
\

Khan, S., Nguyen, P. H., Abdul-Rahman, A., Freeman, E. , Turkay, C. and

Chen, M. (2022) Rapid development of a data visualization service in an

emergency response. IEEE Transactions on Services Computing, 15(3), pp.

1251-1264. (doi: 10.1109/TSC.2022.3164146)

The material cannot be used for any other purpose without further

permission of the publisher and is for private use only.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/273746/

 Deposited on 27 June 2022

Enlighten – Research publications by members of the University of

 Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/TSC.2022.3164146
http://eprints.gla.ac.uk/273746/
http://eprints.gla.ac.uk/

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 1

Rapid Development of a Data Visualization
Service in an Emergency Response

Saiful Khan, Phong H. Nguyen, Alfie Abdul-Rahman, Member, IEEE,
Euan Freeman, Cagatay Turkay, and Min Chen, Member, IEEE

Abstract—We present the design and development of a data visualization service (RAMPVIS) in response to the urgent need to
support epidemiological modeling workflows during the COVID-19 pandemic. Facing a set of demanding requirements and several
practical challenges, our small team of volunteers had to rely on existing knowledge and components of services computing, while
thinking on our feet in configuring services composition and adopting suitable approaches to services engineering. Through developing
the RAMPVIS service, we have gained useful experience of ensuring conformation to services computing standards, enabling rapid
development and early deployment, and facilitating effective and efficient maintenance and operation with limited resources. This
experience can be valuable to the ongoing effort for combating the COVID-19 pandemic, and provides a blueprint for visualization
service development when future needs for visual analytics arise during emergency response.

Index Terms—Web services, services computing, service composition, services engineering, data visualization, epidemiological
modeling, emergency response, REST, ontology, agents, open source, template-based development, rapid deployment, RAMPVIS.

✦

1 INTRODUCTION

S ERVICES engineering is concerned with the develop-
ment, maintenance, and operation of service-oriented

systems [1], [2]. Developing a service-oriented system in-
volves a software life-cycle that typically takes tens of
months. In ordinary circumstances, it is perfectly reasonable
to have a relatively long life-cycle to ensure the quality of
the delivered service. However, in some circumstances, such
as an emergency response, it may be necessary to develop
a service-oriented system in a few weeks or months. Dur-
ing the COVID-19 pandemic, we encountered the need to
provide a group of epidemiologists and modeling scientists
with a data visualization service. The urgency of this neces-
sitated a process for progressive development, a schedule
for rapid deployment, and mechanisms for effective and
efficient maintenance and operation.

In March 2020, the Royal Society (UK) issued a nation-
wide call for skilled researchers to join the Rapid Assistance
in Modelling the Pandemic (RAMP) initiative [3]. This led to
the establishment of several large consortia of volunteers,
among which was the Scottish COVID-19 Response Consor-
tium (SCRC) [4]. On 14 May 2020, one SCRC coordinator
met a visualization scientist who answered the RAMP call,
and concluded that they needed more data visualization
specialists to support the pandemic response. Next day, a
call for visualization volunteers was sent out. By the end

• Saiful Khan and Min Chen are with University of Oxford.
E-mail: saiful.khan@eng.ox.ac.uk, min.chen@oerc.ox.ac.uk.

• Phong H. Nguyen is with Redsift Ltd. and University of Oxford.
E-mail: phong.nguyen@redsift.io.

• Alfie Abdul-Rahman is with King’s College London.
E-mail: alfie.abdulrahman@kcl.ac.uk.

• Euan Freeman is with University of Glasgow.
E-mail: euan.freeman@glasgow.ac.uk.

• Cagatay Turkay is with University of Warwick.
E-mail: cagatay.turkay@warwick.ac.uk.

Manuscript published April 1, 2022. DOI: 10.1109/TSC.2022.3164146

of May, over 20 visualization researchers and developers
joined the effort to provide visualization support to the
epidemiological modeling workflows in the SCRC.

When the visualization volunteers formed the RAMPVIS
group [5], [6], several teams of epidemiologists and mod-
eling scientists in the SCRC were working intensively on
multiple epidemiological models, while a team of research
software engineers were developing the SCRC data infras-
tructure to host a huge volume of data, including captured
COVID-19 data, model predictions, parameters and internal
data of simulation runs, and so on. One urgent requirement
was therefore to enable users to visualize data hosted by
the SCRC data infrastructure, which was expected to be
ready and operational in two to three months. In order
to not disrupt the ongoing development of the SCRC data
infrastructure at that time, the RAMPVIS group decided to
develop a visualization service to be coupled with the SCRC
data infrastructure. By the end of August 2020, the SCRC
data infrastructure was operational. Within a few weeks the
visualization service, called RAMPVIS, was deployed, pro-
viding numerous plots and dashboards and other features
to support the domain experts’ visual analytics needs.

We could not easily follow a traditional software en-
gineering workflow for developing a visualization service
because of several key challenges, including the urgency
in an emergency, the lack of stable programming resources
due to the volunteer nature of our activities, and the lack
of an existing visualization service infrastructure to help
bootstrap the development. Facing a set of demanding
requirements and several practical challenges, we had to
rely on existing knowledge and system components of
services computing as much as possible, while thinking on
our feet in configuring service composition and choosing
appropriate approaches for service engineering. Through
the development of the RAMPVIS service, we have gained
useful experience of ensuring conformation to service com-

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 2

puting standards, enabling rapid development and early
deployment, and facilitating effective and efficient mainte-
nance and operation. We believe that this experience can be
valuable to the ongoing effort for combating the COVID-19
pandemic (and its ever-changing needs for visual analytics).

The many activities of the RAMPVIS consortium have
been summarized in a report [6] that gives a high-level
overview of ongoing work across several visualization
teams and offers little insight into the technical infrastruc-
ture developed during this project. In a recent paper [7], we
described a novel technique for generating visualizations
and dashboards semi-automatically. That work focuses on a
specific algorithmic approach and user interface for assuring
visualizations are propagated to appropriate data. In this
article, we focus more on the novel technical aspects of
the RAMPVIS service architecture and our service develop-
ment processes, which were absent in those earlier works.
Our contribution includes reflections on our experience of
developing a data visualization service in the emergency
response to the COVID-19 pandemic. We also present our
service design and our approach to its design, engineering,
maintenance, operation, and continual improvement. Our
general approach, open source software contributions, and
lessons learned will also be relevant to future service com-
puting initiatives during emergency response efforts.

2 RELATED WORK

2.1 Rapid Development in Emergency Response

Our volunteer consortium were tasked with developing
a COVID-19 visualization service for epidemiologists and
modeling scientists. As an emergency response, we adopted
a rapid development approach focused on timely service
delivery, in a way that made the best use of our volunteers’
expertise and skills. There is a large body of work reflecting
on agile/rapid development approaches and, more recently,
discussions on the use of such approaches in software de-
velopment during COVID-19 can be found in the literature.
When starting, we considered a variety of rapid develop-
ment approaches. No one software development process
or set of practices is universally and ideally suited to all
contexts, and the constraints of each setting need to be
considered when choosing a suitable approach [8].

Extreme programming (XP) has been adopted for the
rapid development of web applications [9] and emergency
response system development [10]. Some XP characteristics
and practices were suited to our situation: e.g., fewer than
ten team members, use rapid prototyping, continuous inte-
gration, simple design, refactoring, small release cycles, etc.
However, practices like pair programming, onsite support,
test-driven development, planning, etc., were not feasible
in an emergency situation. Base agile methods (e.g., Scrum,
Kanban, and flow) and large-scale agile methods (e.g., SAFe
and Scrum-at-scale) were not wholly ideal due to factors
largely influenced by our volunteer effort, e.g., lack of a
scrum master, time constraints needed to properly define
and document project scope, and uncertain and limited
time commitments from volunteers working remotely and
at different times. Adopting such a process takes time and
involves solving different challenges at different adoption

stages [11]. As this paper goes on to show, rapid devel-
opment in a volunteer-driven emergency response requires
drawing on different engineering practices, rather than
wholly committing to one.

This can also be seen in other discussions of COVID-
19 related software initiatives, although these works do not
cover their approach or reflect on their experiences in much
detail. Krausz et al. [12] reflect on the rapid development
of a COVID-19 crisis management system (e.g., for patient
intake, monitoring, referral) in Ontario, Canada. In devel-
oping a centralized web service, they were able to quickly
put in place a system that allowed the health service to
take a data-driven approach to their pandemic approach.
Schinköthe et al. [13] similarly described the rapid devel-
opment of a web application supporting telehealth delivery,
motivated by the urgent need to adopt remote health service
provision to protect front-line health professionals from
COVID-19 transmission. In discussing their system, they
reflect on the benefits the agile approach brought to the fast
deployment of this service. Beyond software, others have
reflected on the benefits of agile development approaches
in, e.g., medical device development [14]. These works lack
technical contributions and offer limited insight into service
design and engineering practice. Our work addresses this
gap with a more technical oriented contribution about ser-
vice engineering during (and for) the COVID-19 response.

