and βm2 as the power
of β1 and β1, respectively, through m learning iterations.
Then, the adaptive stepsize ls can be computed as

ls =
l0
√

1− βm2
1− βm1 + ε

, (20)

where ε is an extremely small smoothing term to pre-
vent the denominators of Eq. (20) from zero, and l0
denotes the default setting of ls. The upper bounds of
ls are |ls|≤ l0

√
1−β2

1−β1
in the case of (1 − β1)>

√
1− β2 and

|ls|≤l0 otherwise. By introducing ls, we can ensure that
the adaptive learning rates can be obtained to update
parameters.

Then, along the negative gradient directions, the lo-
cations (xl,i, yl,i) of node i over Dl comply with the
following rules

xl,i ← λxl,i +
l0
√

1− βm2
1− βm1 + ε

n∑
j=1

wij([dij]l − xl,iyTl,j)yl,j ,

yl,i ← λyl,i +
l0
√

1− βm2
1− βm1 + ε

n∑
j=1

wji([dji]l − xl,jyTl,i)xl,j .

(21)
to be updated in an alternating manner. The default set-
tings for l0, β1, β2 and ε depend on empirical value and
real-world applications, and can follow the suggestions
in [26]. The pseudocode of this operation is given in
Algorithm 1.

Algorithm 1: Adaptive SGD-based matrix factor-
ization

1 Input: dij∈ RD1×D2×...×Dk , l0, β1, β2, and k
2 Output: D1 = X1Y

T
1 ,· · · ,Dk = XkY

T
k

3 for ∀Dl (1 ≤ l ≤ k) do
4 compute ∂[fij]l

∂xl,i
and ∂[fij]l

∂xl,i
;

5
∂[fij]l
∂xl,i

←
∑n
j=1 w

i
j
∂[fij]l
∂xl,i

;

6
∂[fji]l
∂yl,i

←
∑n
j=1 w

i
j
∂[fji]l
∂yl,i

;
7 if [fij]l or [fji]l not converged do

8 ls←
l0
√

1−βm
2

1−βm
1 +ε ;

9 update Xl and Yl built on Eq. (21);
10 end for

3.4 Distance Prediction with Confidence Intervals

There will exist 2k small matrices X1, X2, . . . , Xk and Y1,
Y2,. . . , Yk referring to nodes i and j through adaptive
SGD-based matrix factorization. Each xl,i∈Xl and yl,j∈Yl
can approximately act as the incoming vector and out-
going vector of nodes i and j, respectively. This means
that the missing entry dij∈ RD1×D2×...×Dk can be derived

built on Eq. (22) and will change in a certain extent,
following Gaussian distribution N(d̄ij , σ2

ij).
Let xl,i={[xi1]l,[xi2]l, ..., [xim]l} and yl,i={[yi1]l,[yi2]l,

..., [yim]l}, respectively. Then, the l-th predicted distance
[dij]l from nodes i to j derived from Xl and Yl over Dl

can be computed as

[dij]l ≈ xl,iyTl,j =

m∑
k=1

[xik]l[yjk]l. (22)

With the known distances [dij]1, [dij]2, · · · , and [dij]k,
we can obtain d̄ij built on Eq. (8). Both d̄ij and variance
σ2
ij are the essential statistical characteristics to predict
dij in the form of confidence intervals. Suppose that the
confidence level is θ% and let η be (1 − θ%), then we
have

P (µij < dij < νij) = θ%. (23)

Given uη/2, from the table of Gaussian distribution,
we can know that

uη/2 = χ. (24)

Built upon Eq. (12), the exact µ̂ij and ν̂ij can be given
by

µij = d̄ij − χ

√
σ2
ij

n
,

νij = d̄ij + χ

√
σ2
ij

n
.

(25)

Given any missing entry, its confidence interval can
be figured out by Eq. (25). To facilitate a better under-
standing, the pseudocode of distance prediction with
confidence intervals is described in Algorithm 2.

