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Abstract—Nowadays, most telecommunication services adhere to the Service Function Chain (SFC) paradigm, where network

functions are implemented via software. In particular, container virtualization is becoming a popular approach to deploy network

functions and to enable resource slicing among several tenants. The resulting infrastructure is a complex system composed by a huge

amount of containers implementing different SFC functionalities, along with different tenants sharing the same chain. The complexity of

such a scenario lead us to evaluate two critical metrics: the steady-state availability (the probability that a system is functioning in long

runs) and the latency (the time between a service request and the pertinent response). Consequently, we propose a latency-driven

availability assessment for multi-tenant service chains implemented via Containerized Network Functions (CNFs). We adopt a

multi-state system to model single CNFs and the queueing formalism to characterize the service latency. To efficiently compute the

availability, we develop a modified version of the Multidimensional Universal Generating Function (MUGF) technique. Finally, we solve

an optimization problem to minimize the SFC cost under an availability constraint. As a relevant example of SFC, we consider a

containerized version of IP Multimedia Subsystem, whose parameters have been estimated through fault injection techniques and load

tests.

Index Terms—Availability; Reliability; Queueing Model; Container Virtualization; IP Multimedia Subsystem; Redundancy Optimization;

Multi-State Systems; Universal Generating Function; Network Function Virtualization.

✦

1 INTRODUCTION

TODAY, service providers conceive modern network
infrastructures by taking into account cloud-centric

paradigms such as Network Function Virtualization (NFV),
which remodels classic network nodes (routers, switches,
firewalls, and others) as virtual entities called Virtualized
Network Functions (VNFs). VNFs can be chained to realize
Service Function Chains (SFCs), which represent the mod-
ern way of composing and providing new services quickly
and flexibly, especially when coupled with the Software De-
fined Networking [1]–[3]. Many applications adopt the SFC
paradigm [4], [5] with some examples shown in Fig. 1: the
Data Center domain (upper panel), where the chain is made
of systems such as Intrusion Detection, Firewall, and Router
in charge of processing the data flow between a Server and
the Internet; the cellular domain (middle panel), where the
mobile traffic is managed by a chain including: enhanced
Node-B (e-NB) to handle the radio link, and Signal and
Packet Gateways (S-GW, P-GW) to manage the signaling
and the data content, respectively; IP Multimedia Subsystem
(IMS) (lower panel) which relies on a chain of network
nodes providing multimedia services. Across such domains,
virtualization enables a flexible and efficient resource uti-
lization, since resources can be allocated and shared among
several service providers (tenants) at a fine grain. Examples
of multi-tenant commercial and standard-based solutions
include: softwarized chains in the Evolved Packet Core
domain [6], software-based IMS shared among different
providers [7], and the Gateway Core Network (GWCN)
for infrastructure sharing among different providers [8]. All
the aforementioned systems must satisfy quality-of-service

requirements, both in terms of steady-state availability (the
probability that a system is functioning in long runs, i.e.,
when stationary conditions are reached) and latency (the
time between a service request and the pertinent response).

From a technological point of view, we are witnessing
the adoption of Containarized Network Functions (CNFs) to
implement VNFs [9], [10]. Differently from traditional virtu-
alization technology, containers are a lightweight solution,
as they do not emulate a full computer machine, and do
not run a dedicated operating system. Moreover, containers
can be quickly deployed and orchestrated using dedicated
management platforms (e.g., Docker [11]). Remarkably,
lightweight containers allow designers to achieve a great
flexibility, in terms of a fine-grained allocation of resources
among various tenants. On the other hand, the complexity
of managing a huge number of container replicas could
negatively affect the computational cost of many availability
techniques. In addition, exploiting containerized solutions
in real-time environments requires a particular attention to
achieve the low latency objectives. It is the case of IMS,
whose latency must be below few tens of milliseconds
[12]–[15]. Therefore, there is a need for new assessment
techniques that are computationally efficient, and that can
address both high availability and low latency constraints.

Aimed at dealing with the aforementioned concerns, in
this work we advance:

1) A novel latency-driven modeling approach for a
Containerized Network Function (CNF), a three-layered
(Software, Docker, Infrastructure layers) structure represent-
ing the elementary block of a service chain, and which has
been modeled in terms of a Multi-State System (MSS). The
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Fig. 1. Examples of domains embracing the Service Chains paradigm:
Data Center (upper panel), Mobile Network (middle panel), IP Multime-
dia Subsystem (lower panel).

MSS formalism is helpful to encode the interplay among
the various nested layers in a containerized node, in terms
of failures and repair actions. To take into account latency,
which is typically neglected in the technical literature,
we enhance this representation with a delay model, based
on queues with non-exponential service times and time-
varying serving facilities ruled by the failure/repair process.

2) A technique for the efficient analysis of service
chains composed by several interconnected CNFs, based
on the Universal Generating Function (UGF) technique. This
paper extends our previous work on a multidimensional
version of UGF (MUGF) [17] that supports multi-tenant
service chains, where different operators (or tenants) share
the same infrastructure. In this work, we revised the MUGF
technique to take into account the novel latency-based met-
ric, in order to support the analysis over a chain of CNFs.

3) A detailed case study on a containerized multi-
tenant IP Multimedia Subsystem (cIMS) platform, a ser-
vice chain-like infrastructure crucial to manage multimedia
content within the 5G core network. The case study shows
the feasibility of the proposed approach in the context of a
relevant use case. In particular, it presents an extensive set
of experiments on the Clearwater cloud-based IMS platform
[18], through i) load test experiments, to estimate the em-
pirical service times, and ii) fault injection experiments, to
estimate repair times. Remarkably, fault injection techniques
turned out to be useful when empirical data are lacking, and
revealed that time-to-recovery is much longer than what is
typically assumed by most model-based studies.

The rest of the paper is organized as follows: Section 2
discusses relevant work on availability assessment in cloud
environments. In Section 3 we provide an overview of the
IMS case study, with a discussion about its containerized
deployment. In Section 4 we present the availability and
queueing models of a CNF, being the elementary struc-
ture of a service chain. In Section 5 we address the chain
availability concern through the MUGF technique and the
related optimization problem. Section 6 presents the testbed
and offers details about the experimental trials. Section 7
concludes the paper. For the sake of readability, Table 1
summarizes the notation adopted across the paper.

TABLE 1
Notation

m (Containerized) IMS tier (P,S,I,H)

ℓ CNF redundancy index

CNF(m,ℓ) Parallel CNF ℓ associated to tier m

i; k Tenant i; number of tenants using the cIMS

ηi Number of working containerized instances controlled by tenant i

η CNF State vector

N(m,ℓ) Number of states of CTMC performance model of CNF ℓ of tier m

gi,η Capacity level exposed by CNF for tenant i in state η

γ Serving capacity

gη Capacity level vector in state η

δη Mean delay performance vector in state η

pη Steady-state probability of being in state η

∆(t) Vector stochastic process including all tenants mean delays per CNF

W c(t) Maximum tolerated value for the mean CSD

Ac(wc) Steady-state availability of the cIMS

Jc Number of states of the cIMS

u(m)(z); uc(z) MUGF for tier m; MUGF for the cIMS

ΩS ,ΩD ,ΩI State spaces of software, docker, infrastructure layers

λC , λD, λI Failure rate of containerized instances, docker, and infrastructure layers

µC , µD , µI Repair rate of containerized instances, docker, and infrastructure layers

αi Arrival rate of requests at tenant i

βm Service rate of requests at tier m

2 RELATED WORK

Availability issues represent a hot topic when dealing with
softwarized networks, where the presence of virtualized en-
tities (e.g. hypervisors, containerized environments, etc.)
pose new intriguing challenges for telecom operators that
are called for adhering to strict Service Level Agreements
(SLAs) [19]–[22]. Due to the vastness of the topic, techni-
cal studies adopt different angles to face the availability
problems, including: designing available virtualized infras-
tructures to manage traffic problems [23], [24], optimizing
the allocation of virtualized infrastructures to maximize the
resiliency [25], [26], optimizing the availability scheduling of
virtual resources [27], [28], managing the state of virtualized
services in resiliency problems [29], [30]. On the other hand,
in our work we mainly focus on a modeling methodology
for the availability issues in softwarized networks. Thus, we
are going to explore some affine literature more in detail, by
highlighting the main differences with our work.