Rapid development has also been adopted in visualiza-
tion deployment, most relevant to our work. For exam-
ple, Dixit et al. [15] described the rapid development of
a system for visualizing telehealth data, so that hospitals
could take data-informed approaches to dealing with the
sudden increase in telehealth service provision as a result of
COVID-19 disrupting typical healthcare practice. In reflect-
ing on their work, they discussed the importance of rapid
development in providing visualizations to inform health-
care provision – noting that “basic visualization is better
than no visualization” in emergency response. Our project
had the more challenging scope of providing a COVID-19
visualization service that could flexibly support emerging
analytics needs and scale across thousands of diverse data
types and sources. Our contribution thus focuses on the
unique services engineering challenges of developing such
a scalable visualization system, rather than one with a more
narrowly-defined scope and feature set like [15].

There are existing commercial web-based visualization
platforms (e.g., Tableau, PowerBI) which could be used
to support visualization service development and have
seen some uptake by local and national governments for
visualizing key indicators in their COVID-19 data (e.g.,
Public Health Scotland’s COVID-19 dashboard built on
Tableau [16]). However, these platforms are too costly for
a volunteer effort like ours (c.f., [7]) and their architec-
ture is not conducive to developing a flexible and scalable
visualization service that would quickly meet the needs
of the SCRC epidemiologists and modeling scientists. In-
stead, we used a rapid development approach based around
templates and ontology-supported development leading to
a visualization service that could be quickly scaled and
extended to deal with the rapidly-evolving visual analytics
needs of our users.

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 3

2.2 Template-based Rapid Web Development

Template-based approaches are often used in web applica-
tion development, reducing the amount of work necessary
to develop and deploy functional systems and services. Pop-
ular examples include Django and the Jinja template engine.
Such development approaches can increase developer pro-
ductivity, provide uniformity, and present a common look
and feel across web applications [17]. Template approaches
are compelling because they can increase efficiency in rapid
development [18] and reduce the need for infrastructure
implementation [19] – this was critical in our context, given
the timely need to develop a bespoke visualization service,
especially with the limited volunteer resources available.

Template approaches also support a clear separation of
concerns [20], [21], which can be especially beneficial in
urgent volunteer efforts like RAMPVIS. For example, some
of our volunteers had expertise in data processing, whilst
others specialized in visualization, epidemiological model-
ing, etc. Our general use of a template approach meant we
could decouple aspects of service component development
to make the best use of our volunteers and their areas
of expertise; e.g., so that visualization experts could focus
on visualization implementation without being exposed to
other components and the underlying data infrastructure.

2.3 Ontology-supported Development

An ontology is a structured representation of knowledge.
These can be valuable in software engineering because they
can be used to formally represent software entities, domain
knowledge, and the relationships between them. Reviews of
ontology-supported software engineering give insight into
the benefits of this practice [22], [23], [24]. These structured
knowledge representations not only support implementa-
tion, but can help with long-term maintenance [25], software
re-use [26], documentation [27], integration of semantic
features [28], and software testing [29].

Ontologies have also been used in service computing,
e.g., to support service specification [30] and service com-
position [31] through structured representations of service
components and associated domain knowledge. We used an
ontology as a core component in our visualization service:
the ontology represented the relationships between key
service components (visualization implementations, data
streams, and interactive web pages). This enabled us to
rapidly scale the system through semi-automatic visualiza-
tion production [7]. Similar to template-based development,
we argue that ontologies can be used to rapidly scale the
functional offerings of a service with minimal develop-
ment resource; in our context, this was critical in ensuring
COVID-19 visualizations were quickly made available with,
e.g., complete coverage of UK health board areas.

3 SERVICE REQUIREMENTS AND METHODOLOGY

The RAMPVIS service was developed in response to the
growing need to visualize and gain analytical insight into a
huge volume of COVID-19 data, hosted by the SCRC data
infrastructure and, later, other data providers. This data
infrastructure was designed to support several epidemio-
logical modeling teams in the consortium, each with their

own data and visualization needs. The overall requirements
for the service were immediately apparent, including:

1) To conform to services computing standards: The SCRC,
since its formation, had an overarching policy of open
data and open source software. This led to the decision
to utilize widely-available web technology to deliver
data visualization to the epidemiologists and modeling
scientists in the SCRC. Consequently, RAMPVIS needed
to conform to the standards for developing and deliv-
ering services via the web.

2) To be developed rapidly and deployed as early as possible: In
an emergency response, time is without doubt a critical
factor. While the development of the SCRC data infras-
tructure commenced just before the RAMPVIS service,
there was a pressing requirement for synchronizing
their deployment, so that domain experts could quickly
access data and corresponding visual analytics capabil-
ities. This led to an ambitious plan of making both the
data infrastructure and the RAMPVIS service available
before the autumn of 2020. Since the RAMPVIS group
was formed at the end of May, there were only a few
months for designing and engineering a deployable
data visualization service.

3) To be maintained and operated effectively and efficiently:
Most of our visualization volunteers were university
faculty members and could not commit a sufficient
and persistent amount of time for software engineering.
The responsibility for developing the RAMPVIS service
rested on four members of the generic support team,
including two industrial researchers and two faculty
members. They were supported by three other faculty
members who assisted in architecture and user inter-
face design, in liaison with other activities in the SCRC
and the RAMPVIS group. Because of the unpredictable
nature of a volunteering development operation [32],
and the potentially long period needed to combating
the COVID-19 pandemic, it was necessary to ensure
that the RAMPVIS service would be easy to maintain
and operate, and could be resilient to changing per-
sonnel for engineering, maintaining, operating, and re-
developing the service.

We also faced the challenge of having no previous work
on visualization services in the literature, which would have
otherwise provided a development ‘template’ to kick-start
development. Brodlie et al. reviewed a range of visual-
ization services developed two decades ago [33]; at that
time, many visualization techniques (e.g., volume render-
ing, flow visualization, and virtual reality) demanded signif-
icant computational resources. Much of the effort then was
to address the need for high-performance computation, with
services offering infrastructure for costly visualizations. In
recent years, these visual designs are readily available
on everyday devices and contemporary visualization tools
(e.g., D3.js) typically do not require infrastructural support.
Reports on infrastructure-based visualization became rare
in the literature. We therefore drew on the knowledge
of service composition and engineering from other web
applications, and adapted such knowledge to design our
visualization service composition and inform our approach
to service engineering.

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 4

Requirements Service Engineering

• Using the web technology

• Using an ontology-centered architecture

• Using automatic & semi-automatic agents

• Using database services for multiple purposes

• Following the REST development style

• Following the open source principle

• Using the D3.js development platform

• Using a template-based development protocol ‐ including a propagation agent

Service Composition

1. Conformation to services
computing standards

2. Rapid development
& early deployment

3. Effective and Efficient
maintenance & operation • Using an agile software engineering workflow

Fig. 1: A summary of the service components and engineering approaches that were designed to meet the requirements for
developing a visualization service in response to the emergency.

To address the aforementioned requirements and chal-
lenges, we made the following design choices:

• Developing for web: This would allow users to access
RAMPVIS via their web browser, simplifying deploy-
ment across multiple platforms. This would also ac-
celerate service development because (i) we could use
generic UI functionality offered by web browsers, so
we could focus on application-specific UI components,
and (ii) we could use D3.js, a web-based visualization
platform popular in the visualization community.

• Using an ontology-centered architecture: Epidemiological
modeling workflows use many pieces of data (called
data streams in the RAMPVIS service). A visualization
plot or a dashboard (called VIS functions) may display
multiple data streams and can be applied to many
other data streams as well. When a VIS function is
combined with a set of data streams, it becomes a web
page. It is challenging to maintain knowledge about
relationships among data streams, VIS functions, and
web pages as distinct system components. We chose
to use an ontology to represent such knowledge in
a structured way, with the ontology being a central
component in the RAMPVIS service that could support
development, facilitate automation features, and, later,
support scalability.

• Using automatic and semi-automatic agents: Most COVID-
19 data normally changes on a daily basis, while mod-
eling data changes whenever a model is executed.
We thus developed a number of automatic and semi-
automatic agents to deal with dynamic changes in
data streams. These significantly reduced maintenance
and operation costs, while some (e.g., the propagation
agent) facilitated an effective and efficient process for
deploying and scaling the RAMPVIS service.

• Using database services for multiple purposes: Our service
would be data-intensive and needed to store both ap-
plication data and metadata (e.g., about COVID-19 data
streams), as well as operational data. Database services
were used for many components in the RAMPVIS ser-
vice, so that data storage and processing components
were quick to develop and easy to maintain.

• Using the D3.js development platform: D3.js was the most
familiar visualization platform in the volunteer team.
We thus used D3.js to: (i) accelerate the service design
and engineering process, (ii) maximize the develop-
ment resources and experiences so a service could be
delivered quickly, and (iii) benefit from open source

visualizations written for D3.js. This platform was com-
patible with key requirements (e.g., web-based).

