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Adaptive Intrusion Detection in Edge Computing
Using Cerebellar Model Articulation Controller

and Spline Fit
Gulshan Kumar ,Member, IEEE, Rahul Saha , Mauro Conti , Fellow, IEEE, Reji Thomas ,

Tannishtha Devgun, and Joel J. P C. Rodrigues , Fellow, IEEE

Abstract—Internet-of-Thing (IoT) faces various security attacks. Different solutions exist to mitigate the intrusion problems. However,

the existing solutions lack behind in dealing with heterogeneity of attack sources and features. The future anticipated demand of

devices’ connections also urge the need of new solutions addressing the concerns of time consumption and complexity. In this article,

we show a novel solution for the intrusion detection in IoT framework. We configure the intrusion detection in the edge computing layer

so that the effect of the attack is not propagated to the clouds. Our solution uses cerebellar model articulation controller with kernel

map. This combination is very new in the direction of intrusion detection; hence, it emphasizes the novelty of our proposed intrusion

detection solution. We name our solution as Cerebellar Model Articulation Controller based Intrusion Detection System (CMACIDS).

Additionally, we use spline fitting to the kernel mapping for the model fit; this adds on another novel contribution to CMACIDS. The

results obtained with our detection system are compared with the state-of-the-art solutions in terms of complexity, false alarms, and

precision of detection. The analysis of the comparative study proves the efficiency of the solution and makes CMACIDS suitable for

IoT paradigm.

Index Terms—Intrusion, IoT, edge, learning, artificial intelligence, kernel, cloud, spline

Ç

1 INTRODUCTION

THE present technology evolution centers around Inter-
net-of-Things (IoTs). Healthcare, transportation, supply

chain management, manufacturing industries are some of
the dominant application areas of IoTs. In such applications,
all the connected devices communicate with the user-driven
commands from mobile devices [1], [2]. Technology predic-
tions give the hint of increasing number of connections by

each year; the commencement of 5 G and beyond signifi-
cantly contributes to the exponential growth of IoTs [3]. The
manufacturing industry, e-healthcare, smart home, smart
city, smart cars, supply chain management, etc., use IoT
infrastructure [4], [5], [6]. Among various proposed archi-
tectures and frameworks, two-tier and three-tier architec-
tures of IoTs are more popular [7]. A basic 3-layered
architecture of IoT infrastructure consists of perception
layer, fog layer, and cloud. We show a schematic diagram
of the connection of these layers in Fig. 1. Perception layer
and fog layer combined known as edge in IoTs.

Basically, IoT architecture and/or framework has two
major layers: perception and communication. In the percep-
tion layer, the devices connect to the IoT and communicate
with other devices. The intermediate layer(s), such as fog
layer (depending on architecture), helps in reducing the
delay of the communication between the cloud and the per-
ception layer. The huge number of device to device commu-
nication, increases protocol varsity, large attack surface, and
the increased sophistication of attack vectors compromise
the benefits of IoTs in terms of security. The predicted num-
ber of device connections over 20 billion increases the data
volume in zettabytes and more; similarly, the large attack
surface also increases the possibility of zero-day vulnerabil-
ities. This is enough to create a massacre of data stored in
the cloud if managed casually and security is not assured.
However, security and privacy have always been concerns
in networking. With IoT, these issues increase manifold as
the vulnerability space is larger than the conventional net-
working technology [8], [9]. Various attacks, both passive
and active, on IoT applications need special security
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protocols and algorithms. It is well known that by enhanc-
ing the functionalities of the security approaches, intrusion
detection comes into existence and has been considered as
the first step of defence in any security framework [10]. Var-
ious intrusion detection approaches have been introduced
in recent times for wireless networks and some of them are
applicable to IoT as well. However, their performance are in
question due to their convergence time, increased complex-
ity, lack of heterogeneity assumptions, and high resource
consumption; thus, those approaches need rigorous update
or extension. Therefore, it motivates us to research for an
intrusion detection framework in IoT that provides low
latency, less energy consumption, and less complex. Fur-
thermore, as the devices join the network in the perception
layer of IoT framework, it is better to include an intrusion
detection mechanism in the edge computing layer, com-
posed of both perception and fog. As the devices in the per-
ception layer are resource-constrained, the developed
intrusion detection must be less complex to make it suitable
for resource-constrained environments. Therefore, in our
present work, we develop an intrusion detection model for
IoT using Cerebellar Model Articulation Controller
(CMAC) and Spline Fit. This approach makes the detection
process automated and learning-based.

1.1 Motivation and Contribution

The increasing demand of devices and communication
pose serious insecurity probabilities on IoT infrastructure.
Even though various security solutions exist, the sophisti-
cation of the attackers’ tools make it necessary to update
the solutions. Therefore, in our proposed approach, Cere-
bellar Model Articulation Controller based Intrusion
Detection System (CMACIDS), we follow a new strategy
of learning with cerebellar model and also use b-spline fit
for system stability which is never explored before in the
existing literature. We use reinforcement learning with
cerebellar model in the control actions based on activated
weights. Reinforcement learning provides the benefits of i)
adaptability, ii) reinforcement learning does not require

large labeled datasets, iii) bias resistance, iv) goal-oriented
and consideration of sequence of tasks, and v) long-term
sustainability due to reinforcement. The benefits of rein-
forcement learning and CMAC urge to experiment our
work with CMAC and b-spline fit. The main contribution
of the present work is as follows:

� We address the problem of intrusion detection in IoT
framework and provide a solution to the problems
of multidimensional enablers of perception. The
solution is configurable in edge computing layer
leveraging the perception layer complexities.

� The combination of cerebellar model articulation
controller for automated learning and classifica-
tion, kernel maps for feature extraction and vector
generation, and spline curve fitting for fast stabili-
zation of the system provides a novel and benefi-
cial feature for CMACIDS. The model articulates
based on the weight vectors and each stage it
provides a solution converging faster towards the
global optima. Thus it names after model articula-
tion controller.

