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Abstract—On-demand and resource reservation pricing models, widely used in cloud computing, are currently used in Multi-Access
Edge Computing (MEC). Nevertheless the edge’s resources are distributed and each server has lower capacity. If too much resources
were reserved in advance, on-demand users may not get their jobs served on time, jeopardizing MEC’s latency benefits. Concurrently,
reservation plan users may possess un-used quota. Therefore, we propose a sharing platform where reservation plan users can re-sell
unused resource quota to on-demand users. To investigate the mobile network operator’s (MNO’s) incentive of allowing re-selling, we
formulate a 3-stage non-cooperative Stackelberg Game and characterize the optimal strategies of buyers and re-sellers. We show that
users’ actions give rise to 4 different outcomes at equilibrium, dependent on the prices and supply levels of the sharing and on-demand
pools. Based on the 4 possible outcomes, we characterise the MNO’s optimal prices for on-demand users. Numerical results show that
having both pools gives the MNO an optimal revenue when the on-demand pool’s supply is low, and unexpectedly, when the MNO’s
commission is low. We develop an interactive prototype, and show that users’ decision distributions in studies on our prototype are
similar to that of our decision model.
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1 INTRODUCTION

Edge computing enables a wide variety of low latency
and computationally intensive services on mobile and other
resource constrained devices (e.g Internet of Things (IoT)
devices). These low latency services include video analytics,
real-time analytics, virtual and augmented reality (VR/ AR),
and connected vehicle decision making. Edge computing
brings the power of cloud computing to the network edge,
with servers placed at edge access points e.g. base stations or
wifi access points [1]. Users and device owners can offload
computationally intensive tasks to the nearby edge servers,
and receive them within latency requirements [2], due to the
close proximity of the edge servers. The wide-area-network
(WAN) delay of cloud computing will be avoided [3].

As computing resources are limited at the edge, re-
searchers have been actively investigating the computa-
tion offloading and resource allocation problem, [2], [4]–
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[7]. Besides the technical challenges of computation offload-
ing, resource pricing solutions to optimize revenue [8]–
[16] can serve as complementary mechanisms to control
user demands and ensure good quality-of-service despite
limited available resources, while maintaining the network
operator’s incentive. Currently, Edge computing providers
have been adopting the traditional cloud computing pricing
models [17]–[19]: the On-Demand pricing model (OPM) and
the Resource Reservation model (RRM), e.g. in AWS Local
Zones [20] and Juniper [21]. These two models cater to
different types of users. In the On-Demand pricing model,
service users pay for computing resources, as and when
they need it, and do not make any long term commitment
[22]. In MEC, this is suitable for individual mobile users
using, for example, virtual reality or mobile gaming services
once, or a couple of times, not across consistent timeslots
across the span of months; for firms during special one-
off events involving augmented reality displays or machine
learning platforms. In contrast, for the Resource reservation
model, service users reserve computing resource instances
in advance, across multiple timeslots, (e.g. for a year), for
a discounted price [23]. This caters to users (or firms)
who use computing resources in bulk, at periodic and pre-
determined timings. These may include IoT vendors with
periodic data analytic requirements for their IoT networks
or firms behind public augmented reality setups, with a
constant need of computing capabilities.

Besides maximizing revenue, will such plans be able
to meet user demand? While edge computing is advan-
tageous latency-wise through the proximity to end users,
unlike cloud data centers with thousands of servers [24], the
distributed nature of MEC involves small-scale data centers
placed at the network edge [1], [2]. The server capacity at
edge nodes may be limited due to physical constraints [7].
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Therefore, the difficulty from jointly using the On-Demand
pricing and Resource Reservation pricing models in MEC is
that after the resource units are reserved in advance by the
Resource Reservation users, there might be fewer resource
units left for on-demand users. Consequently, on-demand
users may experience a longer service latency, which may
jeopardize the utility of MEC since services which use
edge computing are often latency sensitive [2], [3]. Cloud
providers complement the on-demand and resource reser-
vation models and monetize excess demand through spot
instances, leasing the unused capacity at data centers to
users at a discounted price [25]. We are unable to consider
spot pricing in MEC because unlike the cloud, there is a lack
of spare capacity at the edge. Furthermore, raising the price
of resource reservations to control the demand, may not
suffice as users with long-term usage needs may continue
to prefer fixed upfront expenses compared to on-demand
expenses that may fluctuate and may be hard to predict.

Therefore, to improve the QoS of users, we propose a
sharing platform, titled the Sharing Quota Model (SQM),
Here, reservation plan users can re-sell their excess un-
utilized resource quota via the platform to on-demand
users, while the MNO collects a commission. This could
benefit all parties. The on-demand users can attain a higher
QoS (lower delay) and a higher probability of getting their
jobs served, the reservation plan users will obtain extra in-
come and the MNO collects a commission. Higher customer
satisfaction also benefits the MNO in the long run. It is
unclear, however, whether the MNO always has an incen-
tive to offer such a platform, as the SQM may discourage
on-demand users from purchasing capacity directly from
the MNO. To best integrate the sharing platform with the
on-demand pricing and resource reservation models, the
following research questions arise:

a) Given the sharing platform, would on-demand users still
buy from the on-demand platform? What would the aggregate
equilibrium behavior look like?

b) Given the users’ decisions, it is not clear if the MNO has
an incentive to provide this platform: will it lead to sub-optimal
revenue? How should it set prices such that revenue is optimized,
whilst minimizing the unmet demand of the on-demand users?

c) How can we design the platform? Is it more practical if
resource quota re-selling is automatically or manually decided?

While there have been resource sharing (or trading)
platforms in networks, e.g. mobile data market trading
platforms [26]–[28], and crowdsourced community wireless
networks [29], their market structures are different. Specif-
ically, the mobile data market users buy plans which have
the same structure, differentiated by usage levels. In crowd-
sourced community wireless network model formulations,
given prices and membership choices of other users, users
decide their network access time. This differs from our
market structure, where there are two types of plans (on-
demand vs reservation), determined by service application
type and usage patterns. Our work also differs from other
MEC resource allocation or revenue maximization work,
as it uniquely considers how the on demand and resource
reservation model can be improved in MEC. Therefore, to
answer the above questions and investigate the feasibility
of the sharing platform, we perform game theoretic analysis
on the three-sided market, formulating a three-stage non-

cooperative Stackelberg Game amongst the MNO, re-sellers
(reservation plan users) and buyers (on-demand users). Our
analysis characterises the decision making and conflicting
incentives of the three parties, with the MNO setting
the on-demand pool and sharing pool’s prices to optimize
revenue, the on-demand users choosing the pool to pur-
chase from, aiming to maximize their payoff functions, and
the reservation users also aiming to maximize their payoff
functions.

Our contributions are summarized as follows:

• With a direct application of on-demand and re-
source reservation pricing plans in MEC, on-demand
users face potentially limited resource availability
at the edge, impacting their QoS, while resource
reservation plan users might have reserved excess
un-utilized resource quota. Therefore we propose a
novel model integrating a sharing platform, for the
re-selling of unused resource quota from reservation
plan users to on-demand users.

• To investigate the MNO’s incentive on having a shar-
ing platform and to optimize the MNO’s prices for
revenue maximization, we will use a 3-stage Stack-
elberg Game formulation to characterise how the
MNO, buyers and re-sellers interact at equilibrium.
In this sequential game, the MNO selects prices to
optimize its revenue. Following which, the re-sellers
(reservation plan users) choose whether or not to sell,
forming the sharing pool. Viewing the prices and
relative supplies, the buyers choose which pool (or
not) to buy from. We incorporate two platform de-
sign options - automated re-selling of unused quota,
and manual decision making for re-sellers.

• Using backwards induction, we firstly characterise
the buyer’s optimal strategies for the above two
platform design options (Proposition 1). Our analysis
shows that the equilibrium behavior amongst the
buyers and re-sellers possesses a 4 region structure
(Proposition 2, with each region corresponding to
whether or not the on-demand and sharing pools
coexist). The likelihood of each of the 4 regions
happening depend on the relative magnitudes of
prices and supply levels of the two pools. Based on
the 4 region structure, we optimize the on-demand
and sharing prices (which also impacts the sharing
supply), to optimize the MNO’s revenue, and pro-
vide insights on the optimal price (Theorems 1 and
2, Corollary 1).

• We provide numerical results, which show how the
system behaves at the optimal point. Our results
show that for different willingness to pay and us-
age distributions, having both the sharing and on-
demand pool gives the MNO an optimal revenue
when the on-demand pool’s supply qo is low, and
when δ, the platform’s commission is low, but not
below a certain threshold. It would be expected that
a high commission would give the platform a higher
sharing revenue, nevertheless our results show that
it incurred a trade-off in dissuading reservation plan
users from re-selling.

