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Abstract—The Edge computing extension of the Cloud services towards the network boundaries raises important placement

challenges for IoTapplications running in a heterogeneous environment with limited computing capacities. Unfortunately, existing

works only partially address this challenge by optimizing a single or aggregate objective (e.g., response time), and not considering the

edge devices’ mobility and resource constraints. To address this gap, we propose a novel mobility-aware multi-objective IoTapplication

placement (mMAPO) method in the Cloud – Edge Continuum that optimizes completion time, energy consumption, and economic cost

as conflicting objectives. mMAPO utilizes a Markov model for predictive analysis of the Edge device mobility and constrains the

optimization to devices that do not frequently move through the network. We evaluate the quality of the mMAPO placements using

simulation and real-world experimentation on two IoTapplications. Compared to related work, mMAPO reduces the economic cost by

28 percent and decreases the completion time by 80 percent while maintaining a stable energy consumption.

Index Terms—Cloud, edge continuum, mobility, application placement, multi-objective optimization, energy consumption, cost

Ç

1 INTRODUCTION

INTERNET of Things (IoT) is a disruptive technology that
sparked a revolution in terms of connectivity and reach-

ability of the daily used devices. According to Gartner, the
number of connected IoT devices will surpass 65 billion by
2025. This will undoubtedly generate enormous quantities
of data that require large computational and storage capa-
bilities, currently only offered by massive and centralized
data centers. Unfortunately, the latency to reach these data
centers can be unacceptably high, especially for time-sensi-
tive IoT applications with strict latency requirements [1].

Recently, Edge and Fog computing [2] emerged as extended
computing paradigms that partially move low-latency IoT
applications from the Cloud closer to the data sources [3], [4].
However, the Edge computing extension of the Cloud services
towards the IoT systems raises multiple placement challenges
for complex applications modeled as a set of interconnected
components [5], such as:

1) Increased network heterogeneity that interposes an addi-
tional Edge layer between the user and the Cloud;

2) Limited resource capacity of Edge (e.g., personal mobile)
devices that cannot easily accommodate application
requirements, such as processing speed, memory and
storage consumption, or communication bandwidth;

3) High mobility of Edge devices with severe impact on
application reliability and service quality;

4) Conflicting objective functions comprising completion
time, energy consumption and economic cost;

5) Heuristic algorithms to solve this known NP-complete
problem considering completion time of the prece-
dence-constrained components as optimization objec-
tive [6].

To illustrate the placement challenges, let us consider an
IoT applicationwith four sequentially-interconnected compo-
nents (m1;m2;m3;m4). The Cloud – Edge infrastructure con-
tains three devices (r1; r2; r3) with different processing
capabilities and energy characteristics. The objective is to
reduce the application execution time and its energy require-
ments by identifying proper placements.

Table 1 depicts the execution (including the data transfer)
time and energy requirements for each application compo-
nent on the available devices. We obtain the lowest execu-
tion time of 3 by placing m1;m2 and m4 on device r1, and
m3 on r3 with an energy consumption of 11. However, we
need to place m1 on r2 and the remaining components on r3
to minimize the execution energy to 5, which increases the
execution time to 7.5. It is evident that an optimized place-
ment represents a Pareto tradeoff among the two objectives
that requires appropriate analysis.

Moreover, the frequent mobility of the devices can nega-
tively influence the application availability. For example, a
10 percent likelihood for the three devices (r1; r2; r3) to leave
the network produces a failure probability of 27.8 percent
based on the serial reliability model [7]. This further aggra-
vates the application placement problem, especially in het-
erogeneous environments with hundreds of devices.

To address this problem, we present a novel mobility-
aware multi-objective method for IoT application placement in the
Cloud – Edge Continuum (mMAPO) for IoT applications mod-
eled as a set of lightweight interconnected components [8].
We apply a generation-based multi-objective optimization
algorithm that approximates the Pareto set of possible
application placements in the Cloud – Edge Continuum
using completion time, energy consumption, and economic
cost as conflicting criteria. Besides, mMAPO describes the
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Edge devices’ mobility through a Markov process and
improves the Edge resource utilization by placing the applica-
tions on devices with lower mobility in the network. Finally,
mMAPO implements a low-latency decision-making strategy
that selects a single placement solution from the Pareto opti-
mal set based on the application owner demands. mMAPO
restricts the application execution to the initial placement and
targets adaptation to usermobility as part of futurework.

We evaluate the mMAPO application placements using
elaborated simulated and real-world Cloud – Edge scenar-
ios against four related methods [9], [10], [11], [12]. We dem-
onstrate the ability of mMAPO to reduce the application
completion time by up to 80 percent and decrease the finan-
cial cost by 28 percent while maintaining a stable energy
consumption. Besides, mMAPO lowers the probability of
application failure through mobility characterization of
Edge devices.

Therefore, the main contributions of this work are:

� A multi-objective IoT application placement model
that allocates Cloud – Edge resources to multiple IoT
application components based on their characteristics;

� A first-order Markov prediction model for character-
ization of the mobility of the Edge devices and con-
straining the multi-objective application placement
model;

� Validation on a real Cloud – Edge testbed, extending
on related works mostly restricted to synthetic
simulations;

� Reduction in completion time by 80 percent and
application failure probability by a factor of six com-
pared to four state-of-the-art related methods.

The paper is structured in ten sections. Section 2 surveys
the literature on application placement. Section 3 describes
our formal model, followed by the mobility-aware placement
design in Section 4 and themMAPOPareto optimization algo-
rithm in Section 5. Section 6 describes the application case
studies, evaluated through experimental simulation in Sec-
tion 7 and on a real testbed in Section 8. Section 9 empirically
evaluates the mobility prediction model, and Section 10 con-
cludes the paper.

2 RELATED WORK

This section discusses related application placement meth-
ods across Cloud – Edge Continuum, organized in a taxon-
omy depicted in Fig. 1.

2.1 Single-Objective Optimization

Existing works for managing Edge devices reduce commu-
nication latency, energy consumption or financial costs.

Completion Time. Sun et al. [13] investigated a scheduling
model that clusters the Edge and Fog devices based on com-
munication latency using a global weighted optimization
among and within the clusters to improve task executions.
Gupta et al. [14] proposed a hierarchical placing of latency-
sensitive application components on Edge devices and com-
putationally intensive successors on Clouds. Zhao et al. [15]
describe a novel dynamic programming approach with sup-
port for data stream placement to optimize IoT applications’
execution time.

