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Abstract—Cloud services must be continuously monitored to guarantee
that misbehaviors can be timely revealed, compensated, and fixed. While
simple applications can be easily monitored and controlled, monitoring
non-trivial cloud systems with dynamic behavior requires the operators
to be able to rapidly adapt the set of collected indicators. Although the
currently available monitoring frameworks are equipped with a rich set of
probes to virtually collect any indicator, they do not provide the automation
capabilities required to quickly and easily change (i.e., deploy and
undeploy) the probes used to monitor a target system. Indeed, changing
the collected indicators beyond standard platform-level indicators can
be an error-prone and expensive process, which often requires manual
intervention.

This paper presents a Monitoring-as-a-Service framework that pro-
vides the capability to automatically deploy and undeploy arbitrary probes
based on a user-provided set of indicators to be collected. The life-cycle of
the probes is fully governed by the framework, including the detection and
resolution of the erroneous states at deployment time. The framework can
be used jointly with existing monitoring technologies, without requiring
the adoption of a specific probing technology.

We experimented our framework with cloud systems based on
containers and virtual machines, obtaining evidence of the efficiency
and effectiveness of the proposed solution.

Index Terms—Cloud monitoring, Monitoring framework, Monitoring-as-
a-Service, Probes deployment

1 INTRODUCTION

Cloud-based solutions emerged as the key paradigm to
support the operation of large-scale distributed systems com-
posed of many interconnected services [1], [2]. Indeed, these
systems are characterized by highly dynamic and complex
behaviors that include the capability to adapt to changes in
the available computational resources, to dynamically update
and scale services without interrupting operation, and to be
resilient to network problems and software failures.

Due to their size and complexity, every element of a
cloud system must be continuously observed, to timely react
to anomalous behaviors, generating alerts, and activating
countermeasures [3]–[7]. In fact, cloud-based solutions are
systematically enriched with monitoring capabilities, either
natively offered by cloud platforms (e.g., Kubernetes [8]),
or provided by external tools (e.g., Elastic Stack [9] and
Prometheus [10]).
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These monitoring solutions are mainly designed to collect
a stable set of indicators over time, being challenged by
scenarios that require rapidly modifying the set of collected
indicators. In contrast, there are many well-known causes of
sudden changes to the set of collected indicators. The goals of
the operators change with the technical and business objectives
of the organization, consequently causing changes in the set
of the indicators that must be collected. The software usage
patterns that emerge from the field continuously evolve, often
determining the need of adjusting the monitored indicators
accordingly. The collected indicators must be adapted to
changes in the workload, which must be carefully observed
to timely reveal any symptom of stress on the services.
Moreover, service updates normally require putting in place ad-
hoc monitoring capabilities that target the updated services
to measure their reliability and timely detect misbehaviors.
Sometimes, the observation of failures generates the need
of continuously observing the services that fail often, to
prevent new failures and localize the causes of problems; and
dynamically deployed scenarios (e.g., to timely react to disasters
and emergencies) require quickly deploying new functional
services and the corresponding monitoring components.
Relevantly, all these factors are dynamic and cannot be entirely
anticipated.

Changing the set of collected indicators often requires
changing the set of probes running in the field. However,
configuring and deploying new probes, as well as undeploy-
ing the existing probes, are non-trivial and time-consuming
activities. For instance, a tech company running many cloud
services needs to collect KPIs at different granularity levels,
taking into account both business and technical needs [5].
The needs of managers shall follow business goals and
market evolution, while the needs of technicians shall follow
QoS goals and software evolution. These needs evolve
independently, and simultaneous changes in both business
and technology may generate a rapidly increasing number
of requests for the operators responsible of configuring
the monitoring system. Operators may struggle adapting
their monitoring systems at some point, especially when
a large number of services has to be monitored. For this
reason, research focused on increasing the level of automation
of probe management. Figure 1 shows the increasing levels of
automation that have been introduced in monitoring systems.

Simple manually configurable monitoring systems (Figure 1
(a)), such as Elastic Stack [9] and Prometheus [10], require
configuring and deploying probes manually, that is, the life-
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Fig. 1: Monitoring automation.

cycle of every component of the monitoring system must be
handled manually by developers. Although useful, these
monitoring systems are expensive to use in presence of
frequent changes to the set of collected indicators, and badly
adapt to dynamic scenarios.

Some probe deployment tasks could be implemented
using general purpose deployment systems (Figure 1 (b)), such as
Ansible [11] and Puppet [12]. However, these systems are not
designed to specifically serve monitoring frameworks, and
defining and controlling the deployment strategies would
still be entirely on the shoulder of the operator. As discussed
next in this paper, general purpose deployment systems can
be indeed used as basic building blocks of more sophisticated
deployment solutions tailored to address cloud monitoring.

A simple form of automation present in some systems
consists of the support to autoscaling (Figure 1 (c)), that is,
probes automatically adapt to a changing number of replica
of a monitored service [13]. This is a useful feature, although
limited to a specific scenario, missing to cope with the many
changes that must be actuated as a consequence of changes
on the set of collected indicators and monitored services.

To obtain a sufficient level of flexibility to address
the aforementioned characteristics, Monitoring-as-a-Service
(MaaS) solutions have been recently studied [13]–[16] (Fig-
ure 1 (d)-(f)). In fact, MaaS frameworks provide operators
with the capability to flexibly decide the set of indicators to
be collected, alleviating them from the burden of configuring
and handling the life-cycle of the probes. In principle, an
operator using a MaaS framework can simply specify the set
of indicators that must be collected, while the operational
aspects are automated by the framework.

Unfortunately, in many cases, automation is limited to
the activation of manually pre-deployed probes [13] (Figure 1
(d)), that is, probes that have been already installed and
configured manually. Adding probes to collect new indicators
and removing existing probes must still be done manually
by operators.

A higher degree of automation is provided by some
specific platforms (Figure 1 (e)) that natively offer monitoring
capabilities (e.g., Kubernetes). These solutions are effective

but significantly limit both the range of platforms and
indicators that can be used. So far, there is no general MaaS
solution that can be used to collect virtually any KPI on any
platform. Note that a MaaS system that fully handles the
life-cycle of probes is the only solution that can entirely free
operators from the burden of handling probe deployment; in fact
they would be able to control the monitoring system by
simply specifying the set of indicators to be collected.

In this paper we address this challenge by presenting a
MaaS monitoring framework (Figure 1 (f)) that exploits both
a catalog of probes annotated with metadata and access to
the API of the platform running the monitored services, to
deliver full MaaS capabilities including error-handling.

This work extends our former tool demo paper [17] by
(i) proposing a consolidated and scalable architecture, (ii)
introducing error handling capabilities in the monitoring
system, (iii) providing a rigorous presentation of the monitor-
ing framework, and (iv) reporting results from an extensive
empirical evaluation of the effectiveness of the approach. In
a nutshell, this paper makes the following contributions:

• Automated life-cycle management of probes. We present a
MaaS framework that fully automates the deployment and
undeployment of arbitrary probes starting from declarative
inputs (i.e., the list of indicators to be collected) entered by
the operators.

• Scalable and independent control processes. We rigor-
ously describe the probe deployment and undeployment
procedures that guarantee the correctness of the resulting
behavior. The involved processes are defined as stateless
services to guarantee the scalability of the resulting system.