� The enablers help to create the feature extraction
process multi-dimensional leading to more accurate
detection and less false alarms. Cerebellar model
articulation controller uses reinforcement learning
and provides the advantages of linear memory
usage, pipelined hardware, least square error with-
out learning rate tuning. The experimented analysis
and comparative study based on various type of
attack detection, latency and complexity confirm the
superiority of the presented work.

The practitioners (academia and industry) can use the
proposed cerebellar model on the servers of a Security
Operation Centre (SoC). Besides, being the less complex
and low resource consumption method, cerebellar articula-
tion with spline fit provides and efficient framework for IoT
intrusion detection. Therefore, any IoT framework aiming
for security operations can include our proposed approach
with the benefits of ease of convergence to the optimum
detection capability, pipelined hardware, linear memory
usage, and auto-learning feasibilities.

1.2 Organization

The rest of the paper is organized as follows. Section 2
reviews the recent times development in the direction of
intrusion detection. Section 3 explains the technical features
and functionalities of the proposed approach. Section 4
shows the results. Section 5 concludes the paper.

2 RELATED WORK

In this section, we review some of the recent works in the
direction of intrusion detection in IoTs. We segregate the
approaches into two parts. The first part considers intrusion
detection models available for IoT-based applications and
the second part discusses some general intrusion detection
approaches for Wireless Sensor Networks (WSNs) as WSNs
are the integral parts of the IoT infrastructure.

Initially, some machine learning-based approaches have
been identified for intrusion detection in IoT [11], [12].

Fig. 1. Generic IoT framework.
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Among them, Restricted Boltzman Machines for intrusion
detection has been proved significant due to its unsuper-
vised learning methodology and high feature extraction
ability from the data generated by sensor infrastructure [13].
In this method, different classifiers are used for training on
the basis of extracted features which provide detection accu-
racy. However, the feature loss problemwith a high number
of feature extraction is a concern in this method. Following
the same line, deep migration learning is also used for fea-
ture extraction and implemented in the intrusion detection
for smart cities’ [14]. Though this method claims to be effi-
cient but, it is not well suited for edge computing. Worm-
hole attack prevention for IoT based Routing protocol is
considered for low power and lossy network [15]. Received
Signal Strength Indicator (RSSI) used for intruder detection
may lead to camouflage attacks. Adversarial reinforcement
learning method has also been used for the intruder detec-
tion that includes the environment’s behavior for the learn-
ing process [16]. The main drawback of this iterative two-
staged agent-based learning process is the complexity to tol-
erate minimum latency. Moreover, the dynamic changes in
the environment may result in ‘non-negotiable recursive
adjustment’ with null. The ‘fuzzy’ and ‘fast fuzzy’ pattern
tree techniques for maliciousness detection are other signifi-
cant contributions in IoT security [17]. The use of fast fuzzy
patterns gives good accuracy value of the detection. How-
ever, with the huge amount of heterogeneous data this
approach falls apart with the curse of dimensionality prob-
lem and increased computational complexity. This is one of
the techniques used for the performance comparison in the
present study. Game-theoretic detection of intrusion has
also been experimented recently [18]. The approach uses
the incentive mechanism for intrusion detection to get the
optimal solution. Further, a punishment-appeal step is also
induced to avoid compromising behavior among the nodes.
Though the approach is novel, it is unable to prove its
strength in the environment of IoTs as the number of nodes
(devices and connections) is large and optimal solution for
the incentive is complex with dynamic situations. Energy-
efficient and quick detection of intrusion is well experi-
mented based on Gaussian distribution [19]. The method
emphasizes on the connections among nodes and estab-
lishes a relationship among the network parameters and the
detection capability. However, being a very dynamic het-
erogeneous network, the prediction of deployment with
Gaussian distribution is not the best suit for the real IoT
environment.

Apart from the machine learning approaches, recently
developed blockchain solutions for intrusion detection in
IoTs are noteworthy [20]. One such approach uses block-
chained signature-based intrusion detection system that
updates the trusted signature database incrementally and
collaboratively. It removes the indulgence of trusted
intermediaries for verification by utilizing the distributed
architecture of blockchain. The process claims to be efficient
but with the increasing number of device connections, the
collaborative consensus time increases which may lead to
mismanaged intrusion alert generation and detection. As a
part of IoT, automated systems also require an intrusion
detection mechanism. An approach for Building Automa-
tion System (BAS) uses a ‘context-aware data structure’ by

modeling the heterogeneous information acquired from
building assets [21]. It then analyzes the data structures
with anomaly-based detection mechanism with suitable
learning methods. Hierarchical data management and its
intrusion detection with ‘low false-negative’ is a necessity
in real-life implementations. Especially, the anomaly-based
intrusion detection techniques are more prone to have this
problem.

Learning-based hierarchical intrusion detection with
sub-classes is an efficient solution to address this prob-
lem [22]. However, the approach does not confirm the con-
textual segregation of hierarchical data which may lead to
privacy breach in later stages. Artificial neural network-
based approach for intrusion detection is worth mentioning
here [23]. This approach is basically used for deep packet
inspection; the authors have implemented the process for
offline shell-code detection only. IoT deals with online data
in huge amount and therefore, the approach is not appropri-
ate for the IoT infrastructure. It requires an extension for IoT
applicability. Researchers also use semi-supervised learning
approach for generating intrusion detection framework for
IoTs [24]. The learning process is configurable in the fog
layer with Extreme Learning Machine (ELM) and Fuzzy C-
Means to obtain faster detection rate. This approach is dis-
tributed in nature and enables attack detection and net-
works edge. The process claims to be efficient in lowering
the detection time and with moderate-to-high detection
accuracy. This approach along with fuzzy’ and ‘fast fuzzy’
pattern tree techniques has been chosen for the performance
comparison in the present study.

