Loading [a11y]/accessibility-menu.js
Optimal Trading Mechanism Based on Differential Privacy Protection and Stackelberg Game in Big Data Market | IEEE Journals & Magazine | IEEE Xplore

Optimal Trading Mechanism Based on Differential Privacy Protection and Stackelberg Game in Big Data Market


Abstract:

Big data has become a fundamental resource and a commodity in economic activities, thus, it is necessary to build a market model capable of supporting efficient data trad...Show More

Abstract:

Big data has become a fundamental resource and a commodity in economic activities, thus, it is necessary to build a market model capable of supporting efficient data trading. However, two major challenges remain. First, researches have considered constructing data trading mechanisms, while few of them are based on the method of measuring data value in multiple dimensions. Second, a data market involved an intermediary trading platform (i.e., a third party) which is honest but curious, results may be obtained due the the leakage of private information. In this article, we design TM-OUE, a data trading mechanism based on Optimized Unary Encoding that enables reasonable trading mechanism and protects the privacy of data trading. First of all, we combine qualitative and quantitative methods to measure the value of data in multiple dimensions and formulate data trading model between the data provider and data users. Then, we utilize an Optimized Unary Encoding (OUE) protocol to protect the privacy of the data trading mechanism. Based on the above steps, we develop a two-stage single leader multi-follower Stackelberg game to jointly maximize profits of the data provider and data users. Experimental results demonstrate that TM-OUE can offer appropriate price for data and maximize benefits both for data providers and data users, which guarantees fair data trades while protecting privacy.
Published in: IEEE Transactions on Services Computing ( Volume: 16, Issue: 5, Sept.-Oct. 2023)
Page(s): 3550 - 3563
Date of Publication: 06 February 2023

ISSN Information:

Funding Agency:


References

References is not available for this document.