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Abstract—In the past decades, the rise of artificial intelligence
has given us the capabilities to solve the most challenging
problems in our day-to-day lives, such as cancer prediction and
autonomous navigation. However, these applications might not be
reliable if not secured against adversarial attacks. In addition,
recent works demonstrated that some adversarial examples are
transferable across different models. Therefore, it is crucial to
avoid such transferability via robust models that resist adversar-
ial manipulations.

In this paper, we propose a feature randomization-based
approach that resists eight adversarial attacks targeting deep
learning models in the testing phase. Our novel approach consists
of changing the training strategy in the target network classifier
and selecting random feature samples. We consider the attacker
with a Limited-Knowledge and Semi-Knowledge conditions to
undertake the most prevalent types of adversarial attacks. We
evaluate the robustness of our approach using the well-known
UNSW-NB15 datasets that include realistic and synthetic attacks.
Afterward, we demonstrate that our strategy outperforms the
existing state-of-the-art approach, such as the Most Powerful
Attack, which consists of fine-tuning the network model against
specific adversarial attacks. Finally, our experimental results
show that our methodology can secure the target network and
resists adversarial attack transferability by over 60%.

Index Terms—Adversarial attacks, adversarial machine learn-
ing, Machine and deep learning, Convolutional neural network,
Adversarial learning, Network security, Cybersecurity.

I. INTRODUCTION

The recent studies on the vulnerabilities of machine and
deep learning have attracted researcher’s attention [1], [2]. This
new field is known as Adversarial Machine Learning and has
been widely investigated [3]–[5]. In particular, artificial neural
networks that are frequently used in deep learning such as
Convolutional Neural Networks (CNNs), including image clas-
sification, computer vision, network security [6], and natural
language processing, has raised significant concerns about the
vulnerability of these models to adversarial attacks. To that
end, we distinguish two different attack strategies in machine
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learning techniques: poisoning attacks and exploratory evasion
attacks. In the poisoning attack, the adversary is aware of the
training examples, and the attack is performed throughout the
training process, while in the exploratory evasion attack, the
adversary compromises the network during the testing phase.

To the best of our knowledge, most machine and deep
learning techniques are intrinsically vulnerable to various types
of adversarial attacks [7], [8]. Moreover, the adversary can
transfer some of these attacks from one network (a.k.a, Source
Network (SN)) to another one (a.k.a, Target Network (TN)).
As a result, it is necessary to consider preventing this be-
havior since the transferability property between the networks
presents a challenging security issue [9], [10]. Therefore, it is
crucial to consider from a research point of view preventing
such transferability, and thus by improving the TN’s security
against adversarial attacks.

In this paper, we are motivated to provide a new model
to secure the TN and avoid adversarial transferability between
the SN and the TN. More specifically, we demonstrate that our
model can significantly improve TN’s security. Our main con-
tribution consists of strengthening the TN against exploratory
evasion attacks. In particular, we modify the TN’s classifier by
considering a Feature Randomization (FR) strategy to extract
random features from the SN’s flatten layer. In our work,
we experimentally demonstrate the transferability of eight
adversarial attacks (with different parameters) from the SN
to the TN. Then, we improve the TN’s security via an FR
technique by considering two adversarial settings: the case
where the adversary has a Limited Knowledge (LK) about the
TN, and the case where the adversary has a Semi Knowledge
(SK) about the TN. Moreover, we show the performance of
our strategy against the MPA approach. For the replication of
our experiments, we made our implementation code publicly
available [11].
Summary of Contributions. The major novelty and contri-
butions of our work are summarized as follows:

• We propose a novel FR approach that improves the target
network’s security against eight adversarial attacks in
both LK and SK conditions. We focus on evasion attacks
in the testing phase that try to decrease the false positive
rate, i.e., detecting attacked samples as pristine.

• We demonstrate that adversarial attacks may be trans-
ferred across the SN and the TN, emphasizing the impor-
tance of developing robust models against this property.
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Our results show that for both shallow/deep networks,
most of the considered attacks have an Attack Success
Rate (ASR) of more than 95%.

• We design and construct a Support Vector Machine
(SVM) in the TN based on the FR strategy and test
its robustness under different adversarial settings. By
analyzing a wide range of random feature vectors, we find
that the feature vectors of sizes 30,50, and 200 achieve a
promising secure model.

• We evaluate the effectiveness of the FR strategy against
different adversarial attacks, including the I-FGSM, the
FGSM, the BIM, the PGD, the L-BFGS, the JSMA,
the DeepFool, and the C&W attack. The experimental
results of our study shows that the FR methodology is
more efficient than the MPA approach, and can defeat
adversarial transferability over 60%.

Organization. In Section II, we overview the foundation of
adversarial attacks against machine and deep learning mod-
els. Then, we describe the considered datasets. We discuss
the related works in Section III. Section IV presents the
problem scope and threat model. In Section V, we describe
our proposed approach to improve the security of the TN.
In Section VI, we report our adversarial attacks with their
corresponding attack parameters. We propose the defense
mechanisms in Section VII, and Section VIII discusses the
outcomes of our approach. Finally, we conclude the paper and
present future work in Section IX.

II. BACKGROUND

In this section, we provide the background on adversarial
attacks on deep learning-based models. Table I provides a list
of the acronyms and abbreviations used in this study.

TABLE I
ACRONYMS AND ABBREVIATIONS LIST.

Acronym Description
CNN Convolutional Neural Network
FR Feature Randomization
LK Limited Knowledge
SK Semi Limited Knowledge
PK Perfect Knowledge

SVM Support Vector Machine
ML Machine Learning
DL Deep Learning
SN Source Network
TN Target Network

𝑁1, 𝑁2 Shallow Network, Deep Network
ASR Attack Success Rate

Max. dist Maximum distortion
PSNR Peak signal-to-noise ratio
𝐿1 dist 𝐿1 distance

I-FGSM Iterative-Fast Gradient Sign Method
PGD Projected Gradient Descent

JSMA Jacobian Saliency Map Attack
BIM Basic Iterative Method

C&W Carlini & Wagner
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno
FGSM Fast Gradient Sign Method
MPA Most Powerful Attacks

Lr learning rate

According to the Deep Learning literature, the attacker can
fool CNN-based models in three different settings: white-box,
gray-box, and black-box attacks. For each of these settings, the
adversary has information about the TN with different levels of
knowledge. These settings are classified into three categories:
Limited Knowledge (LK), Semi Knowledge (SK), and Perfect
Knowledge (PK).

• LK: Commonly known as black-box attacks, and indeed
regarded where the attacker cannot access the hyper
model parameters, which is a more complex scenario
in digital forensics; as a result, the attacker conducts
multiple queries to obtain the internal details of the
model.

• SK: In this scenario, the adversary has a partial informa-
tion about the victim’s network and performs his attacks
under gray-box settings [12].

• PK: It occurs when an adversary has full knowledge of
the forensic algorithm; hence, this scenario is referred to
as a white-box setting and considered the ideal scenario
for the adversary [13].