Algorithm 2: Network distance prediction in the
form of confidence intervals

1 Input: D1 = X1Y
T
1 ,· · · ,Dk = XkY

T
k

2 Output: each missing entry dij ∈ [µij , νij]
3 for xl,i∈Xl, yl,j∈Yl and l ≤ k do
4 [dij]l=xl,iyl,j ;
5 end for
6 foreach missing entry dij do

7 d̄ij ←
∑k
l=1[dij]l
k

;

8 σ2 ←
∑k
l=1([dij]l − d̄ij)2

k
;

9 calculate [µij , νij] in Eq.(25) with d̄ij and σ2;
10 end foreach

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of TNDP
via simulations in Matlab R2020b over two available data
sets, and compare it with three famous network distance
prediction solutions: IDES [12], DMF [13], and DMFSGD
[8]. First, we introduce the simulation environments,
and then present the evaluation metrics. Finally, we
provide the details of simulation results and conduct
performance analysis.

8 TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX

4.1 Simulation Environments

We implemented the experiment on a desktop computer
equipped with Intel i5-9400 CPU and 16GB RAM. Simi-
lar to [13], two publicly well-known data sets, collected
from the real Internet measurements, are used in all
experiments.
• P2PSim1953 [21]: It was acquired from the P2PSim

project that includes static RTT measurements
among 1953 Internet DNS servers. We used the raw
data that each distance pairs consists of a series of
five samples, resulting in a 1953×1953×5 tensor.

• PlanetLab490 [18]: It was collected from the Planet-
Lab Pairwise Ping Project that includes static RTT
measurements among 490 nodes with nine days.
Each pairwise measurement sample is taken be-
tween a 14.7-hour interval and aligned to a tensor
of 490×490×18.

It is supposed that such original data sets include no
erroneous results. Note that these data sets are obtained
from the real-world networks, therefore, there are many
TIV edges. These are allowed in IDES, DMF, and DMF-
SGD, following the real routing policies such as sub-
optimal routing and asymmetric routing, while cannot
exist in Euclidean embedding solutions. Some network
distances in all these data sets were not measured and
represented with the length of −1 for facilitating matrix
factorization, similar to [12], [13], [8], but will be derived
with our solution in the form of confidence intervals,
enabling to infer the unknown network distances more
accurately.

Each distance matrix Dl∈ RD1×D2×...×Dk consists of
the most distances among 1953 nodes (n=1953) and 490
nodes (n=490) for TNDP, IDES, DMF, and DMFSGD over
data sets P2PSim1953 and PlanetLab490, respectively.
The network distance among all nodes for IDES, DMF,
DMFSGD and our solution are represented with the
latency in the form of RTT. Table 3 lists 20 widely
existing unknown distances, which will be predicted in
our simulations, in TNDP, IDES, DMF, and DMFSGD
over these two data sets. There are more than 5 cre-
ated distance matrices for TNDP (i.e., k≥5), used for
establishing RD1×D2×...×Dk , and only one for IDES, DMF,
and DMFSGD. The 95% confidence interval has been
calculated to predict network distances with the created
matrices. Unless specified, the regularization coefficient
λ and l0 are set to be 0.01 and 0.1, while the good initial
settings [26] for β1, β2 and ε are 0.9, 0.999 and 10−8,
respectively. The default rank ζ of two n×m factorized
matrices X and Y over D is set to be 10, and can be
considered equivalent to m since m�n =1953 or n =490.

There are five basic simulation scenarios designed to
evaluate our approach.
• Different neighbor density scenario: Each node

is distributed in different locations and maintains
alterable neighbor densities in the network. Given
node ni, the neighbor density, denoted by ρi, refers
to the number of its one-hop neighbors, whom it

can directly send the packets to within its maximum
transmission range, and can be represented as

ρi = {p|n1, n2, · · · , np}. (26)

Each node which participates in establishing dis-
tance tensor RD1×D2×...×Dk , will measure all dis-
tance information between it and p neighbors n1,
n2, · · · , and np as far as possible.

• Different neighbor set scenario: Each node will
keep the same neighbor densities, while select dif-
ferent nodes to form its neighbor set in each exper-
iment. Given node ni, the neighbor set, denoted by
Ni, is defined as the total neighbors of its, and can
be given by

Ni = {n1, n2, · · · , np}. (27)

• Different dimensional rank scenario: The low-rank
requirement is the inherent characteristics of matrix
factorization. Thus, the rank, denoted by ζ, of two
small factorized matrices X and Y over D is set in
the range of [ζ1, ζ2] in all experiments.

• Different learning rate scenario: The default setting
of learning rate l0 in Eq. (20) has been changed in
the range of [l1, l2] to accelerate the convergence of
learning rate ls. With different default settings and
increasing learning iterations, the adaptive ls can be
achieved.