• Using a template-based development protocol and a propaga-
tion agent: Based on the limited estimated volunteering
time (seven person months from June–December 2020),
we quickly formulated a template-based development
protocol for programming a visualization plot or a
dashboard. This allowed visualization developers to
focus on implementing individual visualization tem-
plates (VIS functions) with little distraction from under-
lying service infrastructure. Since a VIS function could
be applied to many data streams after creation (e.g.,
thousands of time series in the SCRC data infrastruc-
ture), we developed a propagation agent for connect-
ing VIS functions to appropriate data streams, based
on the ontology [7]. The template-based development
protocol and the propagation agents facilitated rapid
development and scaling of the RAMPVIS service, and
simplified maintenance of the relationships between
numerous VIS functions and associated data streams.

• Using an agile software engineering workflow: An agile
approach was ideal for the development life-cycle of
RAMPVIS, which involves collaboration (i.e., with the
SCRC), continual requirements discovery (i.e., for epi-
demiological modeling), adaptive planning (e.g., ac-
cording to the ongoing development of the SCRC data
infrastructure), early delivery (i.e., in an emergency re-
sponse), evolutionary development, and continual im-
provement. It allowed us to respond flexibly to changes
in user requirements, development resources (volun-
teering and funded), and most of all, the evolving
situation of the pandemic.

• Following open source principles: All RAMPVIS compo-
nents would be developed as open-source software and
code is available via GitHub [34], [35], [36]. This con-
forms to the SCRC requirement for openness and has
helped with: team communication and coordination;
software testing, deployment, and update; and training
new developers after we received grant funding.

The above design choices affect both service composition
and service engineering, as illustrated in Fig. 1. In the remain-
der of this paper, we discuss each of these in turn.

4 SERVICES COMPOSITION

Configuring a service by selecting appropriate technical
components and their composition is a key task in ser-
vices computing. We will discuss the architecture of the

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 5

Fig. 2: Examples of the search (left) and portal (right) facilities of the RAMPVIS service. These facilities display plots and
dashboards as thumbnails that are generated automatically by a ThumbnailAgent that will be described in Section 4.3.3.

plots

dashboards

tools

portals

search

SCRC Data
Infrastructure

users

RAMPVIS
Service

Fig. 3: The functional role of the RAMPVIS service.

RAMPVIS service (Section 4.1) as configured to satisfy the
requirements and design choices outlined earlier. We then
describe two purposely-designed aspects of our service
composition: the ontology for knowledge management (Sec-
tion 4.2), and (semi-)automatic agents (Section 4.3). Finally,
we will highlight other important design features in config-
uring the RAMPVIS service.

As shown in Fig. 3, the essential functional role of the
RAMPVIS service is to transfer data from a data infrastruc-
ture to numerous plots and dashboards, in order to meet
the visual analytics needs of its users. There is a huge (and
constantly growing) volume of data and thousands of plots
and dashboards created to meet emerging user needs, so it is
necessary to provide users with search and personalization
features for quick access to the visualizations that are most
relevant to, and thus frequently used by, each individual (as
shown in Fig. 2). The RAMPVIS service is currently being
extended to provide more complex visualization facilities
within self-contained subsystems, referred to as “tools”.
These are the key components from which our service is
composed.

4.1 RESTful Architecture
Representational state transfer (REST) is a popular software
architectural style for web-based services [37]. We adopted
the Richardson Maturity Model [38] and CoHA Maturity
Model [39] in designing the RAMPVIS service as a RESTful
architecture, and in selecting APIs for facilitating operations
and communications in response to client requests.

The RAMPVIS service back-end is a tiered architecture
[37], [40], [41], where the service operations are grouped
into five tiers (T0—T4) as illustrated in Fig. 4.
T0 is a web server and its load-balancer that receives

incoming requests via HTTP and distributes these to
available instances of our REST APIs.

external services

T0

T1

T2

T3

T4

user interface

server and load balancer

application-level middleware

controllers

controller-level middleware

routers

router-level middleware

internal services

agents

algorithms

ontology, user, activity,
thumbnail, search, ...

service layer

T3

process / system

data

REST API

class / function

data streams

search engine

ontology database

database

Fig. 4: An illustration of our n-tier architecture and func-
tionality of each tier. A server and its load-balancer (T0) re-
ceives the incoming requests through HTTP and forward the
requests to our REST APIs. In REST API layer, application-
level middlewares (T1) first process the request and forward
successful requests to controllers and route-handlers (T2).
Finally, the routed requests are resolved by service layer (T3)
using internal and external services (T4).

T1 hosts the application-level middleware that first pro-
cesses a request and then forwards it to controller(s).

T2 hosts controllers, routers and other lower-layer middle-

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 6

@controller('/user', jwt.verify, ...)

export class UserController {

controller-level

router-level

application-level

CORS

body parser

query param parser

JWT

query param validate

payload validate

access verification

service layer

...

...

...

request response error

app.use(cors({ origin: (origin, callback) => {...}));
A

B 2

11

2

3

4

65

A

B

C @httpGet('/', queryParamValidate(PaginationModel), canRead,...)

 public async getUsers(...): Promise<void> {

 ...

 }

 @httpPost('/', payloadValidate(UserModel), canCreate,...)

 public async createUser(...): Promise<void> {

 ...

 }

}

C 3 5

C 4 6

Fig. 5: An illustration of request processing and handling (e.g., parse, sanitize, verify, and validate) by middleware using
a flowchart (left) and code snippets (right). At application-level (A), the CORS (1) middleware allows only requests from
our approved list of origins (e.g., https://vis.scrc.uk). At controller-level (B), a JSON Web Token verification middleware
(2) checks if the requests are from an authenticated users. At router-level (C), (3) checks if the request has valid pagination
query parameter, (5) checks if the user has read permission, The route (D) handles creation of users, where we verify if the
request payload has valid user data (4) and the user has valid access right (6) for creating a user in our system (user with
admin role has such right).

ware.
T3 is a service layer that acts on a request, and in turn

calls other services to resolve it. For example, for a
login request, the service layer will call a UserService
to authenticate the login request using a database that
keeps authentication information.

T4 provides a connection to all the physically isolated
external services.

T1 and T2 provide the REST API logic, while T3 and
T4 provide various microservices. Each tier can be logically
and/or physically separated. Here, the logical separation
means that the software classes and functions in different
tiers may run in a same container, while physical separation
means that independent instances of software stacks must
run in different containers.

In our services composition, T0 and external services
in T4 are physically separated, running in their own con-
tainers. This is because these services are mostly existing
third-party systems and they are easier and more reliable
to maintain when they are physically isolated. T1, T2, and
T3, which were developed by us, are logically separated
but running in a same container. Because a container (e.g.,
Docker) packs up a service or software stack and all its
dependencies, T1, T2, and T3 can run quickly and reliably.

We introduced middleware for initial processing of the
requests, and controller classes for logically similar re-
sources and endpoints (discussed later).

Middleware is a regular feature in services computing,
providing functions in handling HTTP requests, typically
for prepossessing, security checking, sanitizing, validation
before passing them to the service layer. In our services
composition, we have three middleware levels in T1 and
T2, with “global” functions for preprocessing of all requests,

“groupwise” functions for preprocessing logically-similar
requests, and specialized functions for preprocessing indi-
vidual requests.

As illustrated in Fig. 5, the three middleware levels
are application, controller, and router. The application-level
provides “global middleware” functions. For example, a
CORS (Cross-Origin Resource Sharing) filters out requests
from unapproved domains (see also Fig. 5(A)); a Body Parser
parses requests with JSON payloads; a Query Param Parser
parses requests with URL-encoded query parameters; and
so on. The requests that pass the application-level middle-
ware are forwarded to a relevant controller in the controller-
level middleware.

Each controller is defined as a class that groups and
implements logically similar routes. For example, all user
routes are implemented in a UserController (see also
Fig. 5(B)). JWT (JSON Web Token) checks if a request
contains a valid authentication token (see also Fig. 5(2)).
The requests that passes the controller-level middleware are
forwarded to a relevant router.

A router is a route-handler. For example, the Query Param
Validate middleware function validates the query parame-
ters of a request (see also Fig. 5(3)) and the Access Verification
function checks if a request has an appropriate role-based
access right (see also Fig. 5(5,6)).

By conforming to the REST architectural style, we were
be able to implement T1, T2, and T3 with modular and
maintainable code, while utilizing as many existing com-
mercial services in T0 and T4. This enabled us to speed up
the development by using open-source frameworks and li-
braries, and freeware services and systems. In particular, we
used NGINX server and load-balancer in T0, and MongoDB
database and Elasticsearch search engine in T4.

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 7

We implemented our REST API using state-of-the-art
frameworks FastAPI and Node.js, and our middleware
using the Express.js library. Other RAMPVIS components
(described later) implemented CPU-intensive services (e.g.,
most agents) using Python, and I/O intensive operations
(e.g., database, ontology, search engine, visualization) using
asynchronous JavaScript.