Financial Cost. Aazam et al. [16] proposed single-objective
management and financial model for Edge resources con-
sidering customer behavior and the device heterogeneity to
reduce the provider execution cost. Skarlat et al. [9] pro-
posed a linear integer programming model to optimize IoT
applications placement on Edge devices, considering the
execution cost. Similarly, Ni et al. [17] utilized a place/tran-
sition network to create a list of available Fog, Edge, and
Cloud resources and provision them based on the financial
costs inquired to the user.

Energy Consumption.Al et al. [18] proposed a novel resource
allocation approach that utilizes a successive convex approxi-
mation to place the IoT applications. Furthermore, Zhang
et al. [19] proposed an energy-efficient mechanism for partial
placement of IoT applications in the Edge through a 5G het-
erogeneous network.

Research Gap. Existing research searches for placements in
a one-dimensional space [9], [15], [17], [18], [19] or reduces
the dimensions by weighting the objectives [13], [14]. These
methods benefit from lower complexity thanks to the
reduced problem space, but may lead to biases by giving
nontransparent preference towards an objective.

2.2 Multi-Objective Optimization

Souza et al. [11] perform service atomization for optimizing
non-functional parameters, such as delay and throughput,
by placing the services primarily on Edge devices and
applying queuing theory to move the congested ones to the
Cloud. Rahbari et al. [20] proposed a genetic scheduling
algorithm based on a symbiotic organisms that distributes
the application components between the Edge and Cloud
for optimizing the execution time, energy consumption, and
network use. Abdelmoneem et al. [21] presented a balance-
reduced scheduling algorithm for management of time-criti-
cal healthcare applications targeting optimized communica-
tion latency and the infrastructure load. Deng et al. [22]
investigated a nonlinear integer programming optimisation

TABLE 1
Bi-Objective IoTApplication Placement Example, With the Opti-

mal Component Placement for Each Objective in Bold

Component Execution
Time

Energy
Consumption

r1 r2 r3 r1 r2 r3

m1 1 3 2 4 1 2

m2 0.5 5 3 5 3 2

m3 2 4 0.5 2 4 1

m4 1 5 1 1 6 1

Fig. 1. A taxonomy of application placement in Cloud – Edge.
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to find deployment schemes that reduce the applications
execution costs and meet their average response time. Zhao
et al. [12] presented edge server selection approach, named
GASS, which utilizes a genetic algorithm to place microser-
vice-based applications with sequential combinatorial struc-
ture considering the execution time and cost.

Research Gap. Current multi-objective approaches con-
sider the Edge in isolation [11], [12], [20], [22] or model the
computing continuum from an Edge perspective [21], [23].
Computing good placements has a high computational
overhead due to the complexity of multi-objective optimiza-
tion, which requires exploring efficient metaheuristics.

2.3 Mobility

Ouyang et al. [24] optimized the real-time performance of
services in a mobile Edge environment based on a Lyapunov
technique to achieve a trade-off between the user-perceived
latency and the offloading costs. Wu et al. [25] presented a
deep learning to predict mobile users’ trajectories and take
task offloading decisions in real-time based on service quality
metrics. De Maio et al. [26] presented a genetic meta-heuristic
that predicts Edge devices’ availability for partially offloading
applications based on a trade-off between the user satisfaction
and the provider financial profit. Bittencourt et al. [10] intro-
duced a resource scheduling strategy using an edge-ward
delay-priority to cope with different application classes based
highmobility user demands.

Research Gap. The related work focused on predicting
user mobility [10], [24], [25], [26] to improve application
scalability. However, it fails to address the effect of Edge
device mobility on essential application components with
respect to the overall execution.

3 MODEL

This section presents a formal model and a set of definitions
essential for this work.

3.1 Application Model

We represent an IoT application as a directed acyclic graph
A ¼ M;D; IN;OUTð Þ consisting of:

1) A set of k lightweight components, represented as ver-
tices:M ¼ fmiji 2 N; 0 � i � kg;

2) A set of dependencies between the components D ¼
f mp;mi;Datapi
� �j8 mp;mi

� � 2M �Mg, where Datapi
denotes the data transferred frommp tomi;

3) A set of input IN and output OUT data requested
and produced by the application;

4) A set of entry components me 2M receiving the
input data Datae 2 IN processing request from an
IoT device;

5) A set of exit components mx 2M providing the final
output dataDatax 2 OUT of the application;

We define the predecessor set of mi as the preceding
components executed immediately beforemi

pred mið Þ ¼ fmpj8 mp;mi;Datapi
� � 2 Dg:

An entry component me has no predecessors, i.e.,: pred
ðmeÞ ¼ ;. An exit component, in contrast, is no predecessor of
any component, i.e., mx 62 pred mið Þ; 8mi 2M. Our generic

graph-based application model has two important special
cases covered by ourmethod:

Bag of Tasks. application has no dependencies among its
components:D ¼ ;.

Monolithic. application has one component and no
dependencies, i.e.,M ¼ m1f g andD ¼ ;.

3.2 Data Model

An IoT device generates data with a stochastic probability,
described as a Poisson process. Hence, the probability of
observing t events in a time interval with the total ingress

rate of �i is: PrðX ¼ tÞ ¼ �i
te��i

t!
. In addition, we consider a

selectivity ratio ci of a component mi, defined as the ratio
between the egress rate �out

i and the ingress rate �in
i of com-

ponentmi: ci ¼ �out
i

�in
i

[27].

3.3 Resource Model

We define the Cloud – Edge Continuum as a group of
bounded computing clusters [5], consisting of Edge devices
linked to the virtualized instances running in the Cloud.

We consider a set of z heterogeneous Edge and Cloud
resources (i.e., containers and virtual machines over physi-
cal devices) RS ¼ frjjj 2 N; 0 � j � zg. Every resource is a
triple rj = (CPUj, MEMj, STORj) that describes its number of
instructions per second CPUj, memory size MEMj, and perma-
nent storage size STORj [28]. The application components
run as services deployed within the virtualized resources.
Proper execution of a component mi requires a minimal
amount of resources in terms of the number of instructions
INSTR mið Þ, processing speed CPU mið Þ, memory MEM mið Þ, and
storage STOR mið Þ requirements identified by the application
developers through performance benchmarking [29] prior
to the operational deployment.

We model the network of the Cloud – Edge continuum as
a set of communication links L ¼ lqj j 0 � q; j < z

� �
, where

a link lqj ¼ LATqj; BWqj
� �

represents the latency LATqj and
bandwidth BWqj between the resources rq and rj.

We define the placement of an IoT application A on a set
of Cloud – Edge resources R � RS as a function plc : A!
R that maps each component mi 2 A on a resource rj 2 R.
The image of the placement function R ¼ plc Að Þ is the set of
resources, in terms of virtualized hardware instances, host-
ing the running application.

