
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

How to Share: Balancing Layer and Chain
Sharing in Industrial Microservice Deployment

Yuxiang Liu, Bo Yang, Senior Member, IEEE, Yu Wu, Student Member, IEEE,
Cailian Chen, Member, IEEE, and Xinping Guan, Fellow, IEEE

F

Abstract—With the rapid development of smart manufacturing, edge
computing-oriented microservice platforms are emerging as an impor-
tant part of production control. In the containerized deployment of mi-
croservices, layer sharing can reduce the huge bandwidth consumption
caused by image pulling, and chain sharing can reduce communication
overhead caused by communication between microservices. The two
sharing methods use the characteristics of each microservice to share
resources during deployment. However, due to the limited resources
of edge servers, it is difficult to meet the optimization goals of the
two methods at the same time. Therefore, it is of critical importance
to realize the improvement of service response efficiency by balancing
the two sharing methods. This paper studies the optimal microservice
deployment strategy that can balance layer sharing and chain sharing
of microservices. We build a problem that minimizes microservice image
pull delay and communication overhead and transform the problem into
a linearly constrained integer quadratic programming problem through
model reconstruction. A deployment strategy is obtained through the
successive convex approximation (SCA) method. Experimental results
show that the proposed deployment strategy can balance the two re-
source sharing methods. When the two sharing methods are equally
considered, the average image pull delay can be reduced to 65% of the
baseline, and the average communication overhead can be reduced to
30% of the baseline.

Index Terms—Industrial Internet of Things (IIoT), microservice deploy-
ment, layer sharing, chain sharing.

1 INTRODUCTION

W ITH the rapid development of smart manufacturing
and flexible production, the flexibility of industrial

production has been greatly enhanced [1], [2]. Industrial
software needs to quickly redistribute and adjust production
processes according to changes of orders, which has higher
requirements for flexibility and scalability of industrial soft-
ware [3], [4], [5]. Traditional industrial software adopts a
monolithic service architecture. The high coupling and occu-
pancy rate within the service will increase the complexity of
the whole system. Its scalability, stability, and fault tolerance
are difficult to meet the requirements of smart manufactur-
ing. Therefore, the industrial software architecture based on

Y. Liu, B. Yang (Corresponding author), Y. Wu, C. Chen, and X. Guan are
with the Department of Automation, Shanghai Jiao Tong University, Shanghai
200240, China; Key Laboratory of System Control and Information Process-
ing, Ministry of Education of China, Shanghai 200240, China; Shanghai
Engineering Research Center of Intelligent Control and Management, Shang-
hai 200240, China (e-mail: liu953973860@sjtu.edu.cn; bo.yang@sjtu.edu.cn;
5wuuy5@sjtu.edu.cn; cailianchen@sjtu.edu.cn; xpguan@sjtu.edu.cn).

microservices has been widely concerned [6], [7]. Through
the microservice architecture, a complete service can be
split into multiple loosely coupled microservices. Different
microservices are logically independent and have a high
degree of flexibility, scalability, and fault tolerance, which
can well adapt to the requirements of smart manufacturing.

To meet the high requirements of computation-intensive
tasks for real-time performance and service efficiency in
smart manufacturing, edge computing-oriented microser-
vice platforms are emerging [8], [9], [10], [11], [12]. At
present, container technologies represented by Docker [13]
and container orchestration tools represented by Kubernetes
[14] are becoming mainstream solutions for microservice
deployment and maintenance on edge platforms. According
to different service requests and deployment strategies, each
microservice which is packaged into a Docker image can be
deployed to edge servers through container orchestration
tools.

In the containerized deployment of microservices, ser-
vice efficiency is an important indicator for evaluating the
quality of the deployment solution. Service efficiency is
mainly affected by two aspects. One is the startup time
of microservices. It mainly depends on the pull delay of
Docker images which are stored in the cloud through
different image layers [15]. When a microservice needs
to be provided locally, the edge server will pull a non-
local container image containing all required layers from
the cloud. Due to limited network bandwidth, image pulls
incur a corresponding downlink delay. A comprehensive
research shows that with a bandwidth of 100Mbps, the
average startup time of a single image is about 20.7 seconds,
while the average image pull delay is about 15.8 seconds,
accounting for 76.6% of the average startup time [16]. Image
pull delay has become a non-negligible factor affecting
container startup time, which in turn affects the efficiency of
service response. The other is the communication overhead
between microservices. It depends on the amount of data
communicated between microservices. An industrial appli-
cation can be completed by multiple microservices deployed
on one or more edge servers [17]. These microservices can be
called microservice chains, and there will be frequent data
exchanges between microservices in the same microservice
chain [18]. A large amount of data transmission between
microservices will cause high transmission delay, which will
affect the service response efficiency.

ar
X

iv
:2

21
2.

14
18

3v
1

 [
ee

ss
.S

Y
]

 2
9

D
ec

 2
02

2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Due to the above two aspects, it is very important to
improve service efficiency through resource sharing. There
are two types of resource sharing strategies for the improve-
ment of service efficiency. One of the strategies for resource
sharing is layer sharing [15]. Docker natively supports the
sharing of layers. If the microservices deployed on the same
edge server use the same image layer, the layer will not be
pulled repeatedly when pulling images. This layer can be
shared by all microservices on the server. The image pull
delay can be effectively reduced by layer sharing, thereby
improving the startup speed and service response efficiency
of microservices. The other strategy for resource sharing
is chain sharing [18], [19], which can be defined as the
data sharing of microservices deployed on the same server.
In the microservice chain, there is frequent data transfer
between two adjacent microservices. If two microservices
are deployed on the same server, the data can be directly
accessed through chain sharing by the next microservice
without multi-hop transmission of data. The delay and
packet loss caused by data transmission can be reduced by
chain sharing.

However, due to the limited resources of edge servers,
it is impossible for all microservices to be deployed on
the same edge server. Therefore, it is necessary to find an
optimal microservice deployment strategy for the trade-off
between layer sharing and chain sharing. Besides service
efficiency, due to the limited resources of edge servers,
the microservice deployment strategy can not make full
use of different resources (such as computing and storage
resources) at the same time, resulting in idle computing
resources. Therefore, a method is also needed to reasonably
allocate resources to different microservices deployed on a
server and maximize the utilization of resources.

Aiming at resource sharing and maximizing resource
utilization problems among microservices, the deployment
of microservices mainly faces the following difficulties. 1)
How to model the layered structure of the microservice im-
age to accurately describe the relationship between the mi-
croservice image and the container layer. 2) How to describe
the chain structure of microservices and the communication
between microservices. 3) How to balance layer sharing
and chain sharing to establish an optimization problem to
achieve the best deployment strategy. 4) How to reallocate
resources to microservices deployed on edge servers to
make full use of computing resources. In this paper, we
study the microservice deployment problem considering
microservice layer sharing and chain sharing. The prob-
lem is modeled as an integer programming problem that
minimizes image pull delay and communication overhead.
Based on this problem, a microservice deployment strategy
and resource redistribution scheme are proposed. The main
contributions of this work are as follows:
1) We describe the layered structure and chain structure

of microservices through the same model. An integer
programming problem is established to minimize the
image pull delay and communication overhead.

2) Through model reconstruction, we prove that the in-
teger programming problem can be transformed into
an integer quadratic programming problem with linear
constraints. The optimal solution is obtained by using
the successive convex approximation (SCA) method. This

method can effectively balance the image pull delay and
communication overhead.

3) A resource redistribution algorithm for edge servers is
proposed to make full use of idle computing resources.

4) Through experiments, the results are evaluated in mul-
tiple dimensions, such as image pull delay and inter-
service communication overhead. These experiments
demonstrate the effectiveness of the proposed method.
The remainder of this paper is organized as follows. Sec.

2 briefly reviews the related literature. In Sec. 3, the layered
structure and chain structure of the system are modeled, and
the problem formulation is given. Sec. 4 solves the proposed
problem. Sec. 5 proposes a resource redistribution algorithm
for edge servers. Sec. 6 evaluates the results of the proposed
method. Sec. 7 discusses the limitations and future work.
Sec. 8 concludes the paper.

2 RELATED WORKS

In this section, we discuss current research on the deploy-
ment of microservices.

In recent years, optimizing the cost and improving mi-
croservice response efficiency have received wide attention.
Herrera et al. [20] designed a distributed microservice de-
ployment framework named DADO to optimize the re-
sponse time of microservices. Deng et al. [21] and Chen
et al. [22] proposed algorithms to solve the cost-aware
microservice deployment problem, they considered appli-
cation deployment cost and service migration cost, respec-
tively. Fadda et al. [23] provided an approach for supporting
the deployment of microservices in multi-cloud environ-
ments to optimize the quality and cost. Zhao et al. [24] de-
veloped a cost-aware elastic microservice deployment algo-
rithm to solve the container-based microservice deployment
problem. The above researchers have conducted sufficient
research on service response efficiency and service quality.
However, these studies do not consider the characteristics
of microservices, such as the chain structure of multiple
microservices and the layered structure due to containerized
deployment.