• Deployment error handling routines. We present how
errors in probe deployment can be autonomously detected
and fixed by the MaaS framework. So far, error handling ca-
pabilities received little attention, with approaches mostly
focusing on error-free deployment scenarios or relying on
the direct intervention of operators, despite the importance
of error handling for long-running systems, such as a
monitoring system [15], [16].

• Technology-agnostic control processes. We detail how
the presented framework can be integrated with existing
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technologies (e.g., probe technology, backend database,
and target environment) without the need of using ad-hoc
solutions.

• Empirical evidence. We empirically study the effectiveness
of the framework with both containers and virtual machines,
the efficiency of error-handling, and the scalability for an
increasing number of requests.

The paper is organized as follows. Section 2 introduces
a running example that is used to illustrate the approach
throughout the paper. Section 3 presents the MaaS framework
that automates life-cycle management of probes, rigor-
ously describing the control processes that govern probe
deployment and undeployment. Section 4 presents error
handling. Section 5 discusses support to frameworks and
probe technologies. Section 6 presents empirical evidence.
Section 7 discusses related work. Finally, Section 8 provides
concluding remarks.

2 RUNNING EXAMPLE

In this section, we introduce a running example that we
use to illustrate and exemplify how the proposed MaaS
framework works. The example consists of a PostgreSQL
instance TARGET-PSQL running as part of a larger cloud
system. Such an instance is of interest for two operators:
operator OP-A and operator OP-B. Operator OP-A is mostly
interested in infrastructure KPIs and is collecting network
consumption data related to TARGET-PSQL. Operator OP-
B is interested in both infrastructure and application KPIs,
and is collecting 3 KPIs: network consumption data, CPU
consumption data, and database metrics. We refer to this
initial configuration as INIT-CONF.

In this context, operator OP-A may notice anomalous data
in the network traffic and decide to collect information about
two additional KPIs: CPU consumption and user session
data. We refer to the configuration where operator OP-A is
also collecting these two additional KPIs as the 2-MORE-KPIS-
CONF.

Finally, operator OP-B may loose interest for the Post-
greSQL service, for instance because the services maintained
by operator OP-B may stop using PostgreSQL. In such a case,
operator OP-B stops collecting any indicator from TARGET-
PSQL. We refer to this final configuration as OP-B-LEFT-
CONF.

We will refer to these sample scenarios and configurations
in the rest of the paper to explain how the set of probes
necessary to collect the indicators required by operators OP-
A and OP-B can be adjusted automatically and transparently
to the operators.

3 MAAS FRAMEWORK

The proposed MaaS framework exploits a few relevant
domain concepts to organize the responsibilities of the
components. In the following, we first introduce these key
concepts, both informally and rigorously, and then discuss
the framework architecture.

A Target represents an application, a system, or a resource
that can be monitored by a monitoring framework. It is
characterized by the hosting platform (e.g., Microsoft Azure,
Kubernetes), a unique identifier within the hosting platform

(e.g., the Kubernetes Deployment name or VM name in
Microsoft Azure), and its execution environment (e.g., virtual
machine, or container). In our running example, the target is
a PostgreSQL instance that we assume can be identified with
the label TARGET-PSQL in both Kubernetes (as deployment
name) and Microsoft Azure (as VM name).

A Probe represents a deployable artifact that can be used
to collect indicators from targets in different environments.
Probes are annotated with metadata that describe how they
can be deployed and configured.

More rigorously, a probe p is a tuple p =
(I,meta, artifact), where I = {i1, . . . in} is a set of indi-
cators that can be collected with the probe, meta is a set
of key-value pairs that represent the metadata associated
with the probe, and artifact is a reference to the artifacts that
implement the actual software probe. We use the notation pI ,
pmeta and partifact to refer to the individual components of
a probe p.

A Monitoring Claim specifies the indicators that an
operator may want to collect for a specific target. More
rigorously, a monitoring claim mc is a tuple mc = (I, op, t)
where I = {ii, . . . ik} is the set of indicators to be collected
from the target t for the operator op. The claim is intended
as a complete specification for the specified target, thus if
the operator is already monitoring an indicator i for a given
target t and the newly submitted claim does not include the
indicator, the monitoring system will stop collecting i from
t. For example, operator OP-A shall submit a monitoring
claim ({NETWORK_CONSUMPTION, CPU_CONSUMPTION,
USER_SESSION_DATA}, op-A, target-PSQL) to start collecting
CPU consumption and user session data, in addition to
network consumption. Similarly, operator OP-B shall submit
a monitoring claim ({}, op-B, target-PSQL) to stop collecting
data.

A Monitoring Request is a collection of Monitoring
Claims submitted with a single request by an operator. More
rigorously, a monitoring request mr submitted by operator
op is a set mr = {mc1, . . .mcm} where mci = (Ii, op, ti).

A Monitoring Unit is an execution unit (e.g., a virtual
machine or a container) that runs one or more probes. When
needed, our monitoring framework dynamically creates and
destroys monitoring units to collect the indicators specified
by the operators in their monitoring claims. A monitoring
unit is also characterized by a hosting platform, which
represents the environment where the unit is executed,
and a configuration, which captures how the probes in the
monitoring unit are configured.

More rigorously, a monitoring unit mu is a tuple mu =
(host,mus,C), where host identifies the platform that pro-
vides the unit, mus indicates the strategy used to configure
the unit (i.e., single probe or multi-probe), and C is the
configuration of the unit, which consists of zero or more
probe configurations, depending on the number of probes
installed. Specifically a probe configuration c ∈ C is a tuple
c = (p, I, op), where p is a probe, I ⊆ pI represents the set
of indicators that p is configured to collect, and op is the
operator who asked for the probe configuration c.

We use the notation muP to refer to the set of probes in
the current configuration of mu, that is, muP = {p|∃(p, ·, ·) ∈
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Fig. 2: Monitoring Framework Architecture.

C}1. Finally, given a probe configuration (p, I, op), we use
the notation I(p) to refer to the indicators that p is configured
to monitor, that is, I(p) = I .

Our framework implements two monitoring unit config-
uration strategies: the multi-probe monitoring unit and the
single-probe monitoring unit. The multi-probe monitoring unit
strategy uses one monitoring unit (e.g., a virtual machine) per
monitored target (e.g., an instance of PostgreSQL), hosting
in the unit all the probes that share a same target (e.g.,
every probe that collects indicators about PostgreSQL). This
strategy is well suited for virtual machines, which are
heavyweight units that typically run multiple processes. The
single-probe monitoring unit strategy uses one monitoring unit
(e.g., a container) per deployed probe (e.g., a Metricbeat
probe for CPU consumption). This strategy is well suited for
containers, which are lightweight units that preferably run a
single process.

For instance, the initial configuration of the running
example, where virtual machines running on Microsoft
Azure are used, implies the existence of a single monitoring
unit mu = (azure,multi-probe, C), running the probe
pnet, which serves both operators OP-A and OP-B, and
the probes pcpu, pdb, which both serve operator OP-B.
Consequently, C consists of the following four probe
configurations: (pnet, NETWORK_CONSUMPTION, OP-A),
(pnet, NETWORK_CONSUMPTION, OP-B),
(pcpu, CPU_CONSUMPTION, OP-B), and
(pdb, DB_METRICS, OP-B).