3.4 Mobility Prediction Model

We describe the mobile characteristics of the Edge devices
with a Markov model [30] using three states:

Connected. Sc state denotes an Edge device connected to
the infrastructure through a higher-level gateway.

Roamed. Sr state implies the movement (roaming) of an
Edge device from one higher-level gateway to another.

Disconnected. Sd state denotes that the device left the
Cloud – Edge infrastructure and is not accessible.

A transition between states occurs when an Edge device
rj connects to a gateway, roams from one gateway to
another higher-level gateway (in another network domain),
or disconnects from the network. Fig. 2a represents the Mar-
kov state diagram of the three Edge device states s ¼
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Sd; Sc; Srf g and the transition probabilities PDW
rj
ðsÞ within a

given time window DW .
We estimate the transition matrix P by observing the

sequence of state transitions at time intervals t 2 f0; 1; 2; . . .g
within DW and assume that P has the right stochastic prop-
erty, such that the sum of the raw elements equals to one.
Thereafter, we normalize the transition matrix for each
Edge device rj based on the three states s within the time
window DW . Based on the current state of a given Edge
device, we transform the matrix into a vector containing
only the transition probabilities from the current to the next
state used to create transition probability ranges ða;b; gÞ

PDW
rj
ðScÞ : a) ½0 : a�;

PDW
rj
ðSdÞ : b) �a : aþ b�;

PDW
rj
ðSrÞ : g ) �aþ b : 1�; aþ bþ g ¼ 1:

8><
>: (1)

The Edge device mobility model must consider the regu-
larity of the observation intervals O, as improper observa-
tions can lead to biased and incorrect mobility predictions.
We denote by OðXÞ the number of observed occurrences of
states s ¼ Sd; Sc; Srf g within a Markov chain X. Observing
the Edge devices at non-periodical intervals or only upon
state transitions (Fig. 2a) ignores their actual time spent in a
given state. To overcome this, it is important to consider
both the actual device duration in a particular state and the
number of transitions. We, therefore, observe the device
state at regular intervals as depicted in Fig. 2b and consider
the state duration yielding an improved prediction.

3.5 Optimization Objectives

We consider three objectives for placing an application on
the Cloud – Edge continuum: completion time, energy con-
sumption, and economic cost, defined in the next sections.

3.5.1 Completion Time

We define the execution time t mi;rjð Þ of a component mi on a
device rj

t mi;rjð Þ ¼
INSTR mið Þ

CPUj
: (2)

We compute the completion time T mi;rjð Þ of a component mi

as the maximum completion time of its predecessors mp 2
pred mið Þ, including the data transfer time of Datapi, consid-
ering the data selectivity ratio ci ofmi

T mi;rjð Þ ¼
t me;rjð Þ; pred með Þ ¼ ;;
maxmp2pred mið Þ T mp;rqð Þþ

n
Datapi�ci

BWqj
þ LATqj

o
þ t mi;rjð Þ; pred mið Þ 6¼ ;:

8>>><
>>>:

(3)

where rq ¼ plc mp

� �
. This model eliminates the data transfer

between two interdependent components placed on the
same resource rq (i.e., LATqq ¼ 0 and BWqq ¼ 1). The comple-
tion time of an application A placed on the set R ¼ plc Að Þ of
resources is the latest completion time among its exit com-
ponentsmx 2M

T A;Rð Þ ¼ maxmx2M T mx;plc mxð Þð Þ
� �

: (4)

3.5.2 Energy Consumption

The energy consumption E mi;rjð Þ of a component mi executed
on resource rj is the sum of the computation energy Ep

mi;rjð Þ,
the aggregate data communication energy Et

mp;mið Þ from all

predecessorsmp 2 pred mið Þ, and the static energy Es
mi;rjð Þ of

active resources

E mi;rjð Þ ¼ Ep

mi;rjð Þ þ
X

mp2pred mið Þ
Et

mp;mið Þ þEs
mi;rjð Þ: (5)

The computation energy consumed for executing a single
componentmi on a resource rj is

Ep

mi;rjð Þ ¼ %pj � t mi; rj
� �

; (6)

where %pj is the computational power consumption of rj.
The communication energy of rj’s network interface to

receive a data size Datapi from a resource rq ¼ plc mp

� �
(including switching and radio communication) is

Et
mp;mið Þ ¼ %mj �

Datapi � ci

BWqj
þ �j; (7)

where %mj is the power consumption of rj for receiving a
data item and �j is a hardware-related constant [31], [32].

The energy E A;Rð Þ of executing an application A is the
total energy consumed by its components

E A;Rð Þ ¼
X

mi2A ^ plc mið Þ¼rj
E mi;rjð Þ: (8)

3.5.3 Economic Cost

The economic cost C mi;rjð Þ of executing mi on a device rj is
the total processing, data storage, and communication costs

C mi;rjð Þ ¼ t mi;rjð Þ � CPjþ
X

mp2pred mið Þ
Datapi � CSj þDatapi � ci

BWqj
� CRj

� �
;

(9)

where rq ¼ plc mp

� �
, CPj and CRj are the processing and

input data transfer costs of rj per time unit and CSj is its
storage cost per MB.

Fig. 2. mMAPOMarkov model.
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The cost CðA;RÞ of running application A on R Cloud –
Edge resources is the total execution cost of its components

C A;Rð Þ ¼
X

mi2A ^ plc mið Þ¼rj
C mi;rjð Þ: (10)

3.6 Problem Definition

Multi-objective optimization is typically NP-complete for
o 	 2 objective functions f1 ~gð Þ; f2 ~gð Þ; . . . ; fo ~gð Þ, where ~g ¼
g1; g2; . . . ; gkð Þ 2 Y represents a set of decision variables
within a search space Y and k is the number of space dimen-
sions. The optimization goal is to identify non-dominated
solutions in the search space. A solution ~a 2 Y dominates
another solution ~b 2 Y only if it is better with respect to all
objectives: fu ~að Þ � fu ~b

� 	
; 8u 2 ½1; o�, and 9v 2 ½1; o� such

that fv ~að Þ < fv ~b
� 	

. The resulting set of non-dominated sol-
utions, known as Pareto optimal set, represents the tradeoff
values among the objective functions. The Pareto optimal set
forms the Pareto frontier of finite points of tradeoff solutions.