According to the taxonomy of services composition pro-
posed by [42], the RAMPVIS service features the following
techniques and standards:

• Language:
– Component:

∗ Type: Data, Application Logic
∗ Interaction Protocol: REST
∗ Description: Swagger
∗ Data Format: JSON
∗ Interaction Style: Push, Pull
∗ Selection: Runtime

– Target Application: Emergency Responses
– Notation: Textual: Code-based
– Paradigm: Script-based
– Composite Constructs: Control Flow Patterns:

Sequence, Parallel
– Crosscutting Concerns:Exceptions

• Knowledge Reuse:
– Reused Artifacts: Components
– Reused Technique: Copy/Paste, Cloning

• Automation: Agents (see Section 4.3)
• Tool Support: Refactoring
• Execution Platform:

– Deployment Options: Cloud
– Execution Engine: Service Bus

• Target User: End-user Programmer: App Developers

0...n 1...n

1

1...n
1

1
1

1

Binding
 id UUID
 dataIds Array<UUID>
 visId UUID
 pageIds Array<UUID>

OntoVis
 id UUID
 function String
 date Date
 description String
 type plot | dashboard | ...

OntoData
 id UUID
 address URL
 route URI
 endpoint GET | POST | ...
 type timeseries |
 keywords Array<String>
 description String

OntoPage
 id UUID
 bindings Array<UUID>
 type reference | release | ...
 date Date
 title String
 layout Enum

Fig. 6: A document-based data model or schema of our
ontology. We assign a universally unique identifier (UUID)
to each object and use the id field to define relationships
between objects.

4.2 Ontology for Knowledge Management
We used an ontology to manage the complex knowledge
about the different datasets, visualization functions, and
web pages that make up the RAMPVIS service. This plays a
central role in our service, as it represents the composition of
its key semantic components. Fig. 6 gives an overview of the
ontology and its four main classes: OntoData (data), Onto-
Vis (visualizations), Binding (a mapping of data streams
to a visualization function), and OntoPage (web pages
resulting from such a binding).

Each basic data entity is referred to as a data stream,
which is a data object that can be passed to a visualization

function as a single data structure. For example, the most
common types of data streams in the RAMPVIS service
are time series and matrices. These are represented by the
OntoData class, which holds data stream metadata as a list
of attributes, including: the address of the data server; route
and endpoint of REST APIs to access the data; data type (e.g.,
time series, cumulative time series); and a set of keywords
that describe the data. These objects are created and updated
by download agents (Section 4.3) when a data stream arrives
from the SCRC data infrastructure.

Each basic visualization (i.e., an instance of a plot or
dashboard) is referred to as a VIS function, which is a
function that receives one or more data streams as inputs,
and renders a visual representation on a web-page. These
visual representations can be as simple as a bar chart dis-
playing a single data streams, or as complex as a dashboard
displaying multiple data streams. These are represented by
the OntoVis class, which holds visualization metadata at-
tributes, including: the name (e.g., StackedBarChart), the type
of data streams it visualizes (e.g., time series, cumulative
time series, matrix), and function name for execution.

When a visualization is mapped to data stream(s), it
results in a web page that users can access via the RAM-
PVIS service. Visualizations can be applied to many sim-
ilar groups of data streams: e.g., a visualization for one
region can be applied across all other regions with similar
data. Likewise, the same data stream can be mapped to
other visualizations to provide different views for the same
data. Hence, there are numerous potential bindings of data
streams to visualization functions. These are represented by
the Binding class, which records a one-to-many relationship
between OntoVis and OntoData objects.

The OntoPage class corresponds to a web page served
up by the RAMPVIS service, presenting Bindings in a
way that users can access and interact with via their web
browser. Our service uses a template-based approach (de-
scribed later) to facilitate this.

Complex visualizations functions (e.g., dashboards
showing numerous smaller plots or individual data values)
may feature hyperlinks to other OntoPage objects (i.e.,
web pages for each individual plot or corresponding data
stream). For example, a user may click a key indicator on a
dashboard, leading to a different web page that displays the
whole time series corresponding to that data stream. In each
object of the Binding class, there is thus an attribute pageIds
that holds the identifiers of all linked OntoPage objects.

This ontology is a crucial part of our service architecture
and its development was a key technical achievement in our
volunteer effort. As discussed in a visualization paper by
Khan et al. [7], this ontology facilitates the rapid deployment
of a vast number of visual designs with minimal volunteer
effort, helping us rapidly scale our visual analytic offering.
Our ontology-based architecture (and its open source im-
plementation) can be used as a core service component in
future visualization infrastructures, especially those used
in settings where large-scale visual analytics are needed
quickly and at low-cost.

4.3 Automatic and Semi-automatic Agents
The RAMPVIS service makes use of several agents, i.e.,
software components that act autonomously towards an

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 8

ontology
SCRC data

infrastructure

downloader
agent

analytical

agent

data product data stream(s)

derived data
stream

data product data stream(s)

Fig. 7: Downloader and Analytical agents make dynamic
data and derived metrics (as derived data streams) ready
for visualizations.

objective [43], [44]. These run independently from the main
service processes and their key objectives are to perform
repetitive and frequently needed tasks, e.g., pre-computing
complex models or data values, batch processing informa-
tion, and automating time-consuming tasks. In Fig. 4, agents
are shown as an ‘internal service’. Fig. 7 shows how two
agents, in particular, relate to key components in our service
architecture. In this section, we outline four agents that
reduced the need for volunteer resources, helped scale our
service as its complexity grew, and supported the addition
of complex features. This is not an exhaustive list of agents
in our service; e.g., later in the paper we discuss the Prop-
agation agent underlying our template-based engineering
approach.

4.3.1 Downloader Agent for Automatic Data Updating
Our service was initially built to visualize the large col-
lection of data products in the SCRC data infrastructure.
Here, each data product typically contains many related
data streams. It would not be sensible to pass a whole data
product to a visualization function, e.g., if only a subset are
to be visualized, so it was necessary to break products down
to their constituent data streams.

We developed a Downloader agent to facilitate this. This
agent maintains a list of known data streams, together with
their updating schedule, corresponding data products, and
the data query specification. Its objective is to ensure asso-
ciated data and metadata is kept up to date, providing the
individual data streams for our service. Since these agents
run periodically, we used the Advanced Python Scheduler
(APScheduler library) for scheduling these processes. This
agent can easily be adapted to support other data sources
and provides a layer of abstraction between our ontology
and external data sources. Its key benefit to our service is
introduced automation that means volunteer effort is only
needed to register new data sources.

At the scheduled times for each data stream, the Down-
loader agent sends a pre-defined query to the data provider,
receives the data stream, and updates the local data store
and ontology service components. For example, when the
time series of positive cases in the 14 Scottish regions were
updated (daily), the Downloader agent would automatically
extract the time series from the relevant data product and
replace the 14 corresponding data streams in our service.

4.3.2 Analytical Agents for Data Processing
It was often necessary to apply analytical algorithms to
process raw data streams, e.g., to compute derived values
or to update epidemiological models. For example, consider

agents: search, thumbnail

log scanner

thumbnail generator

process / system data class / function

thumbnails

search index
operations log

replication

ontology database

search engine

transform objects

fetch objects

Fig. 8: Every operation in the ontology database is logged in
an operations log file. A log scanner periodically scans the
log file, and if there is any ontology operation (e.g., create,
update, and delete) on a page, it retrieves the OntoPage
object from the ontology database. The ontology object is
sent to our thumbnail agent to generate thumbnail of the
page and search engine to update search index and make
the page search-able.

the need to compare time series data of positive COVID-
19 cases across the 14 regions of Scotland. There are many
similarity/difference measures in the literature and some
are computationally expensive. These computations can be
offloaded to a software agent, so that values can be pre-
computed instead of in real-time. Analytical agents were
executed after corresponding Downloader agents finished
their tasks, meaning that all relevant visualizations would
thereafter show the updated data (and derived values)
without human intervention.

Ongoing work is extending the use of these capabilities
to add new analytics features and support more complex
visual analytics features, e.g., to introduce analytical agents
for uncertainty analysis. The Analytical agent framework
provides a solid foundation for introducing these more
advanced capabilities and gives a general means of sup-
porting new tools and functionalities, which are now being
introduced after obtaining funding for dedicated research
software engineers.

4.3.3 Thumbnail Agent for Generating Images

Some parts of the RAMPVIS end-user interface required
thumbnails of plots and dashboards, e.g., within search
results and user portals. These thumbnails were generated
from ‘live’ data rather than generic representative images–
to increase relevance and utility to our users. As such, we
introduced a Thumbnail agent to produce these updated
thumbnail images, avoiding costly in-time generation (e.g.,
when providing dozens of search results).

The Thumbnail agent is scheduled to update thumbnails
regularly. As shown in Fig. 8, it scans the operation logs
regularly and detects new operations; when a new web page
is created or an existing web page is updated, it fetches
the web page, its linked VIS function, and the relevant
data streams. Using the page id, the thumbnail generator
formulates a URL and opens the URL in a headless browser
using the APIs provided by Selenium and Puppeteer; when
the headless browser renders the page, the Thumbnail agent
takes a screenshot. This is then cropped and downsized to a
thumbnail, which is stored in the service database.