Apart from the above IoT-based solutions for intrusion
detection, some generic solutions for WSNs, Mobile Ad hoc
NETworks (MANETs) and mesh networks are worth men-
tioning here to know the current status of all the major
intrusion detection models in the reecent years. Black hole
attack is one of the major intrusions in MANETs. A fuzzy-
based solution to address this problem is noteworthy [25].
Approaches are also developed to detect a Denial-of-Service
(DoS) attack. Such an algorithm uses Radial Basis Functions
(RBF) and Support Vector Machine (SVM) with AdaBoost
to improve the performance of the detection and classifica-
tion [26]. Another DoS detection-based solution has been
investigated with low power consumption [27]. Multiple
support vector machine and genetic algorithm-based fea-
ture selection are also under consideration by the research-
ers [28]. Though the authors have not confirmed its
applicability in IoTs, we select this algorithm as one of the
candidates for comparing the results obtained with the pro-
posed approach. Jamming attack detection uses a Network
Intrusion Detection System (NIDS) with Dempster-Shafer
Theory of Evidence [29]. A game-theoretic approach has
received attention due to its ability of prediction for attack
patterns [30]. The model uses auto-regression and claims to
balance detection efficiency and energy consumption. Sig-
naling game has also been executed earlier [31]. Intrusion
Detection System (IDS) functions are utilized in many ways to
achieve a practical solution for intrusion detection specifically
for mesh networks with energy constraints and collaborative
attributes [32]. This approach aligns to the consideration of traf-
fic agnostic and traffic-aware centralized and distributed algo-
rithms [33]. Earlier, the cooperativeness of these approached
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has been emphasized thoroughlywithmulti-objective optimiz-
ing problems [34].

The above discussion shows that a number of research
works are available in the literature to solve the problem of
intrusion detection in IoT and non-IoT perspectives. Each of
them has its pros and cons. With the increasing number of
devices and the requirement of lower power consumption,
higher accuracy, and less latency urge to develop a new
solution, which results in our present solution of intrusion
detection in IoTs as CMACIDS.

3 CMACIDS APPROACH

The proposed approach addresses the intrusion detection
issues in the perception layer of IoT-Cloud interfacing net-
works. We define an adaptive learning approach using the
Cerebellar Model Articulation Controller (CMAC) and also
have used Spline interpolation for the best suit detec-
tion [35], [36]. We name our proposed model ”CMAC based
Intrusion Detection with Spline (CMACIDS)”. The selection of
this method for our proposed work is majorly derived from
the advantages of the method including less computational
complexity, one step convergence, linear memory usage,
applicability in a significant noisy network environment
and automated classification process. To the best of our
knowledge, CMACIDS is the first intrusion detection
method to apply cerebellar model with b-spline fit and ker-
nel maps obtaining certain advantages for IDS in IoTs. To
realize our novel intrusion detection, CMACIDS approach
gathers the network data by the intrusion analyzer installed
in the edge level of IoT cloud interface.

3.1 System Model

We show our proposed model of CMACIDS in Fig. 2. We
keep the basic three-layered functionalities of the generic
IoT framework intact in the framework. However, we add
an intrusion analyzer to the generic IoT framework. It is a
combination of functionalities included in the fog layer.
These functionalities, e.g., routing, switching, local storage,
etc. can be included in any device in the fog layer as per the
requirements. In the present work, heterogeneous devices
associated with the ’edge’ generate heterogeneous data. By
heterogeneous data, we mean that the application scenarios
of the devices. As in the perception layer various devices
connect, their application areas may differ, and moreover,
the types of data they are transmitting also differ. Therefore,

we try to get the extracted features from this to have a suit-
able detection mechanism. These extracted features help in
generating probe vectors. Probe vectors are given input in
Cerebellar Model Articulation Controller Engine (CMAC
Engine). We use spline interpolation for the better fit of the
data classification. Once the classification is done properly,
malicious detection verifies, and accordingly generates
alerts depending on the sensitivity of the risk along with the
necessary information. CMAC engine is responsible for
model articulation and interpolation.

The Detection and Alert (DEA) performs the task of risk
sensitivity calculation and updating the risk threshold val-
ues. Once the detection is done, the intended device or ser-
vice is blocked. The system modeling of the proposed work
has been classified in the following subsections: i) Network
feature extraction, ii) Probe vector generation, iii) Learning
through Cerebellar Model Articulation Controller (CMAC), and
iv) Detection and update and spline fitting.

We provide a list of notations and symbols along with
their descriptions and equation reference(s) in Table 1.

3.2 Network Feature Extraction

The perception layer constituents are shown in Fig. 3. Three
basic modules: Radio Frequency IDentification (RFID), Wire-
less Sensor Network (WSN) and RFID based Sensor Network
(RSN) are the basic enablers for Edge-to-Cloud computing
networks [37], [38], [39]. Referring to Fig. 3, we observe that
the perception layer consists of various devices, sensors and
RFIDs. Each of these nodes having their different data accu-
mulation process. Therefore, CMACIDS collects these vari-
able data and performs the kernel feature extraction for
generating probe vectors. As a result, CMACIDS is able to
handle the stochastic nature of input from the network traffic.

All these enablers are responsible for the data acquisition
and transmission and the heterogeneity of the data is the
outcome. Therefore, network probe vectors are essential for
conceptualizing the network behavior and analysis for mali-
ciousness. Network probe vectors are generated by Kernel
Feature Extraction technique [40]. As the network data is

Fig. 2. CMACIDS system model.

TABLE 1
List of Symbols and Notations

Description Symbol/Notation Equation no.

High dimensionality space S (1), (3), (4), (5)
Non-linear mapping T (3), (4), (5), (6)
Dot product of two elements < : > (1), (2)
Kernel function K (1),(2)
Within class scatter matrix ST

W (3)

Between class scatter matrix ST
B (4)

Learning decaying factor D (11)
Learning rate L (11),(12)
Learning sensitivity function mðôtiÞ (11),(12),(13)
Cost function of switching & (14)
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enormous, kernel technique helps to extract the features
with fast iterations and it additionally ensures precision.
Also, kernel feature extraction method provides enough
power of nonlinear discriminant for the classification of lin-
early non-separable classes. The basic idea of using this
method is to transform the multidimensional network
device data properties (data in transaction and device
behavior) to a high dimensionality space, ‘S’ via non-linear
mapping, ‘T ’

T Rd ! S; x7�!T ðxÞ;
where Rd is the multidimensional sample space. The
mapped space is non-linearly related to the original space
that contradicts the curse of dimensionality problem [41].
Therefore, we use kernel function to obtain T ðxÞ. Other-
wise, linear classifiers, Radial Basis Network (RBN) or,
boosting algorithms are also applicable for the mapping
process; it is applicable ifS is not too high and less complex
mapping is observed. Thus, the use of kernel functions in
the present proposed approach helps to compute the dot
products of the mapped samples in ’S’ such that the follow-
ing equation holds.