We define a three-dimensional optimization problem
(o ¼ 3) using the objectives described in Section 3.5. The set
of decision variables contains the application components
placed onto the Cloud – Edge resources:M ¼ fgiji 2 N; 0 �
i � kg, where jMj ¼ k. Each decision variable gi is the place-
ment of one component mi onto a resource: gi ¼ plc mið Þ.
The goal is to find a placement plcðAÞ for an application A
that assigns all its components to the set R of resources that
minimizes the three objectives

f1ðT Þ ¼ minplcðAÞ¼RT A;Rð Þ;
f2ðEÞ ¼ minplcðAÞ¼RE A;Rð Þ;
f3ðCÞ ¼ minplcðAÞ¼RC A;Rð Þ:

8<
: (11)

Searching an optimal placement plcðAÞ results in a set of
solutions, which must satisfy the processing, memory and
storage constraints on device rj ¼ ðCPUj; MEMj; STORjÞ assigned
to each component mj and the movement probability of a
device rj within a given timewindow PDW

rj
ðsÞ

CPU mið Þ < CPUj;
MEM mið Þ < MEMj;
STOR mið Þ < STORj;
PDW
rj
ðsÞ < MOBðmiÞ;

8>><
>>: (12)

where MOBðmiÞ is a mobility constraint defined by the applica-
tion owner as the highest acceptable state transition probabil-
ity for a hosting device in the range [0,1]. The component mi

requires a stationary resource rj if MOBðmiÞ ¼ 0, and accepts
any mobile device if MOBðmiÞ ¼ 1. The application owner can
define higher MOB mið Þ values if it implements fault tolerance
recovery mechanisms, such as alternative execution strate-
gies [33]. This is essential, as the mobility prediction model
does not implement any recovery strategy in case of incorrect
prediction.

4 ARCHITECTURE

We integrated the mMAPO application placement method
and the Edge mobility prediction model over the Carinthian
Computing Continuum (C3) [29] (see Fig. 3). The application

owners use a graphical tool or an XML-based language to
describe the components, their control, and data flow interac-
tions without exposing the low-level technological details
underneath.C3 registers the availableCloud andEdge resour-
ces in its Resource Manager, which maintains a list of JSON
files’ resource properties. The Resource Analysismodule then
conducts performance analysis of the registered resources in
terms of computing performance, network latency and carbon
footprint.

Based on the Resource Manager’s underlying resources,
the Scheduler places the application using several heuris-
tics, such as the multi-objective optimization algorithm pro-
posed in this paper. The Pareto Analysis module identifies
a set of non-dominated Pareto placements on a set of Cloud
– Edge resources following a relatively fast evolutionary
Non-Dominated Sorting Genetic Algorithm (NSGA-II) [34]
that considers the objectives described in Section 3 and the
specific mobility characteristics of the Edge devices. To
achieve this, it ranks the population according to a fast non-
dominated sorting method to prepare elitism and good con-
vergence near the true Pareto optimal set. It inspects if the
placements satisfy resource constraints and mobility pat-
terns. An Automated Decision-making module selects an
appropriate placement based on a low latency strategy,
extending on a simple and computationally efficient a-priori
method [35] (see Section 5). Afterward, the Scheduler con-
structs a single application placement and provides it to the
Resource Manager that deploys the components isolated in
containers for security reasons.

A monitoring module of the Resource Manager continu-
ously observes the resources and constructs the Markov
chain-based mobility prediction.

5 MMAPO PARETO ANALYSIS ALGORITHM

Algorithm 1 implements the step-wise mMAPO optimized
application placement integrated with the Pareto Analysis
and Automated Decision modules depicted in Fig. 3. Its
input parameters are the application A, the set of Cloud –
Edge resources R, the maximal number of generations of
Genmax, the population size jSj, the mobility constraint coef-
ficient MOB mið Þ and the probability for state transition of the
Edge devices within a time window PDW

r ðsÞ.
The decision vector ~g ¼ plc m1ð Þ; . . . ; plc mkð Þð Þ is an indi-

vidual in the genetic population and represents a possible
application placement. Its size is equal to the number of
components k of an application A. We first initialize an
empty population set (line 1) with random individuals

Fig. 3. C3 infrastructure and mMAPOmethod integration.
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(line 4) and remove those placements that do not meet the
apply the application resource and mobility constraints
(line 5). Thereafter, we evaluate the remaining random
placements based on the three objective functions (lines 6 –
7). Afterwards, we sort the placements using a non-domina-
tion sorting algorithm and select the parent individuals for
the next generation (line 10). To evolve the next generation,
we select two random placements from the sorted parents’
population and a two-point crossover (line 14) to create a
child placement. We apply a mutation operator with a low
probability (line 15) to ensure diversity in the population
and discard it if it violates the resource or mobility con-
straints (line 16). Afterwards, we evaluate the newly gener-
ated placement ~g and add it to the population set (line 17).
We repeat this process until the algorithm reaches the maxi-
mal number of evaluations Eval, which is equal to the popu-
lation size jSj (not considering placements that violate the
constraints). Finally, we sort all placements in the popula-
tion based on non-dominance and select the parent solu-
tions for the next generation (line 21). We repeat the
evolutionary process (lines 11 – 22) until reaching a maxi-
mal number of generations jGenmaxj. We identify the non-
dominated placements from the last generation and con-
struct the Pareto optimal set (line 23).

Algorithm 1.mMAPOMulti-Objective Placement
Algorithm

Input: A ¼ M;D; IN;OUTð Þ ⊳ IoT application
R ¼ r1; . . . ; rzð Þ ⊳ Set of Cloud – Edge resources
jGenmaxj ⊳Maximal number of generations
jSj ⊳ Population size
MOBðmiÞ ⊳Mobility constraint coefficient
PDW
r ðsÞ ⊳ Probability for transition within DW

Output: plc : A! R ⊳ Placement function
1: Y  ; ⊳ Empty population
2: i 0 ⊳ Generate first individuals
3: while i � jSj do ⊳ Create new population
4: ~g  randðM;D;RÞ ⊳ Initial random placements
5: if constraint(M;R;D;~g; PDW

r ðsÞ; MOBðmiÞ) = True then
6: Y  Y [ evaluateð~gÞ ⊳ Add placement
7: i iþ 1 ⊳ Generate next individual
8: end if
9: end while
10: Y  selectðY; jSjÞ ⊳ Select best placements
11: for gen 2 ½1; jGenmaxj� do ⊳ Iterate through generations
12: i 0
13: while i � jSj do
14: ~g  crossoverðY Þ ⊳ Crossover two placements
15: ~g  mutationð~gÞ ⊳Mutate placement
16: if constraintsðM;R;D;~g; PDW

r ðsÞ; MOB mið ÞÞÞ then
17: Y  Y [ evaluateð~gÞ ⊳ Add placement
18: i iþ 1 ⊳ Generate next individual
19: end if
20: end while
21: Y  selectðY; jSjÞ ⊳ Select best placements
22: end for
23: Y  filter dominatedðY Þ ⊳ Remove dominated

placements
24: plcðAÞ  decision makingðY Þ ⊳ Select Pareto placement
25: return plcðAÞ ⊳ Return final placement