From the perspective of the chain structure, deployment
strategies become more complex due to the dependencies
between microservices. In general, a microservice chain can
be modeled as a directed acyclic graph [25], [26]. Wang et al.
[17] and Li et al. [27] proposed algorithms to solve latency-
aware microservice deployment problems. Armani et al. [28]
proposed a cost-effective workload distribution strategy for
microservice-based applications considering fault tolerance
and load balancing of microservice chains. Sasabe et al.
[29] considered the service chaining and function placement
problems to optimize the total delay. Lv et al. [18] considered
the containerized deployment of microservices, and a chain
sharing deployment strategy is proposed to minimize the
communication overhead. The above research focuses on
the chain structure and chain sharing of microservices,
but it does not take into account the layered structure in
containerized deployments of microservices.

For the layered structure, researchers have focused on
how to reduce the latency of image pulling by reducing
image size or utilizing layer sharing of images. Lou et al.
[30] considered layer sharing among images and proposed

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1: An example of layer sharing and chain sharing deployment strategies

a layer-aware scheduling algorithm. Gu et al. [31] designed
a microservice deployment and request scheduling strat-
egy based on layer sharing and used an iterative greedy
algorithm to obtain the optimal strategy to improve the
throughput of microservices. Gu et al. [32] also investigated
the problem of how to collaboratively deploy microser-
vices by incorporating both intra-server and inter-server
layer sharing to maximize the edge throughput. The above
research fully considers the layer sharing strategy in the
containerized deployment of microservices, but does not
consider the sharing strategy in the presence of the chain
structure between microservices.

Although the existing schemes have considered optimiz-
ing the efficiency and cost of microservice deployment in
terms of the layered structure and chain structure, respec-
tively, there are still some challenging problems to be solved.
First, in complex intelligent manufacturing scenarios, the
layered structure and chain structure usually coexist. In
this case, the deployment strategies of layer sharing and
chain sharing will affect each other, which further increases
the difficulty of finding an effective deployment strategy.
Secondly, an uneven deployment strategy will lead to idle
server resources due to inconsistent server resources re-
quired by different microservices. In order to solve these
problems, we propose a microservice deployment scheme
that comprehensively considers layer sharing and chain
sharing. It can both reduce the delay of image pulling and
the communication overhead. The idle server resources can
also be fully utilized. Our scheme can effectively improve
the operating efficiency of microservices. To the best of
our knowledge, there is no research that comprehensively
considers the two sharing methods.

3 SYSTEM MODELING AND PROBLEM FORMULA-
TION

3.1 A simple example

First, we show the two strategies of layer sharing and chain
sharing through a simple microservice deployment model.
As shown in Fig. 1, we consider two applications composed
of two and three microservices, respectively. We denote the
ith microservice in application k as mski. Each microservice
image consists of a different number of image layers. The
bandwidth between the three servers and the cloud server
is 120 MB/s, and the two adjacent servers can be reached
with a single hop. Under the layer sharing deployment
strategy, the same image layer on the same edge server
can be shared. Therefore, the size of the image layer to be
pulled is 1617.48 MB, and the total download time is 13.479
seconds. However, the total communication data is 1031 KB
because of communication between servers. Under the chain
sharing deployment strategy, the total communication data
is 0 KB since the microservices in the same chain are all
deployed on the same server. The size of the image layer
to be pulled is 2283 MB because there is no layer sharing,
and the total pull delay is 19.025 seconds. When considering
both chain sharing and layer sharing, we can get the result
shown in Fig. 1(c). The size of the image layer to be pulled
is 1758 MB, the total download time is 14.65 seconds, and
the total communication data is 315 KB. These data can be
found in Table 1. It can be seen that different deployment
strategies have a significant impact on image pull delay and
communication overhead. If layer sharing and chain sharing
can be both considered, we will get low image pull delay
and low communication overhead at the same time.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1: Comparison about layer sharing and chain
sharing

image pull delay communication overhead
layer sharing 13.479s 1031 KB
chain sharing 19.025s 0 KB
both 14.65s 315 KB

3.2 System model
We consider an intelligent manufacturing system, which
has M production devices and N edge servers. We de-
fine device set as M = {1, 2, · · · ,M} and server set as
N = {1, 2, · · · , N}. A cloud server is deployed at the re-
mote end to store the microservice images. Each production
device is connected to the nearest edge server. Each edge
server has limited computing and storage resources, and
a certain number of microservices can be deployed on it.
The computing and storage resources of edge server n are
denoted as CCn and CSn , and the bandwidth between cloud
server and edge server n is bcloudn .

Suppose there are several industrial applications, and
application set is defined as K = {1, 2, · · · ,K}. Each appli-
cation is composed of multiple microservices. The microser-
vice set in the kth application is Ak = {1, 2, · · · , Ak}, where
Ak is the amount of microservices in the kth application.
Each application can handle service requests from produc-
tion device. We use mski to denote the ith microservice in
application k, and uki to denote the computing resources
requested by microservice mski.

All microservice images are stored in the microservice
image library of the cloud server, and are pulled by the
edge server according to the deployed microservices. Every
microservice image consists of some shareable layers and
some non-shareable layers. We use set L = {1, 2, · · · , L}
to represent all layers of different size and Sl ∈ R+ to
represent the size of layer l ∈ L. In this way, each
microservice can be composed of one or more layers in L,
and Ekil ∈ {0, 1} can be used to indicate whether mski

contains the lth layer.Ekil = 1 represents thatmski contains
the lth layer.

Each server will receive different service requests and
data. If the expected microservice is deployed on the server
at this time, the service request can be processed directly.
If the expected microservice is not deployed on the server,
the request and data need to be transmitted to another edge
server through multi-hop transmission. Due to the different
geographical locations, the hops in communication between
different servers is also different. We defineDnn′ as the hops
of requests or data transmitted from server n to server n′,
which can be obtained by the shortest communication path
between the two servers. It is obvious that Dnn′ = Dn′n,
Dnn = 0. We can use a matrix D to represent the multi-hop
connection between all servers. The notations and variables
commonly used in this paper are summarized in Table 2.

D =

0 D12 D13 · · · D1N

D21 0 D23 · · · D2N

D31 D32 0 · · · D3N

...
...

...
. . .

...
DN1 DN2 DN3 · · · 0

TABLE 2: Commonly used notations and variables

Symbol Description
M,M devices and the set of devices
N,N servers and the set of servers
K,K applications and the set of applications
L,L layers and the set of layers
Ak,Ak microservices in the kth application and the set of

microservices
CC

n the computing resources of edge server n
CS

n the storage resources of edge server n
bcloudn the bandwidth between cloud server and edge

server n
mski the ith microservice in application k
uki the computing resources requested by microser-

vice mski

Sl the size of layer l
Ekil whether mski contains the lth layer
Dnn′ the hops of requests or data transmitted from

server n to server n′

xkin whether mski is deployed in server n
dln whether the layer l is pulled to edge server n

3.3 Problem Formulation

3.3.1 Microservice deployment and layer sharing

We define xkin ∈ {0, 1} to represent the deployment of mski,
and xkin = 1 to represent that the microservice is deployed
on the edge server n, otherwise not. Due to the layered
structure of microservices, once a microservice is deployed
on edge server n, all layers contained in the microservice
image need to be pulled to server n. We use the variable
dln ∈ {0, 1} to represent whether the layer l is pulled to
edge server n, and dln = 1 indicates that the lth layer needs
to be downloaded to the edge server n, otherwise not.

Since each microservice can only be deployed on a
unique server, we can get the following constraints:∑

n∈N
xkin = 1,∀k ∈ K,∀i ∈ Ak (1)

If microservices deployed on the same server can share
the same layer, the layer only needs to be downloaded once.
Therefore, dln and xkin satisfy the following constraints:

dln = min {
∑
k∈K

∑
i∈Ak

xkin E
kil, 1},∀l ∈ L,∀n ∈ N (2)

Due to the limited storage resources, the layer size of the
deployed microservices needs to be smaller than the storage
resources of edge servers. So we can get the following
constraints: ∑

l∈L
dlnS

l ≤ CSn ,∀n ∈ N (3)

Due to the limited computing resources, the total com-
puting resource of all microservices deployed on a server
needs to be less than the computing resource of the server.
So we can get the following constraints:∑

k∈K

∑
i∈Ak

xkin u
ki ≤ CCn ,∀n ∈ N (4)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

For each server, all layers deployed on the server need
to be pulled from the cloud. The image pull delay of server
n can be expressed as follows:

Tn =

∑
l∈L d

l
nS

l

bcloudn

(5)

3.3.2 Communication overhead and chain sharing

We model the microservice chain as a directed weighted
acyclic graph to reveal the impact of communication data
on the deployment of microservices. Taking an application
consisting of four microservices as an example, the modeled
directed weighted graph is shown in Fig. 2. We use the inter-
action weightwkij to represent the size of the communication
traffic between each two microservices mski and mskj .