K ðx; yÞ ¼ ð< x; y > Þ ¼< T ðxÞ:T ðyÞ > ; (1)

where < : > is the dot product. Similarly, for the polyno-
mial distributions the above equations can be re-written as

K ðx; yÞ ¼ ð< x; y > Þn ¼< T ðxÞ;T ðyÞ >n; (2)

where, n is the degree of the ordered products for x.
Let, fT ðx11Þ;T ðx1

2Þ; . . .:;T ðx1
N1Þ;T ðx2

1Þ; ::; :T ðxc
NCÞg rep-

resent the mapped samples in ’S’ space. Then within the
class and between the class, scatter matrices are denoted as
ST

W andST
B and are given by

ST
W ¼

XC
i¼1

XNi

m¼1

T ðxi
mÞ �MT

i ÞðT ðximÞ �MT
i ÞT ;

¼ ðT �T GÞðT �T GÞT ; (3)

ST
B ¼

XC
ði¼1Þ

NiðmT
i � mT Þ;

ðmT
i � mT ÞT ¼ ðT U � T LÞðT U � T LÞT ; (4)

where, mT is the sample mean mapped data, mf
i is the sam-

ple mean of the ith class, and T is the mapping matrix
whose columns are mapped with training set samples in
S. G ¼ diag½G1;GC � 2 Kðm�mÞ diagonal matrix and Gi 2
KðNi�NiÞ is a matrix where all elements are 1

Ni
. U ¼

diag½u1; u2; . . .:; uC � 2 Kðm�CÞ, block-diagonal matrix and ui 2
KðNi�1Þ is a vector whose entries are all 1ffiffiffiffi

Ni

p . L ¼
½l1; l2; . . .; lC � 2 Kðm�CÞ, matrix where li 2 Kðm�1Þ, a vector

whose elements are
ffiffiffiffi
Ni
m

q
ðNiÞ. The principal components are

calculated by solving the eigenvalue problem as

gw ¼ ST
T w; where ST

T w ¼ ST
W þST

W; (5)

w ¼
XC
ði¼1Þ

XðNiÞ

ðm¼1Þ
aijðFðxi

mÞ � mT Þ ¼ T �T lma; (6)

Substituting Equation (5) in Equation (6) we get

g �K a ¼ �K 2a ) ga ¼ �K a; (7)

Where �K ¼ K � lmK �K lm þ lmK lm 2 K ðm�mÞ and
K 2 K ðm�mÞ is given by as follows:

K ¼ T T T

¼ ðK ij
mn ¼< Fðxi

mÞ;FðxjnÞ
> ¼ K ðxi

m; x
j
nÞÞði;j¼1::;C;m¼1::;Ni;n¼1;::NjÞ;

There are at most m� 1 eigen vectors corresponding to
non-zero eigen values of �K . Since w1; w2; . . .; wðm�1Þ must be
orthonormal set, the vectors aj must be normalized in a
way such that the above condition holds true. Then, we
select the most significant n eigen vectors for the aforemen-
tioned ’feature extraction’. In our process, the extracted fea-
tures with higher eigen values are: protocol, IP address,
time, packet size, hop counts, command memory count,
command write function, response memory, control code.
In Table 2, we show the eigen values for which we have
selected these parameters from the heterogeneous data. The
table also shows the connection of these features with the

Fig. 3. Perception layer enablers.

TABLE 2
Eigen Values for Selected Features

Feature name Eigen
value

Attack relation

Protocol 0.687 IP sweep, port sweep
IP address 0.876 IP sweep, port sweep
Time 0.766 IP sweep, port sweep
Packet size 0.688 SPY attack
Hop counts 0.692 Multihop
Command memory
count

0.881 Buffer overflow,
Rootkits

Command write function 0.632 Buffer overflow,
Rootkits

Response memory 0.733 Buffer overflow
Control code 0.657 Rootkits
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attacks under consideration. We provide the attack descrip-
tion is given in Section 4.

3.3 Probe Vector Generator

Once the feature vectors are generated, all the selected fea-
tures create a feature space Fs in F . All the samples xi are
transformed in this subspace with dot product projection
using empirical kernel map [42] as

Z i ¼ T t
ðSÞFi; (9)

where Fi : xi ! Z i and is given by ðK ðxi; si1Þ;K ðxi;
si2Þ; . . . ;K ðxi; simÞÞ. The empirical kernel map is beneficial
in the adaptation of any approach. It is less complex as com-
pared to the other transformations such as orthogonal
maps. It also provides good approximation with the kernal-
ized vectors. Therefore, we choose this method for the data
probing vectors. Further, to estimate the network probe vec-
tors we apply linear regression. Given a dataset in the form
of ðZ i; oiÞ where Z i is the kernel map projection onto Fs in
F of samples xi, the linear regression reduces the Mean
Square Error (MSE) of the learning set L and outputs the
estimated vector oi which is then used with Moore-Penrose
pseudo inverse [43] as follows.

ôti ¼ Z t
iAþ bt; (10)

where, A ¼ ðZt
TZT Þð�1ÞZt

TOT and ZT ¼ ðZ t
iÞði2T Þ; OT ¼ ðotiÞði2T Þ.

The vector b is added to the estimated ’vector A’ which is
formed by adding a constant component in each vector Z t

i.
All the ôti are then given as inputs for Cerebellar Model
Articulation Controller (CMAC) for learning and classifica-
tion of intrusion detection.

3.4 Learning Through Cerebellar Model Articulation
Controller (CMAC)

We use Cerebellar Model Articulation Controller (CMAC)
for the classification of the degree of intrusion. This model
provides automated classification with reinforcement learn-
ing and shows recursively least square error without tuning
of learning rate. Moreover, the computational complexity is
OðNÞ and can be made to converge in one step with linear
memory usage and pipelined hardware. The parametric
memory cells of 4 MB have been used for this purpose,

where weights and required features are changed continu-
ously with iterations for minimizing the error. Note that
this memory requirement in the cumulative requirement of
CMACIDS process which is quite low. Thus, it satisfies the
memory utilization criteria for the applicability in resource
constrained IoTs.