Algorithm 2 receives the application components M, the
set of resources R, and the placement~g. It uses the informa-
tion to remove those individuals that do not meet the
CPU; MEM; STOR and PDW

r ðsÞ constraints (lines 5 and 16).
A low-latency decision-making algorithm described in

Algorithm 3 selects the preferred placement from the Pareto
optimal set by clustering it into priority regions equal to the
number of objective functions. The algorithm starts by iden-
tifying centroids for each objective function (line 3) and ini-
tializes them close to the objective function extremes by
considering an objective priority vector OPV




! ¼ ðx; y; zÞ,
where x; y; z are priority coefficients for each objective such
that 0 � x; y; z � 1 and xþ yþ z ¼ 1. Using the centroids,
we create clusters for each objective function based on an
arithmetic distance (line 4), where each cluster corresponds
to an objective priority region. The algorithm finally selects
a random placement from an objective priority region based
on the decision maker’s preference (line 5).

Algorithm 2.mMAPO Placement Constraints Verification

1: function constraintsM;R;D;~g; PDW
r ðsÞ; MOBðmiÞ

2: M ¼ m1; . . . ; mkð Þ ⊳ Application components
3: ~g ¼ plc m1ð Þ; . . . ; plc mkð Þð Þ
4: for i 2 ½1; jMj� do
5: if CPU mið Þ > CPU rj

� � _ MEM mið Þ > MEM rj
� � _ STOR mið Þ >

STOR rj
� � _ PDW

rj
ðsÞ > MOBðmiÞ then

6: returnFalse ⊳ Constraints unfulfilled
7: end if
8: end for
9: returnTrue ⊳ Constraints fulfilled
10: end Function

Algorithm 3.mMAPO Automated Decision Making

1: function decision_makingY
2: Input: OPV




!
⊳ Objective priority vector

3: IC  initiate centroidsð ~OPV Þ
4: CP  cluster paretoðY; ICÞ
5: returnselect paretoðCP Þ
6: end Function

6 APPLICATION CASE STUDIES

We validated the method on two IoT-based medical appli-
cations with specific computing and storage requirements,
summarized in Table 2. We selected these case studies as
they strongly benefit from the Cloud – Edge computing
environment, especially in terms of reduced communication
and computation latency.

6.1 Insulin Pump

The insulin pump application is a software-controlled system
that continuously monitors the blood sugar level using IoT
micro-sensors embedded in the patient body [36]. The sensors
send the blood sugar information to the resources executing
machine learning algorithms to create a model that identifies
the patient state variation and computes the proper insulin
level upon abnormal state detection. Afterward, the pump

KIMOVSKI ETAL.: MOBILITY-AWARE IOTAPPLICATION PLACEMENT IN THE CLOUD – EDGE CONTINUUM 3363



controller receives the information through eight components
interacting as in Fig. 4:

� Compute blood sugar level of the patient;
� Compute insulin level and store it in a remote database;
� Retrieve patient records from the database;
� Review values of a patient formaking proper decisions;
� Send to doctor the blood sugar for review of insulin

intake;
� Send review results back with the proper insulin dose

based on the patient’s history.
� Compute pump command and adjust miniaturized

pumppressure to avoid the risk of falling into a coma;
� Control insulin pump needle for delivering the correct

dose.
The Retrieve patient records and Review values components

must execute in the Cloud in the proximity of the database.

6.2 Mental Healthcare

This application manages near real-time information of
patients who suffer from mental disorders [36] in several
UK hospitals (Fig. 5). Due to privacy concerns, the patients
may not always attend the same clinic and need support
through appointments and emergency services:

� Determine mental state for a specific patient’s record;
� Decompose the safety concern for the patient to prevent

accidental self-harm and of the general public;
� Generate record for medical staff from the current

patient disorder stored in a distributed database;
� View patient history retrieved from the storage device;
� Summarize the record for the physician or the patient;
� Mental health act concerning public safety and patient

rights, informing relatives to givemedicine if serious;
� Find the closest clinic and call the emergency or the

ambulance services.
The View patient history and Summarize components must

execute in the Cloud where they access secure patient data
without moving it over the network.

7 EXPERIMENTAL SIMULATION

We implemented the mMAPO Pareto analysis algorithm in
the jMetal [37] framework and integrated it within the C3

environment’s Scheduler. We created elaborate simulation
scenarios using iFogSim [14], which considers the computa-
tional and storage characteristics of both the Edge devices
and the Cloud virtual machine instances.

7.1 Experimental Design

We evaluated the benefits of mMAPO for application place-
ment compared to the following complementary state-of-

the-art methods: 1) Fog Service Placement Problem (FSPP)
[9] based on linear integer programming model focused on
reducing the economic cost and improving resources utili-
zation; 2) Edge-ward delay-priority (EW-DP) [10] that
implements a hierarchical best-fit algorithm to cope with
users’ mobility; and 3) Best-fit Queue (BQ) [11] as a queuing
algorithm that uses the Min-Max heuristic [38] to reduce the
completion time by giving preference to the Edge devices.
We considered completion time, energy consumption, and
economic cost for executing a request from the IoT sensors
until the final data collection at another device or end-user.

We designed three sets of experiments that consider the
characteristics of the IoT applications described in [9] and
averaged their results across 1000 completed runs for statis-
tical significance.

We investigate the request failure rate due to the Edge
device mobility in Section 9.

Data Size Experiment. (see Section 7.3) investigates the
influence on the objectives of Datapi 2 f0:5; 1; 4; 8g Mbit
transferred between the application components, with a
fixed application CPU workload of INSTR mið Þ ¼ 2000MI.

CPU Workload Experiment. (see Section 7.4) evaluates the
impact of INSTR mið Þ 2 f250; 500; 1000; 2000; 4000g MI by
bounding the data sizeDatapi ¼ 4Mbit.

Component Offloading Ratio. (see Section 7.5) represents the
proportion between the number of components ko placed on
the mobile Edge devices and the total number of placed com-
ponents k for given applicationsA by bounding both the data
size Datapi ¼ 4Mbit and the application CPU workload
INSTR mið Þ ¼ 2000 MI. The higher value for the component
offloading ratio represents a higher probability to place a com-
ponent on a mobile Edge device, which could reduce the
availability of the application and lead to failures.