Note that the monitoring units are created to have the
right visibility of the target to be monitored. In fact, a
virtual machine monitoring unit can be either the same
virtual machine running the monitored service or a separated
virtual machine with probes that query an interface exposed
by the monitored service (e.g., using SNMP [18]). On the
other hand, a container monitoring unit can be created as
a sidecar of the container running the target service [19], to
have extensive visibility of the monitored service, or as a
standalone container running in the same node of the target.

Figure 2 shows the proposed monitoring framework,
which consists of four main stateless services and three
repositories. The four services are (i) an API Service, which
offers a gateway to access and update state information about
the monitoring system, (ii) a Monitoring Claim Controller,
which is responsible for handling the life-cycle of every
monitoring claim, (iii) a Monitoring Unit Controller, which is

1. We use the symbol · when any value is allowed in a tuple.

responsible for handling the life-cycle of every monitoring
unit, and (iv) a Cloud Bridge, which exploits a plug-in based
architecture to interact with different cloud providers and
platforms, actuating the operations decided by the other
services. The three repositories consist of (i) a repository of
monitoring claims submitted by operators, (ii) a repository
with the created monitoring units and their configurations,
and (iii) a probe catalog with all probes and deployable
artifacts.

Automated life-cycle management of the probes is provided
by the two controllers that collaborate to manage the set of
monitoring units, and the deployed probes, based on the
requests produced by the operators that only include the
information about the indicators to be collected. The stateless
nature of the controllers guarantees scalability, as long as
sufficient resources are provided to the monitoring system.
The controllers also track the status of the monitoring units
to handle and recover from errors. Finally, the framework is
built with a plug-in based architecture that allows multiple
cloud platforms to be integrated, as long as they provide a
management API. In the rest of this section, we rigorously de-
scribe how the components, and the controllers in particular,
behave.

3.1 Repositories

The Probe Catalog is a repository PC = {p1, . . . pn} where
pi is a probe. We assume the probe catalog is organized in
such a way there is a unique artifact that can be used in a
given context, that is, given an index i and the execution
constraints (e.g., the host environment that executes the
probe, the timeseries database that must be used to store
the data, etc.), there is a unique probe p that can be used to
collect i in the target environment. We do not detail here the
execution constraints that can be used to identify the probe,
but these are represented in the metadata associated with the
available artifacts and matched for equality (or inclusion in
case of lists) by the framework to select the probes.

Complex matching procedures can be also implemented
in the catalog if needed, such as the possibility to have
multiple probes suitable for a same context, and a decision
procedure that can choose among them. Defining algorithms
to choose among multiple probe artifacts is however out
of the scope of the presented work and we simply require
the operator to populate the probe catalog with one usable
artifact per execution context that must be addressed with
the architecture.
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To illustrate the matching procedure, consider the case of
OP-A asking to collect user session data from PostgreSQL.
Let us assume the system considered in the running example
runs on Kubernetes and that Elasticsearch is used as time-
series database. In this context, the monitoring system will
check the probe catalog looking for a probe whose metadata
specificy the capability to (a) collect user session data from
PostgreSQL, (b) to run within containers, and (c) to store
data in Elasticsearch. The monitoring system is configured
with information about the environment (e.g., how to access
Elasticsearch and Kubernetes APIs) to be able to configure
the probes once deployed. If a matching entry is found, the
corresponding artifacts are selected, and then deployed in a
container, as illustrated later in this section. Otherwise, the
request is aborted and the Probe Catalog has to be extended
to support new probes, as described in Section 5.

The Monitoring Claims Repository stores the monitoring
claims and tracks their statuses while they are created,
processed, and updated. Since operators can update their
claims about a given target, the repository can at most include
one monitoring claim for a given operator-target pair. For
example, an operator may submit a first monitoring claim
to collect network consumption for a running instance of
PostgreSQL (corresponding to the INIT-CONF in our running
example), and later update the monitoring claim asking to
collect two more indicators, CPU consumption and user
session data, still from PostgreSQL (corresponding to the
2-MORE-KPIS-CONF in our running example).

The Monitoring Units Repository tracks the status of
the monitoring units and their configurations. In particular,
the Monitoring Units Repository stores both the current
configuration of a monitoring unit, which reflects the status of
the software monitoring unit, and the desired configuration of
a monitoring unit, which reflects the configuration that must
be reached based on the received requests, supporting the
controllers in the process of adapting the configurations.

To conveniently work with the configurations required
by operators, we define the operator |op which discards
every entry related to op from a configuration. More formally,
given a configuration C , we define C|op = {ci | ci ∈ C and
ci = (pi, Ii, opi) with opi ̸= op}.

A Monitoring Units Repository MUR stores tuples
(t,mu, dc) that associate a target t with a monitoring unit mu
running probes that collect data from t, to its desired configu-
ration dc. Given a monitoring unit mu = (host,mus,C),
we use the notation confc(mu) to refer to its current
configuration, that is, confc(mu) = C. We instead use the
notation confd(mu) to refer to the desired configuration of
a monitoring unit mu, that is, confd(mu) = dc. The level
of alignment between confc(mu) and confd(mu) indicates
how much the actual monitoring unit (i.e., the unit running
in the cloud) matches the monitoring claims submitted by
operators. If confc(mu) = confd(mu), the current and desired
monitoring configurations are the same, thus the monitoring
unit mu is up to date and perfectly aligned with the existing
monitoring claims. Otherwise if confc(mu) ̸= confd(mu), the
monitoring unit mu needs to be modified to reach the desired
configuration.

If MUR is handled according to the multi-probe monitor-
ing unit strategy, given a target t, there is at most one mu
such that (t,mu, ·) ∈ MUR (i.e., one monitoring unit running

multiple probes per target). If MUR is handled according to
the single-probe monitoring unit strategy, given a target t
and a probe p, there is at most one (t,mu,C) ∈ MUR, with
(p, ·, ·) ∈ C, but there might exist multiple monitoring units
running different probes associated with a same target.

3.2 API Service

The API Service provides two APIs: a public API for external
clients and a private API for internal use only.

The public API is used by operators to submit monitor-
ing requests, receive information about the status of their
requests, extract the list of the current available Targets, and
upload new probes to the Probes Catalog.

The private API is used by the Monitoring Claim Con-
troller and Monitoring Unit Controller to handle (i.e., to read
and update) the status information about both the monitoring
claims and the monitoring units, as described in Sections 3.3
and 3.4.

Note that the API Service is the only service that can
directly access the three repositories. The presence of a
single entry-point for accessing the persistent data drastically
reduces the risk of (potentially) introducing data inconsis-
tencies. To avoid introducing a single-point of failure in
the architecture, we designed the API Service as a stateless
service that can be instantiated in multiple replicas.

The API Service is accessed through synchronous API
calls, to guarantee that requests are processed as quickly as
possible, but status updates are delivered through a message
bus, since serving a request is not always an immediate
operation.