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 9

4.3.4 Search Index Agent
A search index is an inverted-index data structure that
consists of: (i) a list of unique words related to an object or
document; and (ii) for each word, a list of objects in which
it appears. We implemented search functionalities so our
users could search and discover COVID-19 visualizations
available in our service. We used the Elasticsearch search
engine and implemented an agent that periodically updates
the search index with web page information in the ontology
database. Search indexing occurs when relevant changes are
detected in our operations logs; for example, when new web
pages are modified or created (e.g., via the propagation ser-
vice). The index incorporates information from OntoPage,
OntoData, and OntoVis objects, allowing complex search
queries, e.g., with data descriptions, keywords, and visu-
alization types.

5 SERVICES ENGINEERING

As discussed in Sections 1, 2, and 3, it would be a challenge
to develop a data visualization service in a normal circum-
stance since there has not been much reported about such
infrastructure-level services in the literature. Developing
such a service in an emergency response with volunteering
effort was a non-trivial undertaking. In this Section, we de-
scribe our approach to address the requirements in Section
3 from the perspective of services engineering. In particular,
we describe a template-based workflow, in conjunction with
a propagation agent, for creating visualization software and
content in Section 5.1. We then describe our adoption of
an agile software life-cycle for developing the RAMPVIS
service in Section 5.2.

5.1 Template-based Visualization Development

Templates are an efficient way to implement and render
dynamic data into web pages; e.g., because we can reuse
a template when the underlying data model is consistent.
Templates also provide uniformity and a common look and
feel for all web pages; e.g., we can reuse a base web page
structure (as in Fig. 9(1)). The ontology has thousands of On-
toPage objects generated through propagation. We adapted
the model-view-controller (MVC) [45] design pattern where
the application data (i.e., OntoPage objects) represents the
model, and the template implements the view layer that
renders the model. The template defines dynamic elements
using variables and expressions, replaced with model at-
tributes when the template is rendered to a web page. The
process is illustrated in Fig. 9.

Developers use web template systems (with varying
degrees of success) to maintain this separation [20]. Our
approach separated the implementation of the view layer
and model layer. In addition to that, separation of visual
design logic from the user interface or template was possible
through a visualization function factory (Fig. 9(11)). Our
visualization volunteers specialized in JavaScript visualiza-
tion programming libraries, e.g., D3.js, however, had limited
knowledge of user interface, template, and services devel-
opment. In addition, the presentation variations in tem-
plates are content-invariant, meaning a template developer
can update the presentation without broader infrastructural

implications. Hence, our design helped us to collaborate
effectively and use the volunteer resources efficiently, with
each volunteer contributing based on their own expertise.

In this emergency response, we had to remain agile
regarding which templating system to use. Several templat-
ing systems are available based on when templates replace
placeholders with actual content and render/assemble web
pages. For example, in a server-side system, the run-time
substitution happens on the web server; in a client-side
system, run-time substitution happens in the web browser;
in the outside server-based system, the static web pages
are produced offline and uploaded to the webserver, and
so on. Initially, we used a plain HTML template; then
we implemented Python Jinja-based templates (the syntax
used in Fig. 9), which use a client-side rendering system.
We substituted the Jinja templates with React.js templates,
which support both client-side and server-side rendering.
Finally, we incorporated Next.js, which helped us generate
static web pages offline and upload them to the webserver.
This was a dynamic process, in response to changing im-
plementation needs as our service scaled, and new user and
developer needs emerged. In the next section, we discuss
the reasons for this evolution. The visualization design logic
remained unchanged, however, as any templating engine
can execute visualization designs using the function factory.

5.1.1 Automatic Propagation of Visual Designs
When we started working with COVID-19 data, we had
thousands of time series representing somewhat similar
data sets. When one visualization researcher designed a plot
(e.g., visualizing COVID-19 related deaths in one region of
the UK), the same design could be reused for many regions
(e.g., the 14 and 336 regions in Scotland and England, re-
spectively). When we bind data from one region to a suitable
visual design (i.e., reference binding), we can reuse the same
design to visualize data from other regions. We developed
a propagation technique that used the reference binding
to discover potentially related groups of data streams and
semi-automatically propagate the visual design to them.
By decoupling the data and visualization components and
managing their relationships via the ontology, this was
straightforward and allowed our visualization service to
rapidly scale its visual analytics offerings, with minimal
volunteer effort. A detailed description of propagation tech-
nique and quality assurance interface can be found in [7].

As described before, an OntoPage may relate to many
Binding(s), producing a web page with many visual designs
in a general use case. It will be time-consuming to develop
an algorithm to discover and generate 1 : 1..n binding
automatically. In our propagation work, we simplified it to
use only a 1 : 1 binding. The propagation process generated
thousands of OntoPage objects semi-automatically that are
stored in the ontology database, and a reusable template
will process those to produce visualization web pages.

5.2 Agile Service Engineering
In May 2020 when our volunteer initiative started, our key
priority was to rapidly deliver an operational visualization
infrastructure to the SCRC modeling scientists and epidemi-
ologists. Our initial challenges were limited volunteer re-
sources, constantly evolving requirements, and the urgency

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 10

rendered image

3

4
5

10
9

2

...
{% extends "base-site.html" %}

...
<h3>

 {{ ontoPage.title | safe }}
</h3>
...
<div id="chart"></div>

...
<script>

 let ontoPage = {{ input | tojson }};
 let bindings = {{ ontoPage.bindings | safe }};
...
 $(document).ready(function() {
...
 let args = {

 placeholder: $('#chart'),
 data: await service.fetchData(binding.dataIds),
 links: await service.getLinks(binding.pageIds)
 };
 let type = await service.getVis(binding.visId);
 VisFunctionFactory.get(type, args);
 });
...

class VisFunctionFactory {
 static get(type, args) {
...
 if (type === "StackedBarChart") {
 return new StackedBarChart(args);
 }
...
 }
...

}

class StackedBarChart {
...
 constructor(args) {
...
 let data = args.data;
 let links = args.links;
 let selector = args.placeholder;
 let svg = d3.select(selector)
 .append("svg");
 this.draw(svg, data, links);
 }
...
 draw(svg, data, links) {
...
 }
...
}

12

13

14

7
8

11

17

 OntoPage
template function factory visualization

search a visualization function execute the visualization function
rendered image web page

1

15
16

6

Fig. 9: A template takes an OntoPage object as an input, de-serializes it to a JSON object (4), and replaces template
variables, e.g., title (2). We use the binding (5) attributes to fetch data (7), links (8), and visualization function details (9).
We implemented a function factory (10) using the factory design pattern [45]. The factory when called (10) resolves the
appropriate visualization function, for example, a StackedBarChart (11). The visualization function (13) extracts data (14),
links (15), and CSS selector (16) information from function argument. The placeholder is where the actual plot or dashboard
will be drawn as an SVG (3). Each visualization function has a draw function (17) implementing the visualization rendering.

of contributing to this emergency response. We also faced
the challenges of the dynamic nature of COVID-19 data (e.g.,
the emergence of new key indicators, new data types, etc).
Responding to new user needs and acting on their feedback
were also important factors. These challenges contributed
to our choice of an agile methodology. In software develop-
ment, when the base process is the V-Model or the Waterfall,
everything is considered traditional and when the process is
connected to Scrum or Kanban is considered agile, regardless
of whether the process of interest is objectively best choice
for the respective context [46]. A large-scale empirical study
found that only a small percentage (15%) of projects use
purely traditional or agile in their projects [8]. Our approach
was more of being agile. Being agile practice has a more
substantial impact on the perception of agility than methods
suited for the dynamically changing situation [8].

At the beginning we had only few volunteers: one with
systems engineering expertise, three with visualization de-
sign and development expertise, and three who worked
with domain experts to coordinate with architecture devel-
opment. We introduced a separation of concern design pattern
in our architecture for dividing the system into logical lay-
ers of functionality (e.g., data, services, user interface, and
visualization designs). This separation enabled volunteers
to contribute independently to their areas of expertise.

At that point, we explored state-of-the-art industrial-
scale solutions (e.g., Angular, Electron, React.js) and libraries
for user interface development, then we developed small
prototypes (v.0.1). We evaluated these, including evaluation
of how visualizations would be developed. Post analysis, we
agreed that this approach was not suitable, as the resources
had limited time to learn advanced frameworks, which
would delay the initial development significantly. We de-
cided to use HTML templates instead to produce web pages
with visualizations. The template-based approach helped
us maintain consistency in the user interface and across

all visualizations, rather than free-form generation. Within
the user interface, we provided a separation of concerns
using the factory pattern to make templates and visualization
designs independent and reusable (see Section 5.1). We
knew that the plain-HTML templates would not be scalable
and maintainable, and we may need to replace the template
layer as more advanced user interface functionalities are
required. By June 2020, we had produced 70+ plots and
two dashboards. In the meantime, the STFC commissioned
required VMs and servers for deployment. We deployed our
visualization infrastructure so it was available to users. This
way, we started to adopt monthly release cycles which are
still continuing.