7.2 Simulator Setup

Table 3 summarizes the capabilities of the Cloud – Edge devi-
ces divided into three hierarchical categories based on their
computing and storage capabilities: 1) Cloud data center; 2)

TABLE 2
Resource Requirements per Component

Application CPU MEM Storage Datapi

[MI] [MB] [MB] [Mbit]

Insulin pump 200 – 2000 10 – 60 256 – 1024 0.5 – 4

Mental healthcare 200 – 2000 10 – 50 256 – 512 0.5 – 4

Fig. 4. Insulin pump application.

Fig. 5. Mental healthcare application.
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higher-level gateways, including stationary ISP gateways (ISP
GW) and cellular Base Transceiver Station (BTS), which are
static; and 3) localWiFi gateways (WiFi GW) andmobile Edge
(ME) devices, with complexmobility patterns. The Cloud and
ISP GW devices have a configuration equivalent with the
Intel� Xeon family (i.e., Xeon Platinum 8175) and the WiFi
GWs devices with Intel� CoreðTMÞ i7-8550U CPU family. The
ME devices are either Raspberry Pi (RPi) single-board com-
puters or mobile phones based on ARM Cortex-A75 architec-
tures with Qualcomm� KryoðTMÞ 385 equivalent cores.
Ethernet, Wireless LAN, or 4G/LTE network interfaces inter-
connect the devices.

We simulated a Cloud – Edge environment with a single
geographically bounded cluster [5] encompassing twelve
ME devices connected to 90 sensors and actuators. A local
(ISP) proxy server connects the Edge cluster to a Cloud data
center. We assume that the IoT devices and the close sen-
sors/actuators experience a low 1 ms latency, while the
latency between every ME and WiFi GW is 10ms. We set
the latency between the WiFi GW and ISP GW to 50ms, and
between the ISP GW and the Cloud to 100ms, obtained using
the Global Ping Statistics in WonderNetwork (https://
wondernetwork.com/pings).

7.3 Data Size Results

Figs. 6 and 7 demonstrate that the data transferred between
the application componentsmarginalises the placement objec-
tives for both insulin pump and mental healthcare applica-
tions. However, we observe several dissimilarities. For
different data sizes, mMAPO reduces the average request
completion time by up to 70 percent compared to FSPP,which
tends to place the application components on the ISP andWiFi
GWs farther away from the IoT devices. In contrast, mMAPO
identifies application placements on computationally capable
Edge devices with low communication latency and low
mobility. Although EW-DP and BQ rely more on Edge devi-
ces, they apply heuristics or best-fit approaches leading to
placements on devices with scarce resources or high mobility
patterns. In terms of energy, mMAPO reduces consumption

by 17 percent compared with FSPP. Contrarily, mMAPO is
less efficient than EW-DP and BQ, which consume 30-50 per-
cent less energy, explained by the tradeoff between the
increased computation time per application component on
the Edge device and the reduced communication latency
required for time-constrained applications. Furthermore,
mMAPO reduces the economic cost by up to 79 percent com-
pared to BQ, by 71 percent compared to EW-DP, and by 45
percent compared to FSPP, explained by the lower communi-
cation times and improved data locality which reduces the
completion times.

7.4 CPU Workload Results

Figs. 8 and 9 demonstrate similar scaling of all methods with
theCPUworkloads butwith substantial performance differen-
ces. mMAPO reduces the request completion time by up to 60
percent compared to the three related methods that converge
to a local optimum (i.e., EW-DP, BQ) or extensively use high-
latency ISP and WiFi GWs, especially for workloads above
1000 MI. Although mMAPO outperforms FSPP by 23 percent
for themental healthcare application, it providesmore energy-
demanding placements for the insulin pump due the many
components concurrently executed on low capacity Edge devi-
ces. Besides, EW-DP and BQ consume nearly 55 percent less
energy than mMAPO. The higher computation time on the
Edge devices leads to higher energy consumption for specific
deadline-constrained applications. Finally,mMAPOdecreases
the economic cost by up to 60 percent compared to EW-DP and
70 percent compared to BQ, thanks to its faster completion
time. However, FSPP incurs similar costs to mMAPO by using
cheaper Cloud resources than the more expensive Edge, espe-
cially for highCPUworkloads.

7.5 Component Offloading Ratio

Fig. 10 depicts the average component offloading ratio for
mental healthcare and insulin pump applications.We observe
that FSPP has a low offloading rate of around 26 percent
because it collocates the components on fewer Cloud instan-
ces or ISP GWs. On the other side, mMAPO, EW-DP, and BQ

TABLE 3
Cloud – Edge Infrastructure Configuration

Cloud Static Edge Mobile Edge

Resource Cloud ISP GW Cellular BTS WiFi GW/ME

CPU [MIPS]�103 250 65 [10,15] [2,10]

RAM [GB] 32 16 [8,16] [0.5,2]

Storage [GB] 512 250 128 16-64

%pj [W] 1650 530 [380,410] [2.50,3.20]

CPj [¢] 0.03 0.035 [0.04, 0.05] [0.02,0.04]

CSj[¢] 10� 10�7 15� 10�6 [10� 10�6,20� 10�6] [20� 10�6, 30� 10�6]

Connectivity Wired Wired WiFi WiFi, Cellular

Standard IEEE 802.3a/v IEEE 802.3a/b IEEE 802.11a/c IEEE 802.11a/c/n, 4G/LTE

BW[Mbit/s] 10000 [1000,2000] [400,1000] [250, 400]

%mj [W] 1300 410 [1.80,2.00] [1.00,1.50]

CRj [¢] 3� 10�6 35� 10�7 [3� 10�6,5� 10�6] [3� 10�6, 5� 10�6]
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achieve high offloading ratios of 81 percent, 83 percent, and
respectively 85 percent by giving priority to ME devices. The
higher offloading ratio increases the resource utilisation and
allows improved distribution of the application components.
However, it can lead to lower availability and failures during
request processing by placing the components on devices
with highermobility.

8 REAL-WORLD EVALUATION

We validated the simulation results by deploying and run-
ning the mental healthcare application on a real testbed

Fig. 6. Insulin pump application completion time, energy consumption, and economic cost for different data size.

Fig. 7. Mental healthcare application completion time, energy consumption, and economic cost for different data size.

Fig. 8. Insulin pump application completion time, energy consumption, and economic cost for different CPU workload.

Fig. 9. Mental healthcare completion time, energy consumption and economic cost for different CPU workloads.