In our study, we launched eight adversarial attacks with
different parameters in black-box settings without accessibility
to the model, namely: The JSMA [1], the PGD [14], the L-
BFGS [15], the I-FGSM [16], the FGSM [17], the DeepFool
[18], the BIM [16], and the C&W attacks [19].

1) The I-FGSM attack: This attack can be described
as the iterative method of the FGSM attack, which is a
gradient method that relies on maximizing the loss function
by adjusting the input data. Subject to an upper bound on the
perturbation, the I-FGSM attack aims to make the classifier
perform inadequately [17]. The I-FGSM attack is one of the
most popular adversarial attacks designed to target deep neural
networks, and which consequently leads to misclassify the
data input. The FGSM attack highlights major issues with the
potential unboundedness of the perturbed data 𝑆 [17]. This
issue can be addressed by the I-FGSM method. It constitutes
a bound constraint on 𝑆, which uses an iterative linearization
rather than the one-shot linearization in the FGSM attack [17].
For 𝑆, an input of the model with a ground label truth 𝑍 and 𝜃

parameters, the adversarial sample 𝐴𝑑𝑣𝑆 of the FGSM attack
is expressed as follows:

𝐴𝑑𝑣𝑆 = 𝛼 × 𝑠𝑖𝑔𝑛(O𝑆 𝐼 (𝜃, 𝑆, 𝑍)) + 𝑆. (1)

𝐼 is the cross-entropy function, and 𝛼 is the factor responsible
for normalizing the attack strength. 𝛼 is the variable that
controls the perturbations and must be minimal to enable the
adversarial attack. The iterative variant of the FGSM approach
[16] has better perturbations than the FGSM strategy and may
be considered as its extension. In particular, we iterate the
FGSM method to the gradient sign with smaller variations.
In the I-FGSM attack, and for 𝐴𝑑𝑣0

𝑆
= 𝑆, we compute the

adversarial sample for each variation 𝑖 + 1 as follows:

𝐴𝑑𝑣𝑖+1
𝑆 = 𝛼 ∗ 𝑠𝑖𝑔𝑛(O𝑆 𝐼 (𝜃, 𝐴𝑑𝑣𝑖𝑆 , 𝑍)) + 𝐴𝑑𝑣𝑖𝑆 . (2)

We refer to the I-FGSM attack with the parameter 𝛼 = 10 as
I-FGSM010.
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2) The JSMA attack: Given the high number of perturba-
tions caused by the I-FGSM attack, the authors in [1] proposed
the JSMA attack to reduce such perturbations. As a result, the
JSMA-based adversarial samples exhibit fewer perturbations
than the I-FGSM attack and are significantly more difficult
to detect for targeted misclassification. The JSMA attack is
a gradient-based approach that utilizes adversarial saliency
maps and a forward derivative method. For a model with 𝑁-
dimensional input 𝑆, the adversary approximates the Jacobian
matrix of the classifier 𝐹 learned during the training phase.
The matrix has 𝑀-dimension and is expressed by:

𝐽𝐹 (𝑆) =
𝜕𝐹 (𝑆)
𝜕𝑆

=

[
𝜕𝐹𝑗 (𝑆)
𝜕𝑠𝑖

.

]
𝑖∈1..𝑀 , 𝑗∈1..𝑁

. (3)

Afterward, the adversary constructs the adversarial saliency
maps using the forward derivative method. These maps deter-
mine the features that enable the perturbations for the intended
output. Therefore, the adversary builds the space of adversarial
samples. The adversarial saliency map 𝑈 for a target class 𝑜

is defined as follows:

𝑈 (𝑆, 𝑜) [𝑖] =
{

0, 𝑖 𝑓 𝜕𝐹𝑜

𝜕𝑠𝑖
(𝑆) < 0 or

∑
𝑗≠𝑜

𝜕𝐹𝑗

𝜕𝑠𝑖
(𝑆) > 0.

𝜕𝐹𝑜

𝜕𝑠𝑖
(𝑆)

���∑ 𝑗≠𝑜
𝜕𝐹𝑗

𝜕𝑠𝑖
(𝑆)

��� ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(4)

To summarize, JSMA approach relies on forwarding propaga-
tion to produce a saliency map for each iteration and indicates
the data that emphasize the categorization. At a high value,
for example, implies that altering the data can increase the
possibility of misclassification. According to the map, the data
are individually changed by a parameter 𝜃 (i.e., it defines the
range where the data have changed). We refer to the JSMA
attack with the parameter 𝜃 = 1 as JSMA001.

3) The L-BFGS attack: It is a nonlinear gradient strategy
that involves increasing the prediction error and optimizing
the input data in order to generate adversarial examples [15].
The L-BFGS approach can be considered as a box-constrained
optimization methodology for generating adversarial exam-
ples, with the same intention of minimizing perturbations for a
sample input. Given a classifier 𝐹, a minimizer 𝑟, a target label
𝑙, and 𝑆 as inputs, the L-BFGS attack is formally expressed
as:

min
𝐴𝑑𝑣𝑆

| |𝑆 − 𝐴𝑑𝑣𝑆 | |22 subject to: 𝐹 (𝑆 + 𝑟) = 𝑙. (5)

However, the problem presented in Eq. 5 is highly non-linear
and time consuming. The following equation is an approximate
approach to solve the optimization problem based on the usage
of box-constrained L-BFGS:

min
𝐴𝑑𝑣𝑆

𝑐.| |𝑆 − 𝐴𝑑𝑣𝑆 | |22 − 𝐼 (𝜃, 𝑆, 𝑍). (6)

The above-mentioned estimation is used to determine the
minimum positive scalar 𝑐 that satisfies the minimizer 𝑟 in
the Eq. 5.

4) The PGD attack: This attack provides adversarial ex-
amples by employing local first-order over the TN [14]. It
is an iterative and first-order attack that employs uniform
random noise for the initialization. Differently from the I-

FGSM attack, the input 𝑋 is updated for each variation 𝑖 + 1
according to the following rule:

𝐴𝑑𝑣𝑖+1
𝑆 = Ω𝑆+𝑄 (𝛼 ∗ 𝑠𝑖𝑔𝑛(O𝑆 𝐼 (𝜃, 𝑆, 𝑍)) + 𝐴𝑑𝑣𝑖𝑆). (7)

The projection operator Ω holds 𝐴𝑑𝑣𝑖+1
𝑆

within a range of per-
turbations 𝑄. The PGD approach considers the 𝐿∞ distortion
and looks for perturbations to strengthen 𝐼 (𝜃, 𝑆, 𝑍). We refer
to the PGD attack with the parameter 𝛼 = 5 as PGD005.

5) The DeepFool attack: This adversarial attack aims to
fool multiclass classifiers with minimal possible perturba-
tions [18]. More specifically, the DeepFool attack approxi-
mates the decision space of the classifier in order to find the
minimal perturbations. For a classifier, we formally express the
minimal perturbation needed to produce an adversarial sample
by:

𝛿(𝑆, 𝐹) = min
𝑟

| |𝑟 | |2 subject to: 𝐹 (𝑆 + 𝑟) ≠ 𝐹 (𝑆). (8)

We refer to the robustness of 𝐹 for the input 𝑆 by 𝛿 and the
minimal perturbation by 𝑟 . The generated data by DeepFool
contains the lowest possible amount of noise which is suffi-
cient to fool the neural network model into classifying it as a
sample of another class [20].