• Different regularization coefficient scenario: The
regularization coefficient λ, referring to Eqs. (5) and
(21), will vary from the range [λ1, λ2] to control the
norm of X and Y to avoid overfitting. This will help
to reduce errors on the unseen data used in learning
due to overfitting.

4.2 Evaluation Metrics

For the sake of evaluating the effectiveness of our solu-
tion, two following criteria are used in our simulations.

Stress: The stress is defined as

2

√√√√∑
ij(dij − dij)2∑

i 6=j d
2
ij

. (28)

It is used to estimate the global fitness between D and D̂.
Considering that our results are represented as intervals,
we use the minimum and maximum of the interval,
defined as TNDP Min and TNDP Max, respectively, to
assess the stress.

Relative Error (REE): The relative error, denoted by
er, is defined as

er =
|dij − dij |

min[dij , dij]
. (29)

This metric is used to estimate the accuracy of network
distance prediction.

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 9

15 20 25 30 35 40 45 50 55 60

Neighbors/node

0.30

0.33

0.36

0.39

0.42

0.45

0.48

0.51

0.54

0.57

0.60

S
tr

es
s

P2PSim1953

IDES
DMF
DMFSGD
TNDP_Max
TNDP_Min

(a) Stress with varied neighbor number

15 20 25 30 35 40 45 50 55 60

Neighbors/node

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

S
tr

es
s

PlanetLab490

IDES
DMF
DMFSGD
TNDP_Max
TNDP_Min

(b) Stress with varied neighbor number

1 5 10 15 20 25 30 35 40 45

Sequence number of different neighbors

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

S
tr

es
s

P2PSim1953

DMFSGD
TNDP_Max
TNDP_Min

(c) Stress with varied neighbor sets

1 5 10 15 20 25 30 35 40 45

Sequence number of different neighbors

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

S
tr

es
s

PlanetLab490

DMFSGD
TNDP_Max
TNDP_Min

(d) Stress with varied neighbor sets

5 20 35 50 65 80 95 110 125 140

Rank

0.30

0.34

0.38

0.42

0.46

0.50

0.54

0.58

0.62

0.66

0.70

S
tr

es
s

P2PSim1953

DMF
DMFSGD
TNDP_Max
TNDP_Min

(e) Stress with varied dimension

5 20 35 50 65 80 95 110 125 140

Rank

0.30

0.34

0.38

0.42

0.46

0.50

0.54

0.58

0.62

0.66

0.70

S
tr

es
s

P2PSim1953

DMF
DMFSGD
TNDP_Max
TNDP_Min

(f) Stress with varied dimension

Fig. 5: Simulation results on stress with varied neighbor densities, neighbor sets and dimensional rank, which run
over two publicly available data sets P2PSim1953 and PlanetLab490, respectively.

4.3 Simulation Results

4.3.1 Impact of neighbor densities

In this subsection, the neighbor densities vary from 15
neighbors/node to 60 neighbors/node, mainly by chang-
ing the maximum transmission ranges of nodes who
involves in distance prediction, to estimate the stress of
IDES, DMF, DMFSGD and TNDP. The rank ζ of two
small factorized matrices X and Y is set to be 10, the
initial learning rate l0 is equal to 0.5, and λ=1.

Figs. 5(a)-(b) indicate the stress of IDES, DMF, DMF-
SGD and TNDP with different neighbor densities. It
is observed that increasing neighbors are beneficial to
decrease the stress for all of them, because more nodes
involved in distance prediction can help to reconstruct
more real network distances. Among four of them,
IDES has changeless stress with the different neighbor
densities, since it is built on the fixed landmarks to
work (with 10% nodes as landmarks in our simulations).
Unlike DMF and DMFSGD, TNDP represents the stress
with confidence interval in the range of [0.35, 0.56] and
[0.18, 0.30] over datasets P2PSim1953 and PlanetLab490,
respectively, with different neighbor densities, and thus
can more accurately figure out the unknown distances.

To facilitate better understanding, Table 3 has listed
20 widely existing missing distances for four approaches
over these two data sets and given their predicted net-

work distance under these settings when their neighbor
densities are set to be 45 neighbors/node. The missing
distance d500,42, for example, is represented with con-
fidence interval [107.97, 114.19] for TNDP, while only
an unique number 196.87, 219.56, 162.73 for DMFSGD,
DMF, and IDES, respectively, over data set P2PSim1953.
It shows that TNDP can infer the missing distances more
effectively with confidence intervals than three of them.