3.3 Monitoring Claim Controller

Algorithm 1 Monitoring Claim Controller

Require: a monitoring claim mc = (I, op, t) to be processed
Require: mus, the monitoring unit strategy
Ensure: desired configurations are updated according to mc

1: P ← APIService.getProbeConfigs(I, t)
2: if P = ∅ then return

3: if mus=multi-probe then
4: UpdateConfUnit(P , op, t, mus)
5: else if mus=single-probe then
6: for pconf ∈ P do
7: UpdateConfUnit({pconf}, op, t, mus)

8: procedure UPDATECONFUNIT(Set of probe configurations
P , operator op, target t, monitoring unit strategy mus)

9: unit← APIService.getMonitoringUnit(t, mus, P )
10: if unit = ∅ then
11: unit← APIService.createEmpyMonitoringUnit(t)
12: APIService.updateDesiredConf(unit, confd(unit)|op ∪ P )

The main responsibility of the Monitoring Claim Con-
troller is to manage the life-cycle of the submitted monitoring
claims by assigning the desired configurations, derived
from the received claims, with the monitoring units. In
particular, every time a monitoring request is received by the
API Service, the API Service stores the monitoring claims
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included in the request in the dedicated repository and sends
a status update message to the Monitoring Claim Controller,
which will incrementally process them.

Since controllers are stateless, the capability to process
monitoring claims in parallel can be increased arbitrarily,
based on the available resources, by instantiating multiple
Monitoring Claim Controllers.

Algorithm 1 shows in details the operations performed
by the monitoring claim controller every time a monitoring
claim is processed. When a monitoring claim mc = (I, op, t)
of an operator op is processed, the controller first identifies
the set of probes necessary to collect the indicators specified
in the request and their configuration (line 1). This set is
computed by the API service based on the probe metadata.

The monitoring units are reconfigured differently depend-
ing on the monitoring strategy. If the multi-probe monitoring
unit strategy is used, the UPDATECONFUNIT procedure is
invoked to associate a single monitoring unit with a desired
configuration that includes all the probes (line 4). If the single-
probe monitoring unit strategy is used, the individual probes
configurations are extracted and then used to update the
configuration of different monitoring units (lines 6-7).

The way a set of probe configurations are associated
with a monitoring unit is defined in the UPDATECONFUNIT
procedure. To identify the monitoring unit that must be
updated, the controller queries, through the API Service,
the monitoring units repository for an existing monitoring
unit (line 9). If the multi-probe monitoring unit strategy is
used, units can conveniently run multiple probes for a same
target. In this case, the service looks for any monitoring
unit created to observe t, that is, it looks for an entry
unit = (t,multi-probe, ·), where t is the target reported in the
monitoring claim. If the single-probe monitoring unit strategy is
used, P can only include a single probe, and the API service
looks for a monitoring unit that is already using the selected
probe to monitor the target t, that is, it looks for an entry
unit = (t, single-probe, (p, ·, ·)).

In both cases, if the unit does not exist, a new unit with
an empty desired configuration is created for the target t
(line 11). Finally, the existing entry (i.e., the existing desired
configuration) is updated by replacing the probes associated
with operator op with the new ones specified in P (if the
existing configuration is empty, P is simply used).

Let us consider the running example, with operator OP-A
asking to collect two more indicators (CPU consumption
and user session data) from PostgreSQL, if we assume the
monitoring framework is configured to use the single-probe
monitoring strategy, the submitted monitoring claim would
be processed as follows. The access to the probe metadata
would reveal the availability of two different probes that
can be configured to collect the two indicators: pcpu, which
can monitor CPU consumption using a Metricbeat probe,
and psession, which can use a custom probe to collect data
about user sessions. That is, P={(pcpu, CPU_CONSUMPTION,
OP-A), (psession, USER_SESSION_DATA, OP-A)} at line 1.
Since mus=single-probe, the UPDATECONFUNIT procedure
is invoked twice, once for each probe.

The first invocation with probe pcpu leads to the
identification of a running unit that is already collecting
CPU_CONSUMPTION from PostgreSQL for OP-B (line 9).
The current configuration of the retrieved unit is {pcpu,

CPU_CONSUMPTION, OP-B)}. The framework finally updates
the desired configuration of the unit by replacing the
probe configurations of operator OP-A (none in this case)
with the input configuration (pcpu, CPU_CONSUMPTION,
OP-A ), finally obtaining the desired configuration {(pcpu,
CPU_CONSUMPTION, OP-B), (pcpu, CPU_CONSUMPTION, OP-
A)}.

The second invocation with probe psession returns no
unit that is already running that probe. Thus, a new unit
is created (line 11), and the desired configuration {(psession,
USER_SESSION_DATA, OP-A)} is associated with the unit.

The time complexity of Algorithm 1 is linear with respect
to the number of selected indicators (I) and the number of
matched probes (P ), that is, O(|I|+ |P |).

3.4 Monitoring Unit Controller

Algorithm 2 Monitoring Unit Controller

Require: a monitoring unit mu
Require: its current configuration confc(mu) = {(p, I, op)}
Require: its desired configuration confd(mu) = {(p′, I ′, op′)}
Ensure: the unit is updated according to the desired configura-

tion is generated
1: if confd(mu) = ∅ then dismiss mu

2: Padd ← {p ∈ confd(mu)P \ confc(mu)P }
3: Pupdate ← {p ∈ confd(mu)P ∩ confc(mu)P s.t. I ′(p) ̸= I(p)}
4: Pdrop ← {p ∈ confc(mu)P \ confd(mu)P }
5: if Padd ∪ Pupdate ∪ Pdrop ̸= ∅ then
6: res← Bridge.doChanges(mu, Padd, Pupdate, Pdrop)
7: else
8: res← ∅
9: UpdateConfiguration(mu, res) ▷ If no error, confc(mu) is

updated with confd(mu)

The main responsibility of the Monitoring Unit Con-
troller is to manage the life-cycle of the monitoring units
according to the desired configurations generated by the
Monitoring Claim Controller. In particular, the Monitoring
Unit Controller runs a control-loop that continuously checks
the Monitoring Units for changes to be actuated, as a
consequence of a misalignment between the current and the
desired configurations. Multiple monitoring unit controllers
can be active at the same time, but two monitoring unit
controllers cannot act simultaneously on a same monitoring
unit, to prevent any potentially erroneous concurrent change
that would introduce inconsistencies in the process.

The operations performed by a Monitoring Unit Con-
troller are shown in Algorithm 2. It first checks if the desired
configuration is empty, in such a case the entire monitoring
unit is dismissed (line 1). This is an important step to avoid
running phantom monitoring units with no running probes.
It then computes the diff between the current and desired
configuration, identifying the probes to be added (line 2),
the probes to be reconfigured to collect a different set of
indicators (line 3), and the probes to be dropped (line 4). If
any of these sets is non empty, the Cloud Bridge receives the
probe configurations corresponding to the changes that must
be actuated (line 6). Passing all the changes to be actuated at
once enables the Cloud Bridge to potentially optimize how
these changes are actuated.
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The Cloud Bridge returns a result that specifies the errors
experienced during the update process, if any. This informa-
tion is used to update the current and desired configuration.
In case no error is experienced, the desired configuration
simply replaces the current configuration (line 9). Otherwise,
the update process takes the errors into consideration. We
describe error handling in Section 4.

Let us consider the case of the two desired configurations
generated by operator OP-A when asking to collect two more
indicators (CPU consumption and user session data) from
PostgreSQL with the single-probe monitoring unit strategy,
as discussed at the end of Section 3.3. The desired configu-
ration related to the already deployed probe pcpu results in
no changes to be operated (Padd ∪ Pupdate ∪ Pdrop = ∅),
since the existing probe will be simply shared between
the two operators (this is achieved by only updating the
configurations in UPDATECONFIGURATION without touching
the running probes). While, the desired configuration related
to the new probe psession to be deployed results in a probe
to be added (Padd ̸= ∅).