By July 2020, we started receiving a wider range of
COVID-19 related data, more dynamic and inconsistent
from others, from different regions of the UK. We re-
purposed visual designs, e.g., plots and dashboards. We
noticed that the same datastreams sometimes appeared in
many visualizations, e.g., once in individual plots and again
in a dashboard providing overviews of related key indica-
tors. We realized that we needed to store this knowledge
(i.e., the mappings between visualizations and data sets) in
a better way, so the same plots did not need to be recreated.
An ontology was added to address this. Developing a scal-
able ontology is time-consuming, so we first recorded the
knowledge in a JSON file, which would later be migrated to
a scalable ontology database.

As we created more plots and dashboards to broaden our
visual analytics offering, we found it challenging to manage
the growing number of resulting HTML pages. At this stage
we migrated our code-base to use advanced and reusable
templating libraries like Jinja. Using this new templating ap-
proach, we generated 100+ plots, four dashboards, and few
analytical visualizations with reduced boilerplate imple-
mentation. Since visualization components were decoupled
from this, the technical aspects of developing visualizations

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 11

remained unchanged; instead, the changes were at the user
interface layer - i.e., constructing the pages served to users.

Several visualizations require metrics computed from
raw data and some computations were expensive. To im-
prove throughput, we decided to pre-compute analytics
instead of calculating on demand. We created an agent to
perform the computations periodically (Section 4.3.2), and
we deployed that as a minor release in September.

The quantity of data started to grow exponentially to-
wards the end of 2020 as the SCRC data infrastructure
rapidly increased its offering. Leading up to this period,
we focused on scaling our ontology. We explored different
data models for the ontology, e.g., RDF [47], OWL [48],
property graph [49], [50], and document model (e.g., Mon-
goDB, CouchDB, etc.). We also investigated databases such
as Neo4J and MongoDB by writing mini prototypes. We
decided to implementing the ontology in MongoDB. Al-
though this is an unconventional approach for modeling
and implementing ontology, it was a good fit for our service.
MongoDB allows applications to store virtually any struc-
ture [51], provide enough free and managed cloud instances,
e.g., MongoDB Atlas, and client drivers for rapid proto-
typing using declarative syntax. By the end of December,
we completed our design to scale the ontology to support
the increased volumes of data while keeping the system
efficient. We developed a wrapper using an adapter pattern
to seamlessly use our earlier JSON-based ontology, until we
migrated it to the new scalable ontology database.

In January 2021, we introduced a download agent to
automate the downloading and registration of data with the
ontology, both helping to deal with the increasing volume of
data now available to the visualization service, and taking
advantage of the structured representation of visualization
and data entities within the ontology. In February, we devel-
oped an ontology management UI using Angular.

In March, we developed propagation algorithms, propa-
gation user interface, and quality assurance for propagation.
By April, we had already received 4500+ data streams. We
were able to create 700+ plots and 45+ dashboards using
the propagation technique, using that structured knowledge
representation to semi-automatically produce these to offer
scale. In May 2021, we refactored our Python REST API
migrating from Flask to FastAPI. This supported extended
development as FastAPI provides typing, faster implemen-
tation of data verification and validation, and implementa-
tion of dependency injection design patterns.

In June 2021, we started to analyze requirements for
integrating advanced visualization tool support (e.g, en-
semble visualization, and timeseries similarity search and
visualization). Research funding had led to team growth by
this point, with new Research Software Engineers (RSEs)
working on these advanced features.

In July 2021, we migrated our Jinja-based template and
user interface to the React.js stack. This required refactoring
our visualization function code, but the benefit of this mi-
gration was that our user interface became more efficient
and easier to maintain. We began with simple technolo-
gies and progressively migrated to scalable solutions; this
supported efficient use of resources, as agile recommends.
We added new scheduler agents to index search data in the
backend, to speed up the search process in real time.

The infrastructure was developed and tested with the
SCRC data product as a primary source. After deployment,
we also registered and visualized data from many sources
(e.g., ONS and Our World in Data), which demonstrates
that our system is robust and agnostic to data source. We
also performed an end-to-end drill to clone and deploy our
visualization infrastructure in a separate server provided by
the STFC. The entire process took two hours in total. We
documented the steps for future use. This proved that the
same system can be redeployed successfully and could be
re-purposed for different causes.

In August 2021, we implemented server-side rendering
using Next.js framework. A thumbnail agent was added so
user can refer to thumbnail of the visualizations in search
and portal page. An improved page search technique was
also added, which will also support implementation of
multi-faceted search in future.

5.3 Reflection

Our deliveries and work exhibit the core ideas of agile
manifesto. A team of volunteers working remotely would
not have been able to rapidly implement a tightly coupled
monolithic architecture in an agile way. In contrast to the
monolithic, a services architectural pattern allowed us to
decouple our system into smaller, independent services,
allowing us to adopt agile principles. We structured our sys-
tem around these services and autonomously implemented
them the various platforms that our volunteers were famil-
iar with. The services adopted REST principles for seamless
composition and integration.

There are tradeoffs between basic and advanced frame-
works, libraries, and approaches; in turn, these have im-
plications for volunteer-based development efforts. Basic
frameworks help rapid development but require a degree
of a boilerplate code for implementing scalable solutions.
In contrast, advanced frameworks provide the necessary
boilerplate code and aid scaling; however, these requires
significant learning effort and time, delaying initial release
cycles. We refactored our underlying frameworks and ap-
proaches throughout the development to achieve a scalable
solution; in retrospect, this was not an efficient use of time
and future efforts can learn from this mistake. Our work
can be used as a blueprint for bootstrapping and rapidly
developing a scalable data visualization system for any
application domain. We proposed required methodologies,
e.g., a tiered architecture, composition of different external
and internal services, implementation guidelines and open-
source code for reusable and modular services, and services
for template-based data visualization.

In retrospect we realized, due to fluid requirements, our
system required continuous changes, and changes to archi-
tecture required much attention and often introduced bugs.
The most time-consuming challenges we encountered was
testing, debugging, and profiling individual services and the
system composed of many services. We did not write unit
and regression tests; we also did not specify testing contracts
that should have been clearly defined between services de-
veloped by individuals. These sometimes created problems
while integrating the services in production. We recognize
that in an emergency-response scenario it is appealing to

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 12

focus on functional and user-facing development tasks, but
our experience was a humbling reminder that testing and
quality assurance can save time in the long run.

There are systems available for supporting diagnosis
of services using log monitoring, exception or error stack-
tracing, and passive tracing [52] through network traces.
Investigation of those logs requires substantial cognitive
efforts by the developers, which takes time away from
feature development. There are opportunities for the service
computing community to develop more easily adaptable
libraries or zero-configuration tools for capturing, collecting,
and storing, e.g., services logs, performance metrics (e.g., ex-
ecution time and memory), and services request processing
traces at a granular level. Likewise, there are opportunities
for the visualization community to develop approaches for
intuitive visual analytics of captured metrics that can help
quickly diagnose, troubleshoot, and profile service behavior
and performance.

6 DISCUSSION

Developing a data visualization service as a team of vol-
unteers during an emergency situation introduced unique
challenges, most importantly the time-pressure and limited
development resources available. These constraints meant
that we had to make choices to get us to a minimally
viable product as quickly as possible in the early days of
development, although these decisions might not always be
the most effective and robust in the long term. For instance,
we started using technologies that are most familiar for
the volunteer developers such as Jinja for template-based
development, even though it is not one of the most high-
performing or the popular of libraries. As soon as a func-
tional minimal solution has been reached and the volunteer
team had more availability to focus on performance en-
hancements, these technologies were later replaced by more
efficient libraries, such as React.js and Next.js.

Similar choices were made in approaching the code base
development and programming design as well. We gave
more prominence to the regular refactoring of existing code
in the earlier stages of the project to diversify the function-
ality quickly, while we paid less attention to perfecting the
design or the re-usability of the code. As the development
matured, however, we focused more on re-usability and
good design practices while coding.

We have significantly benefited from, and built on, vari-
ous open source projects and libraries in our development.
Such open source libraries are not only supporting the
rapid and effective development of the various components,
but also the knowledge base and continual support by
their respective communities are critical in resolving issues
rapidly. A further benefit of incorporating open source li-
braries, especially those with lively and active communities,
is that the libraries are maintained and developed further
continuously, which is critical in maintaining the operation
of emergency response services with little resources for the
upkeep of the services. A further criteria when choosing
appropriate open source libraries and frameworks has been
their suitability to modular development, as well as their
proven scalability since we expect our services to be able to

handle many data streams, thousands of visualizations and
dashboards, and many users effectively.