4.3.2 Impact of different neighbor sets

In this subsection, we keep the neighbor densities of
nodes to be 30 neighbors/node, and randomly select
different nodes as the neighbors of each node which in-
volves in distance prediction. There are 25 neighbor sets,
where 30 neighbors are selected randomly for assessing
the stress of our TNDP.

Figs. 5(c)-(d) illustrate the stress of TNDP and DMF-
SGD with different neighbor sets. It shows that the stress
of them is different even if all of them keep the same
neighbor densities. This is because different neighbors
played distrinct roles to reconstruct the missing net-
work distances. The results from Figs. 5(c)-(d) indicate
that TNDP has -3.4%-9.1% and 0-8.3% reduction than
DMFSGD in the stress over data sets P2PSim1953 and
PlanetLab490, respectively.

10 TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX

TABLE 3: Network distance prediction for missing distances in four approaches over two data sets

Solutions Data sets
Network distance prediction for missing distance (s) between nodes i and j

d500,42 d993,44 d1054,49 d1284,54 d1465,58 d1121,62 d1729,66 d590,69 d1206,71 d880,76
d284,57 d166,41 d443,69 d316,97 d485,9 d299,15 d92,17 d109,26 d260,37 d387,56

TNDP Max
P2PSim1953 114.19 39.56 105.54 76.10 227.89 43.27 126.70 180.50 55.64 320.55

PlanetLab490 83.17 104.25 292.63 129.75 327.47 55.52 305.59 148.01 156.51 40.54

TNDP Min
P2PSim1953 107.97 32.87 88.88 59.19 186.64 36.31 86.43 162.35 43.28 303.80

PlanetLab490 77.27 100.43 283.69 124.15 310.91 46.45 290.19 143.13 150.85 34.93

DMFSGD
P2PSim1953 196.87 46.15 42.45 78.09 167.48 92.43 88.15 267.34 42.57 219.32

PlanetLab490 77.09 100.15 276.89 129.09 314.46 52.11 323.12 142.81 159.27 46.87

DMF
P2PSim1953 219.56 26.80 43.54 69.49 237.93 63.41 78.18 393.61 45.43 273.76

PlanetLab490 74.88 96.93 275.98 136.88 319.46 27.63 290.84 141.90 154.99 47.62

IDES
P2PSim1953 162.73 51.71 41.75 83.35 114.98 89.95 101.93 341.67 51.16 170.57

PlanetLab490 68.40 103.14 267.01 118.30 271.77 29.46 216.33 161.57 153.11 38.85

4.3.3 Impact of different dimensional rank
In this subsection, the rank ζ of two factorized matrices
X and Y over D is set in the range of [5, 140] in all
experiments. The dimension of locations (xl,i, yl,i) of
node i over Dl is equal to 5. The settings of α and λ
are 0.5 and 1, respectively.

Figs. 5(e)-(f) elaborate that stress of IDES, DMF, DMF-
SGD and TNDP as the rank ζ changes from 5 to 140.
Different from IDES, DMF, and DMFSGD, TNDP con-
siders the predicted network distances as confidence
intervals built on matrix factorization, thus has a varied
stress with different rank. The results from Figs. 5(e)-
(f) show that it has achieved 1.7%-19.3% and -8.9%-
13.8% reduction than DMF and DMFSGD over data set
P2PSim1953, and 4.8%-18.5% and 3.1%-18.4% reduction
than DMF and DMFSGD over data set PlanetLab490,
respectively.

4.3.4 Impact of different learning rates
In this subsection, we evaluate the stress of learning
rate ls by changing the default learning rate l0 and
increasing learning iterations m, described in Eq. (21).
Because only both DMFSGD and TNDP have introduced
adaptive learning rate, we just listed the stress of them
with different learning rates.