The time complexity of Algorithm 2 is linear with respect
to the number of probes to add (|Padd|), update (|Pupdate|),
and drop (|Pdrop|) while configuring a monitoring unit. That
is, if pchanges = |Padd|+ |Pupdate|+ |Pdrop|, the complexity of
Algorithm 2 is O(pchanges).

3.5 Cloud Bridge

The main responsibility of the Cloud Bridge is to actuate
plans on cloud systems using their management APIs. The
Cloud Bridge also provides information about the targets
and the deployment status of the probe artifacts.

In particular, the Cloud Bridge exploits a plug-in based
architecture that can be extended to support additional cloud
systems. A plug-in for a target environment (e.g., Kubernetes)
is used to map each change requested by controllers into a
concrete command for the specific management API (e.g., the
Kubernetes API) or the specific configuration management
tool used to interact with the platform (e.g., Ansible [11]).
This approach encapsulates the technological details inside
the plug-in, keeping the whole control-plane framework
agnostic from technology. Once all the changes have been
actuated, the list of probes resulting in an erroneous state is
sent back to the controller.

4 ERROR HANDLING

The presented framework implements error handling pro-
cedures to recover from deployment errors, namely, errors
that might be experienced at deployment time while creating,
updating and removing either probes or monitoring units.
The framework does not target the runtime errors that
might be experienced after a successful deployment. These
procedures are extremely important for the dependability of
the monitoring framework, whose behavior may otherwise
diverge from the desired behavior. We distinguish two classes
of errors that can be detected and handled:
• Soft errors. Soft errors indicate problems in the operations

performed while preparing for the creation, update and
deletion of a unit, such as retrieving probes and preparing
their configuration. All these operations are performed

before modifying any existing monitoring unit. Since those
are problems that do not compromise the dependability
of the running units, they are considered soft errors that
have negligible consequences on the running monitoring
system.

• Hard errors. Hard errors indicate problems in the op-
erations performed while changing a running monitoring
unit, such as adding, reconfiguring or removing probes.
Since these problems may compromise the dependability
of the running monitoring system, they are considered
hard errors that timely require corrective actions to be
managed.

Errors are detected by the Cloud Bridge while interacting
with platform management APIs and while running com-
mands of configuration systems. Soft errors are produced
during the execution of the preparatory steps, differently
from hard errors that are generated while changing the actual
monitoring units. For this reason, depending on if and when
an error is detected, a probe to be deployed can be in one of
the following states:
• Failed probe: a soft error has been detected by the Cloud

Bridge while preparing the probe.
• Broken probe: a hard error has been detected by the Cloud

Bridge while deploying/undeploying the probe.
• Stable probe: no error detected

The errors detected for each probe configuration that
is processed by the Cloud Bridge are reported in the
results returned to the Monitoring Unit Controller (line 6 of
Algorithm 2).

Consequently, a monitoring unit can be in any of the
following states, depending on the states of its probes:
• Stable unit: no error is detected for the probes in the

monitoring unit.
• Unsound unit: there is at least a failed probe and no broken

probe in the monitoring unit. This status indicates a failure
in the attempt to align the desired and current configu-
rations of the monitoring unit, but no actual problem is
affecting the running unit.

• Dirty unit: there is at least a broken probe in the monitoring
unit. This status indicates that the software running in the
unit might be compromised.

Errors are mostly handled in the context of the UPDATE-
CONFIGURATION procedure whose pseudocode is shown
in Algorithm 3. The UPDATECONFIGURATION procedure is
invoked by the Monitoring Unit Controller to finalize the
update of a monitoring unit (line 9 in Algorithm 2).

In addition to referring to a monitoring unit mu and the
set of probe configurations that resulted in soft (Pconfsoft)
and hard (Pconfsoft) errors, the procedure maintains two
data structures. The RetryTable is a table that stores for
every monitoring unit the number of consecutive soft failures
generated by each probe configuration. The BlackList data
structure stores for each monitoring unit the list of probe
configurations that generated hard failures. The idea is that
soft failures are not harmful for the monitoring unit, and
thus the failed changes can be safely retried. Instead, hard
failures introduce dependability problems, and thus the
failed changes should not be retried. Operators can reset
these tables to allow again certain operations (e.g., after a
compatibility problem in a probe has been fixed).
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Algorithm 3 UpdateConfiguration

Require: a monitoring unit mu to be updated
Require: res = (Pconfsoft, P confhard), where Pconfsoft and

Pconfhard are the set of probe configurations that resulted
in soft or hard errors

Require: RetryTable ⊆ MUnits × ProbeConfigs × N, which
is a table that counts how many times a given probe
configuration has been retried in a monitoring unit

Require: BlackList ⊆ MUnits × ProbeConfigs, which is a
table that tracks the probe configurations that cause errors
and should not be retried again

Ensure: mu is updated and any error is reported
1: for pc ∈ Pconfsoft do
2: RetryTable.IncRetry(mu, pc)
3: for pc ∈ Pconfhard do
4: BlackList.add(mu, pc)
5: if Pconfhard ̸= ∅ then ▷ Dirty unit
6: Bridge.cleanUnit(mu)
7: confc(mu)← ∅
8: else
9: confc(mu)← confd(mu) \ (Pconfsoft ∪ Pconfhard) ▷

confd(mu) is unchanged, so probe configs causing soft errors are
retried, while probe configs with too many retries and probe configs
in blacklist are automatically ignored

In practice, the error handling routine first increases the
number of retries for the probe configurations that caused
soft failures (line 2) and adds to the blacklist the probe
configurations that caused hard errors (line 4). When the
number of retries exceeds an operator-defined threshold, the
configuration is blacklisted.

If at least a hard error has been detected, the unit is
dirty and thus the bridge is asked to clean it. This operation
depends on the target environment and the implementation
of the plug-in used in the Cloud Bridge. For instance, in our
implementation for containers, the bridge destroys the exist-
ing container and creates a new monitoring unit to replace it.
The current configuration of the newly created monitoring
unit is consequently set to the empty configuration.

If no hard error is detected, the current configuration
is updated by adding all the configurations that generated
no errors. In all the cases, the desired configuration stays
unchanged.

This process may lead to three main distinct situations:
• the current and desired configurations are aligned: no

changes will be performed on the monitoring unit in the
future, unless a new request is submitted by an operator;

• the current and desired configuration differs only for some
blacklisted configurations: in this case again there is
nothing to be done. Note that although for simplicity
we have not used the blacklist when computing the
set of probes to be added, reconfigured, and deleted,
in reality the Monitoring Unit Controller discards the
configurations that appear in the BlackList data structure
when computing them (Algorithm 2, lines 2- 4)

• there are configurations that must be retried: in such a case
the desired and current configurations do not match,
and the monitoring unit controller will process them
again in the next iteration of its control-loop, retrying
the failed probe configurations.

The time complexity of the Algorithm 3 is linear with
respect to the number of probe changes and number of

errors occurred while configuring the monitoring unit. In
particular, if errors is the number of probe configurations that
resulted in soft or hard errors. The resulting time complexity
is O(pchanges + errors).

5 TECHNOLOGY AGNOSTIC DESIGN

The proposed monitoring framework is designed to trans-
parently integrate heterogeneous monitoring technologies,
releasing a technology agnostic control-plane that can be ex-
ploited to obtain MaaS capabilities using the preferred probe
technologies and target platforms. To witness this capability,
this section exemplifies the integration of probes of different
types and the capability to support multiple cloud platforms.