Fan et al. [31] faced an availability problem concerning
the optimal deployment of an SFC infrastructure. In partic-
ular, their aim is to find the minimum number of backup
VNFs that guarantees a desired availability level. A similar
problem is tackled by Kong et al. [32], where a heuristic
algorithm has been conceived to maximize the availability
of an SFC through an optimal distribution of backup VNFs
across primary and backup paths. Alameddine et al. [33]
focused on virtual machine redundancy in a multi-tenant
environment by adopting an optimal primary/backup logic.
All of these works did not consider, or only partially con-
sidered, a failure/repair model that is instead accurately
examined in our availability setting.

Other studies focused on more compact formalisms to
model network availability aspects. It is the case of Sebastio
et al. [34], where an availability assessment of exemplary
containerized architectures is faced through the Stochastic
Reward Networks (SRNs) framework. An SRN-based ap-
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proach has been profitably adopted also by Bruneo [35],
where a stochastic model to typify some aspects of an
Infrastructure-as-a-Service framework has been considered.
Similarly, a technique relying on Stochastic Petri Networks
(SPNs) has been exploited by Sousa et al. [36], where an
availability analysis of cloud-based deployments has been
carried out. Interestingly, both SRN/SPN and the proposed
MUGF rely on a common underlying Markov model. While
MUGF prefers an open analytical approach, SRN/SPN of-
fers a more compact representation (through the formalism
of places, arcs, tokens) that can be more convenient for
some users. However, in the case of multi-tier systems such
as SFCs, as further discussed in this paper, having the
underlying Markov model hidden by the SPN/SRN hinders
the computation of the availability.

Another track of works exploits the UGF methodology,
which, although historically adopted to cope with availabil-
ity issues in the field of industrial systems, has found fertile
ground in networking management. Some examples include
the work by Sun et al. [37], where a UGF-based technique is
assessed for modeling physical and virtual system failures,
and Yu et al. [38], where the UGF has been applied in the
field of service requests in cloud scenarios. Both studies
focused on single-tenant environments, not calling for the
application of a multidimensional form of UGF.

In the present paper, by exploiting the properties of
the multidimensional UGF (MUGF) at first conceived by
our previous work [17], we propose a new availability
assessment method for multi-tenant environments. A set of
clear novelties emerge with respect to the original proposal.
First, in this work we consider a containerized infrastructure
(in place of a traditional virtualized architecture considered
in previous work [17]), which is reflected in the three-
layered structure of our model, where the containers do not
embed an OS and are deployed on top of the Docker con-
tainer manager. This model directly translates into a novel
experimental testbed (missing in the previous work [17]),
based on the Clearwater project, a realistic cIMS deployment
which allows to estimate the value of key quantities such
as repair rates, call setup latencies, and mean service times.
Moreover, in this work each tenant is modeled in accordance
to a sophisticated queueing model (there was no queueing
model in the previous work [17]), which allows to analyze
the call setup delay (CSD), a critical latency metric for 5G
networks as specified by ETSI [12]. Finally, the MUGF struc-
ture (in particular, series and parallel operators) is totally
different from the one introduced in previous work due to
the different metric adopted: the number of sessions in [17],
and the CSD in this new proposal.

We remark that, from a scalability viewpoint, the MUGF
technique exhibits interesting results compared to other
methods in similar fields. For example, Petri net structures
(e.g., SPN/SRN), beyond requiring very specific tools to
be solved, can suffer when dealing with large and nested
systems, as also highlighted by Peterson [39] and Herzog
[40]. In particular, SRNs offer a system state representa-
tion in terms of the “token” distributions (a.k.a. markings),
where each marking is representative of a particular state of
the system at a given time t. On one hand, this approach
provides a comfortable interface to automatically specify
the token distribution by hiding technical details about
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Fig. 2. Overview of the Clearwater IMS.
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Fig. 3. IMS (single domain) call setup, where the Call Setup Delay metric
is represented on the left.

the underlying state model. On the other hand, such an
approach does not allow to easily retrieve the MSS state
distribution which is needed by the analytical formulation
of the MUGF.

Yet, the classic Continuous-Time Markov Chain (CTMC)
representation would lead to a space state explosion, since
it requires the entire cIMS to be modeled (monolithic ap-
proach), whereas the MUGF uses a combination of perfor-
mance distributions of single nodes to achieve the cIMS
performance distribution (decomposition approach).

3 CONTAINERIZED IMS CASE STUDY

In this study we present the proposed approach in the
context of a cIMS case study, based on Clearwater [18],
a real IMS product that fully leverages containers and
cloud computing technology. The cIMS consists of a chain
of softwarized functions running within containers. Such
containers are managed by a container engine (in our case
Docker) which is installed on a physical machine (a node). In
turn, the nodes can be replicated to form a tier, in order
to achieve higher performance and availability. Figure 2
shows a sketch of the Clearwater IMS characterized by
the following functions: Bono, which is the P-CSCF (Proxy-
Call Session Control Function), and acts as anchor point for
clients relying on the Session Initiation Protocol (SIP); Sprout
simultaneously acts as S-CSCF (Serving-CSCF) in charge of
managing SIP registrations, and as I-CSCF (Interrogating-
CSCF) for handling associations between UEs and a specific
S-CSCF; Homestead represents the HSS (Home Subscriber
Server) for users authentication; Ralf acts as CTF (Charg-
ing Trigger Function), for charging and billing operations;
Homer manages service setting documents per user, acting as
XML Document Management Server (XDMS). A red dashed
rectangle in Fig. 2 indicates the mandatory functions of the
cIMS architecture that we consider in our analysis.
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Fig. 4. A CNF hosting K tenants. Each tenant can be represented
through a M/G/γηi queueing model managing a set of containerized
instances in the Software layer. Quantities αi and β are the arrival and
service rates, respectively. The Docker layer manages containers. The
Infrastructure layer embodies the host OS and the hardware.

The IMS is called to satisfy real-time constraints such as
delay, jitter, packet loss. In this regard, a metric called Call
Setup Delay (CSD) has been elected as a critical Key Perfor-
mance Indicator (KPI) [13]–[15], being strongly related to the
end-user experience. Formally, CSD is a time-based metric
defined as the time interval between Invite message sent
from the caller and the received Ringing message (code 180)
[16], and well approximates the average time that user re-
quests spend in the cIMS (due to the processing time needed
by each node to handle the requests), where the propagation
delays are neglected. Figure 3 shows a simplified scenario
of a SIP call flow (IMS single domain), where the CSD is
accordingly represented as a vertical double arrow between
the initial sent message, (1) SIP Invite, and the last received
message, (13) SIP Ringing.

3.1 Containerized Network Function Model

The network functions of a service chain can be deployed in
dedicated containers, and decoupled from the underlying
infrastructure, according to a three-layer structure:

• Software layer: Its role is to run application software
that implements the business logic of the service
chain, to be deployed as containers (for example, in
our testbed, the Bono and the Sprout applications).
We assume that a CNF hosts containers of the same
type;

• Docker layer: Its role is to provide a run-time support
(e.g., a service daemon) to build, run, and manage
OS containers; this layer is also exploited in other
container management technologies, such as Linux
Container Daemon and Rocket;

• Infrastructure layer: It represents the underlying phys-
ical layer that, for the sake of simplicity, includes only
the operating system (OS) and the hardware (HW)
components (e.g., CPU, RAM, etc.).

A single CNF represents the elementary block of each tier
of the service chain (i.e., a node in the system that includes
the three layers). As it will be clear in the following, a cIMS
tier can be made of several redundant CNFs (typically, of
one and the same type), in order to increase capacity and
to meet performance and availability objectives. A stylized

representation of a CNF is depicted in Fig. 4, where the i-th
tenant (i = 1, . . . ,K) manages ηi containerized instances.
For each tenant, a containerized instance can manage, in
turn, a number of service requests amounting to γ (serving
capacity), at the same time. In practice, a containerized
instance is supposed to be composed of processes, each one
handling a single request. The serving capacity represents
the number of requests handled by each tenant. The re-
sulting queueing model of a single CNF for tenant i is an
infinite queue M/G/γηi as in Fig. 4, where γηi depends on
the actual working conditions of CNF (see the forthcoming
Sect. 4.2 for more details). Moreover, all tenants share the
Docker and Infrastructure layers, as typical of modern cloud
deployments. Note that Fig. 4 represents the system from a
conceptual perspective, as in its actual implementations the
load among container instances is balanced by communica-
tion mechanisms (such as message queues, or DNS-based
load balancing) managed by the underlying Docker and
infrastructure layers.