Fig. 2: Directed weighted graph for application k

The interaction graph can be written in the form of a
matrix. For application k, its interaction matrix is defined as
follows:

wk =

 w
k
11 · · · wk1Ak

...
. . .

...
wkAk1

· · · wkAk,Ak

where wkij is non-zero value only when mski and mskj
are connected. For example, wk of the microservice chain
shown in Fig. 2 can be defined as follows:

wk =

0 wk12 0 wk14
0 0 wk23 0
0 0 0 0
0 0 0 0

Based on the interaction graph, we can calculate the com-

munication cost. Multi-hop data transmission between two
adjacent microservices is not required if they are deployed
on the same edge server. To calculate the total amount of
data transferred between microservices in an application,
we first need to find the hops between the servers where
any two microservices are deployed. For the servers where
any two microservices mski and mskj are deployed, we
define Hop (k, i, j) =

∑
n∈N

∑
n′∈N x

ki
n x

kj
n′Dnn′ to calculate

the hops. For any application k, its communication overhead
can be expressed as follows:

Rk =
∑
i∈Ak

∑
j∈Ak

wkijHop (k, i, j)

=
∑
i∈Ak

∑
j∈Ak

(
wkij

∑
n∈N

∑
n′∈N

xkin x
kj
n′Dnn′

)
(6)

3.3.3 The virtual microservice
Each application k originates from a service request on a
production device. Each generated service request is trans-
mitted via the network to the edge server closest to the
production device at first. We define the number of the
source device for the application k as sourcek. For each
sourcek, we find its directly connected edge server Nk

and define a virtual initial microservice msk0 to describe
the impact of request generation location on microservice
deployment. We use msk0 to denote the service requests
generated on device sourcek. The microservice set in the kth
application is modified as Ak = {0, 1, 2, · · · , Ak}. Therefore,
we should add the virtual initial microservice to the interac-
tion diagram. Fig. 2 can be modified as follows:

Fig. 3: Modified directed weighted graph for application k

The microservice msk0 does not actually exist, so its
required computing resource is uk0 = 0 and does not
contain any layers. When its deployment location is fixed,
we can get the following constraints:

xk0Nk = 1,∀k ∈ K (7)

3.3.4 Image pull delay and communication overhead mini-
mization problem
The goal of microservice deployment is to minimize image
pull delay and communication overhead under the con-
straints of device resources and service characteristics. The
optimization problem can be expressed as follows:

P1: min
x,d

T,R (8)

s.t. (1), (2), (3), (4), (7)

xkin , d
l
n ∈ {0, 1} (9)

where T =
∑
n∈N Tn is the total image pull delay. R =∑

k∈KR
k is the total communication overhead. This prob-

lem is a multi-objective optimization problem and there is a
multiplicative form of variables in Rk. Therefore, the prob-
lem is difficult to solve. In next section, we will transform
the problem to a single-objective optimization problem and
give a solution.

4 MICROSERVICE DEPLOYMENT SCHEME BASED
ON SCA
4.1 Problem transformation
We vectorize all variables through model reconstruction to
make the problem clearer and easier to solve. Then we con-
vert all constraints to linear constraints. Finally, the problem
is transformed into a single-objective integer quadratic pro-
gramming problem through an additive weighted model.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

4.1.1 Image pull delay
Consider the first part of problem P1:

T =
∑
n∈N

∑
l∈L d

l
nS

l

bcloudn

(10)

which is a linear form. We define d =
[
dT1 , · · · ,dTN

]T
,

S =
[
S1, · · · , SL

]T
, and M =

[
ST

bcloud
1

, · · · , ST

bcloud
N

]
. Then the

calculation of the total pull delay can be converted to

T = Md (11)

4.1.2 Communication overhead
Consider the second part of problem P1:

R =
∑
k∈K

∑
i∈Ak

∑
j∈Ak

(
wkij

∑
n∈N

∑
n′∈N

xkin x
kj
n′Dnn′

)
(12)

We can also define xki =
[
xki1 , x

ki
2 , · · · , xkiN

]T
, xk =[(

xk1
)T
, · · · ,

(
xkAk

)T]T
, and x =

[(
x1
)T
, · · · ,

(
xK
)T]T

.
We can get ∑

n∈N

∑
n′∈N

xkin x
kj
n′Dnn′ =

(
xkj
)T

Dxki (13)

Let� be the Hadamard product of the matrix and define

Wk = wk �

D · · · D
...

. . .
...

D · · · D

Ak×Ak

(14)

W =

W
1 · · · 0

...
. . .

...
0 · · · WK

K×K

(15)

Then the calculation of the communication overhead can
be converted to

R = xTWx (16)

4.1.3 Constraints
Considering equation (2), the original constraint is nonlin-
ear. We can turn it into a linear constraint by two new
constraints:

dln ≤
∑
k∈K

∑
i∈Ak

xkin E
kil (17)

dln ≥
∑
k∈K

∑
i∈Ak

xkin E
kil

Z
(18)

where Z is an arbitrarily large constant greater than 1.
Equations (17) and (18) can be equivalent to constraint (2)
because dln is a binary variable. Therefore, all constraints in
problem P1 are transformed into linear constraints.

For linear constraints, we can also vectorize all con-
straints in the same way as in Sec. 4.1.1, and the transformed
constraints are

Qx = b1 (19)
Hx = b2 (20)
d ≤ Yx (21)

d ≥ Yx

Z
(22)

Sd ≤ CS (23)

Gx ≤ CC (24)

Constraints (19)-(24) correspond to (1), (7), (17), (18), (3),
(4) respectively. Appendix A shows the detailed values of
matrices Q,b1,H,b2,Y,S,CS ,G,CC . Problem P1 can be
transformed into

P2: min
x,d

T,R (25)

s.t. (9), (19)− (24)

where T = Md, R = xTWx.

4.1.4 Single objective optimization problem
The original problem has two optimization objectives. We
use an additive weighting model to turn the original prob-
lem into a single-objective problem. The utility function is
as follows:

F (x,d) = θ
T − Tmin

Tmax − Tmin
+ (1− θ) R−Rmin

Rmax −Rmin
=

θ

Tmax − Tmin
Md +

1− θ
Rmax −Rmin

xTWx

+ Const (26)

where Const = − θTmin

Tmax−Tmin
− (1−θ)Rmin

Rmax−Rmin
. Tmax and

Rmax represent the maximum value of image pull delay
and communication overhead, respectively. Tmin and Rmin
represent the minimum value of image pull delay and com-
munication overhead. θ ∈ [0, 1] represents the preference
for image pull delay and communication overhead. Finally,
the original optimization problem can be transformed into
a new optimization problem as follows:

P3: min
x,d

F (x,d) (27)

s.t. (9), (19)− (24)

This problem is an integer quadratic programming prob-
lem. The solution of P3 is the weakly Pareto optimal solution
of the original problem. If θ ∈ (0, 1), the solution of P2 is the
Pareto optimal solution. The proof can be found in [33].

4.2 Solution based on successive convex approxima-
tion

Since W is not a positive semi-definite matrix, the problem
is a non-convex quadratic programming, which is difficult
to solve directly. First, we transform P3 into a convex op-
timization problem. Then the problem can be solved based
on SCA [34]. Let Q = W + WT , then minimizing F (x,d)
is equivalent to minimize

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

U(x,d) = C1Md +
1

2
C2x

TQx (28)

where C1 = θ
Tmax−Tmin

, C2 = 1−θ
Rmax−Rmin

. For the matrix
Q, set the eigenvalues of the matrix as λ1, λ2, · · · , λn. We
can define λQ = max{|λi|}, and the matrix Q can be split
as follows:

Q = Q + λQI− λQI = P−N (29)

where P = Q + λQI, N = λQI. Equation (28) becomes

U(x,d) = U1(x,d)− U2(x) (30)

where U1(x,d) = C1Md + 1
2C2x

TPx is convex, and
−U2(x) = − 1

2C2x
TNx is nonconvex. Next, we need to

make a convex approximation to −U2(x) at x̄, where x̄ is
a point in the feasible set of P3. Let

l(x) = −U2(x̄)−∇U2(x̄)T (x− x̄)

= −C2x̄
TNx +

1

2
C2x̄

TNx̄ > −U2(x) (31)

Finally, we get the convex approximation problem

P4: min Uqp(x,d; x̄, d̄)

= U1(x,d) + l(x)

= C1Md +
1

2
C2x

TPx

− C2x̄
TNx +

1

2
C2x̄

TNx̄ (32)

s.t. (9), (19)− (24)

P4 is a convex quadratic programming problem and can
be solved directly with the commercial solver. So we can
solve P3 by SCA [34] algorithm, as shown in Algorithm 1.

4.3 Convergence analysis

In this subsection, we show that the SCA algorithm can
reach the optimal solution of P3.