We use a gradient type learning rule for updating the
weights [44]. The continuous change of leaning rate affects
the CMAC performance and we observe that the best value
of the initial learning rate L i has to be unity. The variable
learning rate equation is derived as

L ðôtiÞ ¼ L ið1�DmðôtiÞ
Xk
ðj¼0Þ

jejjÞ; (11)

where, D is the learning decaying factor, mðôtiÞ is the learn-
ing sensitivity function which is a nonlinear learning
switching function defined as

mðôtiÞ ¼
0; ðjeðkÞjmean � "Þ AND L ððk� 1Þ ¼ 0Þ
1; otherwise

�
; (12)

where " is the permissible absolute mean error. Control affine
switching function for the experimentation is defined as

mðôtiÞt ¼ FjðvðôtiÞÞ þGjðôtiÞuðôtiÞ; (13)

Where, Fj : R
n ! Rn and Gj : R

n ! Rðn�mÞ, 8j 2 t �
1; 2; . . . ;M; n is the dimension of the state vector vðôtiÞ and
m is the dimension of control vector uðôtiÞ The switching
sequence considered as: S ¼ ððt0; j0Þ; ðt1; j1Þ; . . .:; ðtk; jkÞÞ;
t0 � t1 � . . . � tk � tf ; 0 � k � 1and jk 2 t The sequence
parameter ðtk; jkÞ means that the system switches from
jðk�1Þ to jk at time tk and k denotes the number of switching.
The cost function of the switching has been considered and
mathematically derived as follows:

& ¼ CðvðôtiÞÞ þ
1

2

Z ðtf Þ

ðt0Þ
ðQðvðôtiÞÞ þ uðôtiÞtRuðôtiÞÞdt; (14)

Q and C are convex smooth positive semi definite functions
given as: Rn ! R:C penalize the state vector control effort
and R penalizes the control effort. We show a schematic dia-
gram of CMAC processing in Fig. 4.

Fig. 4. Logical representation of CMAC processing.
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We train CMAC with the cost function composed of the
structural response and the control affine function as shown
in Equation (14). We use gradient descent rule applied to
the cost function at the kth step to obtain an optimal solu-
tion. The weight update at the kth step is given by

DWl
I ¼ �h

d&k
dWl

I

: (15)

In Equation (15), h is the training rate and Wl
I are the

invoked weights. To avoid the the over-fitting issues, we
observe that the training rate must be less than equal to the
learning rate.

3.5 Detection and Update

The functionalities of the CMAC are further enhanced by
using the Kernel-Based Online Anomaly Detection (KBOAD)
technique as it is well suit for the online applicationswith ker-
nel mapping [45]. Also, multivariate traffic and kernel func-
tion Z i ¼ T ðSÞtFi have been used to generate the probe
vectors in the feature space Fs. These vectors ôti generate an
equivalent dictionary D . The feature error E from the project
of ôti to the feature space Fs are calculated. We assume the
upper and lower threshold to be #u and #l. CMACIDS consid-
ers two types of alarms for detection: alarm of severity and
alarm of sensitivity. The former one is more severe when the
observed feature vectors totally deviate from the dictionary.
The latter one is considerably less severe. The change in fea-
ture space of network measured parameters may be the rea-
son for this; these alerts are to be investigated further. The
detection process executes as follows:

If ðE < #lÞ; ôti is linear dependent on D ,
Else if ðE > #uÞ; ôti is deviated from the normal behav-

iour and ôtiD , generate the alarm of severity
else if ð#l > E > #uÞ; ôti is linearly dependent on D ,

generate the alarm of sensitivity
We further investigate the alarm of sensitivity to evaluate

the usefulness in terms of resolution. The usefulness of an
alarm generating feature vector ôti is assessed by observing
the kernel map values with respect to time t ¼ 1; 2; . . .tþ l.
If a kernel value is high, then Z i is higher and such signifi-
cant-high kernel values tell that the ôti is not malicious, it is
only shifted to a new feature space after a time interval Dt ¼
ti þ LC; where LC is the cumulative lag and l 2 LC . On the
other hand, if significant kernel values are small then Z i is
also small and ôti is detected as an anomaly. As the network
parameters are heterogeneous and a huge number of devi-
ces are connected at the perception layer, it is obvious that
after a time interval, the parameters change and as a result,
the feature spaces are also going to be changed which has
been also considered in the solution. After tþ lC , the
changes in the model lead to either of the three functions: i)
update dictionary, ii) change of alarm from severity to sensi-
tivity, and iii) change of alarm from sensitivity to severity.
For this, an update condition is evaluated and compared as
following.

XðtþlC Þ

ði¼tþ1Þ
	ðK ðx; yÞ > dÞ

2
4

3
5 > glC; (16)

where 	 is the indicator function, d is the kernel value
threshold, g is constant 2 ð0; 1Þ. If the condition is found
true, then the sensitivity of the alarm is changed to normal
behavior. However, if it is false then the alarm of sensitivity
is changed to the alarm of severity. lC is kept relatively small
as the time lag helps for precise decision.

3.6 Spline Fitting

To test the proposed approach, we apply the concept of B-
spline fitting [46]. Probe vectors are converted to the poly-
nomials of degree n� 1. The spline is made up of degree n.
Here, the feature mapped vectors are considered to be the
knots in the splines. With a given sequence of knots, up to a
scaling factor of swith respect to time lag lC , the spline func-
tionBðK Þmust satisfy the following condition.

Bðs;lÞðK Þ ¼
0; ðif T TT :T

0T
T ¼ I where T 0 is the

kernel output after l lag time and I is
the identity matrixÞ
non� zero; otherwise

8>><
>>:

:

(17)

If the kernel function produces the same kernel eigen fac-
tors even after lC lag period, it means that the spline knots
are stable, and CMAC can be performed. Detection process
becomes fast. So, the spline fit enhances the stability of the
proposed model. We summarize the overall process of the
proposed work in Algorithm 1.