4 CNF MODELING

In this section, we analyze the behavior of a single CNF
according to a double perspective. The first one concerns the
availability characterization of a CNF in terms of a multi-
state model, where the failure/repair behaviors of the three
layers (Software, Docker, and Infrastructure) are represented
and evaluated (Sect. 4.1). The second one pertains to the
latency characterization by means of CNF queueing mod-
eling (Sect. 4.2). The CNF availability model and the CNF
queueing model can both be applied on a given CNF con-
figuration, in order to get an assessment of its availability
and latency. These results will be used in the next section
for capacity planning of the service chain.

4.1 CNF availability model

The stochastic behavior (in terms of failure and repair
actions) of the three CNF layers can be captured through
the concept of state. A state reflects a particular condition
(e.g. up/down) of: one or more containerized instances
(belonging to the Software layer), the Docker layer, the
Infrastructure layer. Accordingly, the CNF model of Fig. 4
can be translated in terms of the transition-state diagram
reported in Fig. 5, where a state is labeled with a K-

dimensional vector η = (η1, ..., ηK) ∈
∏K

i=1{0, . . . , ni} and
ηi ∈ {0, 1, ..., ni} represents the number of working con-
tainer instances that belong to tenant i. The initial state
vector (n1, ..., nK) represents a fully-working system that
runs the maximum number of container instances per tenant
(reported in red in Fig. 5). As faults occur, the system
moves to states with lower values in the vector. In the
worst case, all container instances are failed (all values in
the vector are zero). Similarly, as container instances are
recovered, the system moves to states with higher values
in the vector. For instance, the vector (n1, ..., ni − 1, ..., nK)
indicates a state where one-out-of-ni container instances
of the i-th tenant is failed. All the failure interarrivals are
supposed to be independent and identically distributed (iid)
random variables according to an exponential distribution
with parameter λCi

. The duration of a repair action of a
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Fig. 5. Transition-state diagram of CNF multi-state model. States are labeled with a vector that represents, for each tenant 1 . . .K, how many
container instances are available. The state vector (n1, ..., nK) in red indicates a fully-working system that runs the maximum number of container
instances per tenant. States DLF and ILF indicate Docker and Infrastructure layers failures, respectively.

failed containerized instance is assumed to be an exponen-
tial random variable with parameter µCi

. All the failure and
repair times are supposed to be independent of each other.
Thus, the transition rates are proportional to the number of
container instances that can fail and that can be recovered at
each state. The state Docker Layer Failure (DLF) indicates the
Docker failure condition which, in turn, causes the failure of
all the containerized instances, and the corresponding state
vector is (0, ..., 0)D. For Docker too, failure interarrivals are
supposed to be iid according to an exponential distribution
with parameter λD, and independent from containerized
instances failures. The duration of a repair action of this
layer is assumed to be an exponential random variable with
parameter µD. When Docker restarts, all the containerized
instances are assumed to be restarted. Such a condition is
taken into account by the transition from DLF state to initial
(completely working system) state with rate µD.

The state Infrastructure Layer Failure (ILF) is associated
with a crash of HW/OS part provoking a failure of the entire
system. Again, in this case the state vector is (0, ..., 0)I .
Also for the Infrastructure layer, failure interarrivals are sup-
posed to be iid according to an exponential distribution with
parameter λI , and independent from upper layers failures.
The duration of a repair action of this layer is assumed to be
an exponential random variable with parameter µI . Similar
to the previous case, when Infrastructure is restored, both
Docker and Software layers are restored. Such a condition is
taken into account by the transition from ILF state to initial
(completely working system) state with rate µI .

It is useful to highlight that, the assumptions on the
considered repair rates stem from the fact that mean-time-
to-repairs (namely 1/µ) are approximately constant over
time. It is especially valid for the software infrastructures
(as in our case) where repair actions are meant to be reboot
actions, as also confirmed by credited literature [41]–[43].

To derive the steady-state availability, we formally

model the CNF as a Multi-State System (MSS). Let ΩS =
∏K

i=1{0, 1, . . . , ni} be the state space of the Software layer,
being {0, 1, . . . , ni} the state space of the tenant i, i =
1, . . . ,K ; let ΩD = {0, 1}D and ΩI = {0, 1}I be the state
spaces of Docker and Infrastructure layers, respectively,
where 0 indicates the failure condition whereas 1 refers to
the working condition. Thus, the state space of the overall
CNF is Ω = ΩS × ΩD × ΩI .

Moreover, we define the capacity level gi,η exposed by the
CNF for tenant i in state η as

gi,η = γ · ηi, (1)

where γ has been previously defined as the serving capacity
of a containerized instance for each tenant. Since the capac-
ity of CNF can vary over time due to failures, the capacity
level gi,η is time-varying. The set including all possible
capacity levels gη = (g1,η, ..., gK,η) for each CNF is

G =

{

γ · η

∣

∣

∣

∣

∣

η ∈
K
∏

i=1

{0, . . . , ni}

}

∪{(0, . . . , 0)D, (0, . . . , 0)I},

(2)
where (0, . . . , 0)D and (0, . . . , 0)I refer to the capacity levels
of the DLF and ILF states, respectively. The total number of
states in Fig. 5 is

N = |Ω| =
K
∏

i=1

(ni + 1) + 2. (3)

To characterize the considered MSS, it is use-
ful to introduce the structure function ϕ : Ω →
{

η

∣

∣

∣

∣

∣

η ∈
∏K

i=1{0, . . . , ni}

}

∪ {(0, . . . , 0)D, (0, . . . , 0)I} de-

fined as follows:

ϕ(η, xD, xI) =







η, xD = 1, xI = 1
(0, . . . , 0)D, xD = 0, xI = 1
(0, . . . , 0)I , xI = 0,

(4)
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where xD ∈ ΩD and xI ∈ ΩI . It is a deterministic func-
tion [60] useful to specify the relation between the states
of single elements (layers) and the state of the overall
system (CNF). Now, the MSS of the CNF is completely
described by the state space Ω, the serving capacity lev-

els

{

η

∣

∣

∣

∣

∣

η ∈
∏K

i=1{0, . . . , ni}

}

∪ {(0, . . . , 0)D, (0, . . . , 0)I},

and the structure function ϕ. Let now be X(t) =
(X1(t), . . . , XK(t)) a ΩS-valued stochastic process which
denotes the failure-repair process of the Software layer;
XD(t) a ΩD-valued stochastic process which denotes the
failure-repair process of Docker layer; XI(t) a ΩI -valued
stochastic process which denotes the failure-repair process
of Infrastructure layer, all defined for t ≥ 0. Each of the
above processes is Markovian on its state space, being all
the underlying random variables exponentially distributed
and independent of each other. Thus, the stochastic pro-
cess {ϕ(X(t), XD(t), XI(t)), t ≥ 0} is represented by the
transition-state diagram in Fig. 5. Moreover, the CNF capac-
ity level at time t ≥ 0 is expressed in terms of the vector
stochastic process

G(t) = (G1(t), ..., GK(t)) = γ ·ϕ(X(t), XD(t), XI(t)), (5)

with values in G, and with (state) probability vector p(t)
at time t collecting all the state probabilities pη(t), being
pη(t) = Pr{G(t) = gη}. We note that G(t) is a CTMC
process described by a transition-state diagram equal to
the one in Fig. 5, except that each state vector must be
multiplied by γ.

We see that G(t): i) has a finite state space with cardi-
nality N given by (3); ii) is irreducible, since every state
is reachable from every other state (see Fig. 5); iii) is
homogeneous since its infinitesimal generator matrix Q has
constant elements (given constant parameters of failure and
repair random variables). From the above properties, G(t)
is an ergodic CTMC with a unique steady-state probability
vector p = limt→∞ p(t), with p(t) given by the solution of

dp(t)

dt
= p(t)Q, (6)

along with the normalization condition
∑

η pη(t) = 1.
Again, p is a vector collecting the state-state probability

pη for each state η, that is given by:

pη = lim
t→∞

pη(t) = lim
t→∞

Pr{G(t) = gη}. (7)

Accordingly, the (discrete) random vector G =
(G1, ..., GK) ∈ G corresponds to the asymptotic behavior
of G(t) (in the limit of t → ∞) and admits values in the
set (2) with probabilities (7). In conclusion, the set of pairs
{pη, gη} determines the steady-state behavior of a CNF in
terms of serving capacity.