Fig. 10. Component offloading ratio for mental healthcare.
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environment. We designed the same two experiments (data
size and CPUworkload) again as in Section 7.1. We extended
comparative state-of-the-art comparison with a new Genetic
Algorithm based Server Selection (GASS), which implements
a population based heuristic [12] that replicates and distrib-
utes the application components to improve the execution
time and the fault tolerance.

8.1 Experimental Testbed

We prepared a testbed overlay over the Carinthian Comput-
ing Continuum [29], consisting of four Raspberry Pi-3 B+
single-board computers (RPi), three acting as ME, and one
acting as GW (see Table 4). We used a virtual machine in a
private Cloud with an eight-core Intel� CoreðTMÞ i7-7700
CPU at 3.60 GHz and 15.6 GB of RAM, operated by Ubuntu
16.04 LTS. A dedicated Gigabit Ethernet switch secured
using the SSH protocol [39] interconnects the devices.

We installed Raspbian GNU/Linux 9.8 (stretch) and
Docker 19.03 on all RPis anddeployed a containerized virtual-
ization environment. The IoT devices are close to the MEs in
terms of network hops with an average latency of 1ms. The
latency between ME and GW is 10ms, and between GW and
Cloud is 70ms, measured using the Ping network utility tool
over the Internet control message protocol. We employed the
Linux Traffic Control utility for managing the network band-
width and latency between devices by configuring the kernel
packet scheduler [40]. We identify the dataDatapi transferred
between the components through I/Omonitoring prior to the
experimental deployment. We finally used a plug-in GT-PM-
04 powermeter to measure the total energy spent by the Edge
cluster (connected to the same electric input line) while exe-
cuting an application.

8.2 Data Size Results

Fig. 11 shows that the completion time and the energy con-
sumption are marginally affected by the communication
data sizes, regardless of the placement method. There is an
observable difference in the economic cost that increases lin-
early with the data size. Concerning completion time,
mMAPO is six times faster than EW-DP and BQ, five times
faster than GASS, and 2.5 times faster than FSPP due to its
processing time and communication latency optimization.
BQ uses a greedy heuristic that places the application com-
ponents on a few Edge devices and does not consider
higher-level gateways or the Cloud instances, which
increase the response time. FSPP collocates multiple compo-
nents on the same Cloud instance, which becomes a bottle-
neck for an IoT application with many simultaneous data
sensors. EW-DP relies on best-fit algorithms and often omits
to identify suitable ME devices. Lastly, although GASS
exclusively relies on Edge devices, it performs 10 percent
better than EW-DP and BQ, as it distributes the components
among the more powerful resources. In terms of energy,
mMAPO consumes 17 percent less than EW-DP, 29 percent
less than GASS and BQ, and 64 percent less than FSPP.
Finally, mMAPO provides 28 percent cheaper placements
than EW-DP and BQ, 26 percent cheaper than GASS, and 47
percent more expensive than FSPP, which is the most eco-
nomic due to the frequent Cloud use.

8.3 CPU Workload Results

mMAPO performs 2.4 times better than FSPP and GASS,
and 3.2 times better than EW-DP and BQ for a fixed data
size of 4 Mbit and varying CPU workloads of up to 4000 MI,
because it considers the execution locality, communication
latency to the data sources, and resource availability. GASS
achieves similar completion time to FSPP without relying
on the expensive cloud instances due to the replication strat-
egy that significantly improves the performance and reli-
ability. Fig. 12 further shows that mMAPO provides up to
46 percent lower energy consumption than FSPP. However,
mMAPO is 56 percent worse than EW-DP, 64 percent worse
than BQ, and 70 percent worse than GASS, as it identifies
trade-offs between performance and power consumption of
both the Cloud and the Edge devices. Finally, mMAPO pro-
vides 2 percent lower economic costs than the Cloud-
bounded FSPP, and between 28 – 34 percent compared to
GASS, EW-DP and BQ.

TABLE 4
Real Experimental Testbed

Cloud Edge

Characteristic Data center GW ME

CPU [MIPS]�103 250 65 65

RAM [GB] 16 1 1

Storage [GB] 256 64 64

BW [Mbit/s] 1000 1000 1000

Fig. 11. Mental healthcare application time, energy, and cost for different data sizes.
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9 MOBILITY PREDICTION EVALUATION

We present an empirical evaluation of the Markov model-
based mobility prediction using real-world traces.

9.1 Experimental Design

We implemented the mobility prediction in Python 3.7.4
using two transition probability matrix calculations.

Incremental Distribution Vector (IDV). creates the initial
transition probability matrix by considering a state distribu-
tion for all states. It determines the most probable state as a
factor of the initial distribution and the product of the prob-
ability PDW and the required number of predictions.

Direct Probability Matrix (DPM). uses all observed states
in the given time window DW to create the initial distribu-
tion matrix.

We evaluated a dataset (see Section 9.2) with 316 ME
devices and 213 higher-level gateways. We used a fixed
observation window of DW ¼ 6h, with an increasing num-
ber of observations O 2 f25; 50; 100; 200g, generated by
transforming the conditional probabilities to several single
transitions for each Edge device. We employed an inverse
transform sampling [41] to generate the next state from the
probability distribution in Eq. (1). We repeated and aver-
aged single predictions f25; 50; 100g times in every
experiment.

9.2 Device Mobility Dataset

We utilized the CRAWDAD - ilesansfil/wifidog [42] dataset
provided by the Île Sans Fill (ISF) wireless network provider
that serves mobile users of Montreal, Canada. The dataset
contains 2,177,835 records representing connections among
345 distinct higher-level WiFi GW and 149,861 uniquely
identified ME devices. Each record includes, among others,
an anonymous user identifier, a node identifier, and the
hashed media access control address for the mobile device.

The records spawn over a seven-year period, from 2004
until 2010. We limited our data use to 2009 and 2010, as this
period corresponds to the large-scale adoption of smart
mobile and IoT devices.

For the transition probability matrix (see Section 3.4), we
assumed a dependency between the device mobility and
the day’s time. We found out that most device movements
(roaming) between higher-level gateways occur in the fore-
noon or afternoon. We, therefore, distributed the selected
dataset in four-time windows with a length of six hours
each, as follows: 1) DW Morning ([0, 6[ hours); 2) DW Fore-
noon ([6, 12[ hours); 3) DW Afternoon ([12, 18[ hours); 4) DW

Night ([18, 24] hours). We obtained the initial probability
distribution for the Markov chain by weighting the records
from the dataset, grouped in similar time observation win-
dows of six hours before applying averaging operations.
Besides, we avoided averaging records belonging to differ-
ent windows DW , resulting in unrealistic transition proba-
bilities. Thereafter, we identified the number of connected
Edge clusters and the selected 100 most mobile devices con-
nected to the highest number of different clusters per time
window. This results in 400 (window, device) tuples corre-
sponding to the dataset in Table 5, used as state observation
monitoring data for creating the transition probability
matrix P , as well as for generating sample transitions for
comparison and evaluation purposes.