Table 4 indicates the learning time comparison be-
tween DMFSGD and TNDP for matrix factorization over
two available data sets. It shows that TNDP is much
more efficient than DMFSGD, with a 0.58s-1.46s reduc-
tion from 5 matrices and a 0.23s-0.34s reduction from
18 matrices over data set P2PSim1953 and PlanetLab490,
respectively, to learn locations of nodes. This is because
DMFSGD exploits the constant rate to learn all locations,
which converges slowly to local minima. Figs. 6(a)-(b)
demonstrate that the stress of DMFSGD and TNDP as
the default learning rate changes from 0.01 to 1.00. It is
shown that TNDP is less insensible to the learning rate
than DMFSGD along the gradient descent of training
data. This is because TNDP has introduced adaptive,
rather than the pre-existing, learning rates to fit the loca-
tions of nodes. Different training data requires individual
learning rates. The learning rates of TNDP in training
data will be adjusted automatically to ensure that the

optimized predicted results can be achieved as far as
possible.

4.3.5 Impact of different regularization coefficient
In this subsection, we evaluate the stress of regulariza-
tion coefficient λ and change it in the range of [0.01, 1.00].
Notice that only DMFSGD and TNDP have introduced
regularization coefficient, we just listed the stress of them
with different regularization coefficient.

Figs. 6(c)-(d) demonstrate the stress of DMFSGD and
TNDP as the regularization coefficient changes from 0.01
to 1.00. It can be seen that the stress of TNDP is improved
when λ increases much larger due to low overfitting.
Therefore, TNDP can be more applied to improve the
precision of network distance prediction than DMFSGD.

4.3.6 Cumulative Distribution Function of REE
In this subsection, we evaluate the cumulative distribu-
tion function (CDF) of IDES, DMF, DMFSGD and TNDP
as REE changes in the range of [0, 1.0]. In order to better
demonstrate differences among IDES, DMF, DMFSGD
and TNDP, the line markers in Figs. 6 (e)-(f) have been
deleted, which first exist in Fig. 5 and Figs. 6 (a)-(d).

Figs. 6(e)-(f) illustrate the CDF of relative errors of
IDES, DMF, DMFSGD and TNDP with different REE
over datasets P2PSim1953 and PlanetLab490, respec-
tively. The results indicate that four of them have sim-
ilar accuracy of predicted distances. Furthermore, both
TNDP and DMFSGD have similar moderate improve-
ments in CDF, with less relative errors, due to introduc-
ing the SGD-based learning.

5 RELATED WORK

There have been numerous network distance prediction
approaches proposed for the various distributed applica-
tions with network coordinates [28], [11], [29], [30], [31].
A detailed investigation on them is given in [7] and [4].
On the basis of the embedded network coordinates, these
approaches can be divided into two categories: (a) Eu-
clidean embedding and (b) non-Euclidean embedding.

Euclidean embedding: This idea of these solutions
is to embed network nodes into a Euclidean space to

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 11

0.01 0.02 0.04 0.10 0.15 0.25 0.50 0.55 0.65 1.00

Learning rate

0.05

0.15

0.20

0.25

0.55

1

15

25

40

80

100
S

tr
es

s
P2PSim1953

DMFSGD
TNDP_Max
TNDP_Min

(a) Stress with varied learning rate

0.01 0.02 0.04 0.10 0.15 0.25 0.50 0.55 0.65 1.00

Learning rate

0.05

0.15

0.20

0.25

0.55

1

15

25

40

80

100

S
tr

es
s

PlanetLab490

DMFSGD
TNDP_Max
TNDP_Min

(b) Stress with varied learning rate

0.01 0.02 0.04 0.10 0.15 0.25 0.50 0.55 0.65 1.00

Regularization coefficient

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

S
tr

es
s

P2PSim1953

DMFSGD
TNDP_Max
TNDP_Min

(c) Stress with varied regularization coeffi-
cient

0.01 0.02 0.04 0.10 0.15 0.25 0.50 0.55 0.65 1.00

Regularization coefficient

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

S
tr

es
s

PlanetLab490

DMFSGD
TNDP_Max
TNDP_Min

(d) Stress with varied regularization coeffi-
cient

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

REE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

C
D

F
P2PSim1953

IDES
DMF
DMFSGD
TNDP_Max
TNDP_Min

(e) CDF of REE over data set P2PSim1953

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

REE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

C
D

F

PlanetLab490

IDES
DMF
DMFSGD
TNDP_Max
TNDP_Min

(f) CDF of REE over data set PlanetLab490

Fig. 6: Simulation results on stress and REE with varied learning rate and regularization coefficient, which run over
two publicly available data sets P2PSim1953 and PlanetLab490, respectively.