6) The Carlini & Wagner attack: The Carlini & Wagner
(C&W) attack generates high-confidence adversarial exam-
ples by accessing the parameters and architecture of the
network [19]. However, it has a high-cost generation of
adversarial examples. The C&W attack methodology can be
performed under three different attack scenarios that can be
referred to as distance metrics: 𝐿2, 𝐿0, and 𝐿∞. In the 𝐿2
attack, given a benign sample 𝑠 and a chosen target class 𝑡

different from the benign class of 𝑠 (𝑡 ≠ 𝐶∗ (𝑥)), the attacker’s
goal is to search for the value 𝑤 minimizing the following
expression:

min
𝑤

| | 1
2
(tanh (𝑤) + 1) − 𝑥 | |22 + 𝑐. 𝑓 ( 1

2
(tanh (𝑤) + 1)). (9)

Where 𝑐 is an acceptable constant and 𝑓 is a function
defined as follows:

𝑓 (𝑥 ′) = 𝑚𝑎𝑥(𝑚𝑎𝑥{𝑃(𝑥 ′)𝑖 : 𝑖 ≠ 𝑡} − 𝑃(𝑥 ′)𝑡 ,−𝑇). (10)

We state 𝑃 as the outcome of all layers, excluding the
softmax layer, and 𝑇 as a parameter that may be used to
control the degree of adversarial examples. The 𝐿0 attack is
the iterative version of the 𝐿2 attack. It consists of computing
the gradient of 𝑓 , and evaluates the adversarial sample of the
𝐿2 attack. In other words, for a solution 𝛿 returned from 𝐿2
attack regarding a benign sample 𝑠, we compute its gradient
𝑔 that is defined as follows:

𝑔 = O 𝑓 (𝑠 + 𝛿). (11)

It is worth mentioning that the 𝐿0 is more challenging than
the 𝐿2 attack. The 𝐿∞ attack relies on naively minimizing the
following equation to generate adversarial examples:

min
𝛿

𝑐. 𝑓 (𝑠 + 𝛿) + | |𝛿 | |∞. (12)

In our work, we refer to the C&W attack with the strength
parameter 0 and 100 by CW0 and CW100, respectively.
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III. RELATED WORK

Several studies in the literature proposed adversarial attacks
and countermeasures for deep learning-based networks [21]–
[23]. In this section, we overview the prior works on counter-
measures techniques in deep learning models that leverage the
randomization strategy. Then, we outline the differences from
existing works.

Recent works proposed adding randomization layers to
improve the robustness of CNN-based models. In [24], the
authors presented a two-layer defense-based neural network;
the first layer is a random nullification layer that consists
of randomly deleting some features from the input to min-
imize the adversarial perturbations, while the second layer
is an auto-encoder-based reconstructor that rebuilds the input
features and performs the classification tasks. The numerical
results against the FGSM, BIM, JSMA, DeepFool, and C&W
attacks show high robustness with an accuracy of up to
80%. Similarly, the authors in [25] proposed randomization
at inference time technique to defeat iterative adversarial
attacks. This technique adds two randomization layers at the
beginning of the classification neural network. The first layer
consists of a random resizing layer, which resizes the input
samples randomly. The second layer performs random padding
operations for the samples with zeros before its transformation
to the CNN model. The experiments performed with such
a randomization strategy demonstrate its robustness against
the FGSM, the DeepFool, and the C&W attacks. However,
additional computations are required by adding the random
resizing and random padding layers.

Another approach is developed by Taran et al. [26], the au-
thors employ a randomized diversifying mechanism to protect
neural networks against various attacks in classification. Such
a strategy is implemented in a multi-channel architecture and
utilizes a shared secret key between the training and testing
stages. The experimental results regarding the randomization
diversification mechanism show the robustness against the
C&W attack with different parameters.

The authors in [27] presented the Randomized Adversarial-
Image Input Detection (RAID) for Neural Networks, which
relies on building a secondary classifier capable of detecting
malicious input based on neuron activation values. The number
of monitoring neurons is randomly selected and labeled as
activation fingerprints. The authors evaluated the effectiveness
of RAID against six adversarial attacks: the PGD, the FGSM,
the BIM, the DeepFool, the C&W, and the JSMA attack. The
experimental results demonstrate a good detection accuracy of
up to 90% for different attacks.

Differences from existing works. Different from existing
studies, our approach improves the security of the TN and
avoid the transferability property by considering eight adver-
sarial attacks. Moreover, our feature randomization strategy
relies on changing the TN’s classifier into a Support Vector
Machine. Consequently, we decrease the attacker’s knowledge
by changing the architecture of the target’s network. In table II,
we show the difference between our work and existing works.

IV. PROBLEM SCOPE AND THREAT MODEL

The transferability property is satisfied if the adversarial
samples that compromises the SN can be used to fool the
TN. In this case, we provide the assumptions regarding the
attacker’s capabilities. In what follows, we outline the scope
of the problem addressed in this paper and the threat model.

A. Problem Scope

In computer networks, resisting adversarial sample attacks
on a network traffic is challenging. Hence, extensive research
efforts have been conducted to design secure and robust
deep neural networks. In particular, prior works studied the
capabilities of transferring adversarial samples from the SN
to the TN. This property is known as transferability, and
is depicted in Fig. 1. In this work, we focus on network
traffic classification, adversarial sample attacks, and defense
mechanisms.

Fig. 1. Visual representation of the transferability property in Convolutional
Neural Networks.

In [29], the authors demonstrated that most adversarial
attacks could not be transferable between SN and TN, but only
a few hold the transferability property. Therefore, in security-
oriented applications that consider machine/deep learning
models, it is crucial to implement strong defense mechanisms
to avoid such transferability between the SN and the TN. In
this line of research, TN’s security can be improved using
two approaches. The first approach consists of resisting the
TN by fine-tuning it with the MPA. In contrast, the second
approach relies on decreasing the attacker’s knowledge of the
TN (i.e., putting the attacker in the LK condition) through an
FR strategy. In the first approach, we fine-tune the TN with
eight adversarial attacks to get eight different tuned models.
Then, we test the fine-tuned models against the I-FGSM,
the FGSM, the JSMA, the BIM, the PGD, the L-BFGS, the
DeepFool, and the C&W attacks. In the second approach, we
select random features from the flattened layer of the CNN
network to decrease the attacker’s knowledge and feed them
to the SVM to classify them.

B. Threat Model

In real-world applications, the attacker has a very limited
knowledge to the TN (refer to as black-box setting). For this
reason, we consider our experiments under black-box settings.
In this case, with the limited capabilities of the adversary that
cannot have access to the TN (e.g., parameters of the model,
network architecture), we assume that the adversary has a LK
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TABLE II
DIFFERENCE BETWEEN OUR WORK AND EXISTING WORKS

Ref. App Domain Attacks Datasets Pros Cons

[24] Computer vision
FGSM, JSMA,
BIM, Deepfool,
and CW.

