
1

An Efficient Method for Realizing Contractions of
Access Structures in Cloud Storage

Shuai Feng and Liang Feng Zhang

Abstract—In single-cloud storage, ciphertext-policy attribute-
based encryption (CP-ABE) allows one to encrypt any data under
an access structure to a cloud server, specifying what attributes
are required to decrypt. In multi-cloud storage, a secret sharing
scheme (SSS) allows one to split any data into multiple shares, one
to a single server, and specify which subset of the servers are able
to recover the data. It is an interesting problem to remove some
attributes/servers but still enable the remaining attributes/servers
in every authorized set to recover the data. The problem is related
to the contraction problem of access structures for SSSs. In this
paper, we propose a method that can efficiently transform a
given SSS for an access structure to SSSs for contractions of the
access structure. We show its applications in solving the attribute
removal problem in the CP-ABE based single-cloud storage and
the data relocating problem in multi-cloud storage. Our method
results in solutions that require either less server storage or even
no additional server storage.

Index Terms—Cloud storage, access structure, contraction,
linear secret sharing, attribute-based encryption.

I. INTRODUCTION

W ITH the rapid development of cloud computing in
recent years, cloud storage [1], [2] has moved to

the mainstream of storage technology. It allows one to lease
computing resources from cloud service providers in a pay-
per-use manner and remotely store/access important data,
without need to build local data centers (including expensive
software and hardware infrastructures) from scratch. However,
many organizations are still reluctant to use cloud to store
sensitive data. The reason is that they may lose control of the
data, and information leakage may occur due to unauthorized
access [3]. How to ensure the confidentiality of cloud data is
an important problem.

Storing data with cloud may use two different models:
single-cloud storage and multi-cloud storage. Single-cloud
storage means storing data with a single cloud server. In this
model, the confidentiality of data may be ensured by the
user encrypting the data and uploading the ciphertexts to a
cloud server. For example, ciphertext-policy attribute-based
encryption (CP-ABE) [4], [5] is a commonly used encryption
technology for fine-grained access control that allows one to
set a policy to specify who are eligible to decrypt a ciphertext.
More precisely, every CP-ABE ciphertext is associated with
a policy; every user of the data gets a private key associated
with several attributes from a set of n attributes and is eligible
to decrypt if and only if its attributes satisfy the policy.

S. Feng and L.F. Zhang (Corresponding author) are with the School of
Information Science and Technology, ShanghaiTech University, Shanghai, PR
China. E-mail: {fengshuai,zhanglf}@shanghaitech.edu.cn

In multi-cloud storage [1], [6]–[8], one may generate n
shares of the data and store each share with a different
cloud server to enforce the following policy: the data can be
reconstructed if ≥ t + 1 out of the n shares are available
but any ≤ t shares leak information about the data. In this
model, special techniques for splitting data into shares, such as
homomorphic secret sharing (HSS) [9], have found interesting
applications in the field of outsourcing computations [10],
[11]. Such techniques allow each server to compute a function
on its share to produce a partial result and finally a user of
the data can reconstruct the function’s output from all partial
results.

A critical technology used in both single-cloud storage and
multi-cloud storage is linear secret sharing schemes (LSSSs)
[12]. A secret sharing scheme (SSS) [13], [14] for a set
P = {P1, . . . , Pn} of n participants allows a dealer to
generate n shares for a secret s, one for each participant,
such that any authorized subset of P can reconstruct s with
their shares but any unauthorized subset learns no information
about s. The set Γ of all authorized subsets is called an access
structure and the SSS is said to realize Γ. In general, a set
Γ of subsets of P is qualified as an access structure if the
superset of any set in Γ remains in Γ. SSSs were introduced
by Shamir [13] and Blakley [14] for threshold access structures
and then extended to any general access structures by Ito
et al. [15]. An SSS is linear if both the share generation
and the secret reconstruction can be accomplished with linear
operations. Since [13]–[15], SSSs have been one of the most
important building blocks of cryptographic protocols [16]–
[18]. In particular, the n attributes in the CP-ABE based
single-cloud storage model and the n servers in multi-cloud
storage model may play the roles of the n participants in SSSs,
respectively, and the policies in both models may play the role
of access structures.

In this paper, we consider application scenarios where part
of the attributes/servers have to be removed such that the left
attributes/servers in every authorized subset remain eligible
to access data, in order to make the access policies less
restrictive. Such scenarios may appear in both storage models.
For example, in the single-cloud storage model, a patient
Alice may have encrypted her electronic health records (EHRs)
[19]–[21] as a CP-ABE ciphertext with an access policy
‘hospital A’∧‘branch 1’∧‘respiratory’ such
that Bob, a respiratory physician in the branch 1 of hospital
A can decrypt the ciphertext. After an initial diagnosis, Bob
may conclude that the condition of Alice is so complicated
that a consultation by the respiratory physicians from all
branches (not just branch 1) of hospital A is needed. In this

ar
X

iv
:2

31
0.

15
97

2v
1

 [
cs

.C
R

]
 2

4
O

ct
 2

02
3

2

scenario, Alice needs to update the ciphertext and remove the
attribute ‘branch 1’ from the policy such that all involved
physicians are able to decrypt. In the multi-cloud storage
model, organizations such as transaction platforms may collect
tons of customer preference data and share the data among n
cloud servers. Users of the data may contact t + 1 out of
the n servers, reconstruct the data, perform machine learning
algorithms, and use the resulting model to make higher profits.
The users need to pay for the services, as per the total amount
of data downloaded from the t + 1 servers. As the data may
lose relevance over time and damage the model’s accuracy
[22], both the value and the privacy level of the data could
be reasonably reduced over time. It is reasonable for the
organization to gradually reduce the threshold t such that less
servers are needed to reconstruct the data over time. In this
scenario, the privacy threshold t may be reduced by gradually
closing some of the servers and relocating the data (shares)
on these servers to the remaining ones.

In both application scenarios, it suffices for the data owners
to consider the problem of how to remove an unauthorized
subset of the attributes/servers but still enable the remaining
attributes/servers in every authorized subset to recover the
data. In the language of SSS, a more formal description of
the above problem is as follows:

(p1) A secret s has been shared according to an access
structure Γ over a set P of participants and later an
unauthorized subset Q ⊆ P have to be removed. How to
distribute the shares of Q to the participants in P\Q such
that for every authorized subset A ∈ Γ the participants
in A \Q are still able to reconstruct s.

Via some abstraction, (p1) is related to the following problem:
(p2) Given an SSS realizing an access structure Γ and an

unauthorized subset Q of participants, construct a new
SSS for Γ·Q = {A \Q : A ∈ Γ}.

A solution to (p2) may provide a solution to (p1), if given the
shares of Q, every participant in P \Q can combine with its
own share to produce a new share, such that the new shares
realize Γ·Q over P\Q for the secret s. In the literature, Γ·Q has
been called the contraction of Γ at Q and the problem (p2) has
been studied by [23], [24]. In particular, the ideas of [23], [24]
can be extended to solve (p1), either by Q simply moving their
shares to a public storage or every other participant. However,
both solutions consume additional storage. In this paper, we
are interested in solutions that require no additional storage.

A. Theoretical Contributions

Informally, an SSS for Γ is ideal if all of the shares are
from the same domain as the secret [25]. If there is an ideal
SSS realizing Γ, then Γ is ideal. In Section III, we propose a
solution for (p2) under ideal access structures. More precisely,
we provide two algorithms: the first one is applicable to
|Q| = 1 and the second one is an extension of the first and
is applicable to |Q| > 1. It is well-known that the shares in
every LSSS can be generated by a matrix. Our algorithms
are efficient and apply simple linear transformations on the
matrix that generates an SSS for Γ to output a new SSS for
Γ·Q. While for (p1), the transformation gives a method for Q

to distribute their shares: send the shares to every remaining
participant and each remaining participant can apply the same
transformations on its shares and the shares of Q to obtain
its shares in the new SSS. This will keep the size of each
remaining participant’s share unchanged. In particular, if we
apply the proposed algorithm to an ideal LSSS for Γ, then an
ideal LSSS for Γ·Q will be obtained.

B. Applications

Our algorithm have applications in both multi-cloud storage
and CP-ABE based single-cloud storage.
Multi-cloud storage. In multi-cloud storage, the data owners
split their valuable data into multiple shares and store shares
on multiple independent cloud servers such that the users who
have paid for the services are eligible to access the data. Many
existing schemes for multi-cloud storage [8], [26]–[29] involve
a considerable number of servers and the number may be as
big as 100. Closing some of the servers is reasonable as the
data is gradually devaluing over time and the data owners need
to economize expenses on server rental. Our algorithms allow
the data owners to properly relocate shares on some of the
servers to the other servers such that the data is recoverable
by downloading shares from less servers. In Section IV, we
show our solution and compare it with three existing solutions.
The comparisons show that our solution is most efficient in
terms of cloud storage as it requires no additional storage
on the remaining servers. Our only price is a low cost linear
computation on the remaining servers.
Single-cloud storage. In the CP-ABE based single-cloud
storage, some of the attributes may become unnecessary [30]
and the ciphertext has to be updated such that the decrypting
information associated with these attributes is properly asso-
ciated with the remaining attributes, in order to change the
access policy. A trivial method is downloading and decrypting
the ciphertexts, and then re-encrypting the messages with Γ·Q.
Its computation and communication costs may be high. In
Section V, we propose CP-ABE-CAS, a novel model of CP-
ABE with contractions of access structures. In the proposed
model, we introduce contraction keys, which are generated by
the data owner itself, and a contraction algorithm such that:
(1) the data owner is enabled to dominate the policy update,
and (2) given the contraction key, the servers can efficiently
update the ciphertexts to adapt to a new access policy as per the
data owner’ preferences while the users’ private keys remain
unchanged. We construct a CP-ABE-CAS scheme based on
Waters’ CP-ABE scheme [31]. Experimental results show that
our scheme may reduce the server-side storage cost and the
user-side computation/communication cost through efficient
update of ciphertexts on server-side.

C. Related Work

1) Attribute-Based Encryption in Single-Cloud Storage:
Attribute-based encryption. Goyal et al. [32] classified
ABE [18] into two types: key-policy ABE (KP-ABE) and
ciphertext-policy ABE (CP-ABE). In CP-ABE, a user’s private
key is associated with a set of attributes and a ciphertext is
associated with a policy.

3

Policy updating. In CP-ABE, policy updating [33] refers to
the problem of changing the access policy associated with a
ciphertext. In [33], the updated access policy is more restrictive
than the original, so their construction cannot support the
contraction studied by this work. Ciphertext-policy attribute-
based proxy re-encryption [34]–[37] allows a semi-trusted
proxy to perform policy updating. Their scheme requires a
private key whose associated attribute set satisfies the policy
to generate the re-encryption key and gives the data owner
no control over the update of access policy. In our work, no
private key is required and the data owner has full control over
the update of policy.

Revocation. In CP-ABE, revocation [38] means revoking the
access right of a user such that the user is no loner able
to decrypt a ciphertext that he used to be able to decrypt.
Revocation may happen when the services purchased by the
users have expired. It is different from contraction because
contraction removes some attributes from every authorized
subset so that more users become eligible to decrypt. For
example, Ge et al. [39] proposed a revocable ABE scheme
with data integrity protection that adds more attributes to every
authorized set. The new access structure is more restrictive and
results in the revocation of some authorized users.

Extendable access control. An extendable access control
system [40] allows a data owner to encrypt its data under an
access structure Γ and later allows any user whose attribute
set satisfies Γ to extend Γ to a new access structure Γ′ such
that any attribute set in Γ ∪ Γ′ is able to access the data.
When Γ′ = Γ·Q for some authorized subset Q, their scheme
gives contraction. Compared with us, the data owner in [40]
has no control over the extended access structure and the
resulting ciphertext becomes longer than the original one. In
our work, the data owner has full control on the contracted
access structure and the resulting ciphertext is shorter than the
original one. Lai et al. [41] proposed a scheme in a different
setting of identity-based encryption.

2) Multi-Cloud Storage: The multi-cloud storage model
[1], [6], [7], [42] has been very popular for ensuring data
confidentiality in cloud environment. For example, Xiong
et al. [42] considered a problem of unbalanced bandwidth
between users and servers in a multi-cloud storage system and
proposed adaptive bandwidth SSSs based on both Shamir’s
SSS [13] and Staircase codes. In this work, we consider a
different problem of relocating data from some servers to
the other servers. Our scheme can be used to improve the
user’s communication efficiency by closing the servers with
excessively low bandwidth.

3) Secret Sharing:
Dynamic secret sharing. SSSs that allow dynamic changes
to access structures have been designed in [43]–[46] and
called dynamic SSSs. For general access structures, the scheme
proposed by Cachin [43] allows the participants to be added or
removed. In particular, when the participants in some unautho-
rized subset are removed, their shares will be published so that
the scheme can realize contraction of the access structure at the
subset and occupy additional storage. Our solution requires no
additional storage. The schemes in [44], [45] did not consider

contractions of access structures when removing some partic-
ipants. In fact, the contraction of an access structure Γ at a set
Q can also be the union of Γ·Q and Γ, so the access structure
can also contract through adding A\Q (where A ∈ Γ) as new
authorized subsets. The schemes in [44], [45] allow one to
add new authorized subsets and are computationally secure.
Our work uses information-theoretic SSSs. The schemes of
[46] can only realize threshold access structures rather than
general access structures. Our transformation is applicable to
any LSSS, even if the access structure is not threshold.
Proactive secret sharing. There is a long line of research
on SSS that enables participants to update their shares such
that the information obtained by any adversary will be invalid.
Such an SSS was introduced by Herzberg et al. [47] and called
a proactive SSS. The schemes proposed in [47], [48] are only
applicable to static committees. Later, dynamic proactive SSSs
have been proposed in [49]–[52], both for threshold access
structures [49], [50] and for general access structures [51],
[52]. But if we focus on contractions of access structures, in
[51], [52], the remaining participants are required to interact
with each other. In contrast, there is no interaction among the
remaining participants in our work.
Contraction. Closest to our work are [23], [24], [53]. Slinko
[53] studied several ways to merge two ideal linear SSSs into
a new ideal linear SSS but did not consider contractions of
access structures. The work in [23], [24] solved the problem
(p2). For the contraction of an access structure Γ at a set Q
of the removed participants, if we assume that the share size
of each participant is ℓ, the solutions in [23], [24] require
the contracted system to consume additional storage of at
least |Q| · ℓ to store the shares of the removed participants.
In our work, the proposed construction allows the remaining
participants to combine the shares of Q with their shares to
produce new shares so that no additional storage is needed.

D. Organization

Section II provides some basic definitions and notations.
Section III solves the problem (p2). Section IV and Section
V solve the problem (p1) in multi-cloud storage and single-
cloud storage, respectively. Finally, Section VI contains our
concluding remarks.

II. PRELIMINARIES

For any integer n > 0, we denote [n] = {1, . . . , n}. For any
vector s = (s1, . . . , sn) and any set I = {i1, . . . , ik} ⊆ [n],
we denote sI = (si1 , . . . , sik). In particular, we will write
sI = (si)i∈I . For any d-dimensional vector t, we denote tj =
t{j} for any j ∈ [d]. For any finite set P , we denote by 2P the
power set of P , i.e., the set of all subsets of P . Let ψ : A→ B
be a function. For any b ∈ B (resp. any C ⊆ B), we denote
ψ−1(b) = {a ∈ A : ψ(a) = b} (resp. ψ−1(C) = {a ∈ A :
ψ(a) ∈ C}).

Definition 1 (Access Structure [54]). Let P = {P1, . . . , Pn}
be a set of n participants. A collection Γ ⊆ 2P is said to be
monotone if it satisfies the property: For any A,B ∈ 2P , if
A ∈ Γ and A ⊆ B, then B ∈ Γ. A collection Γ ⊆ 2P is said

4

to be an access structure over P if it consists of non-empty
subsets of P and is monotone.

Let Γ be an access structure over P = {P1, . . . , Pn}. Every
set in Γ is said to be an authorized subset of P . Every set in
2P \Γ is said to be unauthorized. An authorized subset A ∈ Γ
is minimal in Γ if no proper subset of A belongs to Γ. The
basis of Γ consists of all minimal authorized subsets in Γ and
denoted as Γ−. The access structure Γ is said to be connected
if each participant Pi ∈ P belongs to at least one minimal
authorized subset in Γ−.

Any access structure can be realized by a secret sharing
scheme, which is essentially a distribution scheme with privacy
properties.

Definition 2 (Distribution Scheme [54]). Let P =
{P1, . . . , Pn} be a set of n participants and let S be the
domain of secrets. A distribution scheme for sharing the
secrets in S among the participants in P is a pair Π = (π, µ),
where µ is a probability distribution over a finite set R of
random strings, and π : S×R→ S1× · · ·×Sn is a mapping
(Si is the domain of shares of Pi for every i ∈ [n]).

With the scheme Π, a dealer can distribute a secret s ∈
S by firstly choosing a random string r ∈ R according to
µ, computing a vector of shares π(s, r) = (s1, . . . , sn), and
privately communicating each share si to Pi. For a set A ⊆ P ,
we denote by πA(s, r) = (si)i∈IA the restriction of π(s, r) to
IA = {i ∈ [n] : Pi ∈ A}. The efficiency of Π can be measured
by its information rate ρ(Π) = log |S|/maxi∈[n] log |Si|.

Without loss of generality, we can always assume that µ
is the uniform distribution over a properly chosen set R of
random strings. When µ is the uniform distribution over R,
we shall denote Π = π, instead of Π = (π, µ).

Definition 3 (Secret Sharing Scheme (SSS) [54]). Let P =
{P1, . . . , Pn} be a set of n participants. Let Γ be an access
structure over P . Let π : S × R → S1 × · · · × Sn be a
distribution scheme for P . The scheme π is said to be a secret
sharing scheme realizing Γ if the following requirements are
satisfied:
Correctness. Any authorized subset of participants can re-
construct a secret with their shares of the secret. Formally,
for every authorized subset A = {Pi1 , . . . , Pim} ∈ Γ, there is
a reconstruction function ReconA : Si1 ×· · ·×Sim → S such
that for any s ∈ S, Prr[ReconA (πA (s, r)) = s] = 1.
Perfect Privacy. Any unauthorized subset of participants
cannot learn any information about a secret from their
shares of the secret. Formally, for every unauthorized subset
A = {Pi1 , . . . , Pim} ∈ 2P \ Γ, for any a, b ∈ S and any
s = (si1 , . . . , sim) ∈ Si1 × · · · × Sim , Prr[πA(a, r) = s] =
Prr[πA(b, r) = s].

Beimel [54] showed that for any SSS π : S × R → S1 ×
· · · × Sn realizing a connected access structure Γ, it must be
that |Si| ≥ |S| for all i ∈ [n]. Thus, the information rate of an
SSS for a connected access structure is always ≤ 1. An SSS
with information rate 1 is said to be ideal. An access structure
Γ is ideal if there is an ideal SSS realizing Γ.

Definition 4 (Linear Secret Sharing Scheme (LSSS) [31]).
Let F be a finite field. Let P = {P1, . . . , Pn} be a set of n
participants. Let Γ be an access structure over P . Let π :
S × R → S1 × · · · × Sn be an SSS realizing Γ. The scheme
π is said to be linear over F if there exist a matrix H =
(h1, . . . ,hℓ)

⊤ ∈ Fℓ×d, a target vector t = (1, 0, . . . , 0)⊤ ∈
Fd, and a surjective function ψ : [ℓ]→ P such that the share
generation and secret reconstruction procedures are done as
follows:
Share Generation. To share a secret s ∈ F, d − 1 random
field elements r2, . . . , rd ∈ F are chosen to form a vector
v = (s, r2, . . . , rd)

⊤. For every i ∈ [n], the participant Pi’s
share si is computed as si = (h⊤

j v)j∈ψ−1(Pi).
Reconstruction. For any authorized subset A ∈ Γ, there exist
constants {αj : ψ(j) ∈ A} such that t =

∑
j∈ψ−1(A) αjhj ,

and thus s = t⊤v =
∑
j∈ψ−1(A) αj(h

⊤
j v).

In Definition 4, the tuple M = (F,H, t, ψ) specifies an
LSSS for Γ and has been called a monotone span program
(MSP) [55] for Γ. Beimel [54] showed that LSSSs and MSPs
are equivalent: every LSSS for Γ can be derived from an MSP
for Γ and vice versa.

In this paper, we are interested in the transformation from
an LSSS for Γ to new LSSSs for contractions of Γ.

Definition 5 (Contraction [23]). Let P = {P1, . . . , Pn} be
a set of n participants. Let Γ be an access structure over P .
For any Q ⊆ P , the contraction of Γ at Q, denoted as Γ·Q, is
an access structure on P \Q such that for every A ⊆ P \Q,
A ∈ Γ·Q ⇔ A ∪ Q ∈ Γ. We also say that Γ is contracted at
Q to Γ·Q.

If Q ∈ Γ, then (Γ·Q)
− = {{Pi}|Pi ∈ P\Q}. If Q ∈ 2P \Γ,

then (Γ·Q)
− consists of all the minimal nonempty subsets of

the form A∩ (P \Q), where A is taken over Γ−. For any two
disjoint subsets Q1, Q2 ⊆ P , (Γ·Q1

)·Q2
= Γ·(Q1∪Q2).

III. OUR TRANSFORMATIONS

In this section, we show how to transform an ideal LSSS
for an access structure Γ to ideal LSSSs for contractions of Γ.

Let π : S ×R→ S1 × S2 × · · · × Sn be an ideal LSSS for
a connected access structure Γ on P = {P1, . . . , Pn}. We
suppose that π is equivalent to an MSP M = (F,H, t, ψ),
where F is a finite field, H = (h1, . . . ,hℓ)

⊤ is an ℓ × d
matrix over F, t = (1, 0, . . . , 0)⊤ ∈ Fd is a target vector, and
ψ : [ℓ] → P is a surjective function that assigns the ℓ rows
of H to the n participants in P . Since π is ideal, we must
have that |Si| = |S| for every i ∈ [n], ℓ = n and ψ : [n]→ P
is a bijection. Without loss of generality, we can suppose that
ψ(i) = Pi for every i ∈ [n].

The following lemma shows that for any unauthorized
subset of participants, if the rows assigned to them form a
submatrix of H of rank r, then the last d − 1 columns of
the submatrix must contain an invertible submatrix of order r.
This r × r submatrix will be used in our transformations.

Lemma 1. Let M = (F,H, t, ψ) be an MSP that realizes a
connected access structure Γ over P . Let Q be any unautho-
rized subset and let HQ =

(
(hi)ψ(i)∈Q

)⊤
. If rank(HQ) = r,

5

then there exists a set W = {w1, . . . , wr} ⊆ ψ−1(Q) and a
set K = {k1, . . . , kr} ⊆ [d]\{1} such that the order-r square
matrix U = ((hw1)K , . . . , (hwr)K)⊤ is invertible over F. (see
Appendix A for the proof)

We will start with an algorithm (Algorithm 1) that takesM
and an unauthorized subset Q ⊆ P with |Q| = 1 as input
(w.l.o.g., Q = {Pn}) and outputs a new ideal LSSS M′ =
(F,H ′, t, ψ′) for Γ·Q, and then show an extended algorithm
(Algorithm 2) for any unauthorized subset Q with |Q| = m >
1 (w.l.o.g., Q = {Pn−m+1, . . . , Pn}).

Algorithm 1: Contraction at Q with |Q| = 1

Input: M = (F,H, t, ψ), Q = {Pn}
Output: M′ = (F,H ′, t, ψ′)

1 Choose k ∈ [d] \ {1} such that hnk ̸= 0;
2 for i ∈ [n− 1] do
3 h′

i = hi − hik
hnk
hn;

4 H ′ = (h′
1, . . . ,h

′
n−1)

⊤;
5 Define ψ′ : [n− 1]→ P \Q such that ψ′(i) = Pi for

every i ∈ [n− 1];
6 return M′ = (F,H ′, t, ψ′);

The step 1 of Algorithm 1 is always feasible, due to Lemma
1. It is also clear that the output M′ of Algorithm 1 gives an
ideal SSS. Below we show that M′ realizes Γ·Q.

Theorem 1. IfM is an ideal LSSS realizing the access struc-
ture Γ over P = {P1, . . . , Pn}, then for Q = {Pn} ∈ 2P \ Γ,
the ideal LSSS M′ output by Algorithm 1 realizes Γ·Q. (see
Appendix B for the proof)

For Q = {Pn−m+1, . . . , Pn}, we can iteratively performing
Algorithm 1 for all {Pj} ⊆ Q. However, there is a simpler
one-step transformation (see Algorithm 2).

Algorithm 2: Contraction at Q with |Q| > 1

Input: M = (F,H, t, ψ), Q = {Pn−m+1, . . . , Pn}
Output: M′ = (F,H ′, t, ψ′)

1 Compute r = rank((hn−m+1, . . . ,hn)
⊤);

2 Find a set W = {w1, . . . , wr} ⊆ [n] \ [n−m] and a
set K = {k1, . . . , kr} ⊆ [d] \ {1} such that the square
matrix U = ((hw1

)K , . . . , (hwr)K)⊤ is invertible;
3 for i ∈ [n−m] do
4 Compute a new vector h′

i such that
h′⊤
i = h⊤

i − (h⊤
i)K ·U−1 · (hw1

, . . . ,hwr)
⊤;

5 H ′ = (h′
1, . . . ,h

′
n−m)⊤;

6 Define ψ′ : [n−m]→ P \Q such that ψ′(i) = Pi for
every i ∈ [n−m];

7 return M′ = (F,H ′, t, ψ′);

Likewise, the step 2 of Algorithm 2 is always feasible due to
Lemma 1 and the outputM′ of Algorithm 2 is ideal. Theorem
2 shows that M′ exactly realizes Γ·Q.

Theorem 2. If M is an ideal LSSS realizing the ac-
cess structure Γ over P = {P1, . . . , Pn}, then for Q =

{Pn−m+1, . . . , Pn} ∈ 2P \ Γ, the ideal LSSS M′ output by
Algorithm 2 realizes Γ·Q. (see Appendix C for the proof)

IV. APPLICATION IN MULTI-CLOUD STORAGE

In this section, we show an application of our transformation
in multi-cloud storage. As stated in problem (p1), the scenario
we will consider is as follows: A user has used an ideal LSSS
π for an ideal access structure Γ to share a secret s as n shares
s1, . . . , sn and stored the share si with a server Pi for every
i ∈ [n]. Later the user may want to unsubscribe the servers
in some unauthorized subset Q ⊆ {P1, . . . , Pn}. We need to
figure out how to distribute the shares of Q to the servers in
P \Q such that for every authorized subset A ∈ Γ the servers
in A\Q are still able to reconstruct s. In particular, the dealer
should be not involved in the process. In this section, we will
discuss four possible solutions, the first one of which is based
on our transformation from Section III, and show that ours is
superior than the others. Furthermore, to understand clearly
the four solutions, a toy example is given in Appendix D.

A. Solutions to the Storage Relocation Problem

1) Our Method: Referring to Algorithm 2, let M be the
ideal LSSS π for Γ and let Q = {Pn−m+1, . . . , Pn}. On input
(M, Q), Algorithm 2 provides a solution to (p2) and outputs
an ideal LSSS M′ = (F,H ′, t, ψ′) for Γ·Q, where H ′ =
(h′

1, . . . ,h
′
n−m)⊤ and every h′

i is computed as

h′⊤
i = h⊤

i − (h⊤
i)K ·U−1 · (hw1

, . . . ,hwr)
⊤ (1)

at step 4 of Algorithm 2. If v = (s, r2, . . . , rd) is used for
computing the original shares s1, . . . , sn of all servers, i.e.,
si = h

⊤
i ·v for all i ∈ [n], then {s′i = (h′

i)
⊤ ·v : i ∈ [n−m]}

will be n−m shares that realize the scheme M′ for sharing
s. In particular, as per (1), we have that

s′i = si − (h⊤
i)K ·U−1(sw1

, . . . , swr)
⊤ (2)

is a linear combination of Pi’s share si and Q’s shares
sw1

, . . . , swr with constant coefficients. Our method for (p1)
simply requires each server Pi to perform the computation of
(2) and store the new share s′i.

Intuitively, our method for (p1) requires every remaining
server to linearly combine its share with the shares of the
removed servers. Thereby for any LSSS for access structure Γ
and any unauthorized subset Q, we represent the new scheme
for Γ·Q obtained by using this method as πlc.

In particular, a more intuitive solution for (p1) has been
shown in Appendix E and is equivalent to our method. So its
performance is the same as our method.

2) Martin’s Method: In Martin [23], an SSS π : S ×R→
S1×S2×· · ·×Sn for Γ is represented as a matrix M that has
|S×R| rows and n columns. Each row of the matrix is labeled
with a pair (s, r) ∈ S×R and for every i ∈ [n], the ith column
of the matrix is labeled with Pi. For any (s, r) ∈ S ×R, and
any i ∈ [n], the entry of M in row (s, r) and column Pi is
defined as the ith element of π(s, r), i.e., Pi’s share of s ∈ S
when r ∈ R is used as the random string for sharing. Given
M and Q, Martin [23] has a transformation from M to a SSS

6

M ′ for Γ·Q. For Q = {Pn−m+1, . . . , Pn}, the transformation
can be described as follows:

• Choose α = (α1, . . . , αm) ∈ Sn−m+1 × · · · × Sn;
• Define M ′ as the submatrix of M with rows labeled by
{(s, r) : (s, r) ∈ S × R, πQ(s, r) = α} and columns
labeled by P \Q.

The transformation as above provides a solution to (p2). To
extend it to solve (p1), the key point is enabling the servers in
P \Q to have access to the shares of Q. A possible method is
to transfer Q’s shares α to a pubic storage so that the servers
in P \Q can determine M ′. The new scheme from Martin’s
method remains ideal and is represented as πps.

3) Nikov-Nikova Method: Let M = (F,H, t, ψ) be an
MSP and an ideal LSSS for Γ. Let Q be an unauthorized
subset. Nikov and Nikova [24] has a method of constructing
an MSP M′ = (F,H ′, t, ψ′) for Γ·Q out of (M, Q):

• LetHψ−1(Q) be the rows assigned to Q inM. The matrix
H ′ is obtained by appending n−m−1 copies ofHψ−1(Q)

at the end of H .
• The map ψ′ is defined such that each server Pi ∈ P \Q

is assigned both one of the n − m copies of Hψ−1(Q)

and the rows Hψ−1(Pi).
More precisely, this solution to (p2) requires each server in

Q to make its share accessible to P \ Q. For (p1), this idea
simply requires the servers in Q to transfer their shares to
every server in P \Q. Every server in P \Q needs additional
storage to individually store a copy of Q’s shares. The new
scheme M′ turns out to be non-ideal and is represented as
πis.

4) Extended Nikov-Nikova Method: In Nikov-Nikova
method, every server in P \ Q has to store a copy of Q’s
shares. When Q is removed, for every A ∈ Γ, to enable the
servers in A\Q to reconstruct s, A\Q only need to collectively
store a copy of the shares of Q. Thus the shares of Q may be
properly hand out to P \ Q such that every server in P \ Q
only needs to hold a part of Q’s shares, and for every A ∈ Γ,
A \Q can reassemble the shares of Q and then combine with
their old shares to recover s. The new SSS is non-ideal. We
represent the new scheme as πcs.

B. Comparison

In this section, we restrict our attention to the threshold
access structures and compare among four methods mentioned
in Section IV-A, in terms of storage and information rate of
the new scheme after contraction.

1) Theoretical Analysis: Let t, n be integers such that
1 ≤ t ≤ n and let P = {P1, . . . , Pn} be a set of
n servers. Shamir’s (t, n)-threshold secret sharing scheme
(TSSS) [13] realizes a t-out-of-n threshold access structure
Γ = {A ⊆ P : |A| ≥ t}. In Shamir’s scheme π0, a finite
field Fp of prime order p > n is chosen as the domain of
secrets and the n servers P1, . . . , Pn are associated with n
distinct nonzero field elements x1, . . . , xn ∈ Fp, respectively.
To share a secret s ∈ Fp, the dealer chooses t − 1 field
elements a1, . . . , at−1 ∈ Fp randomly, defines a polynomial
P (x) = s +

∑t−1
j=1 ajx

j , and assigns a share si = P (xi) to
the server Pi for all i ∈ [n]. Any ≥ t servers can reconstruct s

by interpolating the polynomial P (x) with their shares. It has
been well showed in [56] that Shamir’s (t, n)-TSSS is ideal
and linear. That is, for Shamir’s (t, n)-TSSS π0, there exists an
MSP M = (Fp,H, t, ψ) where H = (h1, . . . ,hn)

⊤ ∈ Fn×t
such that hi = (x0i , . . . , x

t−1
i), t = (1, 0, . . . , 0)⊤ ∈ Ftp, and

ψ(i) = Pi for each i ∈ [n]. In particular, for any unauthorized
subset Q of size m, Γ·Q will be a (t − m)-out-of-(n − m)
threshold access structure. We shall apply our method (Sec-
tion IV-A1), Martin’s method (Section IV-A2), Nikov-Nikova
method (Section IV-A3) and extended Nikov-Nikova method
(Section IV-A4), respectively, to generate four new schemes
πlc, πps, πis, πcs for Γ·Q. Let z be the number of secrets that
have been shared using π0, ℓ be the storage occupied by every
share, and L(π) be the total storage occupied by all shares in
an SSS π.

TABLE I
THE TOTAL STORAGE (L) AND THE INFORMATION RATE (ρ)

π L(π) ρ(π)

πps nℓz 1
πis (n+ (n−m− 1)m)ℓz (m+ 1)−1

πcs (n+ (n− t)m)ℓz ⌈m(n− t+ 1)/(n−m) + 1⌉−1

πlc (n−m)ℓz 1

In Table I, because Q is unauthorized, we have that m ≤
t − 1. It is not difficult to observe that when m > 0,
L(πlc) < L(πps) < L(πcs) ≤ L(πis) and ρ(πlc) = ρ(πps) >
ρ(πcs) ≥ ρ(πis). That is, our method gives the most storage-
efficient and the most communication-efficient (i.e., highest
information rate) scheme for Γ·Q among the four methods.

Remark. As a special case of HSS, a d-multiplicative secret
sharing [57], [58] allows a user to share d secrets among the
universal set P of n servers such that every server is able
to locally convert its shares to a partial result and the sum
of all server’s partial results is equal to the product of the d
secrets. In particular, Barkol [57] has showed that Shamir’s
(t, n)-TSSS is ⌊n/t⌋-multiplicative. Thus, the four schemes
πlc, πps, πis, πcs are ⌊(n−m−1)/(t−m)⌋-multiplicative. Since
⌊(n −m − 1)/(t −m)⌋ ≥ ⌊n/t⌋, the new schemes allow to
homomorphically compute the product of more secrets.

2) Performance Analysis: To confirm the advantages of our
method in terms of storage and information rate, a simple
experiment is performed.

Like [27], [28], the users in our experiment are also allowed
to subscribe at most 10 servers (i.e., n = 10) and we denote by
P = {P1, . . . , P10} the set of all servers. Let p = 216− 15 be
a 16-bit prime. We set the threshold to be t = 8 and construct
Shamir’s (8,10)-TSSS M = (Fp,H, t,ψ) for the threshold
access structure Γ in the following way. We firstly choose
H, t, and ψ such that H = (h1, . . . ,h10)

⊤, where hi =
(i0, . . . , i7)⊤ for each i ∈ [10], t = (1, 0, . . . , 0)⊤ ∈ F8

p, and
ψ(i) = Pi for each i ∈ [10]. We randomly generate a list of
106 field elements as the secrets to be stored (i.e., the number
of secrets is z = 106). Let Q ⊆ P be a set of m servers to be
removed. The storage ℓ occupied by every share is 16 bit.

We have implemented the four methods given in Section
IV-A on a Dell OptiPlex 7050 Personal Computer that runs

7

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

St
or

ag
e

(M
B)

(a) Storage

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

In
fo

rm
at

io
n

ra
te

(b) Information rate

Fig. 1. The total storage occupied by all shares in πps, πis, πcs, our πlc

respectively and the information rate of the four schemes, when m servers
are removed from (8, 10)-threshold access structure. The storage occupied by
every share is 16 bit (ℓ = 16), and the number of secrets is z = 106

with an Intel Core i5-6500 (3.20GHz) processor and a RAM
of 16 GB. We compare the four new schemes πps, πis, πcs, πlc
for Γ·Q in terms of the total storage L occupied by all shares
(part (a) of Fig. 1) and the information rate (part (b) of Fig.
1) when the size m of Q increases from 0 to 7 with a step 1.

In part (a) of Fig. 1, when n = 10, t = 8, ℓ = 16, z =
106, we have that L(πis) = −1.9073m2 + 17.1661m +
19.0735, L(πcs) = 3.8147m + 19.0735, L(πps) = 19.0735,
L(πlc) = −1.0973m + 19.0735. Part (a) of Fig. 1 shows
that our method occupies less storage than others, because
our method can eliminate the storage occupied by Q’s shares.
The more servers are removed, the more storage-effective
our method is than others. In part (b) of Fig. 1, when
n = 10, t = 8, we have that ρ(πlc) = ρ(πps) = 1, ρ(πcs) =
⌈3m/(10−m) + 1⌉−1

, ρ(πis) = (m+ 1)−1. Part (b) of Fig.
1 shows that the information rate of πlc and πps is higher than
that of πis and πcs.

V. APPLICATION IN SINGLE-CLOUD STORAGE

In an ABE scheme with an access structure Γ, the contrac-
tion of Γ means reduction in the attribute requirements for

Authority

Cloud Server

Data

Owner
Users

Public Key Secret Keys

Ciphertexts Ciphertexts

Contraction Key Updated Ciphertexts

Master Secret Key

Fig. 2. CP-ABE (-CAS) Model

decryption, so that more users will be allowed to access the
encrypted data. In this section, we focus on contractions of
access structures in CP-ABE schemes.

A. CP-ABE Model

A ciphertext-policy attribute-based encryption (CP-ABE)
scheme (Setup,KeyGen,Encrypt,Decrypt) consists of four
polynomial-time algorithms:

• Setup(λ,U) → (PK,MSK). The setup algorithm takes
a security parameter λ and a universal set U of attributes
as input and outputs a public key PK and a master secret
key MSK.

• KeyGen(PK,MSK, A) → SK. The key generation al-
gorithm takes the public key PK, the master secret key
MSK, and a set A of attributes as input and outputs a
private key SK for A.

• Encrypt(PK,M,Γ,M) → CT. The encryption algo-
rithm takes the public key PK, a message M , an access
structure Γ over U , and an LSSS M for Γ as input, and
outputs a ciphertext CT such that a user can extract M
from CT if and only if its attributes form an authorized
subset in Γ. It is assumed that CT implicitly includes Γ.

• Decrypt(SK,CT)→M. The decryption algorithm takes
as input a private key SK for a set A of attributes and a
ciphertext CT, which includes an access structure Γ. If
A ∈ Γ, it outputs a message M .

System architecture. A CP-ABE scheme (depicted in Fig.
2) involves four entities: authority, data owner, server, and
user. The authority is trusted and responsible to run Setup
to generate (PK,MSK) and run KeyGen to generate a private
key SK for every registered user. By running Encrypt, the data
owner may use PK to encrypt its data M with an access policy
Γ. The server is honest-but-curious and stores the resulting
ciphertext CT. To learn M , the user simply downloads CT
from the server and runs Decrypt.
Security. The security of CP-ABE schemes [31] can be
defined with a security game G1 between a challenger and
an adversary and the game consists of the following phases:

• Setup: The challenger runs the setup algorithm to gener-
ate (PK,MSK) and gives PK to the adversary.

• Phase 1: The adversary queries the challenger for private
keys corresponding to the attribute sets S1, . . . , Sq1 .

8

• Challenge: The adversary declares two equal length mes-
sages M0,M1 and an access structure Γ∗ such that none
of the queried attribute sets S1, . . . , Sq1 satisfies Γ∗. The
challenger chooses b ∈ {0, 1} randomly, encrypts Mb

under Γ∗, and gives the ciphertext CT∗ the adversary.
• Phase 2: The adversary queries the challenger for private

keys corresponding to the attribute sets Sq1+1, . . . , Sq ,
with the restriction that none of these satisfies Γ∗.

• Guess: The adversary outputs a guess b′ for b.

The advantage of the adversary in G1 is defined as Pr[b′ =
b]− 1/2. A CP-ABE scheme is secure if all PPT adversaries
have at most a negligible advantage in G1.

B. Waters’ CP-ABE Scheme

Waters [31] constructed a CP-ABE scheme that is secure
under the decisional parallel bilinear diffie-hellman exponent
assumption for bilinear groups (see Appendix F for definition
of bilinear groups). Their scheme can be detailed as follows:

• Setup(λ,U). Choose a bilinear group G = ⟨g⟩ of prime
order p and a bilinear map e : G × G → GT . Choose
random exponents β, a ∈ Zp. For every attribute x ∈ U ,
choose a random value Tx ∈ G. Output

MSK = gβ ,PK = {g, ga, e(g, g)β , (Tx)x∈U}.

• KeyGen(PK,MSK, A). Choose a random t ∈ Zp. Com-
pute K = gβgat, L = gt,Kx = T tx for all x ∈ A. Output

SK = {A,K,L, (Kx)x∈A}.

• Encrypt(PK,M,Γ,M). Parse M as (Zp,H, t, ψ), an
LSSS for access structure Γ, where H = (h1, . . . ,hℓ)

⊤

is an ℓ × d matrix over Zp, t = (1, 0, . . . , 0)⊤ ∈ Zdp is
a target vector, ψ : [ℓ] → U is a map from each row
h⊤
i to an attribute ψ(i). Choose a random vector v =

(s, v2, . . . , vd) ∈ Zdp. For each i ∈ [ℓ], compute si =
h⊤
i v and chooses a random value ri ∈ Zp. Let C =

Me(g, g)βs, C ′ = gs, Ci = gasiT−ri
ψ(i), Di = gri for all

i ∈ [ℓ]. Finally, output

CT = {M, C, C ′, (Ci, Di)i∈[ℓ]}.

• Decrypt(SK,CT). Suppose A ∈ Γ. Compute the con-
stants {αi ∈ Zp : ψ(j) ∈ A} such that

∑
ψ(j)∈A αjh

⊤
j =

t. Compute

e(C ′,K)∏
ψ(j)∈A

(
e(Cj , L)e(Dj ,Kψ(j))

)αj = e(g, g)βs.

Finally, output M = C/e(g, g)βs.

For every i ∈ [ℓ], the component Ci of the ciphertext CT
is associated with an attribute ψ(i) and provides necessary
decrypting information to an authorized attribute set A that
contains ψ(i). As a result, the problem of eliminating the con-
trol of ψ(i) (in general, an unauthorized subset of attributes)
over decryption is reduced to the problem (p1).

C. CP-ABE with Contractions of Access Structure
To enable contractions of access structures, we extend the

CP-ABE model of Section V-A to a new model of CP-
ABE with contractions of access structures (CP-ABE-CAS).
The new model (Setup,KeyGen,Encrypt∗,Decrypt,Contract)
is obtained from that of CP-ABE by making two changes:
(1) enhancing the Encrypt in CP-ABE to a new encryption
algorithm Encrypt∗ that also outputs a contraction key CK;
(2) adding a new contraction algorithm Contract that allows
one to use CK (or its restrictions) to contract the access
structure associated with a ciphertext. More precisely, the new
algorithms Encrypt∗ and Contract can be detailed as below:

• Encrypt∗(PK,M,Γ,M) → (CT,CK). The modified
encryption algorithm additionally outputs a contraction
key CK, which implicitly includes U . For any Q ⊆ U ,
CK can be restricted to CKQ.

• Contract(PK,CT, Q,CKQ) → CT·Q. The contraction
algorithm takes the public key PK, a ciphertext CT with
an access structure Γ, a set Q ∈ 2U \Γ, and a contraction
key CKQ restricted to Q as input and outputs a new
ciphertext CT·Q that can be decrypted by any authorized
attribute set in Γ·Q. Similarly, CT·Q includes Γ·Q.

System architecture. Referring to Fig. 2, to enable contrac-
tions of access structures with CP-ABE-CAS, a data owner
may run Encrypt∗(PK,M,Γ,M) to produce (CT,CK), store
CT on the cloud server and keep CK secret in local stor-
age such that it is the only one that can later request the
server to contract access structures. To remove an attribute
y (Q = {y} ∈ 2U \ Γ), the data owner may send a restricted
contraction key CKQ to the server and let the server execute
Contract(PK,CT, Q,CKQ). Afterwards, all users with an
authorized attribute set in Γ·Q will be able to decrypt the
contracted ciphertext CT·Q.
Security. We define the security of CP-ABE-CAS with a
security game G2 that consists of the following phases:

• Setup: The challenger runs the setup algorithm to gener-
ate (PK,MSK) and gives PK to the adversary.

• Phase 1: The adversary queries the challenger for private
keys corresponding to the attribute sets S1, . . . , Sq1 .

• Challenge: The adversary declares two equal length mes-
sages M0,M1, an access structure Γ∗, an LSSS M for
Γ∗, and an unauthorized subset Q of Γ∗, where Γ∗

·Q
cannot be satisfied by any of S1, . . . , Sq1 . The challenger
chooses b ∈ {0, 1} randomly, encrypts Mb under Γ∗, pro-
ducing CT∗, runs Contract(PK,CT∗, Q,CKQ) to output
CT∗

·Q, and gives (CT∗,CT∗
·Q,CKQ) to the adversary.

• Phase 2: The adversary queries the challenger for private
keys corresponding to the attribute sets Sq1+1, . . . , Sq ,
with the restriction that none of these satisfies Γ∗

·Q.
• Guess: The adversary outputs a guess b′ for b.

The advantage of an adversary in G2 is Pr[b′ = b] − 1/2. A
CP-ABE-CAS is secure if all PPT adversaries have at most a
negligible advantage in G2.

D. Our CP-ABE-CAS scheme
In this section, we upgrade the CP-ABE scheme of Waters

[31] (see Section V-B) to a CP-ABE-CAS scheme with spe-

9

cific constructions of Encrypt∗ and Contract. Our contraction
algorithm will be constructed based on the transformations
from Section III. In particular, we will consider contractions
of ideal access structures at an unauthorized attribute set Q of
cardinality 1, because the algorithm can be easily extended to
the case |Q| > 1. The details of Encrypt∗ and Contract are
described as follows:

• Encrypt∗(PK,M,Γ,M). Execute the encryption algo-
rithm Encrypt(PK,M,Γ,M). Output the contraction key
CK = {ri : i ∈ [ℓ]}. For any Q ⊆ U , let CKQ = {ri :
i ∈ ψ−1(Q)} be the restricted contraction key.

• Contract(PK,CT, Q,CKQ). Suppose that Q = {y} ∈
2U \ Γ. W.l.o.g, assume that ψ−1(y) = ℓ. Invoke Algo-
rithm 1 with (M, Q) as input to generate an MSPM′ for
Γ·Q. Let k be the integer chosen at step 1 of Algorithm
1. For all i ∈ [ℓ− 1], compute

C ′
i = Ci(Cψ−1(y)T

rψ−1(y)
y)

− hik
hℓk .

Finally, output CT·Q = {M′, C, C ′, (C ′
i, Di)i∈[ℓ−1]}.

Our contraction algorithm properly integrates the decrypting
information associated with Q into that associated with every
remaining attribute. As the new ciphertext CT·Q is shorter
than the original ciphertext CT, hereafter we denote by
Contractsct this contraction algorithm.
Correctness and security. The correctness of our scheme fol-
lows from that of Waters’ scheme (Section V-B) and Theorem
1. The security of our scheme is an easy extension to that of
Waters’ scheme and appears in Appendix G.
Client-side storage. In our CP-ABE-CAS, the client needs to
store a contraction key CK whose length is ℓ times that of
a single message, where ℓ is the total number of attributes.
When |CK| occupies more storage than the outsourced data,
storing data with a cloud server will become meaningless. This
concern can be easily relieved by the data owner choosing a
PRF Fγ : {0, 1}∗ → Zp and generating every element ri in
CK as ri = Fγ(i). The data owner only needs to keep the
secret key γ of the PRF as a long-term contraction key.
Remark. If we apply Martin’s method or Nikov-Nikova
method from Section IV-A to construct CP-ABE-CAS, then
intuitively Contract may realized by appending the restricted
contraction key to the original ciphertext. That is, Contract
simply outputs CT·Q = {M, C, C ′, (Ci, Di)i∈[ℓ],CKQ}.
Then an authorized attribute set in Γ·Q can leverage CKQ to
compute e(Cj , L)e(Dj ,Kψ(j)) = e(g, g)asjt = e(CjT

rj
ψ(j), L)

for all j ∈ ψ−1(Q) and then recover the message M . This
straightforward contraction algorithm via ciphertext extension
is referred to as Contractect.

E. Performance Analysis

In this section, in order to compare the trivial solution (re-
ferred to as Contractre) mentioned in Section I-B, Contractect
and Contractsct in Section V-D, we have implemented all
algorithms on a Dell PowerEdge T640 Server that runs with
an Intel Xeon Gold 5218 (2.30GHz) processor and a RAM of
16GB. We have used the Paring-Based Cryptography (PBC)
library and the fast library for number theory (FLINT) to

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

Ti
m

e
(m

s)

Fig. 3. Computation of contraction. The execution time (resp. Tre, Tect, and
Tsct) of Contractre, Contractect and our Contractsct when 1 attribute is
removed from (8, n)-threshold access structure (where n = 10, 20, . . . , 100)

implement the algorithm. We use the type A elliptic curve
y2 = x3 + x and the order of the bilinear group is a 160-bit
prime p = 2159 + 162259276829213363391578010288129.

We compare three solutions in terms of the following
measures: during the contraction process, the communication
and computation cost for the contraction operation; after
contraction, the storage cost for the contracted ciphertext, the
communication cost for downloading ciphertext, the computa-
tion cost for the user decryption. All the following experiments
are for a single message. We refer to the parameter settings
of [39]. For the contraction process, the main factor of the
difference between the three solutions is the number n of
attributes in the universe set U . We use the threshold access
structure to encrypt the message, set the threshold to be t = 8
and set n = |U | to be from 10 to 100 with a step 10. For
the performance of the contracted ciphertext, the main factor
of the difference between the three solutions is the number
m of the attributes to be removed. We use a (t, n)-threshold
structure where t = 8, n = 10 and choose the unauthorized
subset Q of attributes to be removed such that m = |Q|
is from 0 to 7 with a step 1. Furthermore, to compute the
execution time of the decryption for the original ciphertext
and the contracted ciphertext, we simply allow the client to
possess a set A of attributes such that |A| = t and introduce a
user whose attribute set is B such that |B| = t−m. To make
the execution time more accurate, we execute each experiment
1000 times to compute an average time.

1) Evaluation of the Contraction Process:
Communication cost. In the trivial solution Contractre, to
realize the contraction of the access structure, provided that
the client also has access to its data on the server and its
attribute set is A, it should download and decrypt the ciphertext
from the server and then upload new ciphertext after and
re-encrypting. While in Contractsct and Contractect, it only
requires the client to send the contraction key CKQ. Theoret-
ically, regardless of client-side or server-side communication,
Contractsct and Contractect are superior to Contractre. This
is confirmed by the following results. Fig. 4 shows the server-
side and client-side communication of Contractre (SCre and

10

10 20 30 40 50 60 70 80 90 100
0

4

8

12

16

20

24

Th
e

se
rv

er
-s

id
e

co
m

m
un

ic
at

io
n

(K
B)

(a) Server-side communication

10 20 30 40 50 60 70 80 90 100
0

4

8

12

16

20

24

Th
e

cl
ie

nt
-s

id
e

co
m

m
un

ic
at

io
n

(K
B)

(b) Client-side communication

Fig. 4. Communication of contraction. The server-side (resp. SCre, SCect,
and SCsct) and client-side communication (resp. CCre, CCect, and CCsct)
of Contractre, Contractect and our Contractsct when 1 attribute is removed
from (8, n)-threshold access structure (where n = 10, 20, . . . , 100)

CCre), Contractect (SCect and CCect) and Contractsct (SCsct

and CCsct) when the threshold of access structure is t = 8
and the number of the attributes to be removed is m = 1.
In particular, CCre = 0.1836n − 0.1445,CCect = CCsct =
0.0195,SCre = 0.2031n + 0.0391,SCect = SCsct = 0. From
the results, it follows that whether on the client side or on
the server side, the communication cost of Contractsct and
Contractect is much lower than Contractre.

Computation cost. Here we compare the execution time
(resp. Tre, Tect, and Tsct) of three algorithms Contractre,
Contractect, and Contractsct. Note that we ignore the time
consumed by the communication between the server and the
client, thus Contractect takes negligible time in the contraction
process. As shown in Fig. 3, when the threshold and the
number of attributes to be removed are fixed, the execution
time of Contractre and Contractsct is almost linear with the
number n of attributes. In particular, when t = 5,m = 1, we
can obtain by linear fitting that Tre = 2.7802n+9.8260, Tsct =
0.8964n + 0.5536, Tect = 0. Theoretically, as the number of
attributes grows, more pairs (Ci, Di)i∈[|U |−1] in the encryption
algorithm and more values {C ′

i : i ∈ [|U | − 1]} in the con-

0 1 2 3 4 5 6 7
0.0

0.4

0.8

1.2

1.6

2.0

2.4

Th
e

le
ng

th
 o

f n
ew

 c
ip

he
rte

xt
 (K

B)

Fig. 5. Storage of contracted ciphertext (implies communication of
downloading contracted ciphertext). The length (resp. lre, lect, and lsct)
of the contracted ciphertext obtained by Contractre, Contractect, and our
Contractsct after m attributes are removed from (8, 10)-threshold access
structure (where m = 1, 2, . . . , 7)

traction algorithm need to be calculated. The results confirm
it. Precisely, the execution time of Contractre is roughly 3
times that of Contractsct. This shows that Contractsct is more
efficient than Contractre.

2) Evaluation of the Contracted Ciphertext:
Storage cost. We compare the length (resp. lre, lect, and
lsct) of the contracted ciphertext obtained by three algorithms
Contractre, Contractect, and Contractsct in Fig. 5. The length
lect of the contracted ciphertext generated by Contractect
is positively correlated with the size m of Q, while the
length lsct (and lre) of the ciphertext generated by Contractsct
(and lre) is negatively correlated with m. In particular, when
n = 10, t = 8, we have that lect = 0.0195m + 2.0703, lre =
lsct = 0.0195m2−0.3984m+2.0703. Theoretically, as the size
of Q grows, the length of the contraction key CK·Q included in
the contracted ciphertext generated by Contractect increases,
while in the contracted ciphertext generated by Contractsct
(and Contractre), the number of the pairs (C ′

i, Di)i∈[|U |−|Q|],
the size of the matrix H and the map ψ in the LSSS M
all decrease. Thus, Contractsct (and Contractre) is more cost-
efficient than Contractect in terms of storage.
Communication cost. During the user decryption process,
the server sends the ciphertext to the user, and the server-
side communication is exactly the length of the ciphertext,
so the result is same as storage cost. Thus, Contractsct and
Contractre are more efficient in terms of communication for
the decryption of the contracted ciphertext than Contractect.
Computation cost. As shown in Fig. 6, when the universe
set U of attributes is set such that n = |U | = 10 and
the threshold is set to be t = 8, the execution time TDec

ect

of the decryption for the contracted ciphertext obtained by
Contractect is positively correlated with the number m of
attributes to be removed, while the execution time TDec

sct and
TDec
re of the decryption for the contracted ciphertext obtained

by Contractsct and Contractre are negatively correlated with
the number m of attributes to be removed. In particular, when
n = 10, t = 8, we can obtain by linear fitting that TDec

ect =

11

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

22

Ti
m

e
(m

s)

Fig. 6. Computation of decrypting contracted ciphertext. The execution
time (resp. TDec

re , TDec
ect , and TDec

sct) of decryption for the contracted ciphertext
obtained by Contractre, Contractect and Contractsct after m attributes are
removed from (8, 10)-threshold access structure (where m = 1, 2, . . . , 7)

1.5540m + 9.9558, TDec
re = −1.2073m + 10.3447, TDec

sct =
−1.1978m + 10.2759. Thus, the computation cost of the
user-side decryption for the contracted ciphertext obtained
by Contractsct and Contractre is lower than the computation
cost of the user-side decryption for the contracted ciphertext
obtained by Contractect.

3) Advantages of Our Contraction Algorithm: Consider
that in many practical scenarios the number of users may
be quite large, our contraction algorithm Contractsct allows
the server to update the ciphertext only once when removing
attributes, then the contracted ciphertext may be downloaded
and decrypted by a large number of users. For example, when
the number of attributes in U is n = 10, the threshold is
t = 8, the number of attributes to be removed is m = 7,
the execution time of Contractsct is roughly 10 ms. For
every user, the execution time TDec

sct of the decryption for
the contracted ciphertext obtained by Contractsct is roughly
2 ms, while the execution time TDec

ect of the decryption for
the contracted ciphertext obtained by Contractect is roughly
20 ms. Note that the time of updating the ciphertext is only
about 10 ms, so when the number of users is quite large, it
is clear that our algorithm is superior to the algorithm with
ciphertext extension in terms of chronic computation cost.
Furthermore, the length of the contracted ciphertext obtained
by Contractsct is less than that obtained by Contractect. This
not only saves the server-side storage, but also saves the server-
side communication cost for users to download the ciphertext.
In conclusion, our algorithm takes a certain amount of time
to update the ciphertext, but optimizes the server-side storage
and the overall communication and the user-side computation
when a large number of users request new ciphertext.

VI. CONCLUDING REMARKS

In this paper, we proposed algorithms that can efficiently
transform a given LSSS for an access structure to LSSSs for
contractions of the access structure. We also show their appli-
cations in solving the data relocating problem in multi-cloud
storage and the attribute removal problem in the CP-ABE

based single-cloud storage. Our solutions are storage efficient
and assume honest-but-curious cloud servers. It remains open
to consider malicious servers and also ensure the integrity of
the cloud data against malicious servers. In Appendix H, we
briefly discuss several existing techniques that may be used to
solve the data integrity problem.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China (No. 62372299) and the Natural
Science Foundation of Shanghai (No. 21ZR1443000).

REFERENCES

[1] V. Miranda-López, A. Tchernykh, M. G. Babenko, V.A. Kuchukov, M.A.
Deryabin, E. Golimblevskaia, E. Shiryaev, A. Avetisyan, R. Rivera-
Rodrı́guez, G. I. Radchenko, and E. Talbi, “Weighted two-levels secret
sharing scheme for multi-clouds data storage with increased reliability,”
in HPCS ’19: 915–922.

[2] J. Ning, Z. Cao, X. Dong, K. Liang, L. Wei and K.R. Choo,
“Cryptcloud+: Secure and expressive data access control for cloud
storage,” IEEE Trans. Serv. Comput., 14(1): 111–124 (2021).

[3] M.A. Deryabin, N.I. Chervyakov, A. Tchernykh, M.G. Babenko, N.N.
Kucherov, V. Miranda-López, and A. Avetisyan, “Secure verifiable secret
short sharing scheme for multi-cloud storage,” in HPCS ’18: 700–706.

[4] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in S&P ’07: 321–334.

[5] Z. Ying, W. Jiang, X. Liu, S. Xu, and R. Deng, “Reliable policy updating
under efficient policy hidden fine-grained access control framework
for cloud data sharing,” IEEE Trans. Serv. Comput., 15(6): 3485–3498
(2021).

[6] B. Fabian, T. Ermakova, and P. Junghanns, “Collaborative and secure
sharing of healthcare data in multi-clouds,” Inf. Syst., 48: 132–150
(2015).

[7] M. Li, C. Qin, P.P.C. Lee, and J. Li, “Convergent dispersal: Toward
storage-efficient security in a cloud-of-clouds,” in HotCloud ’14.

[8] H. Zhang, J. Yu, C. Tian, P. Zhao, G. Xu, and J. Lin, “Cloud storage
for electronic health records based on secret sharing with verifiable
reconstruction outsourcing,” IEEE Access: 40713–40722 (2018).

[9] E. Boyle, N. Gilboa, and Y. Ishai, “Breaking the circuit size barrier
for secure computation under DDH,” in CRYPTO ’16, 9814: 509–539
(2016).

[10] L.F. Zhang and R. Safavi-Naini, “Protecting data privacy in publicly
verifiable delegation of matrix and polynomial functions,” Des. Codes
Cryptogr., 88(4): 677–709 (2020).

[11] L.F. Zhang and H. Wang, “Multi-server verifiable computation of low-
degree polynomials,” in S&P ’22: 596–613.

[12] G. Ohtake, R. Safavi-Naini, and L. F. Zhang, “Outsourcing scheme of
ABE encryption secure against malicious adversary,” Comput. Secur.,
86: 437–452 (2019).

[13] A. Shamir, “How to share a secret,” Commun. ACM, 1979.
[14] G.R. Blakley, “Safeguarding cryptographic keys,” in Managing Require-

ments Knowledge, International Workshop on: 313–313 (1979).
[15] M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing

general access structure,” Electronics and Communications in Japan
(Part III: Fundamental Electronic Science), 72: 56–64 (1989).

[16] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in STOC
’88: 1–10.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-
tion retrieval,” in FOCS ’95: 41–50.

[18] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in EURO-
CRYPT ’05: 457–473.

[19] J. Wang, X. Yin, J. Ning, S. Xu, G. Xu, and X. Huang, “Secure updatable
storage access control system for EHRs in the cloud,” IEEE Trans. Serv.
Comput., 16(4): 2939–2953 (2023).

[20] T. Wang, Y. Zhou, H. Ma, and R. Zhang, “Flexible and controllable
access policy update for encrypted data sharing in the cloud,” Comput.
J., 66(6): 1507–1524 (2023).

[21] M. Yang, H. Wang, and Z. Wan, “PUL-ABE: An efficient and quantum-
resistant CP-ABE with policy update in cloud storage,” IEEE Trans.
Serv. Comput., Early Access (2023).

12

[22] E. Valavi, J. Hestness, N. Ardalani, and M. Iansiti, “Time and the value
of data,” CoRR abs/2203.09118 (2022).

[23] K. Martin, “New secret sharing schemes from old,” J. Comb. Math.
Comb. Comput., 14: 65–77 (1993).

[24] V. Nikov and S. Nikova, “New monotone span programs from old,”
IACR Cryptol. ePrint Arch., 2004: 282.

[25] E. F. Brickell, “Some ideal secret sharing schemes,” in EUROCRYPT
’89: 468–475.

[26] N. Wang, J. Fu, S. Zhang, Z. Zhang, J. Qiao, J. Liu, and B.K. Bhargava,
“Secure and distributed IoT data storage in clouds based on secret
sharing and collaborative blockchain,” IEEE/ACM Trans. Netw., 31(4):
1550–1565 (2023).

[27] T. Li, J. Chu, and L. Hu, “CIA: a collaborative integrity auditing scheme
for cloud data with multi-replica on multi-cloud storage providers,” IEEE
Trans. Parallel Distributed Syst., 34(1):154–162, (2023).

[28] P. Singh, N. Agarwal, and B. Raman, “Secure data deduplication using
secret sharing schemes over cloud,” Future Gener. Comput. Syst., 88:
156–167 (2018).

[29] M. Hayashi and T. Koshiba, “Universal adaptive construction of veri-
fiable secret sharing and its application to verifiable secure distributed
data storage,” IEEE/ACM Trans. Netw., Early Access (2023).

[30] Y. Jiang, W. Susilo, Y. Mu, and F. Guo, “Ciphertext-policy attribute-
based encryption supporting access policy update and its extension with
preserved attributes,” Int. J. Inf. Sec., 2018.

[31] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in PKC ’11: 53–70.

[32] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in CCS ’06:
89–98.

[33] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and
ciphertext delegation for attribute-based encryption,” in CRYPTO ’12:
199–217.

[34] X. Liang, Z. Cao, H. Lin, and J. Shao, “Attribute based proxy re-
encryption with delegating capabilities,” in AsiaCCS ’09: 276–286.

[35] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing with
attribute revocation,” in ASIACCS ’10: 261–270.

[36] K. Liang, L. Fang, W. Susilo, and D. S. Wong, “A ciphertext-policy
attribute-based proxy re-encryption with chosen-ciphertext security,” in
INCoS ’13: 552–559.

[37] K. Liang, M.H. Au, W. Susilo, D.S. Wong, G. Yang, and Y. Yu,
“An adaptively cca-secure ciphertext-policy attribute-based proxy re-
encryption for cloud data sharing,” in ISPEC ’14: 448–461.

[38] R.R. Al-Dahhan, Q. Shi, G.M. Lee, and K. Kifayat, “Survey on revo-
cation in ciphertext-policy attribute-based encryption,” Sensors, 19(7):
1695 (2019).

[39] C. Ge, W. Susilo, J. Baek, Z. Liu, J. Xia, and L. Fang, “Revocable
attribute-based encryption with data integrity in clouds,” IEEE Trans.
Dependable Secure Comput.: 1–1 (2021).

[40] W. Susilo, P. Jiang, F. Guo, G. Yang, Y. Yu, and Y. Mu, “EACSIP:
extendable access control system with integrity protection for enhancing
collaboration in the cloud,” IEEE Trans. Inf. Forensics Secur., 12(12):
3110–3122 (2017).

[41] J. Lai, F. Guo, W. Susilo, X. Huang, P. Jiang, and F. Zhang, “Data
access control in cloud computing: Flexible and receiver extendable,”
IEEE Trans. Serv. Comput.: 1–1 (2021).

[42] H. Xiong, C. Hu, Y. Li, G. Wang, and H. Zhou, “Secure secret sharing
with adaptive bandwidth in distributed cloud storage systems,” IEEE
Access, 8: 108148–108157 (2020).

[43] C. Cachin, “On-line secret sharing,” in Cryptography and Coding, 5th
IMA Conference: 190–198 (1995).

[44] S. Ye, G. Yao, and Q. Guan, “A multiple secrets sharing scheme with
general access structure,” in IUCE ’09: 461–464.

[45] J. Yuan and L. Li, “A fully dynamic secret sharing scheme,” Inf. Sci.,
496: 42–52 (2019).

[46] M.H. Tadayon, H. Khanmohammadi, and M.S. Haghighi, “Dynamic and
verifiable multi-secret sharing scheme based on hermite interpolation and
bilinear maps,” IET Inf. Secur.: 234–239 (2015).

[47] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in CRYPTO ’95: 339–
352.

[48] S. Mashhadi, “Secure publicly verifiable and proactive secret sharing
schemes with general access structure,” Inf. Sci., 378: 99–108 (2017).

[49] D. A. Schultz, B. Liskov, and M.D. Liskov, “MPSS: mobile proactive
secret sharing,” ACM Trans. Inf. Syst. Secur., 13(4): 34:1–34:32 (2010).

[50] S.K.D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and
D. Song, “CHURP: dynamic-committee proactive secret sharing,” IACR
Cryptol. ePrint Arch., 2019: 17.

[51] V. Nikov, S. Nikova, B. Preneel, and J. Vandewalle, “Applying general
access structure to proactive secret sharing schemes,” IACR Cryptol.
ePrint Arch., 2002: 141.

[52] V. Nikov, S. Nikova, B. Preneel, and J. Vandewalle, “On distributed key
distribution centers and unconditionally secure proactive verifiable secret
sharing schemes based on general access structure,” in INDOCRYPT ’02:
422–435.

[53] A. Slinko, “Ways to merge two secret sharing schemes,” IET Inf. Secur.,
14(1): 146–150 (2020).

[54] A. Beimel, “Secret-sharing schemes: A survey,” in IWCC ’11: 11–46.
[55] M. Karchmer and A. Wigderson, “On span programs,” in SCT ’93.
[56] D. R. Stinson, “An explication of secret sharing schemes,” Des. Codes

Cryptogr., 2(4): 357–390 (1992).
[57] O. Barkol, Y. Ishai, and E. Weinreb, “On d-multiplicative secret sharing,”

J. Cryptol., 23(4): 580–593 (2010).
[58] G. Tsaloli, B. Liang, and A. Mitrokotsa, “Verifiable homomorphic secret

sharing,” in ProvSec ’18: 40–55.
[59] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, “Provable data possession at untrusted stores,” in CCS ’07:
598–609.

[60] K. He, J. Chen, Q. Yuan, S. Ji, D. He, and R. Du, “Dynamic group-
oriented provable data possession in the cloud,” IEEE Trans. Dependable
Secur. Comput., 18(3): 1394-1408 (2021).

[61] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
ASIACRYPT ’08: 90–107.

[62] G. Anthoine, J. Dumas, M. Jonghe, A. Maignan, C. Pernet, M. Hanling,
and D.S. Roche, “Dynamic proofs of retrievability with low server
storage,” in USENIX Security ’21: 537–554.

[63] D. Catalano and D. Fiore, “Practical homomorphic MACs for arithmetic
circuits,” in EUROCRYPT ’13: 336-–352.

[64] S. Feng, S. Xu, and L.F. Zhang, “Multi-key homomorphic MACs with
efficient verification for quadratic arithmetic circuits,” in ASIACCS ’22:
17–27.

[65] L.F. Zhang and R. Safavi-Naini, “Generalized homomorphic MACs with
efficient verification,” in AsiaPKC ’14: 3–12.

13

APPENDIX A
PROOF FOR LEMMA 1

As rank(HQ) = r, there exist r rows of HQ that
are linear independent over F. Suppose that these rows are
(hw1

)⊤, . . . , (hwr)
⊤, where w1, . . . , wr ∈ ψ−1(Q). Below

we show that there exists a set K ⊆ [d] \ {1} such
that the matrix U is invertible over F. Assume for con-
tradiction that U is not invertible for all K ⊆ [d] \
{1}. Then ((hw1

)[d]\{1}, . . . , (hwr)[d]\{1})
⊤ must be an r ×

(d − 1) matrix of rank < r. Consequently, there exist
r constants α1, . . . , αr ∈ F, which are not all 0, such
that

∑
i∈[r] αi(hwi)

⊤ = (β, 0, . . . , 0). If β ̸= 0, then
{Pψ(w1), . . . , Pψ(wr)} must be an authorized set of partici-
pants. Due to monotonicity, Q is authorized as well, which
contradicts to the fact that Q is unauthorized. If β = 0, then
the rows (hw1

)⊤, . . . , (hwr)
⊤ must be linearly dependent over

F, which contradicts to our choice of the rows.

APPENDIX B
PROOF FOR THEOREM 1

Let Γ′ be the access structure realized byM′. It suffices to
show that Γ′ = Γ·Q.

Firstly, we show that Γ′ ⊆ Γ·Q. For any A ∈ Γ′,
there exist a set of constants {α′

i : ψ(i) ∈ A} such that
t =

∑
i∈ψ−1(A) α

′
ih

′
i. Note that h′

i = hi − hik
hnk
hn for every

i ∈ [n− 1]. So we have that

t =
∑

i∈ψ−1(A)

α′
i

(
hi −

hik
hnk

hn

)
,

which shows that t is a linear combination of the vectors {hi :
ψ(i) ∈ A∪Q}. The set A∪Q must be authorized in the access
structure Γ. Hence, A ∈ Γ·Q.

Secondly, we show that Γ·Q ⊆ Γ′. For any A ∈ Γ·Q, we
have that A ∪ Q ∈ Γ. Then there exist a set of constants
{αi : ψ(i) ∈ A ∪Q} such that

t =
∑

i∈ψ−1(A∪Q)

αihi =
∑

i∈ψ−1(A)

αihi + αnhn. (3)

As Q ∈ 2P \ Γ, there exists k ∈ [d] \ {1} such that
hnk ̸= 0. Due to Equation (3), we have that 0 = tk =∑
i∈ψ−1(A) αihik +αnhnk. By solving it in αn, we have that

αn = −
∑

i∈ψ−1(A)

αi
hik
hnk

. (4)

Equations (3) and (4) together imply that

t =
∑

i∈ψ−1(A)

αi

(
hi −

hik
hnk

hn

)
=

∑
i∈ψ′−1(A)

αih
′
i,

i.e., t⊤ is a linear combination of the row vectors of H ′

labeled by (ψ′)−1(A). Hence, A ∈ Γ′.

APPENDIX C
PROOF FOR THEOREM 2

Let Γ′ be the access structure realized byM′. It suffices to
show that Γ′ = Γ·Q.

Firstly, we show that Γ′ ⊆ Γ·Q. For any A ∈ Γ′, there exist
a set of constants {α′

i : ψ(i) ∈ A} such that

t⊤ =
∑

i∈ψ−1(A)

α′
ih

′⊤
i . (5)

Note that h′⊤
i = h⊤

i − (h⊤
i)K · U−1 · (hw1

, . . . ,hwr)
⊤ for

each i ∈ [n−m]. Equation (5) can be translated into

t⊤ =
∑

i∈ψ−1(A)

α′
i

(
h⊤
i − (h⊤

i)K ·U−1 · (hw1 , . . . ,hwr)
⊤) .

Note that for every i ∈ ψ−1(A), (h⊤
i)K · U−1 is an r-

dimensional row vector. It is not difficult to observe that∑
i∈ψ−1(A) α

′
i(h

⊤
i)K ·U−1 ·(hw1

, . . . ,hwr)
⊤ is a linear com-

bination of the vectors {h⊤
w1
, . . . ,h⊤

wr}. Hence, t is a linear
combination of the vectors {hi : ψ(i) ∈ A∪{Pw1

, . . . , Pwr}}.
The set A∪ {Pw1

, . . . , Pwr} must be authorized in Γ. Due to
monotonicity, we have that A ∪Q ∈ Γ and thus A ∈ Γ·Q.

Secondly, we show that Γ·Q ⊆ Γ′. For any A ∈ Γ·Q, we
have that A ∪ Q ∈ Γ. Then there exist a set of constants
{αi : ψ(i) ∈ A ∪Q} such that

t⊤ =
∑

i∈ψ−1(A)

αih
⊤
i +

∑
j∈ψ−1(Q)

αjh
⊤
j . (6)

Since the rank of the matrix (hn−m+1, . . . ,hn)
⊤ is r and W

labels a set of r linearly independent rows of the matrix, there
must exist a set of constants {α′

w : w ∈W} such that∑
j∈ψ−1(Q)

αjh
⊤
j =

∑
w∈W

αwh
⊤
w . (7)

Due to Equations (6) and (7), we have that∑
i∈ψ−1(A)

αi(h
⊤
i)K +

∑
j∈ψ−1(Q)

αj(h
⊤
j)K

=
∑

i∈ψ−1(A)

αi(h
⊤
i)K +

∑
w∈W

αwh
⊤
w

=
∑

i∈ψ−1(A)

αi(h
⊤
i)K + (α′

w)w∈W ·U

= (t⊤)K

= 0.

(8)

By solving the linear equation system (8), we have that

(α′
w)w∈W = −

∑
i∈ψ−1(A)

αi(h
⊤
i)K ·U−1. (9)

Equations (6), (7) and (9) together imply that

14

t⊤ =
∑

i∈ψ−1(A)

αih
⊤
i +

∑
w∈W

α′
wh

⊤
w

=
∑

i∈ψ−1(A)

αih
⊤
i + (α′

w)w∈W · (hw1 , . . . ,hwr)
⊤

=
∑

i∈ψ−1(A)

αi
(
h⊤
i − (h⊤

i)K ·U−1 · (hw1 , . . . ,hwr)
⊤)

=
∑

i∈(ψ′)−1(A)

αih
′⊤
i .

Thus, t⊤ is a linear combination of the rows of H ′ labeled
by (ψ′)−1(A). Therefore, A ∈ Γ′.

APPENDIX D
A TOY EXAMPLE OF STORAGE RELOCATION

Let P = {P1, P2, P3, P4} be a set of four servers.
Consider an access structure Γ over P such that Γ− =
{{P1, P2, P4}, {P1, P3, P4}}. Let M = (F2,H, t, ψ) be an
MSP and an ideal LSSS for Γ, where

H = (h1,h2,h3,h4)
⊤ =


1 0 1
0 1 1
0 1 1
0 1 0

 ,
t = (1, 0, 0)⊤, and ψ(i) = Pi for each i ∈ [4]. To share
a secret s ∈ F2 with M, the dealer chooses r2, r3 ← F2,
defines v = (s, r2, r3)

⊤, and gives si = h⊤
i v to Pi for all

i ∈ [4]. Let Q = {P4} be an unauthorized subset. We show
how to use the methods in Section IV to solve (p1).

Our method. By running Algorithm 1 on input (M, Q) with
k = 2, we get an LSSS M′ = (F,H ′, t, ψ′) for Γ·Q, where

H ′ = (h′
1,h

′
2,h

′
3)

⊤ =

1 0 1
0 0 1
0 0 1


and ψ′(i) = Pi for all i ∈ [3]. Our method requires each server
Pi ∈ P \Q to compute and store a new share s′i = si− hi2

h42
s4.

Specifically, s′1 = s1, s′2 = s2 − s4, and s′3 = s3 − s4.

Martin’s method. To use Martin’s method, the SSS M can
be represented as the following matrix

M =



P1 P2 P3 P4

(0, (0, 0)) 0 0 0 0
(0, (0, 1)) 1 1 1 0
(0, (1, 0)) 0 1 1 1
(0, (1, 1)) 1 0 0 1
(1, (0, 0)) 1 0 0 0
(1, (0, 1)) 0 1 1 0
(1, (1, 0)) 1 1 1 1
(1, (1, 1)) 0 0 0 1


,

whose rows and columns are labeled by the elements of F2×
F2
2 and P , respectively. By choosing α = (0), the SSS can be

represented with

M ′ =


P1 P2 P3

(0, (0, 0)) 0 0 0
(0, (0, 1)) 1 1 1
(1, (0, 0)) 1 0 0
(1, (0, 1)) 0 1 1

.
It suffices to keep the shares of P1, P2 and P3 unchanged and
send the share of Q = {P4} to a public storage.

Nikov-Nikova method. This method will construct an MSP
M′ = (F2,H

′, t, ψ′) for Γ·Q, where

H ′ =


1 0 1
0 1 1
0 1 1
0 1 0
0 1 0
0 1 0


and (ψ′)−1(Pi) = {i, i+3} for every i ∈ [3]. It requires P4 to
transfer its share to every server in {P1, P2, P3} and requires
each of these servers to additionally store s4. The new scheme
is non-ideal.

Extended Nikov-Nikova method. This method requires every
authorized subset to keep a copy of the share s4 of Q. As
(Γ·Q)

− = {{P1, P2}, {P1, P3}}, the method can be optimized
by P1 storing s4.

APPENDIX E
A SOLUTION TO STORAGE RELOCATION

Here we give a more intuitive solution for the storage
relocation problem, which is equivalent to our method in
Section IV-A1.

LetM = (F,H, t, ψ) be an MSP and an ideal LSSS for Γ,
where H = (h1, . . . ,hn)

⊤ ∈ Fn×d, t = (1, 0, . . . , 0)⊤ ∈ Fd,
and ψ(i) = Pi for every i ∈ [n]. For any unauthorized
subset Q ⊆ P , the shares {sj}Pj∈Q leaves the secret s
completely undetermined, i.e., from Q’s view of point, any
element of F could be s. In particular, there must exist a
vector v′ = (0, r′2, . . . , r

′
d)

⊤ ∈ Fd such that sj = h⊤
j v

′ for all
Pj ∈ Q. Such a vector v′ may be not uniquely determined.
Based on these observations, an alternative solution of (p1)
can be described as follows:

• Every server Pj ∈ Q broadcasts its shares sj .
• The servers in P \ Q agree on a vector v′ such that
sj = h

⊤
j v

′ for all Pj ∈ Q.
• Every server Pi ∈ P \Q replaces its share si with s′i =
si − h⊤

i v
′.

Note that there is a vector v = (s, r2, . . . , rd) such that si =
h⊤
i v for all i ∈ [n]. The correctness of this solution follows

from the fact that {s′i}i∈[n] is a set of valid shares of s, which
are generated by choosing a random vector v′′ = v − v′ =
(s, r2 − r′2, . . . , rd − r′d) and setting s′i = h

⊤
i v

′′, and the fact
that s′j = 0 for all Pj ∈ Q and the shares of Q are actually
not needed in any reconstruction.

15

Now we show that this method is equivalent to our
method. Due to Lemma 1, if we let HQ =

(
(hi)ψ(i)∈Q

)⊤
and assume that rank(HQ) = r, then there exists a
set W = {w1, . . . , wr} ⊆ ψ−1(Q) and a set K =
{k1, . . . , kr} ⊆ [d] \ {1} such that the order-r square matrix
U = ((hw1

)K , . . . , (hwr)K)⊤ is invertible over F. To find a
vector v′ = (0, r′2, . . . , r

′
d)

⊤ ∈ Fd such that sj = h⊤
j v

′ for all
Pj ∈ Q, it suffices to solve the equation (hw1

, . . . ,hwr)
⊤v′ =

(sw1
, . . . , swr)

⊤ in v′. It is not difficult to observe that there
exists a vector v′, where r′i = 0 for each i ∈ ([d]\{1})\K and
(r′k1 , . . . , r

′
kr
)⊤ = U−1(sw1

, . . . , swr)
⊤, such that sj = h⊤

j v
′

for all Pj ∈ Q. Then for every server Pi ∈ P \Q,

s′i = si − h⊤
i v

′ = si −
∑
k∈K

hikr
′
k

= si − (h⊤
i)K · (r′k1 , . . . , r

′
kr)

⊤

= si − (h⊤
i)K ·U−1(sw1

, . . . , swr)
⊤.

This shows that the two methods are equivalent. Although our
method is less intuitive, it can be well applied to construct the
CP-ABE-CAS, the above method cannot.

APPENDIX F
BILINEAR PAIRING

Definition 6 (Bilinear Pairing). Let G and GT be two
multiplicative cyclic groups of prime order p. Let g be a
generator of G and e : G×G→ GT be a bilinear map such
that: (1) e(ua, vb) = e(u, v)ab for all u, v ∈ G and a, b ∈ Zp;
(2) e(g, g) ̸= 1. We say that G is a bilinear group if the group
operations in G and GT as well as the bilinear map e are
efficiently computable.

APPENDIX G
SECURITY OF OUR CP-ABE-CAS SCHEME

Theorem 3. A CP-ABE-CAS is secure if Waters’ CP-ABE
scheme is secure.

Proof. Assume that a CP-ABE-CAS is not fully secure. Then
there exists an adversary A who has a non-negligible advan-
tage in G2. Next we show that an adversary B can win the
game G1 by means of the advantage of A.

• Setup: The challenger runs the setup algorithm and gives
the public parameter PK to A and B.

• Challenge: A chooses two equal length messages
M0,M1, an ideal access structure Γ∗, an LSSS M
for Γ∗, and an unauthorized subset Q = {y} of Γ∗,
(w.l.o.g, assume that ψ−1(y) = ℓ) and then sends them
to B. B runs Algorithm 1 on input (M, Q), obtains
the output M′ for Γ∗

·Q and records k. Then B sends
M0,M1,Γ

∗
·Q,M′ to the challenger. The challenger ran-

domly chooses b ∈ {0, 1}, and encrypts Mb under Γ∗
·Q,

producing CT∗
·Q = {M′, C, C ′, (Ci, Di)i∈[ℓ−1]}. It gives

CT∗
·Q to B.

• Adversary B: The adversary B chooses two random
values rℓ, sℓ and creates

CKQ = rℓ, C ′
i = Ci · gasℓ·

hik
hℓk ,

C ′
ℓ = gasℓT−rℓ

y , Dℓ = grℓ

for each i ∈ [ℓ] \ {ψ−1(y)}. It then produces a new
ciphertext CT∗ = {M, C, C ′, (C ′

i, Di)i∈[ℓ]}. It gives
CT∗,CT∗

·Q,CKQ to the adversary B.
• Adversary A: The adversary A returns a guess b′.
• Guess: The adversary B output b′.
Since A has a non-negligible advantage in G2, B will also

have a non-negligible advantage to win G1.

Waters’ CP-ABE scheme has been showed to be secure un-
der the decisional q-parallel Bilinear Diffie-Hellman Exponent
Assumption with q ≥ ℓ, d, where ℓ×d is the size of the matrix
H in the LSSSM, so the CP-ABE-CAS is also secure under
the same assumption according to Theorem 3.

APPENDIX H
ON THE DATA INTEGRITY

The data integrity is another critical security concern in
cloud storage and requires that after the access structure con-
traction/policy update, the original data can still be recovered
from the updated shares/ciphertexts.
Single-cloud storage. In single-cloud storage, the data in-
tegrity problem has been considered in [20], [39]. Ge et al.
[39] proposed a revocable CP-ABE scheme that solves the data
integrity problem by adding a commitment to Waters’ scheme
[31]. In our model, we assume the server is honest-but-curious
and only the data owner is allowed to contract the policy. If
we consider malicious servers/users, two threats may appear:

• A malicious server may tamper with the ciphertexts.
• A malicious user may impersonate the data owner and

sends an arbitrary contraction key ĈK to the server.
Fortunately, both the above two threats can be relieved by
applying our policy updating techniques from Section V to
the scheme of [39].
Multi-cloud storage. In multi-cloud storage, provable data
possession (PDP) [59], [60] and proofs of retrievability (PoR)
[61], [62] have been invented for ensuring the data integrity.
PDPs ensure data integrity through the validation of file
block signatures. PoRs incorporate error-correcting codes to
provide not only the data integrity but also the recoverability
of corrupted data. In addition, techniques like homomorphic
authenticators (HAs) [63]–[65] provide an alternative approach
to solve the data integrity problem in multi-cloud storage
through authenticating the shares on the servers.

	Introduction
	Theoretical Contributions
	Applications
	Related Work
	Attribute-Based Encryption in Single-Cloud Storage
	Multi-Cloud Storage
	Secret Sharing

	Organization

	Preliminaries
	Our Transformations
	Application in Multi-cloud Storage
	Solutions to the Storage Relocation Problem
	Our Method
	Martin's Method
	Nikov-Nikova Method
	Extended Nikov-Nikova Method

	Comparison
	Theoretical Analysis
	Performance Analysis

	Application in Single-cloud Storage
	CP-ABE Model
	Waters' CP-ABE Scheme
	CP-ABE with Contractions of Access Structure
	Our CP-ABE-CAS scheme
	Performance Analysis
	Evaluation of the Contraction Process
	Evaluation of the Contracted Ciphertext
	Advantages of Our Contraction Algorithm

	Concluding Remarks
	References
	Appendix A: Proof for Lemma 1
	Appendix B: Proof for Theorem 1
	Appendix C: Proof for Theorem 2
	Appendix D: A Toy Example of Storage Relocation
	Appendix E: A Solution to Storage Relocation
	Appendix F: Bilinear Pairing
	Appendix G: Security of our CP-ABE-CAS scheme
	Appendix H: On the Data Integrity