TABLE 4: Learning time comparison of solutions to learn each location over two data sets

Solutions Data sets
Learning times used in each matrix (s)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18

TNDP
P2PSim1953 2.53 2.51 2.39 2.47 2.45 - - - - - - - - - - - - -

PlanetLab490 0.88 0.83 0.79 0.89 0.82 0.79 0.83 0.90 0.91 0.79 0.98 0.89 0.91 0.89 0.94 0.79 0.80 0.89

DMFSGD
P2PSim1953 3.10 3.76 3.43 3.93 3.64 - - - - - - - - - - - - -

PlanetLab490 1.19 1.12 1.12 1.15 1.10 1.13 1.12 1.15 1.18 1.07 1.21 1.14 1.20 1.18 1.20 1.06 1.11 1.18

predict network distances. More specifically, it firstly
selects some landmarks and then measures the network
distances to and from them. Thus, their locations can
be derived by minimizing the error between the actual
measure distances and the predicted distances. Each or-
dinary nodes can obtain its own coordinate once knows
the distances to and from landmarks. Example of these
include Global Network Positioning (GNP) [10], Virtual
Landmarks [32], Vivaldi [28], PIC [11], NPS [29], ICS
[30], BBS [33]. With the learn coordinates, the distance
between any node-pairs can be directly computed in Eu-
clidean distance. However, all of them cannot represent
the real distance properties such as suboptimal routing
or asymmetric routing, since Euclidean distances satisfy
the triangle inequality and are inherently symmetric.

Non-Euclidean embedding: The basic idea of these
approaches is to map nodes into non-Euclidean space,
for example, matrix factorization [12], [8], Hyperbolic
embedding [34], [35], and network geography [14], and
model the network distances in non-Euclidean curves.
Generally, most of them can more accurately figure out
network distances than Euclidean embedding since the
predicted network distances are persistent in the real
networks [8], [34]. For instance, the extensive TIVs and
asymmetric paths [36], which follow the real transmis-
sion paths of traffic, have been allowed to reconstruct
the network distances. Example of these approaches
include IDES [12], DMF [13], DMFSGD [8], Phoenix [37],
and RMF [38]. All these usually are designed for stable
networks and reference nodes [10], [12], [13], [8], where

12 TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, XXXX

each network distance between two nodes has been
represented in exact fixed value. This holds on most of
networks where distances among reachable nodes only
have small time-varying fluctuations, however cannot
tolerate network change in flows, paths, and topologies,
etc. In reality, the distance between two nodes will be
change with time, meaning that their network distance
is not an exact fixed value always but changes in a
range. Therefore, unlike the previous work, the network
distances in our proposed TNDP have been represented
in the form of confidence intervals to more accurately
infer the unknown distances. Furthermore, similar to
DMFSGD, our TNDP is built on the distributed matrix-
factorization to infer unknown network distances.

6 CONCLUSIONS

This paper has presented TNDP, an adaptive tensor-
based approach for network distance prediction with
confidence intervals. With a small set of network mea-
surements among nodes selected randomly, a distance
matrix tensor has been established and factorized with
the adaptive learning to infer unknown distances, by
introducing the important determinants, like weight
matrix, regularization coefficient, the data volume of
simultaneously learning, and gradient descent with the
exponential decay rates. Benefiting from these novel
solutions, TNDP converges fast, has high accuracy and
can deal with dynamic measurements in large-scale net-
works. Extensive simulations on the real-world datasets
show that TNDP outperforms the previous approaches
on large-scale network distance prediction.

REFERENCES

[1] H. Yin, X. Zhang, S. Zhao, Y. Luo, C. Tian, and V. Sekar, “Trade-
offs between cost and performance for CDN provisioning based
on coordinate transformation,” IEEE Transactions On Multimedia,
vol. 19, no. 11, pp. 2583–2596, 2017.

[2] W. Du, Y. Liao, N. Tao, P. Geurts, X. Fu, and G. Leduc, “Rating net-
work paths for locality-aware overlay construction and routing,”
IEEE/ACM Transactions on Networking, vol. 23, no. 5, pp. 1661–
1673, 2015.

[3] O. Bilgen and A. B. Wagner, “A new stable peer-to-peer protocol
with non-persistent peers: The group suppression protocol,” IEEE
Transactions on Information Theory, vol. 66, no. 1, pp. 614–632, 2020.