Algorithm 1. CMACIDS Approach

1: Input: Perception Layer Enablers, multivariate traffic I
2: Output: Alert for Intrusion detection
3: Acquire perception enablers (network parameters)
4: Apply Kernel Feature Extraction technique

TRd ! S; x 7! T ðxÞ
5: DefineK ðx; yÞ ¼< T ðxÞ:T ðyÞ > ;
6: CalculateST

W ¼ PC
ði¼1Þ

PðNiÞ
ðm¼1Þ ðT ðxi

mÞ � mT
i ÞðT ðxi

mÞ�
mT
i ÞT ¼ ðT � T GÞðT � T GÞT

7: CalculateST
B ¼ PC

ði¼1Þ NiðmT
i � mT ÞðmT

i � mT ÞT ¼
ðT U � T LÞðT U �T LÞT

8: gw ¼ ST
T w, whereST

T w ¼ ST
W þST

W

9: K ¼ T TT ¼ ðK ij
mn ¼< Fðxi

mÞ;Fðxj
nÞ >¼

K ðxi
m; x

j
nÞÞði;j¼1::;C;m¼1::;Ni;n¼1;::NjÞ

10: Select the most significant n eigen vectors for feature extrac-
tion and goto Step 3.

11: Apply the kernel map with zi ¼ T ðS Þtôi
12: ôti ¼ ztiAþ bt

13: Apply CMAC
14: InitializemðôtiÞt ¼ FjðvðôtiÞÞ þGjðôtiÞuðôtiÞ
15: Derive learning rate as:L ðôtiÞ ¼ L ið1�DmðôtiÞ

Pk
ðj¼0Þ jejjÞ

16: & ¼ CðvðôtiÞÞ þ 1
2

R ðtf Þ
ðt0Þ ðQðvðôtiÞÞ þ uðôtiÞtRuðôtiÞÞdt

17: Set the upper and lower threshold to be #u and #land calcu-
late E on the projection of ôti to F
if ðE < #lÞ; ôti is linear dependent onD,
else if ð#l > E > ôuÞ; ôti is linearly dependent on D, gener-
ate the alarm of sensitivity
else, ôti is deviated from the normal behaviour and ôti
D,generate the alarm of severity

18: Update if : ½PðtþlÞ
ði¼tþ1Þ 	ðK ðx; yÞ > dÞ� > gl

19: Apply Spline fit for stability
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4 PERFORMANCE EVALUATION

In this section we discuss about the experimental proce-
dure, results and their comparative analysis.

4.1 Experimental Setup

The experimental setup of IoT infrastructure developed for
the present work consists of 30 end devices including 5
mobile phones, 5 laptops, and 20 sensors in the perception
layer; fog devices include two switches, two routers, and
one gateway. The experiments are performed in the Cam-
pus Area Network (CAN) with an average data transfer
speed of 100 Mbps. The technical specifications of the devi-
ces used are shown in Table 3. We consider the attacks
described in IoT attack ecosystem as in [24]: Port sweep, IP
sweep, SPY, IMAP, Buffer overflow, rootkit, and Multihop
are the attack types considered for the present study. For
authentication attacks, basic authentication vectors avail-
able from the network traffic are only used. To detect the
extended authentication attacks, a dictionary needs to be
made for identifying the authentication vectors which has

been kept for future work. The definitions of the attacks and
their generation in the our experiments are shown in
Table 4.

Synthesized Dataset. Our synthesized dataset includes one
lakh of records. we consider seven attacks as in Table 4. 50%
of the data is normal traffic and another 50% of the data is
malicious traffic with some attacks. Sweep attacks are 10%,
SPY attack is 5%, IMAP attack is 5%, buffer overflow attack
is 15%, rootkit is 10%, multihop attack is 5%.

Data Pre-Processing. In our synthesized dataset, we have
not used any pre-processing of data as the data is generated
by our own deployed network. In the available dataset such
as UNSW, NSL-KDD data pre-processing can be used to
avoid incomplete features or non-required fields.

4.2 Performance Metrics

The performance of the proposed system is evaluated and
then compared with other existing systems. The technical
definitions are; i) True Positive (TP) - indicates that a mal-
ware is correctly identified, ii) True Negative (TN)-indicates
that a benign is detected as a non-malicious application cor-
rectly, iii) False Positive (FP) - indicates that a benign is
falsely detected as a malicious application, iv) False Nega-
tive (FN)- indicates that a malware is not detected and
labelled as a non-malicious application and these definitions
can be seen elsewhere [17]. By following the aforemen-
tioned definitions, parameters for the verification of the cor-
rectness of the systems are maintained viz., accuracy,
precision, and recall. Accuracy defines the fact of the cor-
rectness of the system with the total number of truthful
detection divided by all the detection.

Accuracy ¼ ðTP þ TNÞ
ðTP þ TN þ FP þ FNÞ : (18)

TABLE 3
Technical Specification of Devices

Mobile phones
(5 nos)

Samsung Note 5 (2), Nokia Note pro (1),
Redmi Note 7 pro (2)

Laptops (5 nos) Dell Intel Core i7 (7th generation) (5)
Sensors (20
nos)

Atmel ATmega328 (5), ARM 32 b Cortex
M3STM32F103 (5),Atmel ATmega128 L (5),
Jennic JN5148 (5)

Switch (2 nos) Cisco SG350-28-K9-EU 28-port Gigabit
Managed Switch

Router (2 nos) Cisco ISR4221/K9 Router
Gateway (1
nos)

Cisco ASR 1000

TABLE 4
Attacks Definitions

Attack type Attack definition Generation of attack

IP Sweep An address sweep occurs when one source IP address
sends a predefined number of ICMP packets to various
hosts within a predefined interval of time.

We create a separate system as an attacker; it sends
ICMP echo packets to the nodes in the configuration

Port Sweep A port scan is an attack that sends client requests to a
range of server port addresses on a host to obtain an
active port and exploiting a vulnerability of that
service.