4.2 CNF Queueing model

Our queueing model reflects the typical behavior of real
systems, where the requests arriving to the CNF are served
according to a queue characterized by non-exponential ser-
vice times. As regards the choice of the queueing model
system, we lie not so far from technical literature where

SIP-based servers are characterized through M/M/1 or
M/M/k infinite queueing systems (see [44]–[48]) with a
fixed number of servers. Such models are based on the
exponential assumption of service times that, in the field of
network communications, might be quite unrealistic. In our
work, indeed, we are able to directly measure the service
times across our testbed (see Sect. 6.1), and we find out
that the empirical distribution of service times is not well
fitted by an exponential distribution. Accordingly, we adopt
an M/G/Gi(t) model accounting also for the time-varying
number of servers due to the failure/repair process for each
tenant i. For a given state of the model, Gi(t) = γηi and
thus M/G/Gi(t) is equivalent to M/G/γηi.

Furthermore, we want to highlight an important rela-
tionship between queueing and failure/repair models in
terms of time scales. As observed in [55], in the field
of communication networks it is possible to distinguish
various and different time scales, such as the failure time
scales (FTS) and the service time scales (STS). The former
governs the failure/repair processes, and the latter governs
the typical queueing metrics (e.g. the service times). When a
time scale completely dominates another one, it is possible
to neglect the transient effects produced by the dominated
time scale. In service chains such as the cIMS, FTS ≫ STS,
since FTS is in the order of thousands of hours, while STS
is in the order of milliseconds (see also the parameters in
Table 2). Thus, a decoupling between FTS and STS can
be reasonably assumed. This behavior leads to claim that,
given a state η, tenant queues reach their steady-states very
quickly compared to the occurrence of faults. In summary,
for each state η, we use a steady-state M/G/γηi queue
model for tenant i to derive the delay model of a CNF.

We assume that call setup requests arriving to tenant i
follow an arrival Poisson process (a common assumption
in technical literature [49]–[51]) with parameter αi. Let
1/β be the mean value of service times derived from the
experiments, that we suppose to be one and the same for
all requests and tenants. Now, since no closed forms are
available to evaluate the mean delay introduced by the
M/G/γηi model to requests, we proceed in two steps:
i) we derive the mean delay for M/M/γηi; ii) then, we
compute the mean delay for the M/G/γηi model by using
the approximating formula known as the Kingman’s law of
congestion (see [52], [53]), that exploits the coefficients of
variation of the measured service times.

Along with the first step, according to [54], the mean
number of requests (or jobs) νi,η for the M/M/γηi model
for tenant i in state η is:

E[νi,η] = γηi · ρi,η + ρi,η
(γηi · ρi,η)

γηi

γηi!

πi,η
(1− ρi,η)2

, (8)

where utilization factor amounts to:

ρi,η =
αi

β · γηi
,

and

πi,η =

[

γηi−1
∑

h=0

(γηi · ρi,η)
h

h!
+

(γηi · ρi,η)
γηi

γηi!

1

1− ρi,η

]−1

.
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By virtue of Little’s law, the mean delay is

E[di,η] =
E[νi,η]

αi

. (9)

In the second step, since the first and second moments of
service times distribution are finite, we apply the Kingman’s
approximation to derive the mean delay introduced by the
considered M/G/γηi system (say δi,η) of tenant i in state η,
namely

δi,η ≈ E[di,η] ·
1 + CV 2

s

2
, (10)

beingCVs the coefficient of variation of the empirical service
time1. As pointed by Whitt (see [57]), such an excellent
approximation can be considered a special case of Allen-
Cunneen approximation [58]. Obviously, δi,η increases as
γηi reduces due to failures. On the other hand, δi,η decreases
as γηi increases by virtue of repair actions. It is worth
noting that, the Kingman’s approximation can be easily
generalized also to the case of generic arrival times, with
a little modification of eq. (10) which can be rewritten as:
δi,η ≈ E[di,η] · (CV

2
a + CV 2

s )/2, being CV 2
a the coefficient

of variation of the distribution of the arrivals.
Being BK the Cartesian product of a set B for itself K

times, to characterize the MSS describing the delay model,
it is useful to introduce the structure function ϕ∆ : Ω →
{R+ ∪ {+∞}}K defined as follows:

ϕ∆(η, xD, xI) =







(δ1,η, . . . , δK,η) , xD = 1, xI = 1
(+∞, . . . ,+∞), xD = 0, xI = 1
(+∞, . . . ,+∞), xI = 0,

(11)

where δi,η is given by (10), i = 1, . . . ,K , and where the in-
finite delay arises when there are no working containerized
instances. The mean delays introduced by a single CNF at
time t ≥ 0 is the vector stochastic process

∆(t) = (∆1(t), ...,∆K(t)) = ϕ∆(X(t), XD(t), XI(t)).
(12)

Similarly to the stochastic process G(t) in (5), ∆(t) is an
ergodic CTMC, and the random vector ∆ = (∆1, . . . ,∆K)
corresponds to the asymptotic behavior of ∆(t) as t → ∞.
Given δη = (δ1,η, ..., δK,η) the mean delays vector for each
state η, the set of pairs {pη, δη} determines exhaustively
the steady-state performance behavior of the CNF in terms
of mean delay, being pη given by (7).

5 MODELING OF THE CNF SERVICE CHAIN

Based on the CNF modeling from the previous section
(which represents an individual CNF in the service chain),
we here build a model for the whole service chain of
multiple CNFs. Two important aspects emerge. First, the
chain is made of tiers connected in series (e.g., see Fig. 6 in the
context of the cIMS). Thus, the entire chain is supposed to
be working when every tier m in the chain is working (e.g.,
m ∈ {P, S, I, H} for the cIMS, where P, S, I, H, indicate for
brevity P-CSCF, S-CSCF, I-CSCF, HSS, respectively). Second,
each tier m consists of redundant CNFs connected in parallel,

1. Such an approximation holds either for individual queues and for
open non-Markovian network of queues (see [52], [56]).

in order to improve performance and availability. We re-
mark that a tierm acts as a logical entity, by dividing the load
among the replicas in the tier, according to the flow dispersion
hypothesis (any CNF is able to handle service requests - see
[59]). Every replica includes all of the three layers of the
CNF structure (Software, Docker, and Infrastructure).

We denote with CNF(m,ℓ) the ℓ-th parallel CNF associ-
ated to tier m (ℓ = 1, . . . , Lm).

Now, we start to evaluate the mean CSD introduced
by tier m, where each CNF(m,ℓ) is modeled as an

M/G/G
(m,ℓ)
i (t) queue for tenant i. Indeed, tier m is given

by Lm parallel CNFs (see Fig. 6), and can be analyzed as

a single M/G/G
(m)
i (t) queue as consequence of the flow

dispersion hypothesis. Similarly to the vector stochastic
process defined in (12), let

∆(m)(t) =
(

∆
(m)
1 (t), ...,∆

(m)
K (t)

)

(13)

be the vector stochastic process containing the mean CSD

introduced by tierm for each tenant. Remarkably, ∆
(m)
i (t) is

the stochastic process describing the M/G/G
(m)
i (t) queue,

that can be computed like in Section 4.2, by replacing γηi
withG

(m)
i (t) =

∑Lm

ℓ=1G
(m,ℓ)
i (t) in equations from (8) to (10).

Since the call flow traverses the service chain, the overall
mean CSD is the sum of mean CSDs introduced by each
single tier, namely

∆c(t) = (∆c
1(t), ...,∆

c
K(t)) =

∑

m

∆(m)(t). (14)

Similarly to the derivation of {pη, δη} previously ob-
tained for a single CNF, ∆(m)(t) and ∆c(t) are ergodic
CTMCs, and ∆(m) and ∆c correspond to their asymptotic
behaviors as t → ∞. More technical details about the
derivation of ∆(m)(t) and ∆c(t) (obtained by introducing
the series and parallel structure functions) are provided in
the Appendix A.

Accordingly, given δ
(m)
η =

(

δ
(m)
1,η , ..., δ

(m)
K,η

)

the mean

delays vector of tier m in state η, and p
(m)
η =

limt→∞ Pr{∆(m)(t) = δ
(m)
η } the corresponding limiting

probability, the set of pairs
{

p
(m)
η , δ

(m)
η

}

represents the

steady-state mean CSD distribution of tier m. Likewise,

given δcη =
(

δc1,η, ..., δ
c
K,η

)

the mean delays vector of

system in state η, and pcη = limt→∞ Pr{∆c(t) = δcη} the
corresponding limiting probability, the set of pairs

{

pcη, δ
c
η

}

is the steady-state mean CSD distribution of the entire
service chain.