-MNIST
-Fashion-MNIST

-Minimize the effect of adversaries
for the trained network.
-High robustness against adversaries
and higher performance on normal
samples.

-Low performance in CW which is close
to 70%.
-Low performance in black-box attacks
on Fashion-MNIST dataset e.g. FGSM
and BIM.

[25] Computer vision FGSM, Deepfool,
and CW. ImageNet

-adversarial examples rarely transfer
for iterative attacks.
- High accuracy on clean examples.

-Low performace for the networks
Inception-v3 and ResNet-V2,
i.e. random brightness, and brightness++.

[26] Computer vision CW
-MNIST
-Fashion-MNIST
-CIFAR-10

-Reduce back gradient propagation. -Failed gradient sparse, and non-gradient
based attacks.

[27] Computer vision
PGD, FGSM,
BIM, DeepFool,
CW, and JSMA

-MNIST
-CIFAR-10

-90% accuracy with the strongest
attacks (CW, DF), and excellent
detection versus weaker adversaries
(i.e., PGD, BIM, and FGSM).

-Need to run the tool through its tests
with additional threat models, wider neural
networks, and diverse
tasks like natural language processing.

Our work. Computer networks.

I-FGSM, FGSM,
BIM, PGD, L-BFGS,
JSMA, DeepFool,
and CW

-UNSW-NB15

-Improve a security in a computer
networks domain in Lk and SK.
-Avoid a transferability issue [28].
-considering different ML and DL
models.

-Need to investigate:
Attack transferabilily in poisioning
attacks, and backdoor attacks.

and can potentially increase his access to the victim’s network
to get into an SK scenario. More specifically, the attacker
builds the adversarial examples on the SN, which is trained
using a different or similar dataset from the TN. Then, the
adversary launch different adversarial attacks to fool the TN.
In this study, we test and develop a generalized approach for
black-box attacks against DL models that take advantage of
adversarial example transferability.

V. METHODOLOGY

In this section, we introduce our novel method to improve
TN’s security by including a feature randomization strategy
to mitigate dangerous adversarial attacks. In what follows,
we describe the considered datsets, the learning models, their
parameters, as well as the shallow (𝑁1) and deep network
(𝑁2) architectures.

A. Proposed Approach
To decrease the adversary’s knowledge, we propose an

FR strategy by changing the TN’s classifier into a Support
Vector Machine (SVM), as depicted in Figure. 2. For the
SN, we consider a Convolutional Neural Network (CNN),
while for the target network, we consider the SVM classifier
that receives random features from the flattened layer of the
CNN. The flatten layer is a layer that is usually placed after
convolutional layers and before dense layers or classification
layers. The flattened layer receives multi-dimensional input
and gives a single-dimensional vector as the output, which is
the suitable data format to consider in classifiers like SVM
and fully-connected networks. In the FR strategy, we flatten
the output of the final layer of CNN in order to get a one-
dimensional output. Then, we utilize this output as input
for the randomization procedure, and we specifies a random
amount of it that will be given as input to the SVM for
classification.

B. Network Architecture and Learning Models
Due to the wide usability of the networks proposed by Bayer

et al. [30] and Barni et al. [31] for many applications such as

multimedia forensics, computer vision, cybersecurity, and, in
particular, network security [10] [32], we believe that these
networks are suitable for our investigations and consider them
for constructing the shallow(𝑁1) and deep(𝑁2) network. To
demonstrate the applicability of our approach on both 𝑁1 and
𝑁2, all the processes have been done separately, and these two
networks are not connected. In what follows, we describe the
𝑁1 and 𝑁2 respectively. It is worth mentioning that 𝑁1 and
𝑁2 are SN and should not be considered as a TN.

1) Shallow Network (𝑁1): For the shallow network 𝑁1,
we consider the architecture presented in [30]. It consists of 3
convolutional layers, namely constrained convolutional layers.
This architecture can adaptively learn manipulation detection
features directly from the data with high accuracy. More-
over, it outperforms existing image manipulation detection
techniques [33], especially when considering real large-scale
training datasets. Therefore, we can perfectly use this model
as a forensic detector for different image manipulation.

2) Deep Network (𝑁2): For the 𝑁2, we consider the
architecture proposed in [31]. This network relies on eight
convolutional layers and can be seen as a patch-based CNN.
This network can detect contrast-adjusted images with a good
performance in the presence of JPEG post-processing opera-
tions. Additionally, it achieves high accuracy under different
Quality Factors (QFs).

3) Description of the datasets: In our study, we consider
the UNSW-NB 15 [34] dataset generated by the IXIA Perfect-
Storm application to generate a combination of realistic mod-
ern routine operations and synthetic existing attack character-
istics. The raw network packets of this dataset are obtained
via the tcpdump tool to capture 100 GB of the raw traffic
(e.g., Pcap files). The eight kinds of attacks in this dataset
include Backdoor attacks, traffic analysis, Fuzzers, DoS at-
tacks, Generic traffic, Exploits, Reconnaissance, Worms, and
Shellcode. The total of items is 2540044, which is divided into
four CSV files and merged into one file.

In the preprocessing phase of the datasets, we initially
have 48 features. Some of these features are not effective
for analyzing the traffic in the process of the attacks (e.g.,
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Fig. 2. Proposed approach to improve the TN’s security

backdoor attacks, worm attacks). These features are the source
port, source IP, destination port, destination IP, state, and
protocol. After removing these features, we got 42 features.
Then, we constructed matrices where the product of their rows
and columns is equal to 42. In this case, the matrices have
the size of 6 × 7. Given the small size of these matrices that
cannot be used for CNNs to distinguish between pristine and
manipulated samples, we reshaped the size of these matrices
from 6 × 7 to 64 × 64. In our final dataset, we stored around
319.480 pristine images and 319480 manipulated images.
Finally, we divide these samples into three categories: the
training, validation, and testing samples.

4) Description of the Learning Models: For the learning
models, i.e., 𝑁1 and 𝑁2, we used in our experiments 447.266
training samples (223.633 for manipulation and 223633 for
pristine), 127.786 validation samples (63.893 for manipulation
and 63.893 for pristine), and 63.890 testing samples (31.945
for manipulation and 31.945 for pristine). In Table III, we
provide a numerical description of the learning models on the
SN. The training epochs are set to 20 for 𝑁1 and 10 for 𝑁2,
and we considered Adam optimizer with a learning rate (Lr)
of 10−6 for 𝑁1 and 10−4 for 𝑁2. We achieved a testing and
validation accuracy of more than 95% for both networks.

TABLE III
DESCRIPTION OF THE LEARNING MODELS ON THE SN & TN

—- 𝑁1 𝑁2
# of Conv. Layers 3 9

# of Epochs 20 10
# of Train Batch 64 16

# of Validation Batch 100 16
# of Test Batch 100 100

Optimizer Adam, Lr=1e-06 Adam, Lr=1e-04
Validation Accuracy 95.99% 96.42%

Test Accuracy 95.86% 96.42%

VI. ADVERSARIAL ATTACKS

In this section, we report about the experiments regarding
the adversarial attacks when 𝑁1 and 𝑁2 are considered as SN.
Then, we present our experimental results for the 𝑁1 and 𝑁2
networks when they are considered as TN.

A. Attack Parameters
In general, we define two types of adversarial attacks

against deep learning CNN models: targeted and untargeted

attacks. The untargeted attacks enable the trained network to
misclassify the input regardless of the output label. In contrast,
the targeted attacks aim to deceive a deep learning model by
encouraging the model to produce a specific target label for the
adversarial sample. For a binary classification task (i.e, which
is the case of our study), and since we consider two classes
(pristine/manipulate), the targeted and untargeted attacks are
similar [35]. Therefore, to apply the attacks on 𝑁1 and 𝑁2,
we perform eight adversarial attacks with different parameters.
Each parameter has a different role for different attacks and
can influence the performance of the attacks in terms of fooling
the DL models. The considered attacks are the most popular
adversarial attacks in deep learning: The I-FGSM, the FGSM,
the BIM, the PGD, the L-BFGS, the JSMA, the DeepFool, and
the C&W attack. To produce the attack samples, we selected
500 samples randomly from a malicious test dataset; it is
obvious that if we select samples from the training dataset, we
cannot fool the models, as the networks and models that have
considered these data can detect them easily. Afterward, we
applied the abovementioned adversarial attacks on the selected
samples using the Toolbox library [36]. Then, we fed these
samples to 𝑁1 and 𝑁2 in order to measure the success rate
of each attack. We mention that the 500 selected samples are
different for 𝑁1 and 𝑁2, and were randomly selected.

B. Experimental Results

We consider several parameters during our experiments to
evaluate our models. In particular, we compute the PSNR, 𝐿1
distortion, maximum absolute distortion, and Attack Success
Rate (ASR) averages for each of the eight considered adver-
sarial attacks. We define ASR as 𝑚/𝑛 where 𝑚 is the number
of attacked samples that successfully fooled the model, and
𝑛 is the number of all the attacked samples. Then, we report
the results in Table IV and Table V for the 𝑁1 and 𝑁2 when
considered as TN.

1) Experimental Results on the 𝑁1: In 𝑁1 with test accu-
racy of 95.86%, we remark that the average PSNR is less than
46dB, and more than 80% of adversarial attacks succeeded
with a high ASR. Given the number of convolutional layers in
𝑁1, the reported experimental results in Table IV are expected.
This could be explained due to the inherent vulnerability of
machine learning models.
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TABLE IV
ATTACK RESULTS ON THE 𝑁1 WHEN CONSIDERED AS TN.

Attack Type PSNR 𝐿1 dist Max. dist ASR

I-FGSM, 𝜀 = 0.1 36.4225 3.0011 6.0792 1.00

FGSM, 𝜀 = 0.1 9.4111 80.1985 143.4194 0.96

JSMA, 𝜃 = 0.01 39.9512 0.6803 17.85 0.72

BIM, 𝜀 = 0.01 18.3842 30.0737 45.9516 0.97

LBFGS, 𝜀 = 1e-5 46.3229 0.7998 9.4893 0.99

DeepFool, default parameter 45.0145 0.897 11.8975 0.38

PGD, 𝜀 = 0.05, step size = 0.3, 18.4940 26.4033 39.6142 0.99

Binary search = true

C&W, conf = 0 46.2162 0.7342 10.2935 0.96

C&W, conf = 100 45.2334 0.8051 11.4638 0.97

2) Experimental Results on the 𝑁2: In 𝑁2 with test accu-
racy of 96.42%, we notice that the adversary can successfully
fool the network, even when considering a high number of
convolutional layers. The CNNs are generally vulnerable to
adversarial attacks when considered as TN. However, these
networks have high classification accuracy. The experimental
results illustrated in Table V demonstrate that most of the
eight adversarial attacks have an ASR of more than 90%
and the transferability property is satisfied, i.e., the attacker
can completely transfer the samples from the SN to the TN.
Therefore, it is crucial to address this problem by providing
suitable defense mechanisms that are efficient against well-
known adversarial attacks.

TABLE V
ATTACK RESULTS ON THE 𝑁2 WHEN CONSIDERED AS TN.

Attack Type PSNR 𝐿1 dist Max. dist ASR

I-FGSM, 𝜀 = 0.1 37.4549 2.6206 5.9534 1.00

FGSM, 𝜀 = 0.1 28.1658 23.1140 41.0907 0.69

JSMA, 𝜃 = 0.01 54.2103 0.04465 13.3155 0.96

BIM, 𝜀 = 0.01 43.8285 1.8659 2.5848 0.99

LBFGS, 𝜀 = 1e-5 61.0327 0.0760 3.0495 1.00

DeepFool, default parameter 59.1931 0.1198 4.5238 0.58

PGD, 𝜀 = 0.05, step size = 0.3, 44.5092 2.0654 2.9510 0.98

Binary search = true

C&W, conf = 0 61.3460 0.0460 4.6834 0.96

C&W, conf = 100 59.9532 0.0650 4.8708 1.00

VII. ADVERSARIAL DEFENSES

In this section, we present and evaluate two different
adversarial defense methods to mitigate adversarial attacks
to improve TN’s security: the MPAs approach and the FR
approach. The MPA approach is one of the adversarial defense
mechanisms that researchers recently considered to provide
security for ML models. It consists of resisting the networks
by fine-tuning the models [37]. On the other hand, the FR
approach aims to decrease the adversary’s knowledge of the
TN, and place the adversary in LK or SK by selecting various
features for the classification task, i.e., selecting a random

number of features from the whole feature space of the
flattening layer. In what follows, we describe each of these
methods.

A. Most Powerful Attacks (MPAs)

The rationale behind the MPA approach is to secure the TN
by resisting it against the most powerful attacks (MPAs), i.e.,
the attacks that significantly reduce the model’s accuracy. By
leveraging MPA, with a high probability, we obtain a secure
model against weaker attacks, thus, making the MPA approach
efficient as it is not feasible to resist the detectors against all
existing attacks [37]. The MPA approach consists of importing
the attack samples into the training set that allows the decision
margin to be refined. However, applying these new attacks to
the detector is challenging. In [37], the authors proved that
the choice of samples in the processing tools used for training
is most effective in disabling the classifier’s performance. As
seen in Figure 3, the orange samples are pristine, the green
samples are manipulated, and the solid line illustrates the
decision margin before fine-tuning. The red dots show the
attacks that models were fine-tuned based on them. After
fine-tuning, we observe that the decision margin completely
changed (dotted line) and began closer to the pristine data;
this new decision margin provides an extremely challenging
situation for an attacker to cross the line as finding a gap
between pristine data and decision margin is quite difficult. On
the other hand, the experimental results in [7] demonstrated
that adding MPAs samples to the training set enables a good
performance in the presence of a wider variety of attacks
and processing. Although this strategy considers the SVM
classifier and is already used for cybersecurity in Multimedia
Forensics, we apply this approach in the context of computer
networks and DL models. This is quite a novel use case of
ML/DL models, which are usually considered due to their
suitability and performance [32].

Fig. 3. Representation of the MPA approach for an adversary-aware classifier.
The generation of adversarial samples (crosses) enables decreasing the region
of the benign samples (stars), thus challenging the obfuscation of dot samples
as the star ones.

In [7], [37], the authors demonstrate most ML models,
particularly deep learning networks, are inherently vulnerable
and fragile against adversarial attacks. These vulnerabilities
are critical in security-oriented applications given their neg-
ative impact on the performance of the models. In the MPA
approach, we separately fine-tune 𝑁1 and 𝑁2 models with each
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attack sample. As we have eight types of attacks, we obtain
eight new tuned models for each of 𝑁1 and 𝑁2. Then, we
provide as input to each fine-tuned model the attack samples
of other attacks to predict their labels (pristine or manipulated).
Afterward, we gather and save the corresponding ASR. With
this method, we can determine which fine-tuned model has
more resistance against all the other attacks. For instance,
consider the TN network 𝑁1 fine-tuned by attack 𝐴1 that is
tested against attack 𝐴2 and ASR is 10%, it can be said that
the fine-tuned model with 𝐴1 can detect 90% of 𝐴2 attacks
samples and can be fooled with 10% of them.

1) Experimental Results for the MPA Approach: We
report the score results of the MPA approach for 𝑁1 and
𝑁2 models in Table VI and Table VII, respectively. Note
that all the other scores of the MPA approach are equal
to 1 except the reported results. For 𝑁1, the tested results
of the tuned adversarial attacks achieve a high score value
for the attacks: I-FGSM010, FGSM010, BIM100, L-BFGS,
JSMA001, JSMA, DeepFool, CW0, and CW100. Regarding
the fine-tuned PGD005 attack, we remark that the test results
have low scores for most of the tested attacks. However, for
the deep network 𝑁2, all the fine-tuned attacks have a high
score value when tested against the eight adversarial attacks.
According to the results, approximately all of the tuned models
of the attacks were secure against other attacks; however, for
verifying the MPA method, we need to apply the eight attacks
on the fine-tuned models to verify if they can fool again the
networks.

2) Security Level Evaluation for the MPA: After testing
each of the tuned model with other adversarial attacks, we
observe that all of the considered attacks achieve good results.
However, by applying each attack again on the tuned networks,
we remark that the adversary can perfectly fool the tuned
networks. Therefore, we can confirm that the MPA approach is
not efficient in securing 𝑁1 and 𝑁2 against adversarial attacks.
Therefore, we consider in what follows another strategy based
on the FR technique.

B. Features Randomization (FR)

In this approach, our goal is to provide a Limited-
Knowledge condition for the attacker by selecting random
features vectors of size (𝐹 < 𝑁), where F is the size of the
random features vector and N is the size of the full features
vector extracted from the SN flatten layer. Then, we give the
TN the selected random features vector as input to perform
the classification task (pristine or manipulate). This method
satisfies the Limited-Knowledge setting as the attacker cannot
guess the selected random features to perform adversarial
attacks to fool the TN. Even when the whole feature set is
examined (𝐹 = 𝑁), the detector differs from the classification
architecture of the SN. In this case, as the SN and TN are
similar, the attacker does not know the architecture of the TN.
Moreover, the amount of attacker’s information regarding the
SN is smaller than in the MPA approach. To evaluate the FR
approach with different random feature vectors, we consider
different feature space sizes to identify which space size would
provide higher security for the TN.

1) Experimental Results for the FR Approach: To imple-
ment the FR approach, we defined random feature space sizes
by 𝐹 = {5, 10, 30, 50, 200, 400, 𝑁}, where 𝑁 represents the
flatten layer’s full features size of 𝑁1 and 𝑁2, which are 1.728
and 3.200 respectively. In this study, we considered SVM as
TN to train it with random feature vectors. For this purpose,
we randomly selected 120.000 samples for training (60.000
for pristine and 60000 for manipulate), 10.000 samples for
validation (5000 for pristine and 5.000 for manipulate), and
20.000 samples for testing (10.000 for pristine and 10.000 for
manipulate). Given the computation cost challenges, we note
that the SVM is not trained with all the 223.633 samples. Then,
we fed the training, validation, and testing samples to SN and
extracted full feature vectors of the samples from the flattened
layer of the SN. Afterward, we selected random features vector
from the full features vector 50 times for different sizes of 𝐹,
i.e., at the end of this process, we had 50 different feature sets
(training, validation, and test) for each 𝑓 ∈ 𝐹. These feature
sets are employed to train 50 SVMs for each 𝑓 ∈ 𝐹.

To better illustrate the FR approach, we assume 𝑓 = 10. To
provide data for SVMs training, we consider 120.000 samples
of training, 10.000 samples of validation, and 20.000 samples
of the test that we feed to 𝑁1. Then, we extract the features
of its flattened layer (full features vector). Afterward, as the
full features vector size is 1728 for 𝑁1, we randomly select
the features vector of size 𝑓 = 10 from 𝑁 = 1728 for each
sample 50 different times, and which will be used to train 50
different SVMs. We repeat the same procedure for 𝑁2.

When considering the SVMs as TN, we employed Radial
Basis Function (RBF) kernel [38] which has two hyper-
parameters 𝐶 and 𝛾 to control the error of classification and to
give curvature weight of the decision boundary, respectively.
As the hyper-parameters should be set before training the
model, for finding the best 𝐶 and 𝛾 for each SVM, we
performed a 5-fold cross-validation via grid search. Then, we
used the found hyper-parameters to train the SVM models.
Next, we evaluated the SVMs with the test set features that
did not include attacked samples. We ran our experiments on a
computer with an Intel(R) Core i7 - 10 and 11 generation CPU
with 32 GB of RAM. In addition, we performed the training
and testing processes of all the SVMs using the LiBSVM
library package [39]. In Table. VIII, we report the average
accuracies of 50 SVM models for each 𝑓 ∈ 𝐹.

To test the performance of the trained SVMs against at-
tacked samples, we followed the same approach for getting the
features from SN’s flatten layer, i.e., we gave each attack sam-
ple to SN and extracted the features from the flattening layer.
Then, we randomly selected 50 different feature sets for each
features vector of size 𝑓 ∈ 𝐹 = {5, 10, 30, 50, 200, 400, 𝑁}.
We considered 500 samples for each attack, including I-
FGSM010, FGSM010, BIM100, L-BFGS, JSMA001, JSMA,
DeepFool, C&W0, and C&W100. For example, we assume
𝑓 = 30 and select the FGSM010 attack. After applying the
random feature selection procedure, we obtain 50 different
feature vectors of size 500 × 30 for the FGSM010 attack that
is ready to test the SVM models, i.e., to measure the ASR on
TN.
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TABLE VI
SCORE RESULTS BASED ON MPAS FOR 𝑁1 MODEL.

𝑁1 MPAs Results —- I-FGSM010 FGSM010 BIM100 PGD005 L-BFGS JSMA001 DeepFool CW50 CW100
Tested with BIM100 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.97
Tested with PGD005 0.00 0.90 0.89 0.98 0.00 0.00 0.01 0.004 0.004

TABLE VII
SCORE RESULTS BASED ON MPAS FOR 𝑁2 MODEL

𝑁2 MPAs Results — I-FGSM010 PGD005
Tuned with FGSM010 0.99 1

- BIM100 0.99 1
- JSMA001 0.95 0.98
- DeepFool 0.99 1
- CW0 0.96 0.99
- CW100 0.96 0.98

TABLE VIII
AVERAGE PERCENTAGE ACCURACY OF SVMS IN THE ABSENCE OF

ADVERSARIAL ATTACKS.

—- 5 10 30 50 200 400 N
𝑁1 95.14 95.91 96.02 96.01 96.01 96.01 96.01
𝑁2 93.75 95.83 95.90 96.13 96.13 96.18 96.18

To test the SVMs, we considered two methods with different
knowledge levels for attackers: mis-match index testing and
match index testing. In the mis-match index testing, the
adversary has a Limited-Knowledge, while in the match index
testing, the adversary has a Semi-Knowledge. In our study,
we assume that the TN’s model is secure if it can detect
adversarial attacks with an accuracy of more than 60%.

Mis-match index testing: In this procedure, the attacker has
an LK condition due to the absence of knowledge regarding the
TN model, the parameters of the TN model, and the random
indices used for classifying. The attacker knows only the
feature size, i.e., 𝑓 ∈ 𝐹. Therefore, we tested each SVM model
with the 50 randomly selected feature vectors of each attack.
Then, we summed the score of these SVMs. As we have 50
SVMs, we calculated their average scores. In Algorithm 1, we
present the mis-match index testing algorithm. In a mis-match
index testing scenario, we considered 𝑁1 as SN, the SVMs
as TN, and we trained the SVMs by the randomly selected
features vector. In Table IX, we provide the numerical results
of the mis-match index testing. According to the reported
results, it can be clearly shown that we achieved good results
for the random feature size of 30 and 50. Moreover, in the full
feature size 𝑁 = 1728, the adversary knows all the indexes,
which is reasonable to obtain an insecure model. To that end,
we state that using the random feature selection technique can
increase the security model to some extent.

Similarly, we applied the mismatch index testing when
considering 𝑁2 as SN, and we report our numerical results
in Table X. The results show that we obtain good results for
the random feature size of 200. Additionally, in the full future
case, the adversary knows all the indexes, which is reasonable
to have an insecure model. Therefore, by using the random

Algorithm 1: Mis-match index testing for Features
Randomization

global feature sizes = [5, 10, 30, 50, 200, 400]
global attack names = [IFGSM10, BIM100, PGD005,

LBFGS, JSMA001, DeepFool, CW100, CW0, FGSM10]
for fs in feature sizes do

for attack in attack names do
total mean = 0
for model num in range(1,50) do

svm = load svm model(model num)
iter score = 0
for attack feature file in range(1,50) do

file = load attack(attack,attack feature)
accuracy = test svm(svm, file)
iter score = accuracy + iter score

end
total mean = total mean + (iter score / 50 )

end
final mean = total mean / 50
/* The final mean is inserted in the
table */

end
end

TABLE IX
PERCENTAGE OF MIS-MATCH INDEX RESULTS FOR 𝑁1 MODEL (RESULTS

REPORTED IN %).

– 5 10 30 50 200 400 N
I-FGSM010 51.07 58.59 76.23 75.08 60.46 72.09 0

BIM100 45.34 51.54 61.18 64.01 57.67 68.51 0
PGD005 45.43 51.43 62.01 65.37 58.5 69.29 0
L-BGFS 50.78 58.37 76.24 75.40 60.30 72.15 0

JSMA001 50.51 57.88 75.47 74.63 60.45 72.00 0
DeepFool 49.56 56.74 72.54 72.66 60.14 71.42 0
CW100 50.82 58.34 75.98 75.18 60.31 72.11 0

CW0 50.76 58.31 76.05 75.29 60.31 72.11 0
FGSM010 51.07 58.59 76.23 75.08 60.46 72.09 0

feature selection, we can increase the security level of the TN
to some extent.

TABLE X
PERCENTAGE OF MIS-MATCH INDEX RESULTS FOR 𝑁2 MODEL (RESULTS

REPORTED IN %).

– 5 10 30 50 200 400 N
I-FGSM010 11.60 19.43 32.53 37.19 70.03 54.08 0

BIM100 14.29 23.25 35.19 39.99 76.16 50.68 0.04
PGD005 14.86 23.83 35.44 40.03 75.31 56.37 0.05
L-BGFS 20.19 30.54 37.46 41.72 66.51 44.84 0.21

JSMA001 27.35 37.41 43.99 47.99 66.88 49.85 0.58
DeepFool 20.86 31.76 40.41 44.55 69.03 51.04 0.39
CW100 27.00 37.38 43.99 47.54 75.40 49.55 0.51

CW0 27.10 37.20 44.05 47.72 75.41 49.88 0.51
FGSM010 11.58 19.41 32.52 37.18 70.02 54.07 0

Match index testing: In this scenario, the attacker has an SK
condition. In other words, the TN classifier and its parameters
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are not available for the adversary. However, the information
of selected indices and the features vectors size, i.e., 𝑓 ∈ 𝐹,
are accessible for the attacker. In this method, we tested each
of the SVM models of feature size 𝑓 with one random features
vector of each attack with the same index instead of 50 random
features vectors. In what follows, we provide the Algorithm 2
of match index testing.

Algorithm 2: Match index testing for Features Ran-
domization

global feature sizes = [5, 10, 30, 50, 200, 400]
global attack names = [IFGSM10, BIM100, PGD005,

LBFGS, JSMA001, DeepFool, CW100, CW0, FGSM10]
for fs in feature sizes do

for attack in attack names do
total mean = 0
for model num in range(1,50) do

svm = load svm model(model num)
file = load attack feature(attack,model num)
accuracy = test svm(svm, file)
total mean = total mean + accuracy

end
final mean = total mean / 50
/* The final mean is inserted in the
table */

end
end

In Table XI and Table XII, we report the numerical results
in the match index testing of 𝑁1 and 𝑁2 when considered as
SN models and SVM as TN, respectively. According to the
presented results, we can claim that if the adversary has an
SK on the features, it will be challenging to fool the TN.
In fact, for the match index testing of the 𝑁1, choosing the
SVM between 200 and 400 will provide a security level of
the TN by more than 60% for all the considered adversarial
attacks. For 𝑁2, we notice that the SVM of size 200 enables
a good security level for TN with more than 61% for all the
adversarial attacks.

TABLE XI
PERCENTAGE OF MATCH INDEX RESULTS FOR 𝑁1 MODEL (RESULTS

REPORTED IN %).

– 5 10 30 50 200 400 N
I-FGSM010 66.10 58.02 73.30 71.58 60.08 69.12 0.00

BIM100 46.62 53.14 63.57 56.87 62.53 70.36 0.04
PGD005 45.36 53.34 63.96 57.96 63.66 70.71 0.05
L-BGFS 77.51 58.91 72.22 71.70 60.42 69.86 0.21

JSMA001 71.20 55.17 73.98 71.79 60.64 70.24 0.58
DeepFool 69.65 56.86 67.55 71.86 59.77 68.64 0.39
CW100 75.34 57.48 72.30 71.70 60.44 69.77 0.51
CW0 76.78 57.85 72.38 71.56 60.55 69.72 0.51

FGSM010 66.10 58.01 73.29 71.58 60.08 69.12 0.00

2) Security Level Evaluation for the FR approach:
According to the reported results, we observe that the mis-
match index case is more robust than the match index case.
This could be explained by the fact that each model was tested
with 50 files, which is more likely to be secure against different
attacks feature. Therefore, the FR approach’s experimental
results demonstrate that the TN security level is improved
compared to the MPAs approach.

TABLE XII
PERCENTAGE OF MATCH INDEX RESULTS FOR 𝑁2 MODEL (RESULTS

REPORTED IN %).

– 5 10 30 50 200 400 N
I-FGSM010 15.51 22.97 40.86 38.54 63.43 53.35 0.00

BIM100 22.62 33.05 79.61 49.67 66.87 57.67 0.04
PGD005 23.70 34.80 50.31 50.20 67.51 57.80 0.05
L-BGFS 34.73 48.77 50.75 46.88 64.98 33.18 0.21

JSMA001 79.20 83.99 77.66 70.33 70.96 57.88 0.58
DeepFool 43.01 56.28 67.07 62.46 61.73 48.83 0.39
CW100 79.75 85.50 77.18 71.84 70.30 47.79 0.51
CW0 80.30 84.97 77.29 72.92 70.75 47.97 0.51

FGSM010 75.47 22.93 40.83 38.52 67.39 53.34 0.00

VIII. DISCUSSION

In this work, we applied two different defense strategies
against eight adversarial attacks with different parameters
under black-box settings, namely: The JSMA, the PGD attack,
the L-BFGS attack, the I-FGSM attack, the FGSM attack, the
DeepFool attack, the BIM attack, and the C&W attack (with
the strength parameters 0 and 100). The first strategy is based
on the MPA (i.e., the source and target network architectures
are similar), while the second defense mechanism is based
on the features randomization technique (i.e., the source and
target network architectures are different).

Given that prior works demonstrated the robustness of the
MPA approach against adversarial manipulations, notably in
the category of the adversary-aware detector. We imported
the MPA approach to our study to evaluate its performance
using the fine-tuning technique in the field of network security.
However, we found that such an approach is inefficient, and
the TN model cannot resist the adversarial transferability. In
this context, we proved that all the eight considered adversarial
attacks were transferred from the SN to the TN.

To that end, we developed a novel strategy based on the
feature randomization technique. In this case, we investigated
the potential of utilizing FR to increase the resilience of
DL models against adversarial cases by limiting the attack
transferability. We applied our approach in a wide range of
scenarios, demonstrating that the FR approach can signifi-
cantly reduce the transferability of adversarial attacks, thereby
enhancing the security of the DL models. Even though, in
certain circumstances, we found that the mis-match in structure
between the SN and the TN is sufficient to prevent adversarial
transferability. Additionally, our investigations demonstrated
that for the small size of random feature vectors, the complex-
ity increases in the training data for the TN. This complexity
could be explained by the high amount of random cases,
which can decrease the adversary’s awareness of training data.
Therefore, the TN can resist more adversarial attacks and
prevent attack transferability. Interestingly, we decreased the
attacker’s knowledge in the FR approach by changing the TN
architecture and employing a TN model different from the SN
model. Consequently, the attacker has limited awareness of
the TN model and its parameters. For instance, we considered
the SVM as TN, which had different architecture from SN
models (𝑁1 and 𝑁2). In this case, we decreased the adversary’s
knowledge of the LK condition. Therefore, the attacker must
perform deep searches to determine TN’s architecture and
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parameters. Moreover, we showed that the FR approach is
efficient in the SK scenario, i.e., the attacker has information
about the randomly selected indices for training the TN and
their feature vector size. Accordingly, we analyzed the SK
scenario through match index testing. Our numerical results
demonstrated that the DL models are secure against attack
transferability issues when the adversary is under SK condi-
tion. Furthermore, we evaluated the computational cost of the
attacks for 500 samples with the trained networks. As shown in
Table XIII, we remark that the computational cost of the C&W
attack is significantly higher than other adversarial attacks in
the SN and TN. Further, we also evaluated the runtime for
training 50 SVM based on the features extracted from 𝑁1 and
𝑁2 in the FR approach. As depicted in Table XIV, the results
show that the computational cost increases when the number
of features increases

TABLE XIII
COMPUTATIONAL COST OF THE ADVERSARIAL ATTACKS FOR 500

SAMPLES ON 𝑁1 AND 𝑁2 IN SECONDS

Attack Type 𝑁1 𝑁2
I-FGSM010 1500 500
FGSM010 500 500
JSMA001 5000 3600
BIM100 500 500
L-BFGS 9000 6000
DeepFool 500 500
PGD005 3000 1800

CW0 59000 45000
CW100 60000 47000

TABLE XIV
COMPUTATIONAL COST IN SECONDS FOR TRAINING 50 SVM BASED ON

THE FEATURES EXTRACTED FROM 𝑁1 AND 𝑁2

Number of Features 𝑁1 𝑁2
5 8100 8100

10 18000 18000
30 45000 45000
50 48000 48000
200 189000 189000
400 468000 468000

Full features for one SVM 22800 12600

IX. CONCLUSION AND FUTURE WORK

Over the past decades, the increasing applications of ma-
chine and deep learning have triggered the need to consider its
robustness against adversarial attacks. In this context, the ad-
versary can craft malicious samples and transfer the adversarial
attacks from the SN to the TN. To avoid the transferability
property, it is crucial to improve the target network’s security.
In this paper, we investigated evasion attacks on ML/DL
models applied in the testing phase. We leveraged the potential
of utilizing the feature randomization technique to increase
the resilience of DL models against adversarial samples, thus
impeding attack transferability. Our experimental results in LK
and SK conditions demonstrated that the FR approach could
significantly reduce the transferability of adversarial attacks,

thereby protecting the TNs from adversarial manipulations.
We also showed that in some cases, the architectural difference
between the SN and the TN is satisfactory to avoid adversarial
transferability. Our future work will focus on poisoning attacks
and their transferability. In particular, where an attacker may
poison the training data by inserting precisely selected sam-
ples, ultimately threatening the entire learning process. The
poisoning process can thus be viewed as malicious contami-
nation of the training data. Further, we aim to design a defense
mechanism against backdoors attacks against ML/DL models.
These attacks hunt for high correlations in the training data
without checking for causative variables.
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