Theorem 1. If x̄, d̄ is the optimal solution to P4, then x̄, d̄ is the
KKT point of P3.

Proof. Proof is provided in Appendix B.

Theorem 2. The problem P3 can get a stationary solution by
Algorithm 1.

Proof. Proof is provided in Appendix C.

According to Theorem 1 and Theorem 2, we can get that
Algorithm 1 can converge to a stationary point and the point
is the KKT point of P3. Since the original problem is non-
convex, the global optimal solution cannot be obtained. The
solution obtained by Algorithm 1 based on the SCA method
[34] is the approximate optimal solution of the original
problem.

Algorithm 1 Successive convex approximation algorithm

1: Find a feasible point x0 and d0, choose a stepsize α ∈
(0, 1], and set r = 0, ε > 0

2: repeat
3: zr+1

x , zr+1
d = arg minUqp(x,d;xr,dr)

4: xr+1 = xr + α(zr+1
x − xr)

5: dr+1 = dr + α(zr+1
d − yr)

6: r ← r + 1
7: until ‖xr − xr−1‖+ ‖dr − dr−1‖ 6 ε

5 RESOURCE REALLOCATION SCHEME

We can get a microservice deployment strategy for layer
sharing and chain sharing from Sec. 4. However, the com-
puting resources of all servers will not be fully utilized due
to the constraints of computing resources and storage re-
sources of edge servers. Edge servers may face the problem
that one resource is used up while the other resource is still
available. It is a waste of spare resources. In this section, we
will propose a server resource redistribution method, which
can fully utilize the spare resources of the server.

5.1 Problem formulation

After a microservice is deployed, the deployment location
of the microservice remains unchanged until the end of the
microservice. Assume that the computing resource of server
n is CCn , and J microservices are deployed on it. These
microservices can be described by a set J = {1, · · · , J}. The
minimum computing resource requested by microservice
j is uj , and the computing resource actually allocated to
microservice j is fj . The computing resources allocated
to the microservice must be higher than the computing
resources it requests, so there is a constraint fj > uj .

Assuming that the amount of data that the microservice
needs to process is Data. The original processing time
required is told = Data

uj
, and the new processing time is

tnew = Data
fj

. The ratio of the new processing time to the
original processing time is tnew

told
=

uj

fj
. So we define the

evaluation function ej =
uj

fj
to evaluate the impact of al-

located computing resources on the processing efficiency of
microservices. Then we can define the optimization problem
as follows

P5: minU =
∑
j∈J

ej (33)

s.t. fj > uj ,∀j ∈ J (34)∑
j∈J

fj 6 CCn (35)

Constraint (35) means that the total computing resources
allocated need to be less than the total resources of the
server.

5.2 Solution based on Lagrange Multiplier Method

The Lagrangian function of P5 is constructed as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 2 Greedy deployment strategy

1: Normalize the communication data and layer size of

each microservice by: wkij,new = θ
wk

ij−wmin

wmax−wmin
, Slnew =

(1− θ) Sl−Smin

Smax−Smin

2: Sort wkinew and Slnew. The larger the value is, the higher
the priority will be. Each value corresponds to two
microservices with a large amount of communication
data or several groups of microservices with a larger
image layer. Get the sorted list List

3: for ms in List do
4: Check if these microservices in ms have been de-

ployed
5: if all microservices have been deployed then
6: continue
7: else
8: if microservices in ms are from wkij,new then
9: Find the closest server n where the microservice

is deployed and deploy microservice in n.
10: if server n has no enough resource then
11: find a closet server from server n to deploy.
12: end if
13: else
14: Deploy microservice in the server which has max-

imum bcloudn and enough resource
15: end if
16: end if
17: end for
18: Output deployment strategy

L(fj , λi, µ) =
∑
j∈J

ej+
∑
j∈J

λi(uj−fj)+µ(
∑
j∈J

fj−CCn) (36)

Its KKT condition is

∇Lfj (fj , λi, µ)

= −
∑
j∈J

uj

f2
j

+
∑
j∈J λifj + µJ = 0

λi(uj − fj) = 0,∀i ∈ J
µ(
∑
j∈J fj − CCn) = 0

λi > 0,∀i ∈ J
µ > 0

(37)

By solving (37), we can get

fj =
uj∑
j∈J uj

CCn (38)

A simple explanation is that each microservice is pro-
portionally multiplied by the ratio of the total computing
resources to the initial request resources. In this way, we can
redistribute the computing resources and make full use of
the computing resources.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance to verify the
effectiveness of our proposed method. We use Gurobi [35] to

solve the integer quadratic programming problem P4. The
proposed method is compared with five methods:

• Greedy Deployment Strategy [32] (GDS): A deploy-
ment strategy based on the greedy strategy in [32].
We modified it to fit the experiments in this paper.
This algorithm works by weighting the size of the
layer and chain. The steps of the algorithm are shown
in Algorithm 2.

• Layer-match Scheduling [36] (LS): For each microser-
vice, select an edge server with most amount of
its image layers stored locally and sequence layers
according to the assignment order.

• Kubernetes Deployment Strategy [37] (K8S): Kuber-
netes default deployment policy schedules microser-
vices to edge servers with the required images stored
locally, otherwise, to the edge server with the least
total download size.

• Layer-sharing Deployment Strategy (LDS): A de-
ployment strategy that only considers layer sharing.
It is a special case of the proposed method when
θ = 1.

• Chain-sharing Deployment Strategy (CDS): A de-
ployment strategy that only considers chain sharing.
It is a special case of the proposed method when
θ = 0.

We use Python to conduct simulation experiments on
multiple servers to evaluate the performance of the pro-
posed method under different conditions. To accurately
evaluate the effectiveness in the real world, we conduct
experiments with five real edge servers. Furthermore, we
carried out large-scale simulation tests on 15 servers to
evaluate the adaptability of the algorithm in large-scale
scenarios.

6.1 Simulation experiment
6.1.1 Experimental environment
The experimental platform is Python 3.9.12. The experi-
ments are carried out on a CentOS 7 system equipped
with Inter 4210R, 2.40GHz, and 64 GB RAM. We simulated
a smart manufacturing production scenario with up to 9
edge servers and 36 microservices. The average storage
resource of edge servers is 8 GB, the average computing
resource (CPU frequency) of each server is 1.8 GHz with
4 cores, and the bandwidth between the server and the
cloud server is 80-200 MB/s. The hop of adjacent servers
is 1, and the element values of the D matrix vary from 0
to 5, which means the maximum hop of servers is 5. Each
application consists of 2-6 microservices, and the communi-
cation data between microservices ranges from 100-2000 KB.
The computing resource requirements of each microservice
range from 0.002 GHz to 1.0 GHz. The number of layers
of each microservice is in the range of 6-13. By dividing
these layers into shareable and unshareable layers, each
image can be regarded as a microservice composed of 1-
2 layers. This can reduce the difficulty of calculation. The
size of each layer varies from 1-1220 MB. The above data
are randomly generated in each experiment to verify the
stability of the proposed method. The specific experimental
parameter settings are shown in Table 3.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

1 1.3 1.6 1.9 2.2 2.5

Production Scale

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e(

 =
 0

.5
)

Proposed Method

GDS

LS

K8S

LDS

CDS

(a) Different production scale

16 20 24 28 32 36

Amount of Microservices

0

0.2

0.4

0.6

0.8

1

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e(

 =
 0

.5
)

Proposed Method

GDS

LS

K8S

LDS

CDS

(b) Different microservices

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The Weight

0

0.2

0.4

0.6

0.8

1

1.2

O
b
je

ct
iv

e
fu

n
ct

io
n
 v

al
u
e

Proposed Method

GDS

LS

K8S

LDS

CDS

(c) Different θ

Fig. 4: Objective function value with different condition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

300

320

340

360

380

400

420

440

460

480

500

520

T
o

ta
l

im
ag

e
p

u
ll

 d
el

ay
 (

s)

Proposed Method

GDS

LS

K8S

LDS

CDS

(a) Total image pull delay with different θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

T
o

ta
l

co
m

m
u

n
ic

at
io

n
 o

v
er

h
ea

d
 (

M
B

)

Proposed Method

GDS

LS

K8S

LDS

CDS

(b) Total communication overhead with different θ

Fig. 5: Total image pull delay and total communication overhead with different θ

TABLE 3: Experimental parameter

Symbol Value
K 4-9
N 4-9
Ak 2-6
CC

n 1.4-2.2 GHz
CS

n 4-16 GB
bcloudn 120-200 MB/s
Sl 1-1220 MB
uki 0.002-1.0 GHz

6.1.2 Experimental results
Fig. 4 shows the objective function value of different meth-
ods. Fig. 4(a) shows the objective function value in different
production scale. We take the minimum amount of microser-
vices msmin = 12 and the amount of servers nmin = 4 in
this experiment as the benchmark values. Then the scale can
be described as Scale = 1

2 (Nms

msmin
+ Nn

nmin
), whereNms is the

amount of microservices, and Nn is the amount of servers.
As can be seen from the figure, our proposed deployment
strategy can minimize the objective function compared with
the other five methods. The proposed method can also
reach relatively stable results under different numbers of mi-
croservices and servers. The GDS method can also achieve
a good deployment strategy by weighting the layer size

and communication overhead. However, due to its greedy
strategy, the optimal solution may not always be obtained.
The LDS method and the CDS method cannot make the
objective function optimal because they only consider one
aspect of resource sharing. The LS and K8S methods only
consider layer sharing and can not get a better result due to
the high communication overhead.