[4] H. Huang, H. Yin, G. Min, D. O. Wu, Y. Wu, T. Zuo, and
K. Li, “Network distance prediction for enabling service-oriented
applications over large-scale networks,” IEEE Communications
Magazine, vol. 53, no. 8, pp. 166–174, 2015.

[5] X. Zhang, H. Yin, D. O. Wu, H. Huang, G. Min, and Y. Zhang,
“SSL: A surrogate-based method for large-scale statistical latency
measurement,” IEEE Transactions on Services Computing, vol. 13,
no. 5, pp. 958–968, 2020.

[6] M. Shahzad and A. X. Liu, “Accurate and efficient per-flow
latency measurement without probing and time stamping,”
IEEE/ACM Transactions on Networking, vol. 24, no. 6, pp. 3477–
3492, 2016.

[7] B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network
coordinates systems, design, and security,” IEEE Communications
Surveys Tutorials, vol. 12, no. 4, pp. 488–503, 2010.

[8] Y. Liao, W. Du, P. Geurts, and G. Leduc, “DMFSGD: A de-
centralized matrix factorization algorithm for network distance
prediction,” IEEE/ACM Transactions on Networking, vol. 21, no. 5,
pp. 1511–1524, 2013.

[9] D. Mirkovic, G. Armitage, and P. Branch, “A survey of round trip
time prediction systems,” IEEE Communications Surveys Tutorials,
vol. 20, no. 3, pp. 1758–1776, 2018.

[10] T. E. Ng and H. Zhang, “Predicting internet network distance
with coordinates-based approaches,” in Proceedings. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 1, 2002, pp. 170–179.

[11] M. Costa, M. Castro, R. Rowstron, and P. Key, “PIC: Practical
Internet coordinates for distance estimation,” in 24th International
Conference on Distributed Computing Systems, 2004. Proceedings.,
2004, pp. 178–187.

[12] Y. Mao, L. K. Saul, and J. M. Smith, “IDES: An Internet distance
estimation service for large networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 12, pp. 2273–2284, 2006.

[13] Y. Liao, P. Geurts, and G. Leduc, “Network distance prediction
based on decentralized matrix factorization,” in Proc. of IFIP Netw.
Conf., 2010, pp. 15–26.

[14] A. Jain and J. Pasquale, “Internet distance prediction using node-
pair geography,” in 2012 IEEE 11th International Symposium on
Network Computing and Applications, 2012, pp. 71–78.

[15] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency
estimation for personal devices: A matrix completion approach,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 724–737,
2017.

[16] G. Wang, B. Zhang, and T. Ng, “Towards network triangle in-
equality violation aware distributed systems,” in Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement, 2007,
pp. 175–188.

[17] T. Bouchoucha, C. Chuah, and Z. Ding, “Topology inference of
unknown networks based on robust virtual coordinate systems,”
IEEE/ACM Transactions on Networking, vol. 27, no. 1, pp. 405–418,
2019.

[18] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency
estimation for personal devices: A matrix completion approach,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 724–737,
2017.

[19] E. J. Candes and Y. Plan, “Matrix completion with noise,” Pro-
ceedings of the IEEE, vol. 98, no. 6, pp. 925–936, 2010.

[20] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion
from a few entries,” IEEE Transactions on Information Theory,
vol. 56, no. 6, pp. 2980–2998, 2010.

[21] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating
latency between arbitrary internet end hosts,” in Proceedings of the
2nd ACM SIGCOMM Workshop on Internet measurment, 2002, pp.
5–18.

[22] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” arXiv preprint arXiv:1609.04747, 2016.

[23] A. M. Buchanan and A. W. Fitzgibbon, “Damped newton al-
gorithms for matrix factorization with missing data,” in 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, 2005, pp. 316–322.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, p. 436, 2015.

[25] N. Qian, “On the momentum term in gradient descent learning
algorithms,” vol. 12, no. 1, 1999, pp. 145–151.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[27] R. K. Kolla, K. Jagannathan, and A. Gopalan, “Collaborative
learning of stochastic bandits over a social network,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1782–1795, 2018.

[28] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A
decentralized network coordinate system,” in ACM SIGCOMM
Computer Communication Review, vol. 34, no. 4, 2004, pp. 15–26.

[29] T. E. Ng and H. Zhang, “A network positioning system for the
internet.” in USENIX Annual Technical Conference, General Track,
2004, pp. 141–154.