Our tiered architecture design also enabled us to more
effectively allocate our limited development resources to
achieve a more streamlined development process. A ded-
icated developer focused on the design and development
of the middleware and external services and the ontology,
another developer focused on developing agents and di-
versifying the analytical capabilities offered by the agents,
while the visualization developers could focus only on
developing the visualizations without worrying about the
technical aspects of data and fit within the framework [7].

7 CONCLUSION

In this paper, we described the design and development of
a data visualization service that was created in response to
an urgent need for supporting epidemiological modeling
workflows during the COVID-19 pandemic. Our service
architecture requirements and our development approach
were both heavily influenced by this time-critical situation,
and the need to effectively and flexibly provide visualiza-
tions of large (and growing) sets of data. We discussed
how a series of service components and service engineering
methods emerged as a viable, scalable, and flexible solution
to the those requirements and challenges. The RAMPVIS
service is a successful outcome of this, providing a visualiza-
tion infrastructure that has evolved to meet ever-changing
visual analytics needs throughout the pandemic.

Our efforts and the resulting data visualization service
demonstrate that it is possible to develop and deploy a scal-
able visualization service rapidly in emergency responses
where there is a need to handle a huge volume of data.
Our methodologies and experience (and, indeed, our open-
source software contributions) can be applied to similar
situations in the future and contribute to the pandemic
preparedness from an ICT perspective. Creating a data-
intensive service during an emergency response, and relying
on volunteering effort, is not an ideal solution, and we have
taken pragmatic decisions to advance rapidly to meet the
requirements of the pandemic response. In that respect, we
have seen the substantial benefit of taking an agile software
life-cycle approach and building on existing open source
software, and our approach has now resulted in a healthy
amount of open-source code as well as a working service
that has been operational since August 2020. On top of our
findings and experiences shared in this paper, we argue
that the resulting software and system resources would be
instrumental for improving our readiness for future emer-
gency responses and can provide an infrastructural spring-
board to build effective visualization services in shorter time
frames.

ACKNOWLEDGMENTS

The first phase of this work (May 2020 - Jan 2021) was
carried out through volunteer efforts. The second phase of
this work (Feb 2021 - Jan 2022) was supported by EPSRC
(EP/V054236/1). We would like to thank all volunteers in
the SCRC [4] and the RAMPVIS group [5]. In particular,
we would like to thank Dr. B. Bach (U. Edinburgh), Prof.

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 13

N. W. John (U. Chester), and Dr. H. C. Purchase (U. Glas-
gow) for their involvement in work of the generic support
team. We are grateful to Dr. R. Reeve (U. Glasgow) and A.
Brett (UKAEA) for their leadership in creating the SCRC
data infrastructure that the RAMPVIS service depends on,
and A. Lahiff and his STFC colleagues for maintaining the
RAMPVIS VMs, and S. Michell (U. Glasgow) for offering
valuable advice on data products.

REFERENCES

[1] L.-J. Zhang, H. Cai, and J. Zhang, Services Computing. Berlin,
Germany: Springer, 2007.

[2] J. A. Miller, H. Zhu, and J. Zhang, “Guest editorial: Advances in
web services research,” IEEE Trans. Services Computing, vol. 10,
no. 1, pp. 5–8, 2017.

[3] “Rapid assistance in modelling the pandemic: RAMP.” [Online].
Available: https://epcced.github.io/ramp/

[4] “SCRC: Scottish COVID-19 response consortium.” [Online].
Available: https://scottishcovidresponse.github.io/

[5] “RAMPVIS Volunteers.” [Online]. Available: https://sites.google.
com/view/rampvis/volunteers/

[6] M. Chen, A. Abdul-Rahman, D. Archambault, J. Dykes,
A. Slingsby, P. D. Ritsos, T. Torsney-Weir, C. Turkay, B. Bach,
A. Brett, H. Fang, R. Jianu, S. Khan, R. S. Laramee, P. H.
Nguyen, R. Reeve, J. C. Roberts, F. Vidal, Q. Wang, J. Wood, and
K. Xu, “RAMPVIS: Towards a new methodology for developing
visualisation capabilities for large-scale emergency responses,”
arXiv:2012.04757, 2020.

[7] S. Khan, P. Nguyen, A. Abdul-Rahman, B. Bach, M. Chen, E. Free-
man, and C. Turkay, “Propagating Visual Designs to Numer-
ous Plots and Dashboards,” IEEE Trans. Visualization & Computer
Graphics, vol. 28, no. 1, pp. 86–95, 2022.

[8] M. Kuhrmann, P. Tell, R. Hebig, J. A.-C. Klunder, J. Munch,
O. Linssen, D. Pfahl, M. Felderer, C. Prause, S. Macdonell,
J. Nakatumba-Nabende, D. Raffo, S. Beecham, E. Tuzun, G. Lopez,
N. Paez, D. Fontdevila, S. Licorish, S. Kupper, G. Ruhe, E. Knauss,
O. Ozcan-Top, P. Clarke, F. H. Mc Caffery, M. Genero, A. Vizcaino,
M. Piattini, M. Kalinowski, T. Conte, R. Prikladnicki, S. Krusche,
A. Coskuncay, E. Scott, F. Calefato, S. Pimonova, R.-H. Pfeif-
fer, U. Pagh Schultz, R. Heldal, M. Fazal-Baqaie, C. Anslow,
M. Nayebi, K. Schneider, S. Sauer, D. Winkler, S. Biffl, C. Bastarrica,
and I. Richardson, “What makes Agile software development
Agile,” IEEE Trans. Software Engineering, pp. 1–1, 2021.

[9] F. Maurer and S. Martel, “Extreme programming. rapid develop-
ment for web-based applications,” IEEE Internet Computing, vol. 6,
no. 1, pp. 86–90, 2002.

[10] A. Fruhling and G.-J. De Vreede, “Field experiences with EXtreme
programming: Developing an emergency response system,” J.
Manage. Inf. Syst., vol. 22, no. 4, p. 39–68, Apr. 2006.

[11] H. Edison, X. Wang, and K. Conboy, “Comparing methods for
large-scale Agile software development: A systematic literature
review,” IEEE Trans. Software Engineering, pp. 1–1, 2021.

[12] M. Krausz, J. N. Westenberg, D. Vigo, R. T. Spence, and D. Ramsey,
“Emergency response to COVID-19 in canada: Platform devel-
opment and implementation for eHealth in crisis management,”
JMIR Public Health Surveill, vol. 6, no. 2, p. e18995, May 2020.

[13] T. Schinköthe, M. R. Gabri, M. Mitterer, P. Gouveia, V. Heinemann,
N. Harbeck, and M. Subklewe, “A web- and app-based connected
care solution for COVID-19 in- and outpatient care: Qualitative
study and application development,” JMIR Public Health Surveill,
vol. 6, no. 2, p. e19033, Jun 2020.

[14] M.-J. Antonini, D. Plana, S. Srinivasan, L. Atta, A. Achanta,
H. Yang, A. K. Cramer, J. Freake, M. S. Sinha, S. H. Yu,
N. R. LeBoeuf, B. Linville-Engler, and P. K. Sorger, “A crisis-
responsive framework for medical device development applied to
the COVID-19 pandemic,” Frontiers in Digital Health, vol. 3, p. 25,
2021.

[15] R. A. Dixit, S. Hurst, K. T. Adams, C. Boxley, K. Lysen-Hendershot,
S. S. Bennett, E. Booker, and R. M. Ratwani, “Rapid develop-
ment of visualization dashboards to enhance situation awareness
of COVID-19 telehealth initiatives at a multihospital healthcare
system,” J. American Medical Informatics Assoc., vol. 27, no. 9, pp.
1456–1461, 2020.

[16] “Public health scotland covid-19 daily dashboard.” [Online].
Available: https://public.tableau.com/app/profile/phs.covid.
19/viz/COVID-19DailyDashboard 15960160643010/Overview

[17] J. Alarte, J. Silva, and S. Tamarit, “What web template extractor
should I use? A benchmarking and comparison for five template
extractors,” ACM Trans. on the Web, vol. 13, no. 2, 2019.

[18] H. Mao and L. Zhu, “Template-based framework for rapid ap-
plication development platform,” in 2011 Asia-Pacific Power and
Energy Engineering Conference, 2011, pp. 1–4.

[19] D.-P. Pop and A. Altar, “Designing an MVC model for rapid web
application development,” Procedia Engineering, vol. 69, pp. 1172–
1179, 2014.

[20] T. Parr, “Enforcing strict model-view separation in template en-
gines,” in 13 Int. World Wide Web Conf. Proc., 2004, pp. 224–233.

[21] U. Zdun, “Dynamically generating web application fragments
from page templates,” in Proc. 2002 ACM Symp. Applied Computing,
2002, p. 1113–1120.

[22] H.-J. Happel and S. Seedorf, “Applications of ontologies in soft-
ware engineering,” in Proc. Workshop on Sematic Web Enabled Soft-
ware Engg. - SWESE, 2006, pp. 5–9.