Fig. 4(b) shows the objective value with different mi-
croservices and nine servers. It simulates different produc-
tion loads. The higher the number of microservices is, the
higher the load on one server will be. We can see that
the proposed deployment strategy can achieve the optimal
objective function value, and the value fluctuates within
a small range under different microservice loads, which
shows that the proposed method is suitable for different
load conditions and has good stability. The results of other
methods are worse than the proposed method.

Fig. 4(c) shows the objective value with different θ when
there are 9 servers and 36 microservices on average. It
simulates the effect of different weights for microservice
image pull delay and communication overhead. In this
figure, the function values of the LDS method, LS method,
and K8S method change linearly because they only consider
layer sharing of the objective function. And CDS method
only considers chain sharing of the objective function. So
the changes of θ can not impact the deployment strategy.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Figure of edge servers (b) Topology of edge servers

Fig. 6: Figure and topology of edge servers

4 5 6 7 8

Storage capacity (GB)

220

260

300

340

380

420

T
o
ta

l
im

ag
e

p
u
ll

 d
el

ay
 (

s)

Proposed Method

GDS

LS

K8S

LDS

CDS

(a) Delay with different storage ca-
pacity

4 5 6 7 8

Storage capacity (GB)

0

4

8

12

16

20

T
o
ta

l
co

m
m

u
n
ic

at
io

n
 o

v
er

h
ea

d
 (

M
B

)

Proposed Method

GDS

LS

K8S

LDS

CDS

(b) Overhead with different stor-
age capacity

Fig. 7: Delay and overhead with different storage capacity

The proposed method can achieve optimal results no matter
what value θ takes. When θ = 0, there is only the chain
sharing part in the objective function, and the objective
function value is the same as the CDS method. When θ = 1,
there is only the layer sharing part in the objective function,
and the objective function value is the same as the LDS
method.

Fig. 5 shows the image pull delay and communication
overhead with different θ. Since the LDS, CDS, LS, and
K8S methods are unaffected by θ, the values of these two
strategies do not change a lot in the two figures. The
fluctuation of the line is more due to randomly generated
microservice data. Fig. 5(a) shows the total image pull delay
with different θ. The higher the weight θ, the lower the
image pull delay of both the proposed strategy and the GDS
method. When θ = 1, the proposed deployment strategy
can achieve the same result as the LDS method. The image
pull delay can be reduced by 140s compared to the CDS
method. The proposed strategy can reduce the total image
pull delay by 52s on average compared to the GDS method.
Fig. 5(b) shows the total communication overhead with
different θ. The lower the weight θ, the lower the total
communication overhead of both the proposed strategy and
the GDS method. When θ = 0, the proposed deployment
strategy can achieve the same result as the CDS method.
The total communication overhead can be reduced by 80 MB
compared to the LDS method. The proposed strategy can
reduce total communication overhead by 10 MB on average
compared to the GDS method.

4.8 5.6 6.4 7.2 8

Computation capacity (GHz)

200

250

300

350

400

450

T
o
ta

l
im

ag
e

p
u
ll

 d
el

ay
 (

s)

Proposed Method

GDS

LS

K8S

LDS

CDS

(a) Delay with different computing
capacity

4.8 5.6 6.4 7.2 8

Computation capacity (GHz)

0

5

10

15

20

25

T
o
ta

l
im

ag
e

p
u
ll

 d
el

ay
 (

s)

Proposed Method

GDS

LS

K8S

LDS

CDS

(b) Overhead with different com-
puting capacity

Fig. 8: Delay and overhead with different computing
capacity

1 2 3 4 5 6 7

Microservice number

0

5

10

15

20

25

30

35

40

45

C
o

m
p

u
ti

n
g

 t
im

e
(s

)

before reallocation after reallocation

(a) #1

1 2 3 4 5 6 7

Microservice number

0

2

4

6

8

10

12

14

16

18

20

C
o

m
p

u
ti

n
g

 t
im

e
(s

)

before reallocation after reallocation

(b) #2

Fig. 9: The impact of resource reallocation strategy on the
computing time of microservices

6.2 Experiment with Real Edge Servers

6.2.1 Experimental environment

We further conduct experiments with five edge servers in
real world to evaluate the effectiveness of our method. The
servers are shown in Fig. 6(a) and the topology of servers
is shown in Fig. 6(b). Each server has an i5-8250U CPU,
8G RAM, and is equipped with Docker CE. Communication
between servers is carried out using the TCP protocol. We
select 23 microservices from Docker Hub. The image size
of these microservices is in the range of 1.24-1098 MB, and
the computation resource requirement is in the range of 0.2-
1.4 GHz. The number of layers of each microservice is in
the range of 4-11. We simulate servers with different storage
and resource constraints by limiting the resource usage of
docker. The experimental results are shown in the following
figures. Each data point in the figures is the average of
multiple experiments.

6.2.2 Experimental results

Fig. 7 shows the total image pull delay and communication
overhead under different storage capacities with θ = 0.5.
As can be seen from Fig. 7(a), the results of the proposed
method and the LDS method are very close. When storage
capacity becomes more and more sufficient, the proposed
method can significantly reduce the image pull delay com-
pared with other methods. This is because when the storage
resources are sufficient, more microservices with the same
layer can be deployed on one edge server. It can reduce
the size of the image layer to be pulled and reduce the
delay. In Fig. 7(b), the CDS method can achieve the lowest
communication overhead because it is optimized for the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 4: Data of Resource Reallocation

Microservice
number (#1)

computing
resources

(GHz)

time
(s)

resources after
reallocation

(GHz)

time
(s)

Microservice
number (#2)

computing
resources

(GHz)

time
(s)

resources after
reallocation

(GHz)

time
(s)

1 0.4 16.84 0.576 12.715 1 0.4 17.203 0.554 14.603

2 0.6 35.6 0.864 18.02 2 1 14.687 1.385 14.563

3 1.2 7 1.728 8.572 3 0.6 16.791 0.83 14.516

4 0.8 15.26 1.152 12.567 4 0.8 16.558 1.1 14.508

5 0.4 41.4 0.576 31.934 5 1.2 14.537 1.66 15.156

6 0.7 11.31 1.008 11.171 6 0.6 17.443 0.83 14.566

7 0.9 9.26 1.296 9.613 7 0.6 14.617 0.83 14.544

total 5 136.67 7.2 104.592 total 5.2 111.836 7.2 102.456

(a) Network topology

1 2 3 4 5 6 7 8 9 10

number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e(
 =

 0
.5

) Proposed Method

GDS

LS

K8S

LDS

CDS

(b) Objective function values

1 2 3 4 5 6 7 8 9 10

number

300

350

400

450

500

550

600

650

700

750

T
o

ta
l

im
ag

e
p

u
ll

 d
el

ay
 (

s)

Proposed Method

GDS

LS

K8S

LDS

CDS

(c) Total image pull delay

1 2 3 4 5 6 7 8 9 10

number

0

50

100

150

200

250

T
o

ta
l

co
m

m
u

n
ic

at
io

n
 o

v
er

h
ea

d
 (

M
B

)

Proposed Method

GDS

LS

K8S

LDS

CDS

(d) Total communication overhead

Fig. 10: Figure and topology of edge servers

microservice chain. Compared with other methods except
the CDS method, the proposed method can achieve lower
communication overhead.

Fig. 8 shows the image pull delay and communica-
tion overhead under different computing capacities with
θ = 0.5. The trend is the same as that in Fig. 7. From
Fig. 7 and Fig. 8, we can also find that the LDS method
has the best effect on image pull delay and the worst effect
on communication overhead, and the CDS method is the
opposite. This is the disadvantage of not considering both
aspects comprehensively. Different from other methods, our
proposed method can always obtain a better solution that
can better balance the image pull delay and communication
overhead.

Fig. 9 shows the impact of the resource reallocation strat-
egy on the completion time of tasks. We selected two from
five servers and showed the effect of resource reallocation
on their task computing time. The data are shown in Table
4. We can see that resource reallocation can significantly
reduce the completion time of computing tasks. In Table 4,
the total task completion time of the two servers is reduced
from 136.67 seconds and 111.836 seconds to 104.592 seconds
and 102.456 seconds, which is a reduction of 23.7% and 8.4%,
respectively. This shows that the resource reallocation strat-
egy can effectively reduce the completion time of computing
tasks and improve computing efficiency.

6.3 Large-scale Cases
To evaluate the performance of our proposed method in
a larger scale scenario [32], we consider the topology of
US NSFNET consisting of 15 edge servers as shown in
Fig. 10(a). The storage resources of each edge server are

16 GB, the computing resources are 4-core 1.6 GHz, and
the bandwidth is 80-120 MB/s. We considered up to 105
microservices selected from Docker Hub and randomly
combined them into applications. Other parameter settings
are the same as in the previous experiments.

6.3.1 Experimental results
To verify the stability of the proposed method, we con-
ducted ten experiments, and the data for each experiment
are presented in Fig. 10. Fig. 10(b) shows the objective
function value for ten experiments, it can be seen that
the proposed method has little fluctuation and can achieve
the lowest objective function value. Since the microservice
composition of each experiment is random, the results vary
drastically in Fig. 10(c) and Fig. 10(d). The proposed method
can achieve almost the same results as the LDS method
in terms of image pull delay. It can also achieve similar
results to the CDS method in terms of total communication
overhead. The results of the proposed method are also better
than other schemes.

Fig. 11 shows the ratio of image pull delay and com-
munication overhead to the baseline under different servers
and different θ. The baseline of image pull delay is defined
as the total data size in the absence of layer sharing divided
by the average bandwidth of servers. The lower the ratio
is, the higher the layer sharing rate will be. As can be
seen from the figure, our proposed method can significantly
reduce the image pull delay. The image pull delay in the
best case is only 56% of the baseline. When θ = 0.5, an
average of 65% of the baseline ratio can be achieved in the
proposed method. The baseline of communication overhead
is defined as the summation of all microservice commu-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

0.1 0.3 0.5 0.7 0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

p
o

rt
io

n
Delay(N = 5)

Overhead(N = 5)

Delay(N = 9)

Overhead(N = 9)

Delay(N = 15)

Overhead(N = 15)

Fig. 11: The ratio of image pull delay and communication
overhead to baseline in different condition

nication data. This ratio can reflect the average number
of hops between microservices. The lower the ratio is, the
higher the chain sharing rate will be. As can be seen from
the figure, our proposed method can significantly reduce
communication overhead. The communication overhead in
the best case is only 5% of the baseline. When θ = 0.5, an
average of 30% of the baseline value ratio can be achieved
in the proposed method. Moreover, The image pull delay
and communication overhead can be reduced significantly
in any server numbers, which proves the stability of our
proposed method.

Fig. 12 shows the space and time consumption of the
proposed method and GDS method to get the deployment
strategy under different servers. With the increase in the
number of servers and microservices in the network, the
amount of layers and the communication between microser-
vices is also increasing. Then the network structure becomes
more and more complex. When the amount of servers is
less than 10, the computing time of the proposed method
is less than 20 seconds and the space occupation is less
than 100 MB, which has excellent solution efficiency. In a
large-scale server network, the solution time will slow down
to about 450 seconds, and the space occupation will also
increase to 1800 MB due to the complexity of the network.
The optimal solution can still be solved in an acceptable
time because the scheduling strategy of microservices does
not change frequently in large-scale production. However,
since the proposed method is based on solving quadratic
programming problems, the time and space complexity is
higher than that of Algorithm 2. It is our future work to
further optimize the time complexity and space complexity
of the proposed method.

7 DISCUSSION

In this section, we will discuss the limitations of the pro-
posed method and the future work.

Compared with related works, our proposed method is
able to optimize the communication overhead while opti-
mizing the image pull delay. The experiments in Section. 6
also show that the proposed method can achieve the lowest
objective function value with a good trade-off between de-
lay and overhead. However, the time and space complexity

0

50

100

150

200

250

300

350

400

450

T
im

e
co

n
su

m
p

ti
o

n
 (

s)

5 6 7 8 9 10 11 12 13 14 15

Amount of Servers

0

200

400

600

800

1000

1200

1400

1600

1800

S
p

ac
e

o
cc

u
p

ie
d

 (
M

B
)

Proposed method (Space occupied)

GDS(Space occupied)

Proposed method (Time consumption)

GDS(Time consumption)

Fig. 12: Space and time consumption under different
amount of servers

of this method is high in large-scale scenarios. Although the
optimal solution can be obtained within an acceptable time,
further optimization is required in the future.

The communication overhead depends not only on the
amount of communication data, but also on the request
frequency. If the request frequency is high, the commu-
nication overhead will be very large even if the amount
of communication data at one time is small. Therefore,
we believe that the calculation of communication overhead
should consider the request frequency, that is, to consider
the product of the communication data volume and the
request frequency. However, since our method is based
on microservices not requests, we cannot directly get the
request frequency. Therefore, we believe that future work
can consider the request frequency as an input, and then
use the product of the request frequency and the amount
of communication data as the calculation of communication
overhead.

Deployed microservices are not static, and the entire
production process will include shutdown, migration, and
startup of new microservices. In the face of the dynamic
microservice deployment process, it is necessary to have
corresponding deployment algorithms to adapt to dynamic
scenarios. One possible future research direction is to use
artificial intelligence or other methods for training after the
initial deployment results such that the microservices can be
dynamically adjusted.

8 CONCLUSION

In this paper, we study the layer sharing and chain sharing
of microservices and explore a microservice deployment
scheme that can balance the two ways of resource sharing.
We build an image pull delay and communication overhead
minimization problem. We transform the problem into a
linearly constrained integer quadratic programming prob-
lem through model reconstruction and obtain the deploy-
ment strategy through a successive convex approximation
(SCA) method. Further, we propose a resource reallocation
algorithm to fully utilize the idle resources of the server.
Experimental results show that the proposed deployment
strategy can balance the two resource sharing methods of
microservices. When considering the two sharing methods

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

in balance, the average image pull delay can be reduced
to 65% of the baseline, and the average communication
overhead can be reduced to 30% of the baseline. In the
future, we will expand microservice deployment from static
scenarios to highly dynamic scenarios and try to obtain
rapid solution algorithms in large-scale scenarios.

ACKNOWLEDGMENT

This work was supported by the National Key Re-
search and Development Program of China (Grant
No.2018YFB1702300), and in part by the NSF of China
(Grants No. 61731012, 62025305, 61933009, and 92167205).

APPENDIX A
MATRIX VALUE

1)

Q =

Q
1 · · · 0

...
. . .

...
0 · · · QK

K×K

(39)

where

Qk =

q · · · 0
...

. . .
...

0 · · · q

Ak×Ak

q = [1, 1, · · · , 1]1×N

2)

b1 = [1, 1, · · · , 1]T1×
∑

k∈K Ak
(40)

3)

H =

H
1 · · · 0

...
. . .

...
0 · · · HK

K×K

(41)

where

Hk = [In×n 0 · · · 0]1×Ak

4)

b2 = [x1,0, · · · ,xK0]T (42)

where xk0 = [0, · · · , 1, · · · , 0]T , xk0Nk = 1
5)

Y = [Y1, · · · ,YN]
T (43)

where

Yn =

 P1
nV

1
1E

1 · · · P1
nV

1
LE

1

...
. . .

...
PKn VK

1 EK · · · PKn VK
L EK

K×L

Pkn =

p
N
n · · · 0
...

. . .
...

0 · · · pNn

Ak×Ak

pNn = [0, · · · , 0, 1, 0, · · · , 0]T1×N ,p
N
n (n) = 1

q = [1, 1, · · · , 1]1×N

Vk
l =

(p
L
l)
T
· · · 0

...
. . .

...

0 · · · (p
L
l)
T

Ak×Ak

pLl = [0, · · · , 0, 1, 0, · · · , 0]T1×L,p
L
l (l) = 1

Ek =

[(
Ek1

)T
, · · · ,

(
EkAk

)T]T
Eki =

[
Eki1, · · · , EkiL

]T
6)

S =

S
T · · · 0
...

. . .
...

0 · · · ST

N×N

(44)

where
S =

[
S1, · · · , SL

]T
7)

CS =
[
CS1 , · · · , CSN

]T
(45)

8)
G = [G1, · · · ,GN]

T (46)

where

Gn =

[(
P1
nu

1
)T
, · · · ,

(
PKn uK

)T]T
uk =

[
uk1, · · · , ukAk

]T
9)

CC =
[
CC1 , · · · , CCN

]T
(47)

APPENDIX B
PROOF OF THEOREM 1
Proof. We remove the bolding of all letters in this proof to
simplify the expression. We combine the same parts of the
constraints in P3 and rewrite it as

minF (x, d) = C1Md+
1

2
C2x

TPx

− C2x̄
TNx+

1

2
C2x̄

TNx̄

s.t. aTi x = bi, i = 1, · · · ,m
aTi x 6 bi, i = m, · · · ,m+ l

cTi y 6 gi, i = 1, · · · , n
eix+ fiy 6 0, i = 1, · · · , p

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Its KKT condition is

C2Px̄− C2Nx̄+
∑m+l
i=1 λiai +

∑k
i=1 νei = 0

C1M +
∑n
i=1 µici +

∑k
i=1 νei = 0

aTi x = bi, i = 1, · · · ,m
aTi x 6 bi, i = m, · · · ,m+ l

cTi y 6 gi, i = 1, · · · , n
eix+ fiy 6 0, i = 1, · · · , p
λi > 0, i = 1, · · · ,m+ l

µi > 0, i = 1, · · · , n
νi > 0, i = 1, · · · , p
λi(a

T
i x− bi) = 0, i = m, · · · ,m+ l

µi(c
T
i y − gi) = 0, i = 1, · · · , n

νi(eix+ fiy) = 0, i = 1, · · · , p

(48)

Since Px̄−Nx̄ = Qx̄, so

C2Qx̄+
∑m+l
i=1 λiai +

∑k
i=1 νei = 0

C1M +
∑n
i=1 µici +

∑k
i=1 νei = 0

aTi x = bi, i = 1, · · · ,m
aTi x 6 bi, i = m, · · · ,m+ l

cTi y 6 gi, i = 1, · · · , n
eix+ fiy 6 0, i = 1, · · · , p
λi > 0, i = 1, · · · ,m+ l

µi > 0, i = 1, · · · , n
νi > 0, i = 1, · · · , p
λi(a

T
i x− bi) = 0, i = m, · · · ,m+ l

µi(c
T
i y − gi) = 0, i = 1, · · · , n

νi(eix+ fiy) = 0, i = 1, · · · , p

(49)

Therefore, x̄ is the KKT point of P3, the non-global
solution of the original problem can be obtained.

APPENDIX C
PROOF OF THEOREM 2

Proof. We remove the bolding of all letters in this proof to
simplify the expression. We can find that the search direction
of the algorithm is λr+1

x = zr+1
x − xr, λr+1

y = zr+1
d − dr .

According to the convexity of P4, we can get

U(xr+1, dr+1) 6 Uqp(x
r+1, dr+1;xr, dr)

6 αUqp(x
r+1, zr+1

d ;xr, dr)
+(1− α)Uqp(x

r+1, dr;xr, dr)
6 Uqp(x

r+1, dr;xr, dr)
6 αUqp(z

r+1
x , dr;xr, dr) + (1− α)Uqp(x

r, dr;xr, dr)
6 Uqp(x

r, dr;xr, dr)
= U(xr, dr)

(50)
where the second and the fourth inequality sign come
from the convexity of Uqp(·;xr, yr). Then the value of the
objective function must not be monotone increasing.

U(xr, dr)− U(xr+1, dr+1)
= U(xr, dr)− U(xr+1, dr)

+U(xr+1, dr)− U(xr+1, dr+1)
= U(xr, dr)− U(xr + α(zr+1

x − xr), dr)
+U(xr+1, dr)− U(xr+1, dr + α(zr+1

d − dr))
> −αU ′(xr, dr;λr+1

x)− αU ′(xr+1, dr;λr+1
d)

> 0

(51)

Then we can get

U(x∗, d∗)− U(x0, d0)
6 U(xr, dr)− U(x0, d0)
6
∑r
r=0 α(U ′(xr, dr;λr+1

x) + U ′(xr+1, dr;λr+1
d))

(52)

thereby

lim
r→∞

U ′(xr, dr;λr+1
x) = lim

k→∞
U ′(xr, dr;λr+1

y) = 0 (53)

So problem P3 can get a stationary solution by SCA
algorithm. We can choose α = 1 for integer variables, and it
still holds.

REFERENCES

[1] R. Wang, L. Ji, T. Ren, S. He, and Z. Shi, “A Low-latency and
Interoperable Industrial Internet of Things Architecture for Man-
ufacturing Systems,” in 2020 IEEE 18th International Conference on
Industrial Informatics (INDIN). Warwick, United Kingdom: IEEE,
Jul. 2020, pp. 859–864.

[2] L. Chen, Z. Lu, A. Xiao, Q. Duan, J. Wu, and P. C. K. Hung, “A
Resource Recommendation Model for Heterogeneous Workloads
in Fog-Based Smart Factory Environment,” IEEE Transactions on
Automation Science and Engineering, vol. 19, no. 3, pp. 1731–1743,
Jul. 2022.

[3] N. C. Mendonca, P. Jamshidi, D. Garlan, and C. Pahl, “Developing
Self-Adaptive Microservice Systems: Challenges and Directions,”
IEEE Software, vol. 38, no. 2, pp. 70–79, Mar. 2021.

[4] Z. Nie and K.-C. Chen, “Hypergraphical Real-time Multi-Robot
Task Allocation in a Smart Factory,” IEEE Transactions on Industrial
Informatics, pp. 1–1, 2021.

[5] A. Hazra, P. K. Donta, T. Amgoth, and S. Dustdar, “Cooperative
Transmission Scheduling and Computation Offloading with Col-
laboration of Fog and Cloud for Industrial IoT Applications,” IEEE
Internet of Things Journal, pp. 1–1, 2022.

[6] K. Thramboulidis, D. C. Vachtsevanou, and A. Solanos, “Cyber-
physical microservices: An IoT-based framework for manufactur-
ing systems,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS),
2018, pp. 232–239.

[7] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt, “MIRAS: Model-
based Reinforcement Learning for Microservice Resource Alloca-
tion over Scientific Workflows,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), Jul. 2019, pp.
122–132.

[8] H. Tian, X. Xu, T. Lin, Y. Cheng, C. Qian, L. Ren, and M. Bilal,
“DIMA: Distributed cooperative microservice caching for internet
of things in edge computing by deep reinforcement learning,”
World Wide Web, Aug. 2021.

[9] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance Modeling
and Workflow Scheduling of Microservice-Based Applications in
Clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 9, pp. 2114–2129, Sep. 2019.

[10] C. Jian, J. Ping, and M. Zhang, “A cloud edge-based two-level
hybrid scheduling learning model in cloud manufacturing,” Inter-
national Journal of Production Research, vol. 59, no. 16, pp. 4836–4850,
Aug. 2021.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct. 2016.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[12] C. Zhang, X. Liu, X. Zheng, R. Li, and H. Liu, “FengHuoLun: A
Federated Learning based Edge Computing Platform for Cyber-
Physical Systems,” in 2020 IEEE International Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops),
Mar. 2020, pp. 1–4.

[13] D. Merkel, “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux Journal, vol. 2014, no. 239,
p. 2:2, Mar. 2014.

[14] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, Omega, and Kubernetes,” Communications of the ACM,
vol. 59, no. 5, pp. 50–57, Apr. 2016.

[15] L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring
Layered Container Structure for Cost Efficient Microservice De-
ployment,” in IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications. Vancouver, BC, Canada: IEEE, May 2021, pp.
1–9.

[16] L. Gu, Q. Tang, S. Wu, H. Jin, Y. Zhang, G. Shi, T. Lin, and J. Rao,
“N-Docker: A NVM-HDD Hybrid Docker Storage Framework to
Improve Docker Performance,” in Network and Parallel Computing,
ser. Lecture Notes in Computer Science, X. Tang, Q. Chen, P. Bose,
W. Zheng, and J.-L. Gaudiot, Eds. Cham: Springer International
Publishing, 2019, pp. 182–194.

[17] Y. Wang, C. Zhao, S. Yang, X. Ren, L. Wang, P. Zhao, and X. Yang,
“MPCSM: Microservice Placement for Edge-Cloud Collaborative
Smart Manufacturing,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 9, pp. 5898–5908, Sep. 2021.

[18] W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang, and C. Lin,
“Microservice Deployment in Edge Computing Based on Deep Q
Learning,” IEEE Transactions on Parallel and Distributed Systems, pp.
1–1, 2022.

[19] Y. Yu, J. Yang, C. Guo, H. Zheng, and J. He, “Joint optimization of
service request routing and instance placement in the microservice
system,” Journal of Network and Computer Applications, vol. 147, p.
102441, Dec. 2019.

[20] J. L. Herrera, J. Galán-Jiménez, J. Berrocal, and J. M. Murillo, “Op-
timizing the Response Time in SDN-Fog Environments for Time-
Strict IoT Applications,” IEEE Internet of Things Journal, vol. 8,
no. 23, pp. 17 172–17 185, Dec. 2021.

[21] S. Deng, Z. Xiang, J. Taheri, M. A. Khoshkholghi, J. Yin, A. Y.
Zomaya, and S. Dustdar, “Optimal Application Deployment in
Resource Constrained Distributed Edges,” IEEE Transactions on
Mobile Computing, vol. 20, no. 5, pp. 1907–1923, May 2021.

[22] X. Chen, Y. Bi, X. Chen, H. Zhao, N. Cheng, F. Li, and W. Cheng,
“Dynamic Service Migration and Request Routing for Microser-
vice in Multi-cell Mobile Edge Computing,” IEEE Internet of Things
Journal, pp. 1–1, 2022.

[23] E. Fadda, P. Plebani, and M. Vitali, “Monitoring-Aware Opti-
mal Deployment for Applications Based on Microservices,” IEEE
Transactions on Services Computing, vol. 14, no. 6, pp. 1849–1863,
2021.

[24] P. Zhao, P. Wang, X. Yang, and J. Lin, “Towards Cost-Efficient Edge
Intelligent Computing With Elastic Deployment of Container-
Based Microservices,” IEEE Access, vol. 8, pp. 102 947–102 957,
2020.

[25] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and S. Cretti,
“Throughput-Aware Partitioning and Placement of Applications
in Fog Computing,” IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 2436–2450, Dec. 2020.

[26] C. T. Joseph and K. Chandrasekaran, “IntMA: Dynamic
Interaction-aware resource allocation for containerized microser-
vices in cloud environments,” Journal of Systems Architecture, vol.
111, p. 101785, Dec. 2020.

[27] X. Li, Z. Zhou, C. Zhu, L. Shu, and J. Zhou, “Online Reconfig-
uration of Latency-Aware IoT Services in Edge Networks,” IEEE
Internet of Things Journal, pp. 1–12, 2021.

[28] V. Armani, F. Faticanti, S. Cretti, S. Kum, and D. Siracusa, “A Cost-
Effective Workload Allocation Strategy for Cloud-Native Edge
Services,” arXiv:2110.12788 [cs], Oct. 2021.

[29] M. Sasabe and T. Hara, “Capacitated Shortest Path Tour Problem-
Based Integer Linear Programming for Service Chaining and
Function Placement in NFV Networks,” IEEE Transactions on Net-
work and Service Management, vol. 18, no. 1, pp. 104–117, Mar. 2021.

[30] J. Lou, H. Luo, Z. Tang, W. Jia, and W. Zhao, “Efficient Container
Assignment and Layer Sequencing in Edge Computing,” IEEE
Transactions on Services Computing, pp. 1–1, 2022.

[31] L. Gu, D. Zeng, J. Hu, B. Li, and H. Jin, “Layer Aware Microser-
vice Placement and Request Scheduling at the Edge,” in IEEE

INFOCOM 2021 - IEEE Conference on Computer Communications.
Vancouver, BC, Canada: IEEE, May 2021, pp. 1–9.

[32] L. Gu, Z. Chen, H. Xu, D. Zeng, B. Li, and H. Jin, “Layer-
aware Collaborative Microservice Deployment toward Maximal
Edge Throughput,” in IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, 2022, pp. 71–79.

[33] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
Aware Microservice Coordination in Mobile Edge Computing: A
Reinforcement Learning Approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939–951, Mar. 2021.

[34] M. Razaviyayn, “Successive convex approximation: Analysis and
applications,” University of Minnesota, May 2014.

[35] “Gurobi - The Fastest Solver,” https://www.gurobi.com/.
[36] S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and Efficient

Container Startup at the Edge via Dependency Scheduling,” 3rd
USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20),
p. 7, 2020.

[37] “Kubernetes, Kubernetes.” https://kubernetes.io/.

Yuxiang Liu received the B.Eng. degree in con-
trol science and engineering from Shanghai Jiao
Tong University, Shanghao, China, in 2020.

He is currently pursuing the Ph.D. degree at
the Department of Automation, Shanghai Jiao
Tong University, Shanghai, China. His current
research interests include microservice deploy-
ment, intelligent manufacturing.

Bo Yang (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from the
City University of Hong Kong, Hong Kong, in
2009.

He is currently a Full Professor with Shanghai
Jiao Tong University, Shanghai, China. Prior to
joining Shanghai Jiao Tong University in 2010,
he was a Post-Doctoral Researcher with the
KTH Royal Institute of Technology, Stockholm,
Sweden, from 2009 to 2010, and a Visiting
Scholar with the Polytechnic Institute of New

York University in 2007. His research interests include game theoretical
analysis and optimization of energy networks and wireless networks.
He is on the Editorial Board of Digital Signal Processing and in TPC of
several international conferences. He has been the Principle Investigator
in several research projects, including the NSFC Key Project. He was a
recipient of the Ministry of Education Natural Science Award 2016, the
Shanghai Technological Invention Award 2017, the Shanghai Rising-
Star Program 2015, and the SMC-Excellent Young Faculty Award by
Shanghai Jiao Tong University.

Yu Wu received the B.Eng. degree at the Depart-
ment of Automation, Harbin Engineering Uni-
versity, Harbin, China, in 2019. He is currently
pursuing the Ph.D. degree at the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China. His current research interests
include edge computing, industrial Internet of
Things, and machine learning for wireless net-
works.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Cailian Chen Cailian Chen (S’03-M’06) received
the B. Eng. and M. Eng. degrees in Automatic
Control from Yanshan University, P. R. China in
2000 and 2002, respectively, and the Ph.D. de-
gree in Control and Systems from City University
of Hong Kong, Hong Kong SAR in 2006. She
has been with the Department of Automation,
Shanghai Jiao Tong University since 2008. She
is now a Distinguished Professor.

Prof. Chen’s research interests include indus-
trial wireless networks and computational intel-

ligence, and Internet of Vehicles. She has authored 3 research mono-
graphs and over 100 referred international journal papers. She is the
inventor of more than 30 patents. Dr. Chen received the prestigious
”IEEE Transactions on Fuzzy Systems Outstanding Paper Award” in
2008, and 5 conference best paper awards. She won the Second Prize
of National Natural Science Award from the State Council of China
in 2018, First Prize of Natural Science Award from The Ministry of
Education of China in 2006 and 2016, respectively, and First Prize of
Technological Invention of Shanghai Municipal, China in 2017. She was
honored “National Outstanding Young Researcher” by NSF of China in
2020 and “Changjiang Young Scholar” in 2015.

Xinping Guan (Fellow, IEEE) received the B.Sc.
degree in mathematics from Harbin Normal Uni-
versity, Harbin, China, in 1986, and the Ph.D.
degree in control science and engineering from
Harbin Institute of Technology, Harbin, China, in
1999.

He is currently the Chair Professor of Shang-
hai Jiao Tong University, Shanghai, China,
where he is the Dean of School of Electronic,
Information and Electrical Engineering and the
Director of the Key Laboratory of Systems Con-

trol and Information Processing, Ministry of Education of China. Before
that, he was the Executive Director of Office of Research Management,
Shanghai Jiao Tong University, a Full Professor, and Dean of Electrical
Engineering, Yanshan University, Qinhuangdao, China. As a Principal
Investigator, he has finished/been working on more than 20 national key
projects. He is the leader of the prestigious Innovative Research Team
of the National Natural Science Foundation of China. He is an Executive
Committee Member of Chinese Automation Association Council and the
Chinese Artificial Intelligence Association Council. He has authored or
coauthored five research monographs, more than 200 papers in IEEE
transactions and other peer-reviewed journals, and numerous confer-
ence papers. His current research interests include industrial network
systems, smart manufacturing, and underwater networks.

Dr. Guan received the Second Prize of the National Natural Science
Award of China in both 2008 and 2018, the First Prize of Natural
Science Award from the Ministry of Education of China in both 2006 and
2016. He was a recipient of the IEEE Transactions on Fuzzy Systems
Outstanding Paper Award in 2008. He is a National Outstanding Youth
honored by NSF of China, and Changjiang Scholar’s by the Ministry
of Education of China and State-Level Scholar of New Century Bai
Qianwan Talent Program of China.

	1 Introduction
	2 Related Works
	3 System Modeling and Problem Formulation
	3.1 A simple example
	3.2 System model
	3.3 Problem Formulation
	3.3.1 Microservice deployment and layer sharing
	3.3.2 Communication overhead and chain sharing
	3.3.3 The virtual microservice
	3.3.4 Image pull delay and communication overhead minimization problem

	4 Microservice Deployment Scheme based on SCA
	4.1 Problem transformation
	4.1.1 Image pull delay
	4.1.2 Communication overhead
	4.1.3 Constraints
	4.1.4 Single objective optimization problem

	4.2 Solution based on successive convex approximation
	4.3 Convergence analysis

	5 Resource Reallocation Scheme
	5.1 Problem formulation
	5.2 Solution based on Lagrange Multiplier Method

	6 Performance Evaluation
	6.1 Simulation experiment
	6.1.1 Experimental environment
	6.1.2 Experimental results

	6.2 Experiment with Real Edge Servers
	6.2.1 Experimental environment
	6.2.2 Experimental results

	6.3 Large-scale Cases
	6.3.1 Experimental results

	7 Discussion
	8 Conclusion
	Appendix A: Matrix value
	Appendix B: Proof of Theorem 1
	Appendix C: Proof of Theorem 2
	References
	Biographies
	Yuxiang Liu
	Bo Yang
	Yu Wu
	Cailian Chen
	Xinping Guan