Letting J (m) =
∏Lm

ℓ=1N
(m,ℓ) be the number of states of

tier m for each parallel CNF ℓ, with N (m,ℓ) given by (3), the
number of states corresponding to the service chain is

Jc =
∏

m∈{P,S,I,H}

J (m). (15)

We consider the multi-tenant infrastructure as available
when every operator (or tenant) guarantees a mean CSD less
than a (maximum) tolerated value for its customers.

Let W c(t) = (W c
1 (t), ...,W

c
K(t)) be a K-dimensional

vector containing the maximum tolerated values per tenant
i at time t. The instantaneous availability Ac [t,W c(t)] is
defined (see [59], [60]) as the probability that mean CSD



8

P-CSCF S-CSCF I-CSCF HSS

Containerized IMS Infrastructure

. . .

. . .

. . .

. . .

CNF(P,1)

CNF(P,2)

CNF(P,LP)

CNF(S,1)

CNF(S,2)

CNF(S,LS)

CNF(I,1)

CNF(I,2)

CNF(I,LI)

CNF(H,1)

CNF(H,2)

CNF(H,LH)

Fig. 6. Multi-tenant cIMS system, where parallel CNFs are introduced
for redundancy purposes. CNF(m,ℓ) refers to parallel CNF ℓ (ℓ =
1, . . . , Lm) of tier m, with m ∈{P-CSCF, S-CSCF, I-CSCF, HSS}.

of the service chain for each tenant i (at t > 0) is not greater
than W c

i (t), i = 1, ...,K , viz.

Ac [t,W c(t)] = Pr{∆c
i (t)−W c

i (t) ≤ 0, ∀i = 1, ...,K}.
(16)

Given constant maximum values W c(t) = wc =
(wc

1, ..., w
c
K), the steady-state availability Ac (wc) can be de-

rived from (16) for t→ ∞, as

Ac(wc) =
∑

η∈Ωc

pcη · 1
(

δci,η ≤ wc
i , ∀i = 1, ...,K

)

, (17)

where 1(·) amounts to 1 if condition holds true and 0
otherwise, and Ωc =

∏

m ΩLm .

5.1 Steady-state availability using the MUGF technique

The Multidimensional Universal Generating Function
(MUGF) technique [17] provides an efficient method to eval-
uate the steady-state availability of (17). Being the MUGF a
special case of probability generating function of a multi-
variate random variable, the steady-state distribution of an
MSS can be expressed through a polynomial-shape form.
More precisely, the MUGF of the steady-state mean CSD
distribution pertaining to the tier m is

u(m)(z) =
∑

η∈ΩLm

p(m)
η

K
∏

i=1

z
δ
(m)
i,η

i , (18)

a function of the vector indeterminate z = (z1, . . . , zK).
From the generating functions theory, the sum of mul-

tivariate independent random variables has a generating
function given by the product of the generating functions
of single variables. Accordingly, by recalling that mean CSD
of the service chain is the sum of mean CSDs introduced by
each tier, the MUGF uc(z) is the product of the MUGFs of
single tiers computed by (18), viz.

uc(z) =
∏

m





∑

η∈ΩLm

p(m)
η

K
∏

i=1

z
δ
(m)
i,η

i



 . (19)

Thus, uc(z) represents a polynomial-shape function in
z1, . . . , zK . The uc(z) can be easily computed by combining
the individual MUGFs through products and sums. The
resulting expression of uc(z) provides the mean CSD vector
δcη and the corresponding steady-state probabilities pcη of the

whole service chain. For each state η, vector δcη collects all
the exponents of z1, . . . , zK , while pcη is the multiplicative
coefficient. Such quantities are used in (17) to compute the
steady-state availability Ac(wc) of the multi-tenant chain.

5.2 Redundancy optimization of the service chain

The proposed availability assessment method is useful to
solve network design problems, such as the selection of
an optimal configuration that satisfy a given availability
objective. The problem of practical interest is to identify the
configuration(s) minimizing the number of CNF replicas for
each tier of the service chain.

We denote with the vector ℓ a configuration of the multi-
tenant service chain, that is, the number Lm of replicas for
each tier m. In the case of the cIMS, m ∈ {P, S, I, H},
and ℓ = (LP , LS, LI , LH). Obviously, this approach can be
easily applied to other SFC architectures by changing the
set of elements belonging to the chain itself (namely the
components in the series availability model).

We define C(m,ℓ) as the cost of parallel CNF ℓ belonging
to tier m. Thus, the cost of the configuration ℓ of the multi-
tenant service chain is

Cc(ℓ) =
∑

m

Lm
∑

ℓ=1

C(m,ℓ). (20)

By considering dmax the maximum tolerated value for
the mean CSD for each tenant (which is typically provided
by international standards, such as for the IMS [71]), namely
wc = (dmax, . . . , dmax), the steady-state availability of the
configuration ℓ, in terms of mean CSD, is given by (17), viz.

Ac(wc, ℓ) =
∑

η∈Jc

pcη · 1
(

δci,η ≤ dmax, ∀i = 1, ...,K
)

. (21)

Given an availability constraint A0 (for example, A0 =
0.99999 also known as “five nines” availability), we define
the set of configurations satisfying such a constraint as Lc =
{ℓ : Ac(wc, ℓ) ≥ A0}.

Then, the system configurations with minimum deploy-
ment cost which satisfy the availability constraint A0 are
provided by solving the following optimization problem:

ℓ∗ = argmin
ℓ∈Lc

Cc(ℓ). (22)

In summary, the optimization problem (22) contains ele-
ments both from availability and queueing models, where
the latter allows to estimate the latency introduced by
a chain. Indeed, the first step consists in computing the
steady-state availability of chains, defined in terms of la-
tency (see (21)), and in building the set of configurations Lc

guaranteeing the given availability constraint. The second
step consists in identifying the configuration(s) minimizing
the cost (20) represented by the solution(s) of (22).

The process allowing to build various configurations
relies on a greedy stage. By starting from a baseline con-
figuration with 1 CNF per tier, the routine automatically
adds 1 CNF per node up to a given threshold and evaluates
the configuration availability. Since it is impossible to know
beforehand which is the number of CNFs needed to obtain
at least one solution, we set a configurable threshold value



9

(namely, an integer number of CNFs) which represents the
maximum number of CNFs a node can host. Obviously,
depending on failure/repair parameters, it may happen
that a given availability target (i.e., five nines) is never
reached. In such a case, the network designer must relax
the availability constraint (i.e. four nines). Once the routine
has terminated its run, it produces a set of possible con-
figurations, and it will choose the one (ℓ∗) satisfying the
required condition. Interestingly, our routine allows to retain
also the (sub-optimal) configurations, to leave the network
designer the possibility of choosing a different setting (e.g.
a configuration with Ac(wc) = 0.99998, which is barely far
from the five nines requirement).

6 EXPERIMENTAL RESULTS

This section consists of two parts: the first one contains a
detailed description of the testbed deployed to derive real-
istic parameters such as: repair rates of various components
by adopting fault injection techniques, mean service times
employed by containerized software instance to manage
cIMS requests, mean call setup delays experimented by
multimedia calls. The second part pertains to the availability
assessment performed through MUGF technique by exploit-
ing the estimated parameters.

6.1 The cIMS testbed

We deploy from scratch an experimental testbed aimed at
validating the proposed technique in a realistic NFV-based
environment. Our testbed is composed of hardware and
software technologies commonly adopted in cloud data-
centers such as: operating systems based on Linux ker-
nel 4.4.0, Docker engines (version 19.03.5) running on 16-
Core 1.80GHz Intel Xeon machines with 64GB RAM, two
500GB SATA HDD, four 1-Gbps Intel Ethernet NICs, and
one NetApp Network Storage Array with 32TB of storage
space and 4GB of SSD cache. The hosts are connected to
a 1-Gbps Ethernet network switch. The testbed includes 4
machines (each of which equipped with the aforementioned
HW/SW), and relies on Clearwater (release 130), an open-
source platform (later embodied in a commercial product
[18]) which allows emulating a fully working IMS architec-
ture in a container-based environment. We deploy the IMS
functionalities (Bono, Sprout, Homestead) on top of Docker
as depicted in Fig. 7. For each CNF we manage two different
tenants. We use an external machine equipped with SIPp
tool [76] (as a workload generator) and with HAproxy [77]
to perform traffic balancing among all instances of Bono.

As in our previous studies [10], [62], we adopt fault
injection to emulate faults and to measure the recovery times,
in order to estimate representative model parameters. To
assure the occurrence of failures, we emulate faults through
the injection of their effects, which is also referred to as
error or failure injection in some studies [63], [64]. In our
experiments, we injected the following three types of faults.