5.1 Incorporating New Probes
To demonstrate the flexibility of the monitoring framework
we describe how two largely different probes can be sup-
ported: a health-check probe, which queries the health status
endpoint of services exploiting the HTTP protocol, and a
Prometheus exporter for Apache Kafka [20], which monitors
Kafka brokers resources (topics, partitions, etc.) and exposes
the collected indicators as Prometheus metrics.

Adding a new probe can be done in two steps. First,
the probe artifacts have to be manipulated in such a way
they can be used by the Cloud Bridge. Second, the probe is
added to the catalog by passing the probe metadata, which
include information about where the probe can be deployed
(the probe might be compatible with certain monitoring unit
strategies but not with others), the supported data outputs
(i.e., the database where the collected values can be stored),
and the supported indicators, to the API Service. Listings
1 (a) and (b) show an excerpt of the metadata associated
with the Apache Kafka Prometheus exporter and the health-
check probe, respectively. Note that the configuration of
the monitoring framework (e.g., the knowledge of both
the available time-series database and the type of the
target platform), jointly with the requests produced by the
operators, allows the framework to select and deploy the
right probes. In fact, artifact ids are mapped to the concrete
software artifacts and scripts that are executed for probe
deployment.

Adding new probes (i.e., new artifacts and corresponding
metadata) to the catalog may require a different amount
of time depending on the knowledge of the involved
technologies. It is however a quite convenient operation for
people who know the monitoring framework. For instance,
we needed 1.5 hours to develop and setup a health-check
probe that can be deployed on virtual machines, and 30
minutes to add a Kafka exporter that can be deployed on
Kubernetes.

5.2 Supporting New Target Cloud Platforms
Supporting multiple target cloud platforms is another ca-
pability of the framework. A platform can be supported
only if it provides a management API that can be used
by the Cloud Bridge to manage the monitoring units and
discover targets. Developers who want to create a new Cloud
Bridge plug-in have to implement the base interface in order
to run execution plans and provide information about the
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{
"id": "5fb6337a4102891e3677b475",
"artifactId": "kafka_exporter",
"supportedIndicators": [
"KAFKA_BROKERS", "..."
],
"supportedDataOutputs": [
"PROMETHEUS"
],
"supportedMUStrategies": [
"SINGLE_PROBE",
"MULTI_PROBE"
]
}

(a)

{
"id": "5fb6337a4102891e3677b476",
"artifactId": "http_healthcheck_probe",
"supportedIndicators": [
"HEALTHCHECK"
],
"supportedDataOutputs": [
"ELASTICSEARCH"
],
"supportedMUStrategies": [
"SINGLE_PROBE",
"MULTI_PROBE"
]
}

(b)

{
"targetPlatform": "azure",
"targetPlatformId": "postgres-1",
"envType": "INACCESSIBLE_VM",
"metadata": {
"resourceGroup": "resource-group-vm-1",
"ipAddress": "52.92.34.124",
"privateIpAddress": "10.19.20.3",
"..."

}
}

(c)

Listing 1: Listings show an excerpt of metadata for the Kafka Prometheus Exporter (a), an excerpt of metadata for the HTTP
Healthcheck Probe (b), and a sample JSON representation of a Target retrieved from Microsoft Azure (c).

targets to the framework. Listing 1 (c) shows an example of
target information that can be retrieved by the API via the
Cloud Bridge component. Plug-ins are also associated with
metadata (e.g., the supported monitoring unit strategies) that
can help the framework in taking some decisions.

Our prototype implementation already includes two
plug-in implementations that can transparently actuate the
same plans on radically different platforms: Kubernetes, a
container-based platform, and Microsoft Azure Compute, a
virtual-machine-based platform.

6 EMPIRICAL EVALUATION

Since probe deployment and error handling are two represen-
tative capabilities of the proposed framework, we designed
an empirical evaluation to assess them. We further study
scalability, to investigate how the monitoring framework
scales with an increasing number of requests and operators.
These points are captured by the following three research
questions.
1) RQ1 - Framework Efficiency: How efficiently are probes

deployed? This research question validates the framework
capability of deploying probes starting from a declarative
input and investigates how efficiently it is in fulfilling an
operator monitoring request. This is investigated for both
cloud systems based on containers and virtual machines
giving evidence of the technology-agnostic capabilities of
the framework. Results are studied in comparison to a
solution working with pre-deployed probes that can be
activated/deactivated (Figure 1, cases (d) and (e)). To this
end, we selected JCatascopia [13], which is consistent with
the MaaS case shown in Figure 1 (d), and it is usable with
no restrictions being an open-source research prototype.

2) RQ2 - Error Handling: How efficiently are errors han-
dled? This research question validates the framework
capability of detecting and recovering from errors and
investigates the time required by the framework to
execute the error handling routine.

3) RQ3 - Scalability: How does the framework scale for an
increasing number of requests? This research question
validates the framework capability of optimizing the
control-plane during the evolution of the monitoring
system. It studies scalability with respect to the number
of requests produced by operators.
All RQs were addressed with cloud systems based on

both virtual machines and containers. In the following, we

describe the prototype we used to run experiments, we report
the design of the study, and the results for each research
question.

6.1 Prototype
We implemented the framework described in this paper in a
publicly available prototype hosted at https://gitlab.com/
learnERC/varys.

The services are implemented as Java standalone appli-
cations. The repositories are implemented as MongoDB [21]
collections. The JSON format is used both for communication
and to persist information, except for the Cloud Bridge
which exposes a gRPC API that uses Protocol Buffers.
The status update messages are delivered through Redis
Streams [22]. The monitoring system can be deployed both on
containers and virtual machines, depending on the hosting
environment.

We designed a probe catalog reusing probes from Met-
ricbeat [23], one of the most popular cloud monitoring frame-
work. We used Elasticsearch [24], as timeseries database to
store the values extracted by the probes. We implemented
plug-ins for the Cloud Bridge to support both Kubernetes
and Microsoft Azure as target cloud platforms.

The Microsoft Azure plug-in supports either creating
virtual machine monitoring units on-the-fly within the con-
figured Azure resource group, or accessing the same virtual
machine running the target to deploy the probes internally.
In our experiments, we annotated the target service as an
ACCESSIBLE_VM, and made it accessible to the Cloud
Bridge via SSH in order to (un)deploy the probes directly
within the virtual machine running the target service.

With respect to container monitoring units, the Kuber-
netes plug-in deploys container monitoring units in the same
platform of the target and configures the probes accordingly.
Purposely, it does not implement the container sidecar
pattern [19] because it would trigger the redeployment of the
target service, due to how Pods work in Kubernetes, every
time probes are (un)deployed, potentially causing service
or monitoring interruptions unless a robust rolling update
strategy is in place.

6.2 RQ1 - How efficiently are probes deployed?
The monitoring framework can work in parallel on any
number of monitored targets, if enough instances of the
monitoring unit controller service are created. If there are

https://gitlab.com/learnERC/varys
https://gitlab.com/learnERC/varys
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Fig. 4: Probes Deployment

more targets to modify than controller instances, some
modifications will be performed sequentially. For instance, if
4 monitoring units must be modified and only 3 controller
instances are available, one unit will be modified sequentially
after another one. We will thus study how efficiently a
monitoring unit can be managed by a single controller
instance, the performance over multiple simultaneously
evolving units can be straightforwardly deduced given the
number of controllers available.

We consider two cases for the experiments: PostgreSQL
running in a container in an on-premise installation of
Kubernetes and PostgreSQL running in a virtual machine on
Microsoft Azure. The two cases show how the same frame-
work can be transparently used to address heterogeneous
scenarios where the involved technologies are significantly
different. We collect time figures considering the case of
a request that requires the simultaneous deployment of
three probes to collect the following three indicators from
PostgreSQL: CPU consumption (using the CPU metricset
of the Metricbeat probe), memory consumption (using the
memory metricset of the Metricbeat probe), and database
metrics (using the database metricset of the Metricbeat
probe).

To study the efficiency of each step, we measure the
time taken by the first controller to process the claim, by
the second controller to compute the execution plan, and
by the Cloud Bridge to actuate the plan. To have a baseline
measurement, we also consider the case of a static framework,
that is, a framework that does not support dynamic probe
deployment, requiring operators to deploy and configure probes
in-advance, which can be later activated and de-activated. This
framework is far less flexible than the framework presented
in this paper, but faster since it does not deploy probes

dynamically. To this end, we both use our framework with
pre-deployed probes and the JCatascopia [13] state of the
art monitoring solution, which allows us to collect further
measurements from a third party system. We do not have
measurements for JCatascopia applied to containers since it
only supports virtual machines. Every experiment is repeated
10 times to collect stable measures.

Figure 4 shows the collected time figures with a semilog-
arithmic scale considering both virtual machines (Figure 4a)
and containers (Figure 4b). The individual steps of the
probe deployment process are captured by the Monitoring
Claim Processing, Monitoring Unit Processing and Probes
Deployment boxes. While Total represents the total time
elapsed between the submission of the request and the time
the deployed probes start collecting the required indicators.

Not surprisingly Probes Deployment is the most ex-
pensive step of the process for both virtual machines and
containers. In the case of virtual machines it takes nearly 50
seconds, while the other steps can be completed an order
of magnitude faster. In case of containers the difference is
remarkably smaller, due to their computational efficiency
and their ability to cache artifacts. In fact, probes deployment
can be performed in at most 1 second with containers, while
the remaining steps take less than 0.25 seconds.

Overall, the entire probe deployment process of the three
probes (indicated with Total in Figure 4) could be completed
in slightly less than a minute using virtual machines and less
than 1.5s using containers, which is a nearly two orders of
magnitude difference.

The box Probe Activation Only shows the time required
to activate pre-deployed probes using our framework. In
the case of virtual machines, exploiting dynamic probe
deployment might be quite expensive compared to manually
pre-deploying probes, since it increases the runtime cost by
an order of magnitude. However, pre-deploying many probes
can be expensive, can generate large and difficult to manage
virtual machines, and is efficient only when the indicators
that might be collected can be predicted. The comparison
to JCatascopia shows that the presented framework is
efficient, also when just used to process requests and activate
pre-deployed probes. In fact, JCatascopia required several
seconds to activate the probes, while our framework could
activate probes in less than a second. The difference between
dynamic probe deployment and pre-deployed probes for
containers is indeed less significant, both in relative and
especially absolute terms.

Answer to RQ1 In the case of virtual machines, the
cost of flexibly deploying probes is significantly higher
than working with pre-deployed probes. Thus, the trade-
off between flexibility and efficiency should be carefully
considered by operators to decide the monitoring solution
that should be adopted. Instead, in the case of containers, the
cost of flexibly deploying probes is significantly amortized by
the efficiency of the cloud technology. In fact, our framework
can complete the process in 0.5-1.5 seconds, while activating
the pre-deployed probes requires slightly less than 0.5s,
suggesting that dynamic probe deployment might be often
preferable.
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6.3 RQ2 - How efficiently are errors handled?
To study the capability of the framework to react to errors,
we designed a variant of the experiment performed for
RQ1 where we deploy a malfunctioning probe. We obtained
such a probe by implementing a wrong configuration of
the Metricbeat probe for PostgreSQL that makes the probe
deployment to fail.

In the case of virtual machines, we study the creation
of a new monitoring unit with two probes: one working
probe and a malfunctioning probe. The malfunctioning probe
artifact contains an Ansible role with a wrong command
that leads to a hard deployment error when the Cloud
Bridge executes it. Since we use the multi-probe monitoring
unit strategy with virtual machines, error detection must
autonomously detect the problem with the monitoring unit
with two probes and automatically create a monitoring unit
with the working probe only.

In the case of containers, we study the creation of a new
monitoring unit with the malfunctioning probe only. The mal-
functioning probe artifact contains a bugged Kubernetes man-
ifest file that tries to deploy the probe within a non-existent
Kubernetes namespace. This leads to a hard deployment
error when the Cloud Bridge executes it. Since we use the
single-probe monitoring unit strategy with containers, error
detection should simply drop the malfunctioning monitoring
unit (in this case we do not consider the deployment of two
probes because the deployment strategy would simply create
two different monitoring units handled independently).

To capture how error detection works, we measure the
time necessary to the framework to attempt the deployment
and detect that a monitoring unit is not working (namely
Error Detection), the time necessary to process the error and
take the decision to clean the monitoring unit (namely Error
Processing), and finally the time necessary to actuate the
cleaning plan (namely Error Cleaning). Error detection is
performed by the cloud bridge while actuating changes (see
the call in Algorithm 2, line 6), error processing consists of
the operations shown in Algorithm 3, and error cleaning is
again performed by the Cloud Bridge when cleaning a unit
(see the call in Algorithm 3 line 6).

We repeated measurements 10 times to collect stable
time figures. Figure 5 shows the collected time figures with
a semilogarithmic scale considering both virtual machines
(Figure 5a) and containers (Figure 5b).

In both environments, error detection and error cleaning
are more expensive than error processing. In fact, error detec-
tion requires performing the deployment, at least partially,
and similarly error cleaning requires disposing monitoring
units and creating new stable units, when possible.

Similarly to probe deployment, error handling is signifi-
cantly more efficient with containers than virtual machines.
For instance, error detection requires around 21 seconds with
virtual machines while it can be completed in less than 0.25
seconds with containers. Similarly, error cleaning requires
around 13 seconds with virtual machines, while it can be
completed in about 0.15 seconds with containers, but it is
important to remark that the cleaning phase with containers
does not require recreating a monitoring unit that is instead
only disposed. The entire error handling process can be
completed in around 35 seconds with virtual machines and
less than a second with containers.

Answer to RQ2 Results show how the proposed MaaS
solution that flexibly allocates and destroys resources, al-
though usable with both virtual machines and containers,
are naturally more suitable for containers where errors can
be recovered in seconds.
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Fig. 5: Error Handling

6.4 RQ3 - How does the framework scale for an increas-
ing number of requests?

As discussed, the framework can update multiple monitoring
units in parallel as long as a sufficient number of controller
instances are created. We thus focus the scalability study on
measuring how the cost of collecting additional indicators
grows with an increasing number of requests when single
instances of the controllers are available. In particular, we
consider two cases: processing requests that require deploying
new probes and processing requests that require reconfiguring
the monitoring system without deploying new probes. The
former case corresponds to operators asking for new indica-
tors to be collected. The latter case corresponds to operators
asking for indicators already collected by other operators
that the framework handles in an optimized way sharing
the existing probes among operators without touching the
monitoring units, but only changing the set of configurations
associated with a unit.

We measure how the total deployment time grows while
increasing either the number of new indicators or the number
of existing indicators for new operators from 1 to 30. We submit
all requests at once and we measure the total time necessary
to fulfill the request. We repeated every experiment 5 times
on both virtual machines and containers for a total of 160
samples collected about scalability.

Figure 6 shows the results. Again, the remarkable differ-
ence between virtual machines and containers is confirmed.
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The scalability experiment gives additional evidence of how
the linear growth of the total time for virtual machines is far
more steep than containers. The difference is dramatic when
considering the deployment of 30 probes, which requires
around 10 minutes, in contrast with containers that can
complete this operations in seconds.

The results show that sharing probes between multiple
operators can significantly improve the efficiency of the
monitoring system. This is particularly important for virtual
machines where the probe deployment cost can be cut thanks
to probes sharing.
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Fig. 6: Scalability results.

Answer to RQ3 Overall, results show that dynamic probe
deployment can be feasible with both virtual machines and
containers. However, the former environment can efficiently
deal with probes only if changes are sporadic and the number
of parallel requests received is limited. On the contrary, the
container technology is definitely ready to support dynamic
probe deployment, even in rapidly evolving contexts, based
on the proposed framework.

6.5 Threats to Validity

The threats to the validity of the results mainly concern
with the relationship between the technical setup of the
experiment and the collected time figures. In fact, efficiency
is affected by both the available computational resources
and the choice of the probes. However, while changing
the available computational resources and the deployed
probes are likely to affect absolute figures, the trends and
gaps between the different frameworks and cloud platforms
are clear, despite these factors. In fact, plots for virtual
machines and containers are similar, although values are
on different scales. Further, the scalability trends clearly
identify a single case (collecting increasingly more indicators
on virtual machines) that scales remarkably worst than the
others.

In our evaluation, we also selected a specific target service
to be monitored (i.e., PostgreSQL) and we also used a specific
malfunctioning probe (Metricbeat for PostgreSQL). Both
these choices do not likely affect our results. In fact, the
cost of handling a monitoring unit does not depend on the
monitoring target, and similarly the error handling policy is
the same for every type of error and malfunctioning probe.

Finally, the collected time figures might be affected
by noise. To mitigate this issue we repeated experiments
between 5 and 10 times. The reported boxplots show a low
variance for the collected values, suggesting that measures
are stable and meaningful, and can be used to derive valid
conclusions.

7 RELATED WORK

Due to the size, complexity, and dynamicity of cloud systems,
Monitoring-as-a-Service (MaaS) systems are increasingly
studied to better cope with the requirements of the cloud [25],
[26]. In this paper, we focused on the inability of the
monitoring solutions to cope with the dynamic deployment
of probe artifacts, which is required to effectively address
scenarios that imply quickly or frequently changing the
collected indicators.

Some MaaS systems are designed to operate tightly coupled
with the target cloud technology. Although the knowledge of
the target platform may simplify the design of the MaaS
solution, the resulting architecture lacks generality and is
inherently limited to the collection of platform-level indica-
tors, missing to cope with application-level indicators. For
instance, MonPaaS [27] is an open-source monitoring solution
tightly coupled with OpenStack that provides a MaaS model
to cloud users. It collects indicators by integrating Nagios
with OpenStack and it obtains VM status information by
intercepting messages in the OpenStack message queue.
Moreover, several commercial cloud monitoring solutions are
developed to monitor resources running on specific cloud
platforms, such as Amazon CloudWatch [28] and Google
Cloud Monitoring [29]. As a result, these solutions have
limited interoperability and applicability. On the other hand,
general purpose monitoring tools like Prometheus [10] and
Zabbix [30] struggle with adapting to changing needs. In
contrast, the framework proposed in this paper provides au-
tomation while relying on a technology-agnostic architecture
that can operate probes of different type.

On the other hand, MaaS systems are normally limited
to interactions with pre-deployed probes, which can be activated
and deactivated by operators, but cannot be deployed/unde-
ployed. For instance, CLAMS is a MaaS framework that
can monitor, benchmark and profile applications hosted
on multi-clouds environments [31], [32]. MEASURE is a
Monitoring-as-a-service (MaaS) framework to monitor the
cloud using stream processing [33] that relies on a publish-
subscribe architecture to push data from resources through
stream processors that convert and deliver data to stream
subscribers. AdaptiveMon [34] is a peer-to-peer monitoring
solution that exploits reconfigurable probes to address the
complexity of the fog environment. Unlike our framework,
these approaches rely on pre-deployed probes.

In some cases, MaaS systems use probes that can address
autoscalable services. For instance, Amazon CloudWatch [28]
uses the MaaS technology to deliver status monitoring capa-
bilities in presence of autoscalable services. JCatascopia [13]
is a monitoring solution that targets elastic tasks using au-
tomatic discovery capabilities. Compared to these solutions,
in addition to managing probes that have native support to
services autoscaling and discovery, our framework delivers
automatic and declarative probe deployment capabilities,
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allowing users to continuously and efficiently adapt the
monitoring infrastructure.

Early contributions related to automatic probe deploy-
ment for cloud systems are the work by Ciuffoletti [35], who
proposed a MaaS model for the deployment of monitoring
components as required by users, and Anisetti et al. [36], who
applied automatic probe deployment to monitor and certify
security properties of services running on virtual machines.
These works describe high-level design and prototype imple-
mentation targeting specific cases. The framework presented
in this paper provides instead a general and applicable
approach for dynamic probes deployment.

8 CONCLUSIONS

Monitoring systems must be able to cope with dynamically
changing and unstable sets of monitored indicators, to
effectively address scenarios that characterize modern cloud
systems. Current solutions however badly adapt to these
scenarios, providing little flexibility and requiring signifi-
cant manual effort to deploy, undeploy and re-configure
monitoring probes.

In this paper, we present a framework that can be used
to dynamically work with monitoring units and probes.
The operator interacts with the monitoring system in a as-
a-service fashion, specifying the indicators that must be
collected, and letting the framework to deal with probe
deployment and configuration. The framework is also able
to recover from deployment problems and integrate probes
from multiple monitoring technologies.

Results show that the framework can be feasibly used
with cloud systems based on both virtual machines and
containers, although it is significantly more efficient with
containers.

We identify three main limitations of the current frame-
work implementation that we want to address as part of
future work. First, fine-grained control of the probes config-
urations (e.g., changing the sampling rate of the individual
probes) is not supported. This limitation can be potentially
addressed by enriching monitoring claims with information
about probe configurations. Second, the support to elasticity
right now depends on the probe intelligence (e.g., it requires
the probes to embed a discovery mechanism as the one in the
Metricbeat Kubernetes module). It would be interesting to
move this support at the level of the monitoring framework,
so that any probe can be used to monitor elastic services.
Third, error-handling is limited to the deployment phase,
and it is unable to detect and repair run-time errors that
occur during the regular execution of the monitoring system.
Indeed, error handling requires further research to cover the
full range of situations.

Other future work involves extending the framework
with as-a-service anomaly detection and healing capabilities
to increase the dependability of the monitored system, and
caring of the vicinity of the monitored resources to further
improve the deployment of the monitoring system.
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