[30] H. Lim, J. C. Hou, and C.-H. Choi, “Constructing internet coor-
dinate system based on delay measurement,” IEEE/ACM Transac-
tions on Networking, vol. 13, no. 3, pp. 513–525, 2005.

[31] J. Cheng, Y. Liu, Q. Ye, H. Du, and A. V. Vasilakos, “Discs:
A distributed coordinate system based on robust nonnegative
matrix completion,” IEEE/ACM Transactions on Networking, vol. 25,
no. 2, pp. 934–947, 2017.

[32] L. Tang and M. Crovella, “Virtual landmarks for the internet,”
in Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, 2003, pp. 143–152.

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR JOURNALS 13

[33] Y. Shavitt and T. Tankel, “Big-bang simulation for embedding
network distances in euclidean space,” IEEE/ACM Transactions on
Networking, vol. 12, no. 6, pp. 993–1006, 2004.

[34] ——, “Hyperbolic embedding of internet graph for distance
estimation and overlay construction,” IEEE/ACM Transactions on
Networking, vol. 16, no. 1, pp. 25–36, 2008.

[35] W. Zeng, R. Sarkar, F. Luo, X. Gu, and J. Gao, “Resilient routing
for sensor networks using hyperbolic embedding of universal
covering space,” in 2010 Proceedings IEEE INFOCOM, 2010, pp.
1–9.

[36] C. Busch, R. Kannan, and A. V. Vasilakos, “Approximating con-
gestion + dilation in networks via ”quality of routing” games,”
IEEE Transactions on Computers, vol. 61, no. 9, pp. 1270–1283, 2012.

[37] Y. Chen, X. Wang, C. Shi, E. K. Lua, X. Fu, B. Deng, and
X. Li, “Phoenix: A weight-based network coordinate system using
matrix factorization,” IEEE Transactions on Network and Service
Management, vol. 8, no. 4, pp. 334–347, 2011.

[38] Y. Fu and X. Xu, “Self-stabilized distributed network distance
prediction,” IEEE/ACM Transactions On Networking, vol. 25, no. 1,
pp. 451–464, 2017.

Haojun Huang is an Associate Professor in the
School of Electronic Information and Communi-
cations at Huazhong University of Science and
Technology, China. He received his PhD degree
in Communication and Information Engineering
from the University of Electronic Science and
Technology of China in 2012, and the BS degree
in Computer Science from Wuhan University of
Technology in 2005. His current research inter-
ests include Internet of Things, Network Func-
tion Virtualization, Software-Defined Network-

ing, and Artificial Intelligence for networking.

Li Li is currently pursuing a PhD degree in
Information and Communication Engineering at
Huazhong University of Science and Technol-
ogy, Wuhan, China. His research interests in-
clude Network Traffic Prediction and Artificial
Intelligence for networking.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department
of Computer Science within the College of En-
gineering, Mathematics and Physical Sciences
at the University of Exeter, United Kingdom. He
received the PhD degree in Computing Science
from the University of Glasgow, United Kingdom,
in 2003, and the BS degree in Computer Science
from Huazhong University of Science and Tech-
nology, China, in 1995. His research interests
include Computer Networks, Wireless Commu-

nications, Parallel and Distributed Computing, Ubiquitous Computing,
Multimedia Systems, Modelling and Performance Engineering.

Wang Miao is currently a Postdoctoral Research
Associate in the Department of Computer Sci-
ence at the University of Exeter, United King-
dom. He received his PhD degree in Com-
puter Science from the University of Exeter,
United Kingdom in 2017. His research inter-
ests focus on Network Function Virtualization,
Software-Defined Networking, Unmanned Aerial
Networks, Wireless Communication Networks,
Wireless Sensor Networks, and Edge Artificial
Intelligence.

Yingying Zhu is currently a Postdoctoral Re-
searcher at Huazhong University of Science
and Technology, Wuhan, China (HUST). She
received the PhD degree in Communication and
Information Engineering and the BS degree in
Communication Engineering from HUST in 2018
and 2011, respectively. Her research interests
include Computer Vision and Machine Learning.

Yangming Zhao is a research scientist with
University at Buffalo. He received the BS de-
gree in Communication Engineering and the
PhD degree in Communication and Information
System from University of Electronic Science
and Technology of China in 2008 and 2015,
respectively. His research interests include Net-
work Optimization, Data Center Networks, Edge
Computing and Transportation Systems.