9.3 Mobility Prediction Accuracy

mMAPO relies on proper identification of Edge devices
with lower mobility. Falsely identifying Edge mobility
patterns could discard high-quality placements or con-
sider invalid ones. We, therefore, evaluated the DPM
and IDV methods (see Section 9.1) in terms of execution
time and prediction accuracy for a single transition. The
results in Fig. 13 show that both approaches scale well
with the number of observations. However, DPM pro-
vides up to 60 percent lower execution times due to the
direct calculation of the transition probability matrix. In
contrast, IDV utilizes sample vectors and each device’s
initial states combined with the available observations to
create an updated transition probability matrix. More-
over, DPM provides a prediction accuracy for the next
state transition of up to 96 percent, with a marginal stan-
dard deviation. On the contrary, the observation period
affects the accuracy of IDV, which varies between 86 and
96 percent. Lastly, the prediction accuracy is marginally
dependent on the number of parallel single-step predic-
tions. Overall, one can assume a slight reduction in accu-
racy by increasing the number of mobile and unstable
Edge devices.

TABLE 5
Dataset Characteristics

Year Records Devices Gateways

2009 12.275 310 200
2010 1.889 193 136

Fig. 12. Mental healthcare application time, energy, and cost for different CPU workloads.
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9.4 Request Failure Probability

This section evaluates the effect of the mobility on the request
failure probability for executing themental health application.
Weperformeda series-based reliability analysis [43] that iden-
tifies the average time spent by the Edge devices in a con-
nected Sc or roamed Sr state in the four time windows DW
defined in Section 9.2: Morning (MO), Forenoon (FN), After-
noon (AN) and Night (NI). The empirical analysis shows that
the average connected or roamed time T for each time win-
dow DW is 2790s, 2888s, 3322s and 2442s, respectively. We
therefore utilize this information to create probability function
for a request failure f in time t ¼ ½0s; 600s� as: P fð Þ ¼ e�

t
T . We

investigate two mMAPO mobility constraints MOB mið Þ 2
f0:5; 1g for each application component.We assume for GASS
a placement with 50 percent of the components having one
replica, which provides a statistically good compromise
between fault tolerance and economic cost [44]. Fig. 14 dem-
onstrates that the EW-DP and BQ approaches tend to have
around 65 percent higher failure probability, as they primarily
rely on mobile devices closer to the Edge of the network. EW-
DP particularly places the application components at the
Edge to improve the application scalability considering the
users’ mobility. However, the method does not consider the
Edge devices’ mobility, which results in a higher failure rate.
In contrast, FSPP primarily relies on the Cloud infrastructures
with limited use of Edge devices, which results in a relatively
low failure probability of around 35 percent. Furthermore,
GASS reduces the failure probability to around 25 percent
when replicating 50 percent of the components. GASS can
reduce the failure probability to only 3 percent when replicat-
ing all components once. However this increases the execu-
tion price by a factor of two, as the replication does not
consider the device mobility and employs more resources for
better fault tolerance. Considering the mobility prediction
reduces the failure probability of mMAPO to less then 10 per-
cent for MOB mið Þ ¼ 1 and further to only 6 percent for
MOB mið Þ ¼ 0:5, without other financial costs.

Relating the request probability failure with the compo-
nent offloading rate evaluated in Fig. 10, we conclude that
the placement on mobile Edge devices requires fault toler-
ance techniques in addition to the mobility constraints, as
wrong mobility predictions can still lead to request failures
of around 10 percent, especially for MOBðmiÞ ¼ 1.

9.5 Complexity and Quality Analysis

The mMAPO algorithm based on NSGA-II has a complexity
of O o � S2ð Þ, where o is the number of objectives and S is the
population size [45]. The Markov model for mobility predic-
tion does not influence the complexity, however it reduces
the problem space [30].

We investigate the ability of mMAPO to find optimized
placements across a large set of Edge devices and Cloud
instances in the presence and absence of mobility constraints,
using a population of 100 placements. Table 6 compares the
mMAPO Pareto analysis algorithm’s execution time and the
placements’ hypervolume [46] for the constrained and non-
constrained approaches using a gradually increasing number
of placement evaluations. The mobility constrained mMAPO
reaches high-quality placements after 5,000 evaluations com-
puted in 266ms on average. Not considering the mobility con-
straints it requires 10,000 evaluations to reach placements
with similar quality, however, with a higher execution time of
332ms. Nevertheless, mMAPO scales well and achieves a
maximum execution time of 385ms for the mental healthcare
application by deleting placements that do not meet the
mobility constraints after each generation.

10 CONCLUSIONS AND FUTURE WORK

We introduced mMAPO, a mobility-aware multi-objective
method integrated within the C3 environment that considers
the computation, communication, and mobility aspects for
placing and executing IoT applications in the Cloud – Edge
Continuum. mMAPO employs a genetic algorithm that opti-
mizes three conflicting objective functions (i.e., completion
time, energy consumption, and economic cost), constrained
through a Markov chain model characterizing Edge devices’
mobility. To solve this problem, mMAPO identifies the inter-
connections among the application components, analyses the
devices’ mobility, searches for a Pareto optimal set of tradeoff
placements, and selects an appropriate one using an auto-
mated decision-making algorithm. We evaluated mMAPO
for two medical applications using simulation and real-world
experimentation compared against four relatedmethods. Our
results show that mMAPO can achieve up to six times lower
application completion times, similar energy consumption,
and up to 28 percent cheaper execution costs than related

Fig. 13. Experimental evaluation of the Markov chain single-transition mobility prediction model.

Fig. 14. Average request probability failure for mental healthcare.
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methods. In certain scenarios, mMAPO can even reduce the
energy requirements by up to 40 percent. However, it is less
efficient than GASS that almost exclusively relies on low-
power Edge resources and avoids the Cloud. Moreover, Edge
devices’ mobility prediction model can reduce the request
failure probability by up to 80 percent, evenwhen the compo-
nent offloading ratio is above 80 percent. The results also
show that the Edge infrastructure is more energy-efficient for
small applications that do not require high-performance
resources. Besides, the communication latency has a larger
impact on the completion time than the data size. Lastly, the
Edge devices’ mobility can significantly impact the execution
and deserve proper consideration during the application
placement.

In the future, we plan to improve our results by explor-
ing efficient game theoretic methods for placing non-struc-
tured applications across the Cloud – Edge continuum.
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