Software layer faults: responsible for software crashes
of the CNF upper layer which embeds the specific IMS
service logic. Typically, such faults include race condition
bugs, resource exhaustion due to software aging bugs, I/O
and exception handling bugs [75]. The Clearwater IMS is no

Fig. 7. The deployed cIMS architecture.

exception, as a number of such failures have been reported
by users on its issue tracker and mailing lists [74]. We inject
these faults by forcing the abrupt termination of a container.

Docker layer faults: similarly for the containers, the
Docker engine is affected by software faults related to tim-
ing, resource management, and other environmental condi-
tions. Both academic research and end-users report recur-
ring failures in Docker and in similar management software
[65], [72], [73], causing the unavailability of containers along
with virtual networks and storage volumes. We inject these
faults by forcing the termination of container management
services (i.e., the dockerd process) that, in turn, results in
the termination of all containers running on top.

Infrastructure layer faults: software and hardware faults
related to the crash of the hypervisor and the underlying
physical infrastructure, respectively [10], [72]. In turn, these
faults cause the unavailability of Docker and the whole set
of containers. We inject these faults by forcing the abrupt
shutdown of the machine.

We performed 30 fault injection experiments per CNF
and per fault type, amounting to 360 experiments in total.
Each fault injection experiment takes about 10 minutes both
for the software layer and for the Docker engine, whereas it
takes about 15 minutes for the infrastructure layer. Before
injecting faults, we wait for an initial warm-up period
(400 seconds) to let the system to reach a regime level.
We automate fault injection experiments through ad-hoc
routines developed to manage operations such as: start/stop
fault injection, trigger the shutdown and the recovery of
containers and hosts, collect metrics for each CNF through
SNMP protocol as detailed in the following.

• P-CSCF: we analyze the number of SIP events (SIP
messages) successfully passed to a Bono worker
thread per unit time, reported in the SNMP object
bonoQueueSuccessFailSuccesses.

• S-CSCF: we analyze the number of success-
ful outgoing SIP transactions (INVITE messages)
per unit time, reported in the SNMP object
sproutSCSCFOutgoingSIPTransactionsSuccesses.

• I-CSCF: we analyze the number of suc-
cessful terminating request attempts over
the period, reported in the SNMP object
sproutICSCFSessionEstablishmentSuccesses.

• HSS: we analyze the number of enqueued Mem-
cached requests per unit time, reported in the SNMP
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(a) Software layer fault.
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(b) Docker layer fault.
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(c) Infrastructure layer fault.

Fig. 8. Sprout I-CSCF under fault injection.
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Fig. 9. Empirical service time distribution of Clearwater nodes (from the left: P-CSCF, S-CSCF, I-CSCF, HSS).

object homesteadCacheQueueSizeCount.

We use the aforementioned metrics to estimate the re-
covery time of the cIMS, in line with the previous NFV de-
pendability benchmark study [10]. We measure the recovery
time as the period during which a CNF is unavailable: it
starts at a given fault injection time when the considered
metric drops to zero, and it ends when the metric raises up
to its regime value after recovery is completed. Each metric
is evaluated at the output of a five-sample moving average
filter, introduced to smooth fluctuations occurring during
recovery. We consider the recovery procedure as completed
when the metric overcomes a given threshold set to 90% of
the fault-free metric level [78].

For instance, the recovery times of Sprout I-CSCF CNF
after different injections are shown in panel of Figs. 8.
Precisely, Fig. 8a, Fig. 8b, Fig. 8c report the recovery time in
the presence of a Software layer fault, a Docker layer fault,
and an infrastructure layer fault, respectively. We note that
the differences between the curves is due to the typical vari-
ability of the experiments. Moreover, it is possible to receive
a slightly different amount of traffic across executions, since
load balancing cannot be perfectly uniform across replicas.
The panel of Figs. 9 reports the service times distributions
that we measure for each cIMS node. We remarked that
these empirical distributions of service times are important
to analyze the latency, namely to derive the coefficients of
variation for each CNF to be used in (10).

Interestingly, our fault injection trials provided unex-
pected findings on the failure and recovery behavior of con-
tainerized network functions. Precisely, most studies adopt
too simplistic assumptions about the containers time-to-
recovery, by only considering the time to perform a restart

action on a container (in the order of few seconds for a Linux
container on a modern hardware machine). In contrast, our
experiments reveal a longer time (in the order of minutes) to
restore performance. A critical factor is represented by the
restart of application software. Since the IMS is developed
in the Java language, a new instance of the JVM needs
to be allocated and initialized. Moreover, the application
itself needs to manage allocations and data initialization
(e.g., to start a thread pool). Afterwards, the performance is
gradually restored, due to enqueueing and caching effects.

6.2 Availability assessment of cIMS

We perform a steady-state availability assessment of cIMS
through the MUGF technique supported by the experimen-
tal data. Let us assume that: i) each CNF composing the
system in Fig. 6 exhibits one and the same availability
model namely, we suppose identical failure/repair param-
eters for each CNF), and, ii) all nodes exhibit one and the
same cost amounting to 1, or equivalently, C(m,ℓ) = 1,
∀ℓ ∈ {1, ..., Lm}, with m ∈ {P, S, I,H}. Needless to say,
the considered assumptions can be easily tailored across
a variety of scenarios where network providers operate
with different costs and performance features. Let us refer
to an exemplary setting with K = 2 network providers
(tenants), where the first one has n1 = 2 containerized
instances, and the second one has n2 = 3 containerized
instances. As a result, the MSS model of the CNF can be
directly derived from the transition-state diagram depicted
in Fig. 10 with a number of different states amounting to
N = (n1 +1)(n2+1)+ 2 = 14 according to (3). The steady-
state probability distribution of a single CNF can be directly
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TABLE 2
Input parameters

Parameter Description Value

1/λC mean time for container failure† 1258 hours
1/λD mean time for docker failure† 2516 hours
1/λI mean time for infrastructure failure† 60000 hours
1/µC mean time for container repair‡ 30 s
1/µD mean time for docker repair‡ 60 s
1/µI mean time for infrastructure repair‡ 5 min
α1 IMS request arrival rate at tenant 1‡ 100 s−1

α2 IMS request arrival rate at tenant 2‡ 200 s−1

1/βP P-CSCF empirical mean service time per request‡ 1.1 · 10−3 s
1/βS S-CSCF empirical mean service time per request‡ 7.2 · 10−3 s
1/βI I-CSCF empirical mean service time per request‡ 4.1 · 10−2 s
1/βH HSS empirical mean service time per request‡ 4.6 · 10−3 s
CVP P-CSCF coefficient of variation (Kingman’s approx.)‡ 0.7538

CVS S-CSCF coefficient of variation (Kingman’s approx.)‡ 0.9826

CVI I-CSCF coefficient of variation (Kingman’s approx.)‡ 0.5581

CVH HSS coefficient of variation (Kingman’s approx.)‡ 0.4631
dmax Maximum tolerated CSD 50 ms

† From scientific literature
‡ From experiments

obtained by solving the system of differential equations (6)
for t→ ∞, as detailed in Appendix B.

Table 2 summarizes the input parameters adopted for
the assessment, where: failure and repair rates have been, in
part, derived from the deployed testbed, and, in part, chosen
according to the technical literature (see [34], [66]–[70]). Let
us provide clarifications about some parameters estimated
through the testbed. First, the presence of multiple contain-
ers does not dramatically affect the infrastructure reboot
ruled by the µI parameter. Such a situation is commonly
encountered in practice, where the network designer adopts
some strategies to control the parameter variability (i.e.,
smart allocation of hardware resources, snapshots usage,
CPU pinning).

Moreover, the α parameters are influenced by the capac-
ity of the system. We calibrated the workload generator to
run new subscribers and to generate traffic such that the
system approaches its capacity, without degrading latency
and without saturating CPU and memory. This scenario as-
sumes that the number of containers in the system is scaled
according to the workload, which is typical for services
deployed on cloud computing infrastructures. Again, the
empirical service times distributions (Figs. 9) are evaluated
by analyzing the service rates of each node. From such data,
we also derive the coefficient of variation per node, useful to
obtain the Kingman’s approximation (10). Finally, the dmax

value is a pessimistic estimate chosen in accordance to the
ITU-T standard specifications [71], where acceptable values
are in the order of seconds, since they account for prop-
agation delays in geographic networks that are obviously
negligible in our testbed.