We send general service requests to all the ports, the
responses from the ports give the active ports and
further port-based attack is created.

SPY attack Transmits spyware (malware) with normal traffic flow. We use a port-based service on the open port of 443
with a spyware to detect the hashes and logins in a
system

IMAP
attack

Malicious access to IMAP Server may use password
spraying, DNS listing, etc.

We disguise with an permissible IP address and try to
ping to the IP address of IMAP server

Buffer
overflow

Transmitting data more than the capacity or predefined
threshold of traffic flow so that data overflows into
adjacent memory spaces and thus corrupting data,
generally executed by transmitting shellcode.

We use malfunctioned pings to create this attack with
extra parameters in the operation field of the payload

Rootkit Rootkits work as malware usually transmitted with
network traffic so that once it is installed, it can bypass
the access privileges or gain the administrator control.

We create a rootkit and put in inside the data packet

Multihop Disguises or camouflages the source of malicious traffic
as multiple adversaries chain together as multiple
proxies; identification of the original source is hard.

We use the tor command and control, a multicast
address of attackers from the environment to launch
this attack with flood
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Precision defines the fact of the correctness of the system
with the total number of intrusions correctly detected.

Precision ¼ TP

ðTP þ FP Þ : (19)

Recall defines the fact of the correctness of the system
with the ratio of malware samples that are correctly pre-
dicted as per the total number of samples.

Recall ¼ TP

ðTP þ FNÞ : (20)

The three existing algorithms are chosen for performance
comparison of the present model [14], [17], [24]. The reason
for choosing these three existing approaches are due to their
similar features of learning mechanisms, dealing with het-
erogeneous data. In the comparative analysis, we only

adopt the methodology from the literature and apply them
on our synthesized data to evaluate the performance. For
our synthesized data, we follow the format of NSL-KDD
dataset; it considers the following attributes: source and
destination IP address, source and destination ports, CPU
usage, memory usage, access controls, buffer size, interme-
diate hops, service requests and flags for TCP connections,
number of ECHO packets, inbound and outbound traffic
size, timestamps, and format of tor command.

4.3 Results and Discussion

The comparison of the mentioned attributes is shown in
Table 5. Table 5 shows that the proposed model is better in
accuracy and achieves 100% of performance in precision
and recalling the event. The reinforcement learning in the
system and suitable method of kernel feature extraction
have assisted for this advantageous performance. We also
measure the candidate models of [14], [17], and [24] with
the same network model and system configuration.

Further, attacks in increments of variations have been
created to extend the above results and the behavior of the
algorithms have been analyzed. The accuracy parameter is
used for comparing the behavior with respect to increased
variations and number of attacks and is shown in Figs. 5a,
5b, 5c, and 5d. In this study, four attack scenarios are con-
sidered; i) Scenario 1 considers sweep attacks including
Port sweep and IP sweep and for that 50% Port and 50% IP
sweep attacks are executed with the number of attacks

Fig. 5. Attack detection comparison in various scenarios.

TABLE 5
Comparison of Correctness

Accuracy Precision Recall

Dovom et al., [17] 98.6% 98.8% 98.87%
Daming et al. [14] 93% 89.9% 95%
Rathore et al. [24] 90.33% 91.23% 92.55%
Proposed CMACIDS 99.37% 100% 100%

The values are calculated for all the instances and mentioned here in average
only.
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varying from 5 to 35, ii) Scenario 2 executes the attacks of
Scenario 1 and adds SPY and probing attacks, with number
of attacks is varied from 5 to 35 with 1:2:3 ratio of the
attacks, iii) Scenario 3 considers the attacks of Scenario 2
and has added buffer overflow and rootkit attacks, with
number of attacks is varied from 5 to 35 with 30% scenario
1, 30% scenario 2 and remaining are of buffer overflows,
and iv) Scenario 4 execute the attacks of Scenario 3 and
adds Rootkit attacks and multi-hop attacks, with number of
attacks is varied from 20 to 100.

As can be seen from Fig. 5a (scenario#1), proposed novel
intrusion detection method, CMACIDS, performs with the
accuracy of 100% in intrusion detection over the entire
range of number of intrusion attacks, whereas [17] shows
100% accuracy up to 10 attacks and then falls down gradu-
ally with increase in the number of attacks. The other two
algorithms [14] and [24] performs poor as in comparison.
Scenario 1 confirms that CMACIDS is efficient enough in
detecting sweep attacks accurately. However, in Fig. 5b
(scenario#2), a change in CMACIDS behavior has been
observed. It starts almost 97% accuracy and maintains the
performance with the increasing number of attacks and its
variations with a slight increase up to 97.8 % of accuracy
and continues further with an average of 97.33% of accu-
racy. In comparison, the algorithm in [17] starts with an
accuracy of 100 percent but at the 10 number of attacks, it
coincides with the CMACIDS with its degraded perfor-
mance and ends at approximately 92% accuracy at the end.
CMACIDS average accuracy detection in this scenario is

calculated as 97.8%. The other two algorithms [14] and [17]
have experimented with 87.8% and 82.3% of average accu-
racy. The observation in scenario 2 signifies that even
though Dovom et al. [17] starts detecting the variation of
attacks with a high percentage but falls apart when the
number of attacks increases and CMACIDS outperforms
others in an average accuracy of detection with four varia-
tions of attacks. It can be seen from Fig. 5c (scenario 3) that
CMACIDS is better as compared to all other algorithms in
any variations of attacks. Rathore et al. [24] have shown
promising efficiency at the starting point of scenario 3 but
drastically degrades the performance after 20 number of
attacks. Though all algorithms got affected by the variation,
CMACIDS, and Dovom et al. [17] have shown a compatible
performance of accurate detection with 92.3% and 89.67% in
average over the entire range used for the present study. In
scenario 4, the initialization of the experimentation has
shown interesting behavior and is depicted in Fig. 5d. At
the start of this scenario, Dovom et al. [17] has performed
efficiently with an average difference of +/- 6.78% till 70
attacks; however, the performance reduces after that CMA-
CIDS gets the advantage of obtaining steady performance
line. All the behaviors of the four algorithms from all four
scenarios signify the fact that the features extracted by
CMACIDS is accurate and updates accordingly. Also with
new learning behavior detection rates are almost steady in
all variations of CMACIDS. Therefore, even though the var-
iations and types of attacks are increased gradually in the
scenarios CMACIDS performs efficiently as compared to
others. The reason that the other algorithms have not per-
formed well is due to lack of efficient feature extraction pro-
cess and lack of efficient learning mechanism, which are
inherent in CMACIDS algorithm.