[23] D. Gašević, N. Kaviani, and M. Milanović, “Ontologies and soft-
ware engineering,” in Handbook on Ontologies. Springer, 2009, pp.
593–615.

[24] S. Isotani, I. I. Bittencourt, E. F. Barbosa, D. Dermeval, and R. O. A.
Paiva, “Ontology driven software engineering: a review of chal-
lenges and opportunities,” IEEE Latin America Transactions, vol. 13,
no. 3, pp. 863–869, 2015.

[25] R. Witte, Y. Zhang, and J. Rilling, “Empowering software main-
tainers with semantic web technologies,” in Proc. of the European
Semantic Web Conf. Springer, 2007, pp. 37–52.

[26] H.-J. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk, “Kontor:
an ontology-enabled approach to software reuse,” in Proc. 18th Int.
Conf. On Software Engg. And Knowledge Engg., 2006.

[27] A. P. Ambrosio, D. C. de Santos, F. N. de Lucena, and J. C.
da Silva, “Software engineering documentation: an ontology-
based approach,” in Proc. IEEE WebMedia & LA-Web, 2004, pp.
38–40.

[28] Y. Zhao, J. Dong, and T. Peng, “Ontology classification for
semantic-web-based software engineering,” IEEE Trans. Services
Computing, vol. 2, no. 4, pp. 303–317, 2009.

[29] Z. Sun, C. Hu, C. Li, and L. Wu, “Domain ontology construction
and evaluation for the entire process of software testing,” IEEE
Access, vol. 8, pp. 205 374–205 385, 2020.

[30] L. I. Terlouw and A. Albani, “An enterprise ontology-based ap-
proach to service specification,” IEEE Trans. Services Computing,
vol. 6, no. 1, pp. 89–101, 2013.

[31] K. Ren, N. Xiao, and J. Chen, “Building quick service query list
using WordNet and multiple heterogeneous ontologies toward
more realistic service composition,” IEEE Trans. Services Comput-
ing, vol. 4, no. 3, pp. 216–229, 2011.

[32] M. Michlmayr, “Managing volunteer activity in free software
projects.” in Proc. of the USENIX Annual Technical Conf. -
USENIX’04, 2004, pp. 93–102.

[33] K. Brodlie, J. Brooke, M. Chen, D. Chisnall, A. Fewings, C. Hughes,
N. W. John, M. W. Jones, M. Riding, and N. Roard, “Visual super-
computing – technologies, applications and challenges,” Computer
Graphics Forum, vol. 24, no. 2, pp. 217–245, 2005.

[34] S. Khan, “RAMPVIS ontology management and propagation
UI.” [Online]. Available: https://github.com/saifulkhan/
rampvis-ontology-management-ui/

[35] S. Khan and P. H. Nguyen, “RAMPVIS api.” [Online]. Available:
https://github.com/ScottishCovidResponse/rampvis-api/

[36] S. Khan, P. H. Nguyen, A. Abdul-Rahman, and
B. Bach, “RAMPVIS ui.” [Online]. Available: https:
//github.com/ScottishCovidResponse/rampvis-ui/

[37] R. T. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures,” Ph.D. dissertation,
University of California, Irvine, 2000. [Online]. Available:
https://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm

[38] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice:
Hypermedia and Systems Architecture, 2010.

[39] J. Algermissen, “Classification of HTTP APIs.” [Online]. Available:
http://algermissen.io/classification\ of\ http\ apis.html

[40] Microsoft, “N-tier architecture style.” [Online]. Avail-
able: https://docs.microsoft.com/en-us/azure/architecture/
guide/architecture-styles/n-tier/

THIS IS THE AUTHOR’S COPY OF THIS WORK. FOR DEFINITIVE VERSION, SEE IEEE TRANSACTIONS ON SERVICES COMPUTING 15(3), 2022. 14

[41] M. Flower, “Richardson Maturity Model.”
[Online]. Available: https://martinfowler.com/articles/
richardsonMaturityModel.html

[42] A. L. Lemos, F. Daniel, and B. Benatallah, “Web service composi-
tion: A survey of techniques and tools,” ACM Computing Surveys,
vol. 48, no. 3, 2015.

[43] M. Wooldridge, “Agent-based software engineering,” IEE
Proceedings-Software Engineering, vol. 144, no. 1, pp. 26–37, 1997.

[44] N. R. Jennings, “On agent-based software engineering,” Artificial
intelligence, vol. 117, no. 2, pp. 277–296, 2000.

[45] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, Ele-
ments of reusable object-oriented software. Addison-Wesley Reading,
Massachusetts, 1995, vol. 99.

[46] “The situational factors that affect the software development pro-
cess: Towards a comprehensive reference framework,” Information
and Software Technology, vol. 54, no. 5, pp. 433–447, 2012.

[47] O. Lassila and R. R. Swick, “Resource Description
Framework (RDF) Model and Syntax Specification,” Tech.
Rep., 1999. [Online]. Available: https://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/

[48] F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein, “OWL Web Ontology
Language,” Tech. Rep., 2003. [Online]. Available: https://www.
w3.org/TR/2003/WD-owl-ref-20030331/

[49] N. Roy-Hubara, L. Rokach, B. Shapira, and P. Shoval, “Modeling
Graph Database Schema,” IT Professional, vol. 19, no. 6, pp. 34–43,
2017.

[50] R. Angles and C. Gutierrez, “Survey of graph database models,”
ACM Computing Surveys, vol. 40, no. 1, pp. 1–39, 2008.

[51] P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, and R. Torlone,
“The relational model is dead, SQL is dead, and I don’t feel so
good myself,” SIGMOD Rec., vol. 42, no. 2, 2013.

[52] M. Cinque, R. D. Corte, and A. Pecchia, “Microservices Monitoring
with Event Logs and Black Box Execution Tracing,” IEEE Trans. on
Services Computing, vol. 15, no. 1, pp. 294–307, Jan. 2022.

Saiful Khan received his DPhil in Engineering
Science from the University of Oxford, and is
currently a researcher at the University of Ox-
ford. He worked as a Software Engineer at ABB,
Oracle, International Seismological Centre and
a Data Scientist at Horus Security Consultancy.
He has experience of developing data process-
ing, modeling, search, and visualization tech-
niques in various projects for applications such
as Building Information Management, radio as-
tronomy, seismology, and security-intelligence.

Phong H. Nguyen is a Data Scientist at RedSift,
and a part-time researcher at Oxford Univer-
sity. His research mainly focuses on the design
and application of interactive visualizations to
make sense of complex datasets, with a special
interest in analytic provenance, logs and gen-
eral temporal categorical data. He has published
papers in high-impact journals including IEEE
TVCG, InfoVis, VAST, CG&A and IVS. Phong
holds a PhD in Visual Analytics from Middlesex
University, London, UK.

Alfie Abdul-Rahman is a Lecturer in Computer
Science at King’s College London. She received
her PhD from Swansea University in Computer
Science. Before joining King’s College London,
she was a Research Associate at the Univer-
sity of Oxford e-Research Centre. She worked
as a Research Engineer in HP Labs Bristol on
document engineering, and then as a Software
Developer in London, working on multi-format
publishing. Her research interests include infor-
mation visualization, visual analytics, computer

graphics, human-computer interaction, and digital humanities. She de-
veloped several web applications, including Poem Viewer and ViTA.

Euan Freeman is a Lecturer in Computing Sci-
ence at University of Glasgow. He has a PhD in
Human-Computer Interaction from University of
Glasgow. He often works with industry on future
human-computer interfaces (e.g., with Logitech,
UltraLeap, Huawei and Nokia). His main re-
search interests include haptic interaction tech-
niques, information perception, and novel meth-
ods of information representation (e.g., using
non-visual modalities).

Cagatay Turkay is an Associate Professor at
the Centre for Interdisciplinary Methodologies at
University of Warwick. His research focuses on
designing visualisations, interactions and com-
putational methods to enable an effective com-
bination of human and machine capabilities
to facilitate data-intensive problem solving. He
serves as a committee and organising mem-
ber for several conferences including VIS and
EuroVis. He served as a guest editor for ACM
Transactions on Interactive and Intelligent Sys-

tems and IEEE Computer Graphics and Applications, and an editorial
board member for Computers and Graphics and Machine Learning and
Knowledge Extraction journals.

Min Chen received his PhD from University of
Wales (Swansea) in 1991. He is currently a pro-
fessor of scientific visualization at Oxford Univer-
sity and a fellow of Pembroke College. Before
joining Oxford, he held research and faculty po-
sitions at Swansea University. His research in-
terests include data science, visualization, com-
puter graphics and human-computer interaction.
His services to the research community include
papers co-chair of IEEE Vis 2007 and 2008,
IEEE VAST 2014 and 2015, and EG 2011; co-

chair of VG 1999 and 2006, and EuroVis 2014; AEIC of IEEE TVCG
and EIC of CGF; and co-director of Wales Research Institute of Visual
Computing. He is a fellow of BCS, EG and LSW.

	Cover Sheet (AFV)
	273746