In keeping with the “five nines” availability requirement,
we set A0 = 1 − 10−5 and solve the optimization problem
(22). A routine in Mathematica® (available upon request)
computes the MUGF (19) and serves to finally evaluate
the steady-state availability of cIMS expressed through (17).
Then, the routine selects, among all feasible configurations,
the one(s) exhibiting the minimum cost.

Table 3 reports the results of our experimental evalua-
tion, where 12 exemplary configurations have been shown.
The optimal configuration is ℓ∗, which exhibits a steady-
state availability amounting to Ac(wc) = 0.999992, with

TABLE 3
Steady-state Availability under 12 configurations

Config. Redundancy Level Cc(ℓ) Ac(wc)

ℓ∗ [CNF (P ) = 2, CNF (S) = 1, CNF (I) = 3, CNF (H) = 2] 8 0.999992

ℓ1 [CNF (P ) = 2, CNF (S) = 2, CNF (I) = 2, CNF (H) = 2] 8 0.999944

ℓ2 [CNF (P ) = 2, CNF (S) = 3, CNF (I) = 2, CNF (H) = 2] 9 0.999944

ℓ3 [CNF (P ) = 3, CNF (S) = 3, CNF (I) = 2, CNF (H) = 3] 11 0.999945

ℓ4 [CNF (P ) = 1, CNF (S) = 1, CNF (I) = 3, CNF (H) = 3] 8 0.999984

ℓ5 [CNF (P ) = 1, CNF (S) = 1, CNF (I) = 2, CNF (H) = 1] 5 0.999919

ℓ6 [CNF (P ) = 2, CNF (S) = 1, CNF (I) = 2, CNF (H) = 1] 6 0.999927

ℓ7 [CNF (P ) = 2, CNF (S) = 2, CNF (I) = 2, CNF (H) = 1] 7 0.999936

ℓ8 [CNF (P ) = 3, CNF (S) = 3, CNF (I) = 3, CNF (H) = 1] 10 0.999994

ℓ9 [CNF (P ) = 2, CNF (S) = 2, CNF (I) = 3, CNF (H) = 2] 9 0.9999999

ℓ10 [CNF (P ) = 2, CNF (S) = 2, CNF (I) = 2, CNF (H) = 4] 10 0.999968

ℓ11 [CNF (P ) = 2, CNF (S) = 3, CNF (I) = 2, CNF (H) = 4] 11 0.999968

a cost amounting to Cc(ℓ∗) = 8 CNFs. Such a configu-
ration is obtained by considering (see the second column
of Table 3 where CNF(m) denotes the number of CNFs for
tier m): 2 redundant CNFs for P-CSCF and HSS, 3 CNF
replicas for I-CSCF, and no redundancy for the S-CSCF.
For the sake of clarity, we want to highlight that the same
cost and availability values are obtained by exchanging the
redundancy role of P-CSCF, S-CSCF, and HSS. This is due
to the fact that the most critical network function turns
to be the I-CSCF, in view of its higher service time (see
pertinent values in Table 2). By exploring the remaining
configurations, we can observe other interesting facts. Con-
figuration ℓ1 is obtained as a rearrangement of ℓ∗, where
replicas have been differently distributed across the network
functions (obviously, this results in the same cost). But, as
can be noticed, this redistribution does not allow to meet
the desired high availability requirement. In configuration
ℓ2, the redundancy of S-CSCF is empowered by 2 replicas
w.r.t. ℓ∗, whereas one less replica is considered for I-CSCF.
Also in this case, the steady-state availability fixes on “four
nines”, and the overall configuration cost increases to 9.
Interestingly, configurations ℓ1 and ℓ2 exhibit the same
value of availability even if an additional S-CSCF replica
characterizes ℓ2 w.r.t. ℓ1. This behavior can be ascribed
to the high efficiency of S-CSCF in handling IMS requests
(see 1/βS value in Table 2), translating in a very scarce
sensitivity in improving its availability when the number
of the corresponding CNF replicas exceeds the value of 2.

Even adding one more replica to P-CSCF and to HSS
w.r.t. ℓ2, the steady-state high availability target is not
reached, and the whole cost jumps to 11 (configuration
ℓ3). Again, such a behavior can be ascribed to the weak-
ness introduced by I-CSCF. This notwithstanding, in case
we preserve a high redundancy degree for I-CSCF with 3
replicas (as occurs for the optimal configuration ℓ∗), the
availability target remains unsatisfactory if two nodes are
not replicated at all as shown in ℓ4. Thus, guaranteeing a
strong redundancy degree for the I-CSCF it is not enough.

A set of “cheap” configurations includes ℓ5 - ℓ7, whose
costs range from 5 to 7. They show that when a more
relaxed availability constraint (e.g. “four nines”) has to
be satisfied, it might be no necessary to add many CNF
replicas. A limiting case is given by ℓ5, whose availability
value amounts to 0.999919 at a very cheap cost of 5. In
contrast, the “five nines” requirement is met by ℓ8 which
cannot be the optimal configuration since its cost amounts
to 10 (more expensive than ℓ∗). Furthermore, configuration
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Fig. 10. Transition-state diagram of the CNF with two tenants.

ℓ9 is obtained by adding one more replica to S-CSCF w.r.t.
ℓ∗. In such a case, cost increases by one, but, the steady-
state availability jumps to 0.9999999, a very challenging
value sometimes required by mission-critical services. Inter-
estingly, ℓ9 exhibits a greater availability value than ℓ8, but
at a cheaper cost (amounting to 9). This behavior depends
on the fact that in ℓ8 no redundant CNF is allocated to HSS,
and confirms that the best trade-off between availability
and costs can be obtained through smart allocation of CNF
replicas among the tiers. Finally, configurations ℓ10 and ℓ11
report two cases of CNF redundancy greater than 3 (for a
tier). Precisely, ℓ10 can be considered as an enhancement of
configuration ℓ1 with 2 more replicas on HSS tier. Likewise,
ℓ11 is derived by ℓ2 adding 2 more CNFs to the HSS. In both
cases, we do not observe any significant improvement in the
availability values (both amounting to 0.999968 for ℓ10 and
ℓ11) which are still far from the five nines availability target.
Even, the costs of ℓ10 and ℓ11 increase by two units with
respect to ℓ1 and ℓ2, respectively. Once again, we can notice
that a wrong redundancy strategy contributes to make the
costs grow but not the availability values.

In (24) we report the MUGF of cIMS system in the optimal
configuration ℓ∗, where most terms have been suppressed
due to space constraints. The first term has a coefficient
equal to 0.9997, which is the steady-state probability for
a state corresponding to a mean CSD equal to 0.0255 s
for both tenants, as indicated by the exponents of z1 and
z2. Moreover, the terms in red refer to states where one
or both mean CSD values do not respect the mean CSD
constraint dmax, namely are greater than 50 ms, and their
coefficient does not contribute to the value of the steady-
state availability of cIMS according to (17).

From a computational complexity perspective, it is use-
ful to highlight that the MUGF approach mitigates by far

the computational load required by monolithic approaches
which attempt to find the steady-state probability distri-
bution of a single CTMC describing the whole system
without decomposing it in simpler subsystems. Indeed, as
regards the proposed example with N (m,ℓ) = N = 14,
the state space of a single cIMS CTMC model amounts

to Jc = 14
∑

m∈{P,S,I,H} Lm (by virtue of (15)). In partic-
ular, the optimization problem (22) requires to solve rm

systems of equations whose number ranges from 144 to
Jc, being r the maximum redundancy level considered
in the optimization algorithm. For instance, the optimal
configuration ℓ∗ = (2, 1, 3, 2) requires the solution of a
system with 142+1+3+2 = 148 equations. Conversely, our
approach requires three steps: i) we find the steady-state
distribution of the CTMC of a single CNF with 14 states
(namely we need to solve a system of 14 equations for each
tier as detailed in Appendix B); ii) we compute the steady-
state distribution of the mean CSD due to tier m, for eachm,
and the corresponding MUGF by (18); iii) we combine the
distributions computed in step ii) to obtain the mean CSD
probability distribution of cIMS. Then, we get the steady-
state availability (17). To compute the MUGF corresponding
to the optimal configuration for the cIMS, we need about
360 s on a PC equipped with an Intel Quad-Core Xeon E5
CPU@3.7GHz.

6.3 Limitations

This work presented an availability model for multi-tenant
service chains, tailored to the recent architectural trend to-
wards containerized services. Although our efforts to match
real systems (e.g., non-exponential service times assump-
tions, parameters from real-world experiments, etc.), some
limitations necessarily remain: i) for the sake of simplicity,
in our model we consider CNFs having the same perfor-
mance, but in real architectures, they might slightly differ.
This notwithstanding, this assumption holds for many sys-
tems (including our cIMS case study), where all of the CNFs
have been developed using the same software technology,
have been assigned the same amount of resources (e.g.,
in terms of virtual CPUs), and share the same underlying
layers (Docker and Infrastructure) in a cloud-based deploy-
ment; ii) some parameters (e.g., the failure rates) are derived
from the technical literature rather than from experiments,
due to the large observation scale of failure events (up
to some years). The other parameters are estimated using
well-assessed fault injection techniques; iii) we assume
exponential distributions for failure/repair times: such an
assumption is the most common and accepted across the
technical literature, and in our work, it is necessary to
manage complications arising from the joint availability
and queueing modeling. Moreover, our proposed method
sacrifices some high-level expressiveness achieved by other
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approaches (e.g., SPN/SRN), in order to benefit from visi-
bility on the underlying analytical model. For example, this
occurs in the eq. (18) where the MUGF expression of the
mean delay distribution pertaining to the tier m is made
explicit in terms of the pair (pη, δη). Benefiting from such a
decomposition, the MUGF of the overall chain can be easily
evaluated through a simple product as shown in eq. (19).
Finally, we note that the MUGF method is intended to be
applied “one-shot”, using a fixed set of parameters, reflect-
ing the expected workload, mean time to failure, mean time
to repair, etc. This typically reflects the SLA-based approach
of service providers, which are called to guarantee specific
performance levels by fixing some constraints. When such
constraints are violated, the SLA must be renegotiated,
implying that the MUGF method has to be run again in
order to return the best configuration guaranteeing the new
performance level.

7 CONCLUSION

We propose an availability assessment approach to fit
the modern Service Function Chain paradigm adopting: a
Multi-State System model to represent the complex hard-
ware and software stack in Containerized Network Func-
tions; a queueing model, to include latency aspects; an
extended version of multidimensional UGF technique, to
efficiently analyze an infrastructure running several CNFs
over multiple tenants, by combining their steady-state prob-
ability distributions through algebraic procedures.

We used an experimental fault-injection testbed to esti-
mate parameters for the model, such as the repair rates of
CNF layers and the service rates of containerized instances.
The proposed approach allowed us to efficiently solve the
availability optimization problem within few minutes.

This work might be extended in several directions such
as: i) considering more and different service chains (e.g.
mobile/broadband networks, data center chains) where the
network manager is typically interested at finding the best
redundant chain configuration at a minimal cost; ii) differ-
entiating (by priority or importance) the requests entering a
chain, so as to deploy a service chain able to satisfy Quality-
of-Service constraints, as well.
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APPENDIX A

We introduce two operators (namely series and parallel structure functions) to formally derive ∆(m)(t) and ∆c(t). For the
sake of simplicity, let us start to define the parallel structure function:

ψp : ΩLm → R
K ∪ (+∞, . . . ,+∞). (25)

Accordingly, the mean CSD introduced by tier m ∈ {P, S, I,H} is:

∆(m)(t) = ψp

(

X(m,1)(t), X
(m,1)
D (t), X

(m,1)
I (t), . . . ,

X(m,Lm)(t), X
(m,Lm)
D (t), X

(m,Lm)
I (t)

)

=
(

∆
(m)
1 (t), ...,∆

(m)
K (t)

)

, (26)

where X(m,Lm)(t) denotes the ΩS-valued failure/repair process of the Software layer, X
(m,Lm)
D (t) denotes the ΩD-

valued failure/repair process of the Docker layer, and X
(m,Lm)
I (t) denotes the ΩI -valued failure/repair process of the

Infrastructure layer. Finally, ∆
(m)
i (t) is the stochastic process describing the M/G/G

(m)
i (t) queue, that can be computed

like in Section 4.2, by replacing γηi with G
(m)
i (t) =

∑Lm

ℓ=1G
(m,ℓ)
i (t) in equations from (8) to (10).

It is now useful to recall that, since the call flow traverses the cIMS chain, the overall mean CSD is the sum of mean
CSDs introduced by each single tier.

Accordingly, by introducing Ltot =
∑

m∈{P,S,I,H} Lm, we define the series structure function:

ψs : Ω
Ltot → R

K ∪ (+∞, . . . ,+∞). (27)

Thus, the overall mean delay ∆c(t) = (∆c
1(t), ...,∆

c
K(t)) introduced by the cIMS is given by:

∆c(t) =
∑

m∈{P,S,I,H}

∆(m)(t) = ψs

(

X(P,1)(t), X
(P,1)
D (t), X

(P,1)
I (t), . . . , X(P,LP )(t), X

(P,LP )
D (t), X

(P,LP )
I (t), . . . ,

X(H,1)(t), X
(H,1)
D (t), X

(H,1)
I (t), . . . , X(H,LH)(t), X

(H,LH)
D (t), X

(H,LH)
I (t)

)

=
∑

m∈{P,S,I,H}

ψp

(

X(m,1)(t), X
(m,1)
D (t), X

(m,1)
I (t), . . . , X(m,Lm)(t), X

(m,Lm)
D (t), X

(m,Lm)
I (t)

)

. (28)
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APPENDIX B

Let p1(t), . . . , p12(t) be the state probabilities corresponding to states S1, . . . , S12, and pI(t) and pD(t) the state probabilities
corresponding to states SI and SD, respectively, as shown in Fig. 10.

According to (6), by assuming one and the same model for each CNF composing the cIMS system, all the state
probabilities at time t can be derived by solving the system of 14 differential equations (29), representative of the 14-
state MSS in Fig. 10, with the constraint

∑12
i=1 pi(t) + pD(t) + pI(t) = 1, and the assumption that the node is initially

working.
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dpI(t)

dt
=−µIpI(t) + λI

∑12
i=1 pi(t) + pD(t)

dpD(t)

dt
=−(µD + λI)pD(t) + λD

∑12
i=1 pi(t)

dp1(t)

dt
=−(2µC1 + 3µC2 + λD + λI)p1(t) + λC1p2(t) + λC2p3(t)

dp2(t)

dt
=2µC1p1(t)− (λC1 + µC1 + 3µC2 + λD + λI)p2(t) + 2λC1p4(t) + λC2p5(t)

dp3(t)

dt
=3µC2p1(t)− (λC2 + 2µC1 + 2µC2 + λD + λI)p3(t) + λC1p5(t) + 2λC2p6(t)

dp4(t)

dt
=µC1p2(t)− (2λC1 + 3µC2 + λD + λI)p4(t) + λC2p7(t)

dp5(t)

dt
=3µC2p2(t) + 2µC1p3(t)− (λC1 + λC2 + µC1 + 2µC2 + λD + λI)p5(t) + 2λC1p7(t) + 2λC2p8(t)

dp6(t)

dt
=2µC2p3(t)− (2λC2 + 2µC1 + µC2 + λD + λI)p6(t) + λC1p8(t) + 3λC2p9(t)

dp7(t)

dt
=3µC2p4(t) + µC1p5(t)− (2λC1 + λC2 + 2µC2 + λD + λI)p7(t) + 2λC2p10(t)

dp8(t)

dt
=2µC2p5(t) + 2µC1p6(t)− (λC1 + 2λC2 + µC1 + µC2 + λD + λI)p8(t) + 2λC1p10(t) + 3λC2p11(t)

dp9(t)

dt
=µC2p6(t)− (3λC2 + 2µC1 + λD + λI)p9(t) + λC1p11(t)

dp10(t)

dt
=2µC2p7(t) + µC1p8(t)− (2λC1 + 2λC2 + µC2 + λD + λI)p10(t) + 3λC2p12(t)

dp11(t)

dt
=µC2p8(t) + 2µC1p9(t)− (λC1 + 3λC2 + µC1 + λD + λI)p11(t) + 2λC1p12(t)

dp12(t)

dt
=µC2p10(t) + µC1p11(t) + µDpD(t) + µIpI(t)− (2λC1 + 3λC2 + λD + λI)p12(t)

(29)

The steady-state probability distribution p of the CNF in Fig. 10 can be hence derived by considering the limit for
t → ∞ of the solution of system (29). Alternatively, p can be can be simply determined by nullifying the derivative terms
in system (29), and solving it along with the constraint

∑12
i=1 pi + pD + pI = 1.
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