IoT deals with dynamic and real-time data and there-
fore, the latency or the detection time needs to be mini-
mized for any kind of security implementation. The
detection time and overall latency for all the approaches
in comparison have been measured and shown in Table 6.
We observe from the table that for some type of attacks,
intrusion detection with CMACIDS is faster compared to
other algorithms. However, IP sweep attack is detected
faster in [24] and rootkit detection takes place faster
in [14]. The results are shown in the table signify that the
proposed approach is able to detect various attacks in
less time as compared to other algorithms due to the tim-
ing advantages of CMAC process and kernel extractions.
To emphasize and precisely monitor the algorithms in

TABLE 6
Single Attack Detection Time

Attack type Dovom et al. [17] Daming et al. [14] Rathore et al. [24] CMACIDS

Ping Sweep 15.89 17.02 12.07 13.38
IP Sweep 15.33 16.89 13.01 13.77
SPY 15.89 17.32 18.04 14.76
IMAP 18.26 15.33 19.57 14.02
Buffer overflow 18.33 19.37 28.07 17.33
Rootkit 10.67 10.33 25.67 16.40
Multihop 13.33 12.67 23.67 10.67
Average Communication Latency 74.67 98.19 108.67 53.33

The values are given in milliseconds.

Fig. 6. Comparison of overall latency time including edge and cloud
(Synergical latency comparison).
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their detection capability, the latency time with the syn-
ergy of the multiple numbers of attacks at a time are com-
pared. The results are shown in Fig. 6.

It shows that CMACIDS is better in providing low
latency in the attack scenario and overall latency is also less
as compared to the other algorithms. An interesting fact is
observed from the results. At the initialization of the detec-
tion process, CMACIDS is consuming more time resulting
in a high latency as compared to the other algorithms; how-
ever, with the increasing time and attack events the learning
mechanism is adapted; the process of detection speeds up
with reducing the detection time by 11.33% and overall
latency by 23.67 % which is very significant in IoT applica-
tions. Being applied at the edge computing, time complexity
and memory complexity need to be minimized. These two
parameters are measured for all the algorithms and com-
pared in Table 7 The complexity shows that the proposed
approach exhibits very low complexity as it is linear due to
the inclusion of CMAC with Spline adaptability, therefore it
is suitable for IoT applications.

The stability of a system is important as it prevents the
system from deviating from the standard mean error obtain-
ing the nominal behavior of the scenarios. In our experi-
ment, we measure the number of weight adjustments for
the attack detection; less the number of weight changes sig-
nifies that the system is more stable. We compare the stabil-

ity of CMACIDS with the other algorithms and summarize
in Fig. 7. As can be seen from the Fig. 7, CMACIDS is more
stable in terms of weight adjustments. In the presence of
overall 100 various attacks, it achieves stable weight adjust-
ments at 70 attacks and maintains it afterward; whereas the
other algorithms are unstable as the weight adjustment is
high and the graph follows an unsteady line over the entire
range of attacks. Though Dovom et al. [17] is also having
similar kind of weigh adjustment numbers after 40 attacks
CMACIDS outperforms it completely. Finally, we show a
comparison table in Table 8. In this table, we compare the
major attributes of CMACIDS with the existing protocols.
Finally, we compare the detection accuracy of all these
attacks for all the approaches under consideration. We
show this comparison in Table 9.

5 CONCLUSION AND FUTURE WORKS

An automated and learning-based intrusion detection
method, CMACIDS has been developed for IoT based com-
munication networks. The method uses CMAC and spline
fitting, respectively, for the learning the kernel map feature

TABLE 7
Complexity Comparison

Computation
complexity

Memory
complexity

Dovom et al. [17] Oðn2 þmÞ Oðn2Þ
Daming et al. [14] OðnlognÞ Oðm2Þ
Rathore et al. [24] Oðn2Þ OðmlognÞ
Proposed
CMACIDS

OðnmÞ OðnmÞ

n is the number of network features and is the number m of attacks features.

Fig. 7. Comparison of weight adjustments for stability.

TABLE 8
Feature Comparison

Complexity System stability Memory usage Pipelining Learning rate

Dovom et al. [17] High Low Non-linear No Tuning required
Daming et al. [14] Average Low Non-linear No Tuning required
Rathore et al. [24] High Average Non-linear No Tuning required
Proposed CMACIDS Low High Linear Yes Tuning not required

TABLE 9
Comparison of Accuracy for Attack Types

Dovom et al., [17] Daming et al. [14] Rathore et al. [24] Proposed CMACIDS

Sweep attacks 98.6% 98.8% 98.87% 100%
SPY attacks 93% 89.9% 95% 98.9%
IMAP attacks 90.33% 91.23% 92.55% 97%
Buffer overflow 99.37% 98% 98% 100%
Rootkit 93.37% 95.7% 98% 100%
Multihop 89% 92% 95% 95%

The values are calculated for all the instances and mentioned here in average only.
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extracts and system adaptability. The mathematical model
is less complex and follows a linear complexity derivation.
The evaluation parameters and their comparative analysis
show that CMACIDS increases the accuracy by 18.13% on
average, reduces the latency by 23.67% and improves the
stability by 11.8% in weight adjustments. To summarize,
CMACIDS serves as an efficient solution for edge comput-
ing in the perception layers of the IoT. CMACIDS is generic;
therefore, it is applicable in all scenarios of edge computing.
The applicability of the model depends on the feature
extraction from the network traffic. As an extension to our
present work, various feature extraction methods can be
applied to compare the extracted features. The ability of
CMACIDS for detection of distributed attacks and
advanced authentication attacks with the creation of
authentication vector dictionary are to be followed as future
direction of research.
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