• We created a prototype, an interactive website, to
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conduct preliminary user studies on user decision
making in our resource re-selling framework.Our
analysis shows that there is no statistically significant
evidence that the empirical distribution function of
the data from the user study and the empirical distri-
bution function of the data from the model’s predictions
(Eq. 1, Prop. 1-2) are distinct.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the related works. In Section 3, we
describe the system model. Following which, we formulate
the Stackelberg Game in Section 4. In Section 5, we present
the game analysis and insights. We present numerical results
in Section 6, present our prototype and preliminary users
studies in Section 7, discuss future areas of investigation in
Section 8, and finally conclude this paper in Section 9.

2 RELATED WORKS

In this work, we propose a novel system model incorporat-
ing a resource re-selling platform, to improve the integration
of the on-demand and resource reservation pricing models
in MEC, given the limited resources at the edge. We also
discuss how our model differs from other platforms in
networked systems.

Edge Computing resource allocation: Researchers have
been actively optimizing resource allocation in MEC, bal-
ancing the user’s delay requirements with minimizing the
energy consumption, under various scenarios [4]–[7], [30].
Another line of work is collaborative edge computing to
maintain the QoS in light of user mobility. This involves
strategies like VM or service migration across base stations
[14], [31]–[33] and user association optimization [34].

Edge Computing revenue maximization: These works
involve optimizing revenue while maintaining the quality
of service for users (delay, job service rate, etc) [8]–[13]. For
example, [8] used the Fisher market model to model the
MEC market. [9] jointly optimized over the resource prices
and the devices’ budget allocation strategies. [10] modelled
a dynamic game between the edge resource owners, in-
frastructure providers, and service users. While our model
follows the user payoff model of [10], we model a distinct
scenario, involving a novel hybrid sharing, on-demand and
resource reservation framework. Thus, unlike [10] we must
further account for re-seller incentives, leading to distinct
results. In our prior work [35], we proposed a model
where users constantly change whether to be an ’owner’
or ’renter’ of excess resource units, along with dynamic
pricing mechanisms. We did not investigate the MNO’s
incentive of having a sharing platform. To the best of our
knowledge, there has not been work on how to improve the
integration of the on-demand and the resource reservation
pricing models in MEC

Cloud Computing pricing: Maximizing revenue in
cloud computing by improving on the on-demand and
reserved instance models was studied in [19], [36]–[38].
These works focused on spot instances, which sell the spare
capacity at data centers, at discounted prices [25]. For exam-
ple, [19] proposed a truthful auction for spot instances. [36]
proposed a dynamic pricing policy. [37] maximized revenue
through capacity segmentation. Unlike in cloud computing,

each edge server has limited resources, making the spot
instances model not feasible in edge networks.

Other Platforms in Networked Systems: The mobile
data market has seen the existence of platforms (e.g. China
Mobile Hong Kong’s 2nd exChange Market) which provide
a secondary data market, allowing users to buy and sell data
from each other [26], [27]. These works [26]–[28] perform
a game theoretic analysis to characterise the equilibrium
and optimal decisions under various scenarios, as well as
propose alternative platform designs [39]. This platform
has a different market structure from the edge computing
market - here all the users buy resources under the same
type of scheme (monthly data plans with usage quotas) and
are differentiated by usage levels. In the edge computing
market, users have vastly different kinds of applications
and usage patterns, which suit different usage schemes:
some users have consistent usage patterns (e.g. IoT vendors)
and suit the resource reservation model, and some users
have more sporadic, one-off usage patterns (e.g. individual
mobile users using applications like virtual reality) and are
suited to the on-demand model.

3 THE RESOURCE PROCUREMENT MODEL

We consider an edge MNO that provides edge computing
service to N users. The MNO has 2 resource procurement
schemes for users to choose from, namely the Resource
Reservation Model (RRM) and On-Demand Pricing Model
(OPM). These models, which are commonly used as cloud
pricing and procurement schemes [17]–[19], are currently
being used in edge networks [20], [21]. Under OPM, the
users purchase credits to offload their jobs at the edge
servers ”on the go”, as and when they need it. They pay po
per unit of resource consumed (CPU cycles), to the MNO.
Customers of on-demand pricing could include individual
mobile users, e.g. users of applications like AR/VR or mo-
bile gaming, or firms who are using AR or machine learning
applications for one-off special events or displays. These
users’ demand for computing is sporadic, not following a
consistent usage pattern across timeslots.

The RRM is catered to customers who have consis-
tent computing requirements across different timeslots. The
RRM allows them to reserve (i.e. commit to) computing
resource in advance across multiple timeslots, e.g. for a
year, at a discounted price per timeslot of pr. Customers
of the reservation plans include users who use computing
resources in bulk, at periodic timings, and more frequently
in general. For example, these may include IoT vendors
with constant sensing and data analysis requirements for
their large IoT network, autonomous driving firms, entities
behind long-term public augmented reality setups.

The user has chosen between the resource procurement
schemes OPM and RRM based on its service application’s
usage requirements: sporadic, one-off vs consistent, fre-
quent and long-term. The details of the user usage model
will be in covered the following subsections. The computing
resources at the edge server are first provisioned to the
reserved users, with the remaining resources forming the
on-demand pool.

Nevertheless, unlike cloud resource allocation where
data centers have huge amount of computing resources,
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Fig. 1. The integration of the resource-quota sharing platform with the
On-Demand and Resource Reservation models.

the server capacity at edge nodes is more limited [1], [2],
and the data processing rate is less powerful [40]. Hence,
after resources are reserved in advance by RRM users, there
might be less resources left for on-demand users. At the
same time, RRM users may find that for specific timeslots,
they have excess computing resource quota for CPU cycles
which they do not require. In this work we propose and
explore the impact of adding a resource sharing scheme,
the Sharing Quota Model (SQM). In this integrated scheme
(see Figure 1), RRM users act as re-sellers, selling their excess
unused resource quota at a price of pr per unit of resource
to on-demand users (buyers). The resold resources form the
sharing pool and increase the total supply available to on-
demand users (buyers). The MNO acts as a middleman and
takes a commission of δ from the transaction. We investigate
the impact that adding SQM has on the profits of the MNO,
and hence whether this scheme is feasible.

Re-sellers: The re-sellers are users who have previously
reserved resources from RRM, and who have excess re-
sources available for sale. Under the proposed sharing
scheme SQM, they have 2 choices s = {sell, no} in each
timeslot. They can choose whether to sell their excess
computing resource quota via the MNO’s platform to on-
demand users (buyers), or not. Without loss of generality,
we consider the payoff per unit resource quota for seller i,
which is expressed as:

πs
i (gi) =

{
(1− δ)pr − gi, if s = sell

0, if s = no.
(1)

Recall that pr is the per unit price set by the MNO for
the transaction, and define δ as the commission level which
the MNO takes from the transaction. We let gi represent
the inconvenience cost of selling for seller i (factoring in
uncertainty of usage, and the inconvenience of checking
the app to decide to share). In this paper, we consider
per unit resources in the payoff functions of both buyers
and re-sellers. Buyers and re-sellers with multiple units are
considered as multiple buyers or re-sellers. Note that if we
had considered users buying/re-selling distinct quantities
of resources, with the resource usage level of users following
U [0, 1], the impact would be that the supply and revenue
functions are multiplied by a constant factor.

The inconvenience cost depends on the extent to which
each re-seller is willing and able to expend time, energy
and resources to periodically check the app, factor in the
uncertainty of personal usage, and decide whether or not to
sell the excess resource quota. This differs across different
vendors and owners, and differs across applications. For
example, it would be easier for an IoT vendor to dedicate
resources to check the app, as comapared to an individual
MEC user. Some individual MEC users are more likely to
check than others as they are more interested in earning ex-
tra income. Besides this ,it is more difficult for users of some
applications to make the decision to re-sell, as their usage
for that particular timeslot is yet to be known, and more
unpredictable. gi is a random variable which follows the
uniform U [0, 1] distribution. It captures the varying levels
of personal costs across the users. While the distribution has
an impact on the way revenue is computed, we perform
simulations using both uniform and beta (which has a
gaussian-like structure) distributions in Section 6, showing
similar results across distributions.

As we can see from Eq. (1), a re-seller’s decision is
impacted by the price it receives pr, the MNO’s commis-
sion level δ, and the inconvenience cost gi. Re-seller i will
share/sell when its profit (1 − δ)pr is greater than its cost
gi. If the inconvenience cost is too high, it will not. To obtain
the total proportion of re-sellers willing to sell/share, we
integrate over the users whose inconvenience cost gi is less
than or equals to (1−δ)pr . As gi follows the uniform U [0, 1]
distribution, the proportion of re-sellers willing to share/sell
will be:

prop =

∫ (1−δ)pr

0
dgi

= (1− δ)pr.

(2)

The quality of the sharing pool, qs, indicates the total
supply of resource quota available for buyers, and therefore
is dependent on the proportion of re-sellers who are willing
to share their unused quota, (1 − δ)pr . It can be expressed
as1:

qs(pr) = f((1− δ)pr), (3)

with qs(pr) being a strictly increasing, twice differentiable
and concave function. This supply level has an impact on
the user experienced delay.

Buyers: The buyers are on-demand users who purchase
quota to offload their jobs at the edge servers on the go,
i.e. not in advance. These buyers send their computing
jobs to the edge server, with different willingness to pay
(represented by ui for user i). The willingness to pay is
the buyer’s utility of job computation at the edge server.
For example, some jobs are more urgent and considered
more of a necessity than others (e.g. public AR/VR displays,
autonomous vehicle computation), and therefore the buyers
will still be willing to pay despite the price pr increasing.
On the other hand, some jobs are considered less urgent, or
are not viewed as necessities from the buyer’s perspective,
resulting in a lower willingness to pay: given a high price of

1. Function qs(pr) may have various forms in realistic MEC systems,
but our analysis permits any functional form. We will discuss a concrete
form for numerical results in Section 6.
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TABLE 1
Summary of key Notations

Notation Definition
ui Willingness to pay of buyer i.
gi The inconvenience cost of re-seller i.
δ The MNO’s commission percentage.
pr Price per-unit of re-sold quota at the sharing platform.
po Price per-unit resource at the on-demand pool.
qo Supply, and hence quality at the on-demand pool.

qs(pr) Supply and hence quality at the sharing platform.
πs
i (gi) Payoff of re-seller i.

πb
i (ui) Payoff of buyer i.

R(pr, po) Revenue of the MNO.

resource quota pr , the buyer is more likely to choose not to
purchase the edge computing service. We let ui follow the
uniform U [0, 1] distribution, to represent how the willing-
ness to pay differs across users. Note that the distribution
has no impact on the payoff maximizing strategies of the
buyers, or the equilibrium outcome of user decisions in light
of fixed prices. While it has an impact on the way revenue
(Eq. (6)) is computed, we perform simulations using both
uniform and beta distributions in Section 6 which show
similar trends and effects across distributions.

Under SQM, these on-demand users now have 3 options
b ∈ {on-demand pool, sharing pool, none}.2 Note that, b =
none means not buying from both the on-demand pool and
sharing pool. Therefore the payoff of buyer i is:

πb
i (ui) =


uiqo − po, if b = on-demand pool
uiqs(pr)− pr, if b = sharing pool
0, if b = not buying,

(4)

where ui is buyer i’s willingness to pay for a unit resource
quota, as described earlier and used in [10]. The payoff
when users choose the on-demand and sharing pool respec-
tively is their willingness to pay (satisfaction) ui multiplied
by the quality/supply of the pool (qo or qs) minus the
payment (po or pr). The quality/supply (qo or qs) indicates
the relative supply of resources available at the on-demand
and sharing pool respectively. The quality at the on-demand
pool, qo, is the amount of supply of computing resources (in
CPU cycles) at the on-demand pool, after the resource reser-
vation users have reserved their portion.3 As mentioned
earlier, the quality at the sharing pool, qs(pr), is a function
of the proportion of re-sellers who are willing to re-sell. The
higher the supply at each pool, the higher the likelihood
the buyer is able to get its job served, hence improving its
QoS in terms of delay experienced. Therefore the buyer’s
payoff πb

i (ui) is an increasing function of the quality qs(pr)
or qo. As different buyers have different willingness to pay
ui, different buyers will make different choices, based on
which choice maximizes their individual payoff. In the next
few sections, we investigate the equilibrium behavior of the
users, and the optimal decisions for the MNO to make based
on that. We summarize the key notations used throughout
this paper in Table 1.

2. For simplification, we use b = o, b = s, and b = n to represent
b = on-demand pool, b = sharing pool, and b = none, respectively.

3. Note that in traditional centralised cloud computing, the supply at
data centers (i.e. the qo equivalent) would be much larger in magnitude,
resulting in less of a need for a sharing pool, according to Eq. (4).

Fig. 2. Game formulation: Non-cooperative game between the MNO, re-
sellers and buyers.

4 PROBLEM FORMULATION

The MNO’s objective is to optimize its revenue, when inte-
grating the sharing scheme SQM with the existing pricing
models. The MNO’s decisions will be made based on the
aggregate behavior of behavior of buyers and re-sellers at
equilibrium. Its Revenue Maximization Problem (RMP) is:

RMP : max
po,pr

R(pr, po) (5)

where

R(pr, po) =N

∫ 1

0
po1{πb=o

i (ui)>max(πb=s
i (ui),0)}dui

+N

∫ 1

0
prδ1{πb=s

i (ui)>max(πb=o
i (ui),0)}dui.

(6)

In Eq. (6), N is the number of users, and po and pr are the
price per unit resource at the on-demand pool and the shar-
ing pool, respectively. Hence, the first term on the right hand
side is the MNO’s revenue attained from the on-demand
pool, where 1{πb=o

i (ui)>max(πb=s
i (ui),0)} is the indicator func-

tion indicating if buyer i gains a higher payoff from choos-
ing the on-demand pool, over the sharing pool and not
buying at all. The second term is the MNO’s revenue from
the sharing pool, where 1{πb=s

i (ui)>max(πb=o
i (ui),0)} is the

indicator function indicating if buyer i gains a higher payoff
from choosing the sharing pool, over the on-demand pool
and not buying at all.

To analyse the strategic behaviours and the dynamic
interaction amongst the three parties and to obtain equilib-
rium insights, we formulate a non-cooperative Stackelberg
Game [41] (Fig. 2). In Stage 1, the MNO (the leader) sets the
on-demand and sharing pool prices po and pr , to maximize
its revenue R(pr, po), as in Eq. (7). In Stage 2A, given pr and
δ, the re-sellers (followers) individually decide s, whether
they would like to share or not. A re-seller’s decision de-
pends on which choice maximizes their individual payoff
πs
i , following Eq. (8). The collective decision of all re-sellers

would result in a supply/quality of qs(pr) for the sharing
pool, which would influence the decisions of the buyers
in Stage 2B. In Stage 2B, given the prices pr and po, and
the supply/qualities qs(pr) and qo, the buyers (followers)
individually decide b, which pool they would buy from. A
buyer’s decision depends on which choice maximizes their
individual payoff πb

i , as presented in Eq. (9). The decisions
of the followers (the re-sellers and buyers) would in turn
affect the revenue of the leader MNO.
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Stage 1 : MNO (leader): (p∗r , p
∗
o) = argmax

pr,po

R(pr, po) (7)

Stage 2A : Re-sellers: s∗ = argmax
s∈{s,n}

πs
i (gi) (8)

Stage 2B : Buyers : b∗ = argmax
b∈{o,s,n}

πb
i (ui) (9)

5 GAME ANALYSIS

In this section, we solve the Stackleberg Game (Eqs. (7),
(8) and (9)), characterizing and presenting insights on the
equilibrium interaction amongst the MNO, buyers, and re-
sellers, and characterizing the MNO’s optimal prices. We
analyze two distinct platform designs which the MNO could
implement for the re-selling portion of the sharing platform.
Firstly, in Section 5.1, we explore the option where the MNO
implements automatic re-selling of unused resource quota
on the part of users. While this may not be as feasible in
practice as it involves all users knowing upfront whether
or not they have excess quota, nevertheless, this portion
of the study gives insights on buyer decisions and the
aggregate outcome at equilibrium in light of MNO prices,
by isolating the MNO-buyer interaction. In Section 5.2 we
explore the option where the MNO implements manual de-
cision making for re-sellers: re-sellers weigh their personal
inconvenience cost gi when deciding whether or not to re-
sell quota in the sharing pool, according to Eq. (1).

5.1 Case 1: Automatic Re-Selling of Unused Quota

In this subsection we analyze the scenario where the MNO
implements automatic re-selling of unused resource quota
on the part of re-sellers.

As there is no decision making on the part of re-sellers,
we have qs(pr) as a constant qs. The resulting game between
the MNO and the buyers is:

Stage 1 : MNO decides (p∗r , p
∗
o) = argmax

pr,po

R(pr, po) (10)

Stage 2 : Buyers decide b∗ = argmax
b∈{o,s,n}

πb
i (ui) (11)

5.1.1 The buyer’s optimal strategies
We solve this game by backward induction [41], solving
Stage 2 first, and using the equilibrium outcome of Stage
2 to solve Stage 1 and obtain the MNO’s optimal prices.

Buyers try to maximize their payoffs πb
i by choosing

whether they will buy computing resource quota from the
on-demand pool, the sharing pool, or not buy at all, given
the prices po, pr , and the relative supply qo and qs. Propo-
sition 1 shows which strategies buyer i will take, given its
willingness to pay ui.

Proposition 1. For given values of prices (po, pr) and qual-
ity/supply (qo, qs), the payoff maximizing strategy for buyer i
will be:

a) if qs > qo,

b∗ =


sharing pool if ui > max(pr−po

qs−qo
, pr

qs
)

on-demand pool if po

qo
< ui ≤ po−pr

qo−qs

none otherwise
(12)

b) if qo > qs,

b∗ =


sharing pool if pr

qs
< ui ≤ pr−po

qs−qo

on-demand pool if ui > max(po−pr

qo−qs
, po

qo
)

none otherwise
(13)

c) if qo = qs,

b∗ =


sharing pool if po > pr & ui >

pr

qs

on-demand pool if pr > po & ui >
po

qo

none otherwise
(14)

Proof: We compare πo
i (µi), πs

i (µi), and 0, and find the
conditions under which each strategy maximizes buyer
i’s payoff. When πo

i (µi) is the largest, we have b =
on-demand pool. When πs

i (µi) is the largest, we have b =
sharing pool. Otherwise, b = none.

Note that Prop. 1 is independent of the distribution of
ui, users’ willingness to pay. Fig. 3 provides a geometric
description of Proposition 1 (Prop. 1a in particular). For
example, if qs > qo (corresponding to Prop. 1a), and when
ui satisfies po

qo
< ui ≤ pr−po

qs−qo
, we can see from Fig. 3a

that the buyer’s payoff from the on-demand pool would be
positive and higher than that from the sharing pool. Hence,
the buyer with ui satisfying po

qo
< ui ≤ pr−po

qs−qo
would choose

the on-demand pool. Proposition 1 shows that buyers with
higher willingness to pay ui will choose the option with
higher quality/supply (qo or qs which is the gradient of
all the payoff graphs in Fig. 3), as we can see in all three
graphs. For an example, we look at the case where qs > qo
in Fig. 3. Users with higher ui choose the sharing pool when
pr−po ≤ 0 (Fig. 3c), and also when 0 ≤ pr−po

qs−qo
≤ 1 (Fig. 3a).

Nevertheless, we see that when the price pr for the sharing
pool is too high such that pr−po

qs−qo
> 1 (Fig. 3b, where pr−po

qs−qo
is the intersection of the two graphs), none of the users will
choose the sharing pool even with qs > q0.

In the special case where qs = qo (Proposition 1c), the
qualities/supply of the two options are the same. Geomet-
rically, this means that the gradients of the two payoffs
will be the same. If the on-demand pool has a higher price
(po > pr), the buyers will choose the sharing pool, and
vice versa. When the buyers’s willingness to pay is low
(ui < min(pr

qs
, po

qo
)), the buyer will choose neither.

5.1.2 The MNO’s price selection strategy

Following the buyers’ optimal selection strategies (Proposi-
tion 1), and integrating over the collective behavior of all
of the buyers, there will be 4 regions at equilibrium, with
boundary conditions as functions of qo, qs, po and pr . These
4 regions correspond to the 4 scenarios of whether users will
choose the sharing and/or on-demand option, or choose
not to buy at all. In Proposition 2, we characterize these
4 regions.

Proposition 2. For given values of prices (pr, po) and qual-
ity/supply (qs, qo), the equilibrium will satisfy exactly one of the
following 4 conditions:

R1 : {(pr, po)|pr < min(
qs
qo

, 1)po + (qs − qo)
+,

pr > max(
qs
qo

, 1)po − (qo − qs)
+}

(15)
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(a) Both on-demand and sharing. (b) Only On-demand. (c) Only Sharing.

Fig. 3. Illustrations of buyers’ payoff, and therefore the decision they make, at different willingness to pay, with qs > qo.

R2 : {(pr, po)|po < qo, pr ≥ min(
qs
qo

, 1)po + (qs − qo)
+}
(16)

R3 : {(pr, po)|pr < qs, pr ≤ max(
qs
qo

, 1)po − (qo − qs)
+}
(17)

R4 : {(pr, po)|pr ≥ qs, po ≥ qo}, (18)

where (a)+ = a if a ≥ 0, and 0 otherwise. In R1, buyers buy
from both pools or neither, like in Fig. 3a. In R2, buyers buy from
the on-demand pool or from neither, as in Fig. 3b. In R3, buyers
buy from the sharing pool or from neither, as in Fig. 3c. In R4,
buyers will buy from neither pool.

Proof: The boundary conditions of the four regions are
deduced through Fig. 3.

Prop. 2 is independent of the distribution of ui, users’
willingness to pay. This proposition indicates how the
relative magnitudes of the prices pr, po, and supply qs
and qo impact the equilibrium outcome. Specifically, when
(pr, po, qs, qo) satisfies the boundary conditions of one of the
regions, the collective behavior of buyers (who behave ac-
cording to Proposition 1), will result in the equilibrium out-
come being in that region. For example, when the prices po
and pr satisfy the conditions po < qo, pr ≥ min( qsqo , 1)po +

(qs − qo)
+, it will not be incentive compatible for any

buyers to choose the sharing pool (regardless of ui), and the
outcome is R2. The special case when qs = qo in Proposition
1 also fits this 4 region framework. If 1 < min(pr

qs
, po

qo
), the

users will choose not to buy and the resulting scenario will
be R4. In the alternative where 1 < min(pr

qs
, po

qo
) does not

hold, if the on-demand price is higher (po > pr) the users
will choose the sharing pool and we end up in R3, and
vice versa for R2. This 4 region structure is unique with
respect to the results from work on other sharing platforms
in networked systems (mobile data re-selling [26], [28] and
crowdsourced wireless community networks [29]).

With the 4 disjoint regions involving different pools
being purchased from (Proposition 2), the revenue function
R(po, pr) can be simplified as follows:

RR1(po, pr) ={
Npo(

pr−po

qs−qo
− po

qo
) +Nprδ(1− pr−po

qs−qo
), if qs ≥ qo

Nprδ(
po−pr

qo−qs
− pr

qs
) +Npo(1− po−pr

qo−qs
), if qo > qs

(19)

RR2(po, pr) = Npo(1−
po
qo

) (20)

RR3(po, pr) = Nprδ(1−
pr
qs

) (21)

RR4(po, pr) = 0 (22)

In R1, buyers are willing to buy from both the on-demand
and sharing pool. The two terms in the objective RR1(po, pr)
correspond to the revenue obtained from the two pools.
In R1 with qs ≥ q0, (pr−po

qs−qo
− po

qo
) and 1 − pr−po

qs−q0
are the

proportion of the buyers who choose the on-demand and
sharing pool respectively. In R4, buyers find it optimal to not
purchase from either pool, and hence the MNO’s revenue is
0.

Therefore, to optimize the revenue maximization prob-
lem, we will split the problem into four subproblems as
follows:

max
po,pr

RR1(po, pr) s.t. (15) (23)

max
po,pr

RR2(p0, pr) s.t. (16) (24)

max
po,pr

RR3(p0, pr) s.t. (17) (25)

max
po,pr

RR4(p0, pr) s.t. (18) (26)

For subproblem RR1(po, pr), we further split it into 2
subproblems RR1a(po, pr) and RR1b(po, pr) corresponding
to the 2 cases where qs ≥ qo and qo > qs. In the following,
we give Theorem 1 to characterise the optimal prices po and
pr .

Theorem 1. When buyers make decisions according to Proposi-
tion 1, given a fixed (qo, qs), and if the condition (δ + 1)2qs <
4δqo holds, the MNO’s optimal prices will be as follows.

• To maximize RR1a(p0, pr) in R1, we have:
If Eq. (15) is satisfied

(p∗o,1a, p
∗
r,1a) =

(δ(1 + δ)qo(qs − qo)

4qsδ − (1 + δ)2qo
,

qs − qo
2

+
(1 + δ)2qo(qs − qo)

2(4qsδ − (1 + δ)2qo)

)
,

Else,

(p∗o,1a, p
∗
r,1a)=argmax{( qo

2 ,qs− qo
2 ),( qo

2 , qs2 )}R
R1a(po, pr).

• To maximize RR1b(po, pr) in R1, we have:
If Eq. (15) is satisfied,

(p∗o,1b, p
∗
r,1b)=(

2δqo(qo − qs)

4δqo − (δ + 1)2qs
,
qs(δ + 1)(qo − qs)

4δqo − (δ + 1)2qs
),
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Else,

(p∗o,1b, p
∗
r,1b) = argmax{(qo− qs

2 , qs2 ),( qo
2 , qs2 )}R

R1b(po, pr).

• To maximize RR2(po, pr), we have (p∗o,2, p
∗
r,2) = ( qo2 , a).

• To maximize RR3(po, pr), we have (p∗o,3, p
∗
r,3) = (b, qs

2 ).

Note that, in the latter two cases, a is any price pr which satisfies
the boundary conditions of R2 (Eq. (16)), and b is any price po
which satisfies the boundary conditions of R3 (Eq. (17)).

Proof: See Appendix For each of the subproblems, we
obtain the Hessian matrix of the objective function. The Hes-
sians of R1a, R2 and R3 are all negative semidefinite (having
eigenvalues which ≤ 0), and therefore these subproblems
have concave objectives. As the constraints are linear with
respect to po and pr, these subproblems are convex. For the
subproblem R1b, the Hessian is negative semidefinite under
the condition (δ + 1)2qs < 4δqo. With convexity, we can use
the KKT conditions to find their optimal prices.

In Theorem 1, (δ + 1)2qs < 4δqo is the condition
under which the Hessian of R1b’s objective has negative
eigenvalues, and hence the condition under which subprob-
lem R1b is convex. We use the KKT conditions to solve
the problem. For subproblem R1a, the gradients are 0 at
p∗o,1a = 2δqo(qo−qs)

4δqo−(δ+1)2qs
and p∗r,1a = qs(δ+1)(qo−qs)

4δqo−(δ+1)2qs
. If this

point is within the boundary conditions, it is the optimal
point. If it is not, the optimal point would be at one of
the boundaries (with regions R2 or R3), specifically being
( qo2 , qs−

qo
2 ) (boundary with R2) or ( qo2 ,

qs
2 ) (boundary with

R3). Likewise for subproblem R1b. For subproblems R2 and
R3, the optimal solutions of p∗o,2 = qo

2 and p∗r,3 = qs
2 hold

at the boundary as well. These optimal prices agree with
intuition, that as the quality/supply (likelihood of buyer
getting service) qo (or qs) increases, the MNO can increase
the price to increase its revenue.

5.2 Case 2: Re-sellers weigh inconvenience cost when
deciding to re-sell quota
In this subsection, we analyse an alternative platform design
in which the MNO implements manual decision making
for re-sellers: re-sellers weigh their inconvenience cost gi
when deciding whether or not to re-sell quota in the sharing
pool, according to Eq. (1). As mentioned in Section 3, the
inconvenience cost gi factors in the re-seller’s uncertainty of
usage during the timeslot, and the re-seller’s inconvenience,
willingness and ability towards checking the app to decide
whether or not to re-sell. Here gi follows the uniform U [0, 1]
distribution as it captures the varying levels of inconve-
nience across users. In Section 6, we perform simulations
using both uniform and beta (which has a gaussian-like
structure) distributions, showing similar results across dis-
tributions.

Under this scenario, we solve the Stackelberg Game (Eq.
(7), (8) and (9)). Firstly, in Stage 1 the MNO decides the
prices pr and po. Following which, in Stage 2A the re-sellers
decide whether they want to sell their excess resource quota,
based on what maximizes their payoff (Eq. (1)), resulting in
a quality/supply of qs(pr). Finally, in Stage 2B, the buyers
would make a decision, aiming to maximize their individual
payoffs (Eq. (4)), given the values of (pr, po, qs(pr), qo). We

solve the Stackelberg Game by backward induction, solving
Stage 2 first, and using the equilibrium outcome of Stage 2
to solve Stage 1 and obtain the MNO’s optimal prices.

5.2.1 The re-seller’s optimal strategy
The following Proposition shows the re-seller’s optimal
strategy.

Proposition 3. For given pr , re-seller i with inconvenience cost
gi’s optimal strategy would be:

s∗ =

{
sell, if (1− δ)pr > gi,

no, otherwise
(27)

Collectively, by Eq. (2) this results in a proportion
(1 − δ)pr of re-sellers being willing to rent out their un-
used resources and therefore following Eq. (3), the total
quality/supply of the sharing pool will be

qs(pr) ∼ f((1− δ)pr), (28)

which is a function of price pr.

5.2.2 The buyer’s optimal strategy
Given (qs(pr), qo) and (pr, po), a buyer’s strategy would still
follow Proposition 1 in Section 5.1, with the substitution
of qs by qs(pr). Hence, their collective strategies would
form distinct regions R1 to R4 at equilibrium, where the
four regions indicate whether or not the sharing and/or on-
demand pools are feasible. This is according to Proposition
2 in Section 5.1. Once again, the only difference is that qs is
replaced by qs(pr).

5.2.3 The MNO’s optimal price
Given the strategies of the re-sellers and buyers in Stages 2A
and 2B, corresponding to the regions in Proposition 2, the
MNO’s revenue maximizing problem R(po, pr) can be split
into the following subproblems.

RR1a
C2 (po, pr):

max
pr,po

Npo(
pr − po

qs(pr)− qo
− po

qo
) +Nprδ(1−

pr − po
qs(pr)− qo

)

s.t. (15), qs(pr) > qo
(29)

RR1b
C2 (po, pr):

max
pr,po

Nprδ(
po − pr

qo − qs(pr)
− pr

qs(pr)
) +Npo(1−

po − pr
qo − qs(pr)

)

s.t. (15), qo > qs(pr)
(30)

RR2a
C2 (po, pr) : max

pr,po

Npo(1−
po
qo

)

s.t. (16), qs(pr) > qo,
(31)

RR2b
C2 (po, pr) : max

pr,po

Npo(1−
po
qo

)

s.t. (16), qo > qs(pr),
(32)

RR3a
C2 (po, pr) : max

pr,po

Nprδ(1−
pr

qs(pr)
)

s.t. (17), qs(pr) > qo,
(33)

RR3b
C2 (po, pr) : max

pr,po

Nprδ(1−
pr

qs(pr)
)

s.t. (17), qo > qs(pr),
(34)
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and RR4
C2 (po, pr) is a constant of 0, corresponding to R4 in

Proposition 2 (where users choose neither the on-demand
nor sharing pool). Other than R4, the other regions are
considered with two subproblems which correspond to the
disjoint cases qs(pr) ≥ qo and qo > qs(pr). This allows us
to replace the terms involving min() and ()+. For example,
RR1a

C2 (po, pr) and RR1b
C2 (po, pr) both correspond to the situa-

tion when we are in R1 (where at equilibrium, buyers choose
both to buy from the on-demand pool and the sharing pool).
They differ depending on whether qs(pr) ≥ qo or not.

The subproblems are not jointly convex with respect to
po and pr . Hence, with pr and qs(pr) given, we optimize
with respect to po to attain insights on the MNO’s optimal
price in R1 and R2. The MNO’s revenues in R3 and R4 are
not related to po (since no users buy from the on-demand
pool) and are constant with pr and qs(pr) given.

Theorem 2. Given (pr, qs(pr)), the MNO’s optimal on-demand
price p∗o at each region is given by:

• In R1 with qs(pr) ≥ qo,

p∗o,1a =
qopr(1 + δ)

2qs(pr, δ)
or argmax{B1,B2}R

R1a
C2 (po, pr)

• In R1 with qs(pr) < qo,

p∗o,1b =
pr(δ + 1) + qo − qs(pr, δ)

2
or argmax{B1,B2}R

R1b
C2 (po, pr)

• In R2 with qs(pr) ≥ qo, p∗o,2a = qo
2 or B1

• In R2 with qs(pr) < qo, p∗o,2b =
qo
2 or B1

where B1 = pr − qs(pr)+ qo and B2 = prqo
qs(pr)

are points on the
region boundaries.

Proof: For subproblem RR1a
C2 , the second derivative of the

objective function with respect to po is −2Nqs(pr)
(qs(pr)−qo)qo

< 0

since qs(pr) ≥ qo and qo > 0, indicating that the objec-
tive function is concave. As the constraints involve linear
functions of po, the maximization problem is convex with
respect to po. Therefore, we convert the constraints to non-
strict inequalities and use the KKT conditions to solve
RR1a

C2 , with respect to po. The Lagrangian is defined as
L(po, λ1, λ2) = Npo(

pr−po

qs(pr)−qo
− po

qo
)+Nprδ(1− pr−po

qs(pr)−qo
)+

λ1(pr−po−qs(pr)+qo)+λ2(qa(pr)/qopo−pr), with λ1 and
λ2 being the dual variables corresponding to the constraints.
If the dual variables λ1 (or λ2) were greater than 0, the
optimal point would lie on the boundary between region
R1 and R2 (or R3 respectively) If the dual variables are 0,
the optimal point will be the point at which the gradient of
the Lagrangian is 0. We solve the rest of the subproblems
similarly.

Theorem 2 gives us insights on how the MNO should
set the on-demand price po, given that the other parame-
ters pr and qs(pr) are fixed. In R1, when users buy from
both the sharing and on-demand pool, the price po at
which the gradient of the revenue is 0 is qopr(1+δ)

2qs(pr)
for R1a

and pr(δ+1)+qo−qs(pr)
2 for R1b. We seperately analyse the

cases when qopr(1+δ)
2qs(pr)

(the point at which the gradient of
the revenue is 0) lies within the region’s boundaries, and

when it does not. Case 1: If p∗o = qopr(1+δ)
2qs(pr)

lies within

R1a’s boundaries (pr < po + qs(pr) − qo, pr > qs(pr)
qo

po),
it is the optimal price, as the problem is convex with
respect to po. Likewise for pr(δ+1)+qo−qs(pr)

2 in R1b. These
functions indicate that the optimal price p∗o increases with
respect to the on-demand expected quality (supply) qo
and platform commission δ. As the on-demand supply
qo increases, the increase in on-demand price po would
not deter users away from the on-demand pool. Likewise,
when the MNO’s commission δ increases, re-sellers will be
deterred from selling their unused resource quota, resulting
in a smaller supply at the sharing-pool. With a potentially
lower payoff at the sharing pool, the increase in the on-
demand price po would not deter users away from the
on-demand pool. At the same time, as the sharing supply
qs(pr) increases, the sharing pool is seen as more attractive
to users (due to the potentially higher individual payoff).
In light of this, the optimal on-demand price p∗o has to
decrease. Case 2: If qopr(1+δ)

2qs(pr)
(and pr(δ+1)+qo−qs(pr)

2 ) do
not lie within R1a’s (respectively R1b’s) boundaries, the
optimal points p∗o,1a (and p∗o,1b) will lie on the region’s
boundaries, since the problems are convex. Specifically,
the optimal prices will be argmax{B1,B2}R

R1a
C2 (po, pr) (and

argmax{B1,B2}R
R1b
C2 (po, pr)).

In R2, where buyers only choose the on-demand pool,
the price po at which the gradient of the revenue is 0 is
qo
2 . We seperately analyse the cases when qo

2 (the point
at which the gradient of the revenue is 0) lies within the
region’s boundaries, and when it does not. Case 1: If p∗o = qo

2
lies within R2’s boundary (pr ≥ po + (qs(pr) − qo) for
RR2a

C2 (po, pr) and pr ≥ qs
qo
po for RR2b

C2 (po, pr) respectively),
it is the optimal on-demand price because the problem
is convex with respect to po. Therefore, the optimal on-
demand price is an increasing function of the on-demand
pool’s supply qo. This indicates that as the supply of the on-
demand pool qo increases, the rise in the on-demand price
will not deter users away from the on-demand pool. Case 2:
If p∗o = qo

2 does not lie within region R2’s boundaries,
the optimal point will lie on the boundary pr = B1 for
RR2a

C2 (po, pr) and pr = B2 for RR2b
C2 (po, pr), respectively.

This is because, the optimization problems are convex with
respect to po.

On this basis, we then focus on the joint optimization
of po and pr for the MNO’s optimal revenue, which will
be the maximum of the revenues across the four regions.
According to Corollary 1, the MNO’s optimal revenue is
calculated as

max
pr

Rmax(pr). (35)

Corollary 1. Given (pr, qs(pr)), the MNO’s optimal revenue
will be

Rmax(pr) = max
{
RR1a

C2 (p∗o,1a, pr), R
R1b
C2 (p∗o,1b, pr),

RR2a
C2 (p∗o,2a, pr), R

R2b
C2 (p∗o,2b, pr), R

R3
C2 (pr), 0

}
,

(36)

where RR3
C2 (pr) = Nprδ(1 − pr

qs(pr)
) is the revenue in R3 (the

region where the buyers only choose the sharing pool), if the
boundary conditions of R3 (Eq. (17)) were met. And 0 is the
revenue in R4 (the region where the buyers choose neither the



10

sharing pool nor the on-demand pool), if the boundary conditions
of R4 (Eq. (18)) were met.

Since the optimal on-demand price p∗o in Rmax(pr) is
obtained in Theorem 2, the optimization in (35) can be
addressed by using a linear search across pr . In Section 6, we
discuss the joint optimization of po and pr and the resulting
insights at the optimal and equilibrium point.

6 NUMERICAL SIMULATIONS

In this section we provide numerical results on the optimal
and equilibrium outcome of the Stackelberg Game (Eq. (7),
(8) and (9)). These results give us insights and show the
practical implications of integrating the sharing pool with
the On-Demand Pricing and Resource Reservation model.
In many of our experiments, for each combination of (on-
demand supply qo, commission δ, and normalization pa-
rameter a), we optimize over the prices (po, pr), obtaining
the optimal revenue, and hence optimal region. In Section
7, we perform preliminary user studies on a prototype, to
evaluate the extent of which user decisions differ from our
decision model.

Firstly, we define a specific form of qs(pr), which indi-
cates the relationship between the price pr and the resulting
quality/supply qs(pr), as follows:

qs(pr) = a log(1 + (1− δ)pr). (37)

We use a log function, which models the law of diminish-
ing marginal returns [42]. The relative supply/quality (i.e.
likelihood of buyers getting their jobs served) of the sharing
pool increases as the proportion of re-sellers willing to sell
(1 − δ)pr increases. The parameter a is the normalization
parameter, normalizing the function of the proportion of
re-sellers log(1 + (1 − δ)pr) willing to re-sell to a magni-
tude such that the supply level qs(pr) is comparable with
the supply at the on-demand pool qo. For our numerical
simulations, we use Eq. (37) as the specific form of qs(pr)
and set the number of buyers and the number of re-sellers
(N ) to be 50. We perform experiments with the willingness
to pay ui and the willingness to share gi following the
Uniform[0,1] as well as the Beta(2,2) distribution. Under
the Uniform[0,1] distribution, the users’ types ui and gi are
evenly spread out over the range [0, 1]. Under the Beta(2,2)
distribution, the users’ types follow an inverse parabolic
structure, with more users whose types take values towards
the center of the range [0, 1] and fewer users taking values
towards the edge of the range [0, 1], somewhat similar to
a Gaussian distribution. We also model heterogeneous user
usage levels, both on the buyer side and the re-seller side,
with usage levels following the uniform[0,1] distribution.

Impact of the on-demand supply qo on the optimal revenue
and region : Firstly, we show how the MNO’s optimal
revenue and region vary with respect to the on-demand
quality/supply qo in Fig. 4a, 4b and 4c where we set
δ = 0.2 and a = 2. Given that we do not know what is
an appropriate normalization parameter which relates the
supply function qs(pr) to the supply of the on-demand pool
qo, we set a = 2 first, and later decrease the normalization
parameter to a = 1.5. To obtain the optimal revenue and
region, we optimize over the prices (po, pr), given each

combination of (on-demand supply qo, commission δ, and
normalization parameter a). For both cases where the re-
sellers’ willingness to share and the buyers’ willingness to
pay follow uniform (Fig. 4a) and beta distribution (Fig. 4b),
and when the users’ usage levels are heterogeneous and fol-
low the Uniform[0,1] distribution (Fig. 4c), it can be seen that
for smaller values of qo, i.e., when the on-demand supply is
lower, it is more beneficial to supplement buyers with the
sharing pool to buy quota for job computation (Region R1).
This additional income adds to the revenue of the MNO.
Nevertheless, as qo increases, the additional income from the
sharing pool does not outweigh the increase in revenue from
the on-demand pool Non-demand po(1− po

qo
), hence Region R2

is optimal.
Impact of the commission δ on the optimal revenue and region:

In Fig. 5a, we plot the optimal revenue for the MNO against
qo, for different values of commission δ. Conversely, in Fig.
5b, we plot the optimal revenue of the MNO against the
commission δ, for different values of qo. In Figs. 5c, d and
e, we show the optimal region at equilibrium for different
values of δ, (with gi and ui taking values from the Uni-
form[0,1] and Beta(2,2) distributions, and when the users’
usage levels are heterogeneous following Uniform[0,1] re-
spectively). Once again, to obtain the optimal revenue and
region, we optimize over the prices (po, pr), given each
combination of (on-demand supply qo, commission δ, and
normalization parameter a). These graphs show that when
the commission δ is smallest, it is not profitable to have
sharing (hence the optimal region is R2), because the plat-
form does not get much revenue from sharing due to its
commission being small. As δ gets larger, it becomes prof-
itable to have the sharing platform (Region R1) due to the
increase in commission for the platform and hence revenue
Non-demandpo(

pr−po

qs(pr)−qo
− po

qo
) +Nshareprδ(1− pr−po

qs(pr)−qo
). On

the other hand, for larger δ, the re-sellers will be less likely
to choose to re-sell their unused resource quota. This is
seen in Eq. (1), as their payoffs are inversely proportional
with respect to δ, and in qs(pr) = a log(1 + (1 − δ)pr)
(Eq. (37)) where the sharing pool’s supply qs is inversely
proportional to δ. This results in a lower quality/supply
sharing pool, and therefore a smaller revenue which the
MNO can obtain from sharing, making Region R2 (purely
on-demand) optimal at high δ. To summarize, it would have
been expected that a high commission would give the plat-
form a higher revenue, nevertheless our results show that
it incurred a trade-off in dissuading reservation plan users
from re-selling, hence decreasing the supply and revenue.

Impact of the on-demand price po on the revenue and re-
gion : In Fig. 6a, we show how the revenue varies as
the on-demand price po increases, for given values of
qo, δ = 0.2, a = 2, pr = 0.5. As the price increases, the
equilibrium region shifts from R2 (purely on-demand) to
R1 (both on-demand and sharing) as more buyers choose
the sharing platform due to the on-demand price increasing.
As the on-demand price increases even further, the region
transitions to R3 (purely sharing) due to the on-demand
price being too high. Nevertheless, R3 is not optimal for
the platform because it only collects a proportion δ of the
amount transacted.

Impact of the normalization parameter a on the optimal
revenue and region : Given that it is not clear what is an ap-
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(a) The MNO’s optimal revenue and region
against qo. δ = 0.2, a = 2, with ui, gi follow-
ing the uniform U(0, 1) distribution.

(b) The MNO’s optimal revenue and re-
gion against qo. δ = 0.2, a = 2, with
ui, gi following beta(2,2) distribution.

(c) The MNO’s optimal revenue and re-
gion against qo. δ = 0.2, a = 2, with
ui, gi, and usage levels following the
uniform U(0, 1) distribution.

Fig. 4. When on-demand supply is low, the optimal revenue is at Region 1 (offering both a sharing and an on-demand pool). As the on-demand
supply increases, the optimal revenue transitions to Region 2 (purely on-demand).

(a) The MNO’s optimal revenue against on-
demand supply qo, a = 2.

(b) The MNO’s optimal revenue against com-
mission δ, a = 2.

(c) The MNO’s optimal revenue and region
against δ. qo = 0.2, a = 2, with ui, gi follow-
ing the uniform U(0, 1) distribution.

(d) The MNO’s optimal revenue and region
against δ. qo = 0.2, a = 2, with ui, gi follow-
ing the beta(2,2) distribution.

(e) The MNO’s optimal revenue and re-
gion against δ. qo = 0.2, a = 2, with
ui, gi, and usage levels following the uni-
form (0, 1) distribution.

Fig. 5. When the commission level δ is lower, the optimal revenue is at Region 1 (offering both a sharing and an on-demand pool). As the commission
level increases, the optimal revenue transitions to Region 2 (purely on-demand).

propriate normalization parameter which relates the supply
function qs(pr) to the supply of the on-demand pool qo, we
explore different normalization parameters. In contrast to
Fig. 5a, we set a smaller normalization parameter a = 1.5
for Fig. 6b. Once again, to obtain the optimal revenue and
region, we optimize over the prices (po, pr), given each
combination of (on-demand supply qo, commission δ, and
normalization parameter a). With a smaller a, a higher price
pr comes with a lower quality/supply qs(pr) relative to
qo and therefore a lower payoff for buyers at the sharing
pool. Hence, buyers have lower incentive to buy resources
from the sharing pool. That is why region R2 (purely on-
demand) gives the optimal revenue for all values of qo in

Fig. 6b. Nevertheless, although R1’s optimal revenue is not
the optimal over all regions under this set of parameters,
users will still buy from the sharing pool and it’s revenue is
non-zero, as seen in Fig. 6b.

Analyzing individual buyer payoffs : Finally, we plot indi-
vidual buyer payoffs (Eq. (4)) at equilibrium conditions in
Fig. 6c. As we can see, buyers with lower willingness to pay
ui choose neither pool. As their willingness to pay (utility
of the job computation) increases, their payoff increases. We
can see that for the qo = 0.1 and qo = 0.2 plots, users
with high willingness to pay choose the sharing pool, as
visualised through the different gradients.

In summary, our simulation results show that under
the combination of low δ, low qo, and large a, having the
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(a) The MNO’s revenue and region against
on-demand price po. qo, δ = 0.2, a = 2, pr =
0.5, with ui, gi following the beta(2,2) distri-
bution.

(b) The MNO’s optimal revenue and region
against on-demand supply qo, δ = 0.2, a =
1.5.

(c) The individual buyer’s payoff against
willingness to pay ui, δ = 0.2, a = 2.

Fig. 6. Further Numerical Results and Insights: The impact of the on-demand price and normalization parameter on revenue, and how the individual
buyer’s payoff varies with the willingness to pay.

Fig. 7. Screnshots of our prototype - an interactive website, which can
capture user decision making given different parameter settings, for user
studies. It’s url is https://shikhsh.github.io/erpMEC/.

sharing platform (Region R1) is optimal. Besides, it is not
optimal to have Region R3 (purely sharing), due to the
MNO only being able to take a proportion δ of the revenue
Nshare prδ(1− pr

qs(pr)
).

7 PROTOTYPE AND PRELIMINARY USER STUDIES

7.1 Prototype Description
We created a prototype, an interactive website (see Fig. 7
for screenshots), which is able to capture user decisions
given the different parameters. The interactive website’s url
is https://shikhsh.github.io/erpMEC. In Fig. 8 we illustrate
how the real-world version of our prototype integrates with
the rest of the MEC system.

In our prototype, when users enter the website, they
will be given a choice to select whether they are a buyer
or re-seller. In the re-sellers portal, the user is shown 1)
their specific edge computing application, randomly sam-
pled from the list [’IoT Sensing Analytics’, ’Distributed
AI’, ’Predictive Maintence’, ’Remote Monitoring’, ’Industrial

Fig. 8. How the real-world version of our prototype is integrated with the
rest of the MEC system.

IoT’, ’Augmented Reality Display’], 2) their remaining usage
quota this time-slot, after factoring in their planned usage
level, and 3) their inconvenience cost of re-selling, in light of
potential further usage this time-slot. Note that the incon-
venience cost also includes the cost of opening the website
or app. 4) The re-selling price and platform commission,
5) the payoff equations under the different options, and
finally 6) the option buttons “re-sell” and “no”, for the
user to choose from. Parameters 1, 2, and 3 are user specific
parameters, and are uniformly randomly generated upon
each user’s entrance for our prototype. When the number
of users who use our prototype in user studies is large,
we can compare the empirical distribution of user decisions
to that of our model. The parameters in 4 are fixed for all
users, and can be varied across user studies to view how
users make decisions, and the aggregate outcome, under
different settings. In practice, the information shown such
as the type of application and the inconvenience cost (given
potential further usage that time-slot) can be pulled from
the user’s usage history. The information on the user’s
remaining resource quota comes from the website’s back-
end calculations.

In the buyers‘ portal, the user is shown 1) their specific
edge computing application, randomly sampled from the
list [’IoT Sensing Analytics’, ’Mobile Gaming’, ’Augmented
Reality’, ’Data Analytics on Device’, ’Smart Home IoT Ana-
lytics’] 2) their usage demand this time-slot, 3) their utility
received, and hence their willingness to pay, 4) the supply
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Fig. 9. Results of preliminary user study: The scatter points indicate the
user choices given the utility and usage values they were shown on
the website. The dotted lines indicate the region boundaries from the
analytical model in the paper.

and prices under the sharing pool and re-selling pool, 5)
the payoff equations under the different options, and 6)
the option buttons “On-Demand Pool”, “Sharing Pool”,
“No purchase”, for the user to choose from. As per the
re-seller’s portal, parameters 1, 2, and 3 are user specific
parameters, and are uniformly randomly generated upon
each user’s entrance for our prototype. When the number
of users who use our prototype in user studies is large, this
models the equilibrium and aggregate outcome of hetero-
geneous users decision making. The parameters in 4 are
fixed, and can be varied across user studies to view how
users make decisions, and the aggregate outcome, under
different settings. In practice, the information shown such as
the type of application can be pulled from the user’s usage
history. The information on the user’s remaining resource
quota comes from the website’s back-end calculations. In
practice, the users’ willingness to pay will not be shown on
the website, but is inherent in users’ decision making.

Our prototype stores a string of information upon each
user click, on our back-end server (Fig 8). For re-sellers,
the string contains [remaining usage level for the time-
slot, inconvenience cost/ uncertainty of usage gi, re-selling
price pr , commission level δ, type of application, Y or N
indicating the user’s choice of whether or not to re-sell,
the time stamp]. For buyers, the string contains [the user’s
usage requirement, the utility/ willingness to pay ui, the on-
demand supply qo, the sharing supply qs, the on-demand
price po, the sharing price pr , the user’s choice (Sharing,
On-demand, No purchase), the time stamp]. Our prototype
stores these information, without storing the identity or
any other information regarding the user. All clicks are
anonymous. In practice, the back-end server will relay the
decisions of the users to the edge. Based on this, the resource
units at edge servers will be correspondingly allocated to the
different users, by the computer at the edge server (Fig 8).

7.2 Preliminary User Study
The goal of the user study is to verify how accurately our
decision model (Eq. 1 for re-sellers, and Prop. 1-2, Fig 3a
for buyers) models the way users make decisions. We will

evaluate how similar the empirical distribution function of
the data from the user study, and the empirical distribution
function of the data from the model’s predictions, are.

For this preliminary user study, we set the sharing sup-
ply available to be slightly higher than the on-demand sup-
ply (qo = 0.6, qs = 0.7), and the sharing price to be slightly
higher than the on-demand price (po = 0.15, pr = 0.2). For
our participants, we have had 44 participants be buyers, and
28 participants be re-sellers. Our results are in Fig. 9, Tables 3
and 3. Fig 9 is a scatter plot of buyers clicks, given the usage
and utility values they were shown on the website. Under
our paper’s math model (Proposition 2/ Fig 3a of paper),
buyers will choose the sharing pool when their utility value
pr−po
qs−qo < ui < 1, will chose the on-demand pool when
po
qo < ui <

pr−po
qs−qo , and will choose neither when ui <

po
qo . We

can see in the scatter plot that the on-demand and sharing
region largely agrees with the paper’s model, which is cor-
roborated by the percentage agreement with model in Table
2. The percentage agreement is calculated as follows: For each
range of utilities ui corresponding to the regions [sharing,
on-demand, neither] (i.e. [pr−po

qs−qo < ui < 1, po
qo < ui <

pr−po
qs−qo ,

ui < po
qo ]), we will calculate the percentage of data points

from our user study which agree with our model. For e.g.,
in the ”sharing” region, there are altogether 22 data points,
and 17 agree with our model (Prop 1-2, and Fig. 3a), giving
a percentage of 77.3%. We note that there is randomness
inherent in user clicks (decisions), as a math model can
not fully capture user behavior. Furthermore decisions in
a prototype will have differences from user behaviors in the
actual system. Next we perform the Kolmogorov-Smirnov
(KS) test for both the buyers and re-sellers data. We obtain
the model’s data samples through using the given utility
values, and obtaining the corresponding decisions accord-
ing to the model (Prop 1-2, Fig 3a for buyers, and Eq 1 for
re-sellers). With this and our data samples, we perform a
KS test to evaluate whether, for each region (Sharing, On
Demand, Neither, for buyers, Re-selling, Not Re-selling, for
re-sellers) the two set of data points (data from user studies
and model) can considered to be from the same distribution.
We perform the KS test using the scipy library in python.
The KS test calculates the mean and standard deviation for
each set of data points, and obtains the KS test test statistic,

D = sup
x
|Fdata(x)− Fmodel(x)| (38)

which quantifies the distance between the empirical distri-
bution functions of the two data samples (model and user
studies data). We choose a confidence level of 95%. As the
p-values are above the significance level of 0.05, there is no
significant evidence that the data and model distributions
are different. Beyond our preliminary study in this work,
further studies under different parameter settings, can be
made with the help of our interactive prototype.

8 FUTURE WORK

For future work, we will study the long-term scenario
where users may switch between reserving resources in
advance, and buying on the go through the on-demand and
sharing pools. Here, another layer would be added to the
Stackelberg game and users will make decisions based on
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Region Sharing On Demand Neither
Analytical Model (Prop 1-2) pr−po

qs−qo
< ui < 1 po

qo
< ui <

pr−po
qs−qo

ui <
po
qo

Percentage agreement of data and model 77.3% 66.7 % 33.3 %
Test Statistic (of KS test) 0.2917 0.2941 0.2667

P-value (of KS test) 0.2406 0.6487 0.9629
Are the data and No significant evidence No significant evidence No significant evidence

model distributions distinct?
TABLE 2

Results for Buyers: Comparing data from user studies with the expected values from the model for each choice: Sharing, On-demand and Neither,
through calculating the percentage agreement, and through using the Kolmogorov-Smirnov (KS) test. Our results show that there is no significant

evidence of the data following a distinct distribution from our paper’s model (at significance level 0.05).

Region Re-selling Not re-selling
Analytical Model (Eq 1) gi < (1− δ)pr gi > (1− δ)pr

Percentage agreement with model (within region) 90.9% 52.9%
Test Statistic (of KS test) 0.4444 0.1824

P-value (of KS test) 0.0975 0.9532
Are the data and No significant evidence No significant evidence

model distributions distinct?
TABLE 3

Results for Re-sellers: Comparing data from user studies with the expected values from the model for each choice: Re-selling, and not re-selling,
through calculating the percentage agreement, and through using the Kolmogorov-Smirnov (KS) test. Our results show that there is no significant

evidence of the data following a distinct distribution from our paper’s model (at significance level 0.05).

their expected payoffs in the long run. The expected payoff
would depend on the users’ application requirements: the
probability of them needing job computation at the edge
consistently over all timeslots vs one-off and sporadically,
the prices set by the MNO and the expected supplies of
the different options, which is influenced by the aggregate
decisions of other users.

Another line of investigation is to study how the sharing
framework can be implemented across multiple edge nodes,
with different users being associated with different nodes
due to proximity. In light of this, the on-the-go (on-demand
and sharing) queues and the sharing supply would differ
across nodes. If users are allowed to associate with other
nearby nodes, it is thus of interest to investigate how the
MNO can jointly price and allocate the resources across
nodes to the different users, to maximize revenue and
minimize the number of unmet jobs. In this new study on
incentives, a Stackelberg game formulation can be used to
analyze and characterise the interaction between the differ-
ent parties, along with a matching algorithm which matches
users to resources across edge nodes, with the transmission
cost and hence distance between user and node being a
factor. In the new Stackelberg formulation, the user decision
making functions will be modified to reflect the potential
supply levels at different nodes, and the likelihood of the
user attaining resources from different nodes, which is a
function of the distance.

9 CONCLUSION

In this paper we proposed a novel resource sharing plat-
form to enhance the usage of the on-demand pricing and
resource reservation models in edge computing. This helps
to optimize the scenario where the on-demand users face
a limited supply remaining at the edge server, whilst users
under the resource reservation model have reserved excess
computing resources, by allowing the re-selling of unused
resource quota. We formulated a 3-stage Stackelberg Game
to investigate the user’s optimal strategies and equilibrium

behavior, as well as whether the MNO has an incentive to
provide such a resource sharing platform. By analyzing the
formulated game, we characterised the optimal strategies
of the re-sellers, buyers and MNO, and showed that there
would be 4 regions (both sharing and on-demand, only on-
demand, only sharing, none at all) at equilibrium after buy-
ers’ decisions. Based on these 4 regions, we optimized the
MNO’s revenue and analytically characterised the MNO’s
optimal on-demand prices. Our numerical results show that
having a sharing pool gives the MNO an optimal revenue
when the on-demand pool’s supply is low and when the
platform’s commission